当前位置:文档之家› 基坑地下水涌水量计算与降水设计

基坑地下水涌水量计算与降水设计

基坑地下水涌水量计算与降水设计
基坑地下水涌水量计算与降水设计

基坑地下水涌水量计算与降水设计

【摘要】我国是一个水资源相当丰富的国家,地下水的含量也较高。随着经济的发展,人口增多,土体资源越来越紧张。建筑工程高度逐渐变高,对于地下结构的要求也随之越来越高。如何保证基础土方开挖过程中的安全,就需要采取降低地下水位的方法。本文从基坑地下涌水量的计算和相应应该采取的降水措施做简单的介绍。

【关键词】涌水量基坑降水技术井点

【引言】土方开挖遇到地下水位过高是我们工程建设过程中,经常遇到的问题。特别是在河流、湖泊、江海等地方进行深基坑开挖的时候,降水问题是我们应该重点研究的难题。针对不同的地质条件和周围环境,应该选择什么样的降水方案,在工程开工前期就应该做专项研究,制定专项施工方案。通过最有的方案达到降水的目的,是我们值得探讨的课题。

一、基坑地下涌水量的计算

目前在市场上,各个地方由于地质条件、施工工艺、技术设备等的不一样,

对于基坑地下涌水量的计算方式各式各样。本文根据多年工作经验和市场调研,综合以后,总结出下面的计算公式是应用比较广泛和认可度比较高的:

基坑地下涌水量Q :Q=2k0 SR0

式中k0为含水层渗透系数概数比,s为承压水水位下降设计值R0为基坑等效半径。

其中R0= 0.56F为基坑面积。

KO=(S+0.8L)/H ×K L为含水层顶面与设计下降水位的高差,s为承压水水位下降设计值,H为含水层底面起算的承压水测压水位高度,K为水层渗透系数。

如渗透系概述比k0为10m/d 基坑面积为400m2, 承压水水位设计下降值为15米,则基坑地下涌水量为Q=2×10×15×0.56×20M3/d =3360 M3/d.

二、降水设计方案选择的因素

目前市场上常用的降水方案有很多种,具体要根据实际地质条件和周围场地环境和设计要求来综合确定。具体在选择的过程中,我们应该考虑如下因素:

矿井涌水量的计算与评述 钱学溥

矿井涌水量的计算与评述 钱学溥 (国土资源部,北京 100812) 摘要:文章讨论了矿井涌水量的勘查、计算、精度级别、允许误差和有效数字。文章推荐了反求影响半径、作图法求解矿井涌水量的方法。 关键词:矿井涌水量;勘查;计算;精度级别;允许误差;有效数字 根据1998年国务院“三定方案”的规定,地下水由水利部门统一管理。水利部2005年发布了技术文件SL/Z 322-2005《建设项目水资源论证导则(试行)》。该技术文件6.7款规定,地下水资源包括地下水、地热水、天然矿泉水和矿坑排水。6.1.2款规定,计算的地下水资源量要认定它的精度级别。我们认为,认定计算的矿井涌水量的级别和允许误差,不仅是水利部门要求编写《建设项目水资源论证》的需要,而且有利于设计部门的使用。在发生经济纠纷的情况下,也有利于报告提交单位和报告评审机构为自己进行客观的申辩。下面,围绕这一问题,对矿井涌水量的勘查、计算、精度级别、允许误差和有效数字等方面,作一些论述和讨论。 1 矿井涌水量与水文地质勘查 矿井涌水量比较大,要求计算的矿井涌水量精度就比较高,也就需要投入比较多的水文地质勘查研究工作。表1,可以作为部署水文地质工作的参考。 表 1 矿井涌水量与水文地质勘查 Table 1 Mine inflow and hydrogeological exploration

注:○1多年生产的矿山是指:开采水平不变、开采面积基本不变的多年生产的矿山,如即将闭坑或是即将破产的矿山,即是这种多年生产的矿山。○2多孔抽水试验,是指带观测孔的一个抽水主孔的抽水试验,持续抽水几天。○3群孔抽水试验是指带观测孔的多个抽水主孔的抽水试验,其抽水总量,一般要达到计算矿井涌水量的1/3~3/4,持续抽水几十天。○4利用地下水动力学计算公式,计算矿井涌水量,就属于解析法的范畴。大井法、集水廊道法就是常用的解析法。○5数理统计包括一元线性回归、多元线性回归、逐步回归、系统理论分析、频率计算等(参考钱学溥,娘子关泉水流量几种回归分析的比较,《工程勘察》1983第4期,中国建筑工业出版社)。可以把水位抽降、巷道开拓面积、矿产产量、降水量等作为自变量,把矿井涌水量作为因变量。○6数值法也就是计算机模拟,是通过利用计算机模拟地下水流场的变化,计算矿井涌水量的一种方法。○7常用的大井法、集水廊道法等解析法计算矿井涌水量,只考虑了含水层的导水性,没有考虑地下水的补给量。因此,只有进行了解析法和水均衡的计算,用地下水的补给量验证解析法计算的结果,计算的矿井涌水量的精度才能达到C 级。 2 稳定流、非稳定流公式应用的主要条件 2.1一般报告采用的解析解大井法、集水廊道法,是基于稳定流理论推导的地下水动力学计算公式。它要求地下水有比较充分的补给条件,要求在该水平开采的几年到几十年内,矿井排水计算的地下水影响半径边界上的水头高度,永远稳定在计算采用的高度上。 2.2基于非稳定流理论推导的地下水动力学计算公式,恰恰相反,它的使用条件是地下水没有补给,含水层分布无限,地下水影响半径不断向外扩大。 2.3由于采用大井法、集水廊道法,一般都没有考虑地下水补给量的问题,因此,计算的结果可能有较大的误差,它的精度一般只有D级。

基坑降水计算

6.3 基坑降水方案设计 6.3.1 降水井型 选6型喷射井点:外管直径为200mm ,采用环形布置方案。 6.3.2 井点埋深 埋置深度须保证使地下水降到基坑底面以下,本工程案例取降到基坑面以下 1.0m 处。埋置深度可由下式确定: ()01x L H h h l i r h =++?+?++ (6.2) 式中: L —— 井点管的埋置深度()m ; H —— 基坑开挖深度()m ;这里12H m = h —— 井点管露出地面高度()m ,这里可取一般值 0.2m ; h ?—— 降水后地下水位至基坑底面的安全距离()m ,本次可取1.0m ; x i —— 降水漏斗曲线水力坡度,本次为环状,取0.1; 1h —— 井点管至基坑边线距离()m ,本次取1.0m ; 0r —— 基坑中心至基坑边线的距离()m ,本次工程案例去最近值宽边的一半,即40m ; l —— 滤管长度()m ,本次取1.0m 。 故带入公式可得埋置深度L 为: ()01120.2 1.00.1(1.040) 1.018.3x L H h h l m r i h =++?+?++=+++?++= 6.3.3 环形井点引用半径 采用“大井法”,参考规范,将矩形(本案例长宽比为2.5,小于10)基坑折算成半径为x 0的理想大圆井,按“大井法”计算涌水量,故本次基坑的引用半径: 4 0b a x +? =η (6.3) 式中:

,a b —— 基坑的长度和宽度()m ,200,80a m b m == η —— 系数,可参照下表格选取: 表6.1 系数η表 800.40200 b a == ,则 1.16η= 故带入公式可得本次基坑的引用半径0x 为: 020080 1.1681.244 a b m x η++=? =?= 6.3.4 井点抽水影响半径 由下列公式可求得抽水影响半径: m kt R H x w 220 + = (6.4) 式中: t —— 时间,自抽水时间算起(2-5昼夜) ()d ,本案例取5d ; k —— 土的渗透系数 (/)m d ,这里取平均值 2.7/k m d =; w H —— 含水层厚度()m ,本次取承压含水层厚度含水 层厚度④,⑤土层厚度的总和,即为 5.2611.2w H m =+=, m —— 土的给水度,按表 3.2确定,本次取圆砾

井点降水涌水量计算

按照初定方案,本工程除埋深较深段使用拖拉管施工外,剩余大部分需使用井点降水大开挖施工。按照设计及规范初步设计沟槽底宽 1.5m,沟槽深按照最大挖深设计取4m,开挖沟槽边坡按照1:1,基坑横剖面图如附图。经地质勘探,天然地面属耕植土,其下为粉质粘土( <=-4m),淤泥质粉质粘土(<=- 7.14m)、淤泥质粉质粘土夹粉砂,底部为泥岩,基本都属于透水层。地下水位标高为- 0.5m 采用轻型井点降水施工。 1 井点布设根据工程地质及施工状况,轻型井点采用沟槽两侧单排布设,为是总 管接 近地下水位,井点管布设于已挖好的路床底。总管距沟槽开挖线边缘1m,总管长度L=50X 2=100(m) 水位降低值 S=4 (m) 采用一级轻型井点,井点管的埋设深度(总管平台面至井点管下口,不包括滤管) H 2>=H1 +h+IL= 4.0+ 0.5+ 0.1 x 5.75= 5.1(m) 采用6m长的井点管,直径50mm,滤管长1m。井点管外露地面

0.2m,埋入土中 5 . 8 m (不包括滤管)大于 5.2m,符合埋深要求。按无压非完整井环形井点系统计算。 2).基坑涌水量计算 按无压非完整井环形点系统涌水量计算公式(式1—23)进行计算Q= 先求出H、K、R、x0 值。 H: 有效带深度H= 1.85(S,+L) s'=-6 0.2- 1.0= 4.8m 求得H: H= 1.85(s,+L)= 1.85( 4.8+ 1.0)= 10.73(m) 由于HO

10.73(m) K: 渗透系数,经实测K= 0.4m/d R: 抽水影响半径R=(m) xO:基坑假想半径,x0 = (m) 将以上数值代入公式得基坑涌水量Q:Q=( m3/d )

管井降水计算

管井降水计算书 合肥市小仓房污水处理厂一期工程二标工程;属于结构;地上0层;地下0层;建筑高度:0m;标准层层高:0m ;总建筑面积:0平方米;总工期:180天;施工单位:安徽水安建设发展股份有限公司。 本工程由合肥市重点局投资建设,北京市政设计研究/合肥市政设计有限公司设计,合肥市勘察院地质勘察,浙江江南工程管理股份有限公司监理,安徽水安建设发展股份 有限公司组织施工;由邹总担任项目经理,邹总担任技术负责人。 工程说明:合肥市小仓房污水处理厂拟建于包河区大圩乡境内,繁华大道(规划道路)以北。一期日处理污水规模10万m3/d,总征地面积13、8ha,占地面积9、9ha,附属建筑面积2950m2,生产建筑面积6045、1m2。 本次工程主要包括进水泵房及粗格栅间、出水井、细格栅间、曝气沉沙池、砂水分离车间、污泥泵房、沉淀池、配水井、提升泵房、滤池设备间、紫外消毒渠道以及场内土方挖填、道路、排水管道等全部工作内容。 建筑物结构形式主要以钢筋砼框架为主,个别为砖混结构,部分构筑物主要为现浇钢筋砼整体结构。 拟建场地现主要为水田,地形较平坦,西部局部为藕塘及沟渠。实测地面高程8、60~12、62m,最大高差4、02m。根据现场地址情况,大部分构筑物地下软基采用水泥搅拌桩形成复合地基处理。 场地地下水类型主要有两类:一类分布于①层素填土中的上层滞水及②层淤泥质 粉质粘土、③层粘土中的孔隙水,水量与地势高低及填土厚度有较大关系,场地地下水较丰富,主要由大气降水、地表水渗入为主补给,无统一地下水位,排泄途径主要就是蒸发及渗入低洼处为主。水位标高8、60~10、53m。另一类为分布于⑥层粉土及⑦层粉土夹粉砂中的承压水,主要由地下径流渗透补给,与南淝河河水联系密切,其承压水头一般大于4m。 鉴于以上地质及水文情况,对于大部分深基坑部位均需要进行降、排水施工,以确保基坑边坡及构筑物自身的安全。 一、水文地质资料

基坑降水计算

基坑降水计算 1.降水影响半径 确定影响半径的方法很多,在矿坑涌水量计算中常用库萨金和吉哈尔特经验公式作近似计算。当设计的矿山进行了大降深群孔抽水试验或坑道放水试验时,为了推求较为准确的影响半径,可利用观测孔网资料为基础的图解法进行推求。 1.1、经验公式法 计算影响半径的主要经验公式见表1。 表1 计算影响半径的经验公式 1.2、图解法 当设计矿山做了大降深群孔抽水或坑道放水试验时,为了推求较为准确的影响半径,可利用观测孔实测资料,用图解法确定影响半径。 (一)自然数直角座标图解法 在直角座标上,将抽水孔与分布在同一直线上的各观测孔的同一时刻所测得的水位连结起来,尚曲线趋势延长,与抽水前的静止水位线相交,该交点至抽水孔的距离即为影响半径(见图1)。观测孔较多时,用图解法确定的影响半径较为准确。 (二)半对数座标图解法

在横座标用对数表示观测孔至抽水孔的距离,纵座标用自然数表示抽水主孔及观测孔水位降深的直角座标系中,将抽水主孔的稳定水位降深及同时刻的观测孔水位降低标绘在相应位置,连结这两点并延长与横座标的交点即为影响半径(见图2)。当有两个或两个以上观测孔时,以观测孔稳定水位降深绘图更准些。 1.3、影响半径经验数值 根据岩层性质、颗粒粒径及单位涌水量与影响半径的关系来确定影响半径,见表2与表3。 表2 松散岩土影响半径(R)经验数值 表3 单位涌水量与影响半径关系

2 计算模型及公式 2.1.潜水完整井计算模型 ()??? ? ?+-=01log 2366.1r R S S H k Q ……………………… …………………公式1 式中:Q 基坑涌水量(m 3/d ); k :渗透系数(m/d ); H :潜水含水层厚度(m ): S :基坑水位降深(m ); R :降水影响半径(m ); r 0:基坑等效半径(m )。 2.2.承压水完整井计算模型 ? ??? ? ?+=01lg 73.2r R MS k Q 式中:Q :K R :r 0:基坑(m ); M :承压含水层厚度(m ) 2.3.承压水非完整井计算模型 ??? ? ? ?+-+???? ??+=002.01lg 1lg 73.2r M l l M r R MS k Q ……………………………公式式中:Q :基坑涌水量(m 3/d ); K :渗透系数(m/d ); R :降水影响半径(m ); r 0:基坑等效半径(m ); M :承压含水层厚度(m ); S :基坑水位降深(m );

(整理)基坑降水设计

基坑降水设计 第一部分:井点降水计算的前提 1、所需水文地质资料 (1).水层性质——承压水、潜水; (2).含水层厚度H; (3).含水层的渗透系数K和影响半径R; (4).含水层的补给条件,地下水流动方向,水力梯度; (5).原有地下水埋藏深度,水位高度和水位动态变化资料; (6).井点系统的性质——完整井、非完整井。 2、了解建筑工程对降低地下水位的要求 (1).建筑工程的平面布置、范围大小,周围建筑物的分布和结构情况; (2).建筑物基础埋设深度、设计要求的水位下降深度; (3).由于井点排水引起土层压缩变形的允许范围和大小。 第二部分:基坑降水方法 一、明沟排水 (一)、明沟排水的适用条件 明沟排水是指在基坑内设置排水明沟或渗渠和集水井,然后用水泵将水抽出基坑外的降水方法。明沟排水(简称明排)一般适用于土层比较密实,坑壁较稳定,基坑较浅,降水深度不大,坑底不会产生流砂和管涌等的降水工程。当具备下列条件时,一般可以采用明沟排水方案。 (1)地质条件。场地为较密实的、分选好的土层,特别是带有一定胶结度或粘稠度的土层时,由于其渗透性低,渗流量较少,在地下水流出时,边坡仍稳定,即使在挖土方时,底部可能会出现短期翻浆或轻微变动,但对地基无损害,所以适宜明排;当地层土质为硬质粘土夹无水源补给的砂土透镜体或薄层时,由于在基坑开挖过程中,其所储存的少量水会很快流出而被疏干,有利于明诽;在岩石土质中施工时,一般均可以进行明排。 (2)水文条件。场地含水层为上层滞水或潜水,其补给水源较远,渗透性较弱,漏水量不大时,一般可以考虑采用明排随水。 (3)挖土方法。当采用拉铲挖斗机、反向铲和抓斗挖土机等机械挖土,为避免由于挖土过程中出现的临时浸泡而影响施工时,对含水层的砂、卵石.涌水量较大、具有一定阵水深度的降水工程,也可以采用明排降水。 (4)其他条件。当基坑边坡为缓坡或采用堵截隔水后的基坑时;建筑场地宽敞,邻近无建筑物时;基坑开挖面积大,有足够场地和施工时间时:建筑物为轻型地基荷载等条件下,采用明排降水的适用条件可以扩大。 明沟排水的抽水设备常用离心泵、潜水泵和污水泵等,以污水泵为好。 (二)、明沟排水工程的布置 随着基坑的开挖,当基坑深度接近地下水位时,沿基坑四周(基础轮廓线以外,基坑边缘坡脚0.3m内)设置排水沟或渗渠,在基坑四角或每隔30~40m设一直径为0.7~0.8m的集水井,沟底宽大于0.3m,坡度为0.5%—1.0%,沟底比基坑底低0.3~0.5m,集水井底比排水沟底低0.5~1.0m。集水井容积大小决定于排水沟的来水量和水泵的排水量,宜保证泵停抽后30分钟内基坑坑底不被地下水淹没。随着基坑的开挖,排水沟和集水井随之分级设置与加深,直到坑底达到设

管井降水计算书

管井降水计算书 一、水文地质资料 二、计算依据及参考资料 该计算书计算主要依据为国家行业标准《建筑基坑支护技术规范》(JGJ 120-99),同时参阅了《建筑施工手册》(第四版)和姚天强等编写的《基坑降水手册》。 三、计算过程 1、基坑总涌水量计算: 根据基坑边界条件选用以下公式计算: 基坑降水示意图 Q=(2H-S)*S/(lgR-lgr0) Q为基坑涌水量; k为渗透系数(m/d):取综合渗透系数10m/d H为含水层厚度(m):主要为细砂层以上取 R为降水井影响半径(m):根据施工经验取15m r 0为基坑范围的引用半径(m):r =(r1+r2r+r3+r4+…+rn)1/n 降水干扰井 群分别至基坑中心点的距离; S为基坑水位降深(m):

D为基坑开挖深度(m):取 d 为地下静水位埋深(m):取 w sw为基坑中心处水位与基坑设计开挖面的距离(m):取 通过以上计算可得基坑总涌水量为2672m3。 2、降水井深度确定: 降水井深度按下式: H W =H1+ H2 + H3 + H4 + H5 + H6 H W—降水井深度(m); H1—基坑深度(m);(取) H2—降水水位距离基坑底要求的深度(m);(取) H3—iy0;i为水力坡度,在降水井分布范围内宜为1/10—1/15,y0为降水井分布范围内基坑等效半径;(计算得,取) H1—降水期间水位变幅(m);(取) H2—降水井过滤器工作长度(m);(取) H W—沉砂管工作长度(m);(取) 根据上式计算得:降水井深度为 3、降水井数量确定: 单井出水量计算: q = (l′d)/a*24 降水井数量计算: q为单井允许最大进水量(m3/d); d为过滤器外径(mm):取400mm l′为过滤器进水部分长度(m)(过滤器进水部分有效长度取); a为与含水层渗透系数有关的经验系数(根据渗透系数5—15m/d,含水层厚度≤20m,取100)

竖井涌水量计算的经验公式法

竖井涌水量计算的经验公式法 [导读]本文详细介绍了竖井涌水量计算的经验公式法。 若在竖井位置及其附近有三个或三个以上降深的稳定流抽水试验资料,可用本方法计算竖井涌水量。 一、计算步骤 (一)根据抽水试验资料,作涌水量(Q)与降深(S)的关系吗线,即Q=f(s)曲线; (二)根据抽水试验资料,用图解法、差分法或曲度法判断涌水量曲线方程类型,并找出相应的涌水量方程式; (三)根据相应的方程式计算与设计竖井水位降深相同时的钻孔涌水量Qi; (四)根据钻孔涌水量Qi换算成为竖井涌水量。 二、计算方法 (一)绘制Q=f(s)曲线 根据钻孔抽水试验资料,绘制Q=f(s)曲线。 (二)涌水量曲线方程类型的判断 1、图解法 根据已绘出的Q= f(s)曲线如为非直线型应进行单位水位降深、双对数或单对数变换。根据Q= f(s)或经过变换后的直线图形形式即可判定涌水量曲线方程类型。 若Q= f(s),在Q,s直角座标中是直线关系,则涌水量曲线方程为直线型,见表1-2中图(1),即Q=qs; 若S0= f(Q)在S0,Q直角座标中是直线关系,则涌水量曲线方程为抛物线型,见表1-2中图(2)及图(3);即S=aQ+bQ2,亦即S0=a+bQ; 若lgQ=f(lgS)在lgQ,lgS直角座标中是直线关系,则涌水量曲线方程为指数型,见表1-2中图(4)及图(5),即Q= ,亦即;

若Q=f(lgS)在Q,lgS直角座标中是直线关系,则涌水量曲线方程为对数型,见表1-2中图(6)及图(7),即Q=a+blgS。 2、差分法 一般凡属直线方程或直线化的抛物线方程S0=a+bQ 、指数方程、对数方程Q=a+blgS的一阶差分虽为常数,但不相等。在这种情况下,可根据曲线拟台差的大小来判断接近那种涌水量方程。选取拟合误差最小的曲线相对应的涌水量方程式,作为竖井涌水量计算的方程式。 表1 Q=r(s)曲线方程式及其适用条件(一)

基坑降水设计计算1

锦绣东方二期 基 坑 降 水 方 四川中恒建筑工程有限公司 二0 年五月

案 锦绣东方二期 基坑降水方案 审批: 四川中恒建筑工程有限公司 二0 年五月

审核: 编制: 四川中恒建筑工程有限公司二0 年五月

1工程概况 2场地工程地质条件3降水设计 4降水井施工 5施工组织 6质量、安全保证措施7降水维护措施 8工作量 9降水井平面布置图10沉降观测点 11井深结构图 12降水管道布置图 13沉沙池结构图

1工程概况: 拟建物场地位于成都市成华区府清路东六街。场地周边东邻近电子科技大学东院宿舍区、北侧邻近电子科技大学附小,南侧为已建道路府青路东六街,西侧为规划待建道路。 2场地工程地质条件 拟建场地属成都平原岷江水系u级阶地。地形平坦。场地范围内地层主要由第四系全新统杂填土,素填土、粉质粘土、粉土、中砂、卵层组成。场地地下水为埋藏于砂卵石中的孔隙性潜水,河水及大气降水为其主要补给来源。根据岩土工程勘察报告及成都市降水经验,本工程适合井点降水。本工程含水层渗透系数取20.00米/天,地下静止水位埋深按4.50米考虑。 3降水设计 3.1.1设计依据 《建筑与市政降水工程技术规范》(JGJ/T111-98) 《供水管井技术规范》(GB 50296-99) 《建筑基坑工程技术规范》(JGJ 120-99) “府青惠园”岩土工程勘察报告》 “府青惠园”总平面图》 3.1.2参数选择 根据工程勘察资料,降水计算的参数取值如下: 地下静止水位埋深按4.50米考虑,基坑开挖深度按11.50m考虑,电梯井开挖深度为13.00m,基坑采用人工挖孔桩支护的区段,挖孔桩开挖深度为16.00m, 故考虑将地下水降至挖孔桩底以下,即将地下水位降至17.00m;渗透系数k,由于涌水量计算只考滤卵石土层,渗透系数即卵石土层系数,根据地勘报告,取k =20.00m/d; 3.2降水计算 3.2.1基坑涌水量计算:

基坑降水计算

基坑降水方案设计 6.3.1 降水井型 选6型喷射井点:外管直径为200mm ,采用环形布置方案。 6.3.2 井点埋深 埋置深度须保证使地下水降到基坑底面以下,本工程案例取降到基坑面以下 1.0m 处。埋置深度可由下式确定: ()01x L H h h l i r h =++?+?++ () 式中: L —— 井点管的埋置深度()m ; H —— 基坑开挖深度()m ;这里12H m = h —— 井点管露出地面高度()m ,这里可取一般值 0.2m ; h ?—— 降水后地下水位至基坑底面的安全距离()m ,本次可取1.0m ; x i —— 降水漏斗曲线水力坡度,本次为环状,取; 1h —— 井点管至基坑边线距离()m ,本次取1.0m ; 0r —— 基坑中心至基坑边线的距离()m ,本次工程案例去最近值宽边的一半,即40m ; l —— 滤管长度()m ,本次取1.0m 。 故带入公式可得埋置深度L 为: ()01120.2 1.00.1(1.040) 1.018.3x L H h h l m r i h =++?+?++=+++?++= 6.3.3 环形井点引用半径 采用“大井法”,参考规范,将矩形(本案例长宽比为,小于10)基坑折算

成半径为x 0的理想大圆井,按“大井法”计算涌水量,故本次基坑的引用半径: 4 0b a x +? =η () 式中: ,a b —— 基坑的长度和宽度()m ,200,80a m b m == η —— 系数,可参照下表格选取: 表 系数η表 800.40200 b a == ,则 1.16η= 故带入公式可得本次基坑的引用半径0x 为: 020080 1.1681.244 a b m x η++=? =?= 6.3.4 井点抽水影响半径 由下列公式可求得抽水影响半径: m kt R H x w 220 + = ()

降水计算公式

一、潜水计算公式 1、公式1 Q k H S S R r r =-+-1366200.()lg()lg() 式中: Q 为基坑涌水量(m 3/d); k 为渗透系数(m/d); H 为潜水含水层厚度(m); S 为水位降深(m); R 为引用影响半径(m); r 0为基坑半径(m)。 2、公式2 Q k H S S b r =--1366220.()lg()lg() 式中: Q 为基坑涌水量(m 3/d); k 为渗透系数(m/d); H 为潜水含水层厚度(m); S 为水位降深(m); b 为基坑中心距岸边的距离(m); r 0为基坑半径(m)。 3、公式3 Q k H S S b r b b b =--????????1366222012.()lg cos ()ππ 式中: Q 为基坑涌水量(m 3 /d); k 为渗透系数(m/d); H 为潜水含水层厚度(m); S 为水位降深(m); b 1为基坑中心距A 河岸边的距离(m);

b 2为基坑中心距B 河岸边的距离(m); b '=b 1+b 2; r 0为基坑半径(m)。 4、公式4 Q k H S S R r r b r =-+-+1366220200.()lg()lg ('') 式中: Q 为基坑涌水量(m 3 /d); k 为渗透系数(m/d); H 为潜水含水层厚度(m); S 为水位降深(m); R 为引用影响半径(m); r 0为基坑半径(m); b ''为基坑中心至隔水边界的距离。 5、公式5 Q k h h R r r h l l h r =-++--+--136610222 000.lg lg(.) h H h -=+2 式中: Q 为基坑涌水量(m 3 /d); k 为渗透系数(m/d); H 为潜水含水层厚度(m); R 为引用影响半径(m); r 0为基坑半径(m); l 为过滤器有效工作长度(m); h 为基坑动水位至含水层底板深度(m); h - 为潜水层厚与动水位以下的含水层厚度的平均值(m)。

基坑降水支护方案设计

目录 第一章工程概况 (2) 第二章基坑降水、支护方案设计 (2) 第1节设计依据 (2) 第2节基坑降水方案的设计 (3) 第3节基坑支护方案的设计 (4) 第三章施工总体布署 (6) 第1节施工程序及进度(各工序的综合协调) (6) 第四章基坑降水工程 (15) 第五章基坑支护工程 (17) 第六章土方挖运工程 (20) 第七章质量保证措施 (22) 第八章安全生产与文明施工 (31) 第九章雨期施工措施 (34)

第一章工程概况 、工程概况该工程为文莱驻华大使馆,位于北京市朝阳区亮马桥第三使馆区内,基底埋深为5m局部电梯井6m。 二、工程及水文地质条件(参考附近的马来西亚驻华使馆地质勘察资料) (一)工程地质条件拟建场地位于北京市朝阳区亮马桥路北侧第三使馆区内,地形平坦。根据钻探结果,拟建场地在15m勘探深度内的地质构成为: 地表为人工填土,以下为第四纪冲击层,自上而下分述如下: 1.杂填土: 本层厚度0.50? 2.70m,层底标咼34.8437.57m。 2.素填土: 本层厚度0.40?1.80m,层底标咼3 3.9436.83m。 3.质黏土: 本层厚度9.60?10.80m,层底标高26.12?27.53m。(二)工程水文地质情况 1999年12月上旬勘探时,遇到两层地下水,第一层为上层滞水,静止水位埋深 0.80?3.20m (相应于标高34.90?36.06m);第二层为潜水,静止水位埋深14.00m (相应于 标高24.22m)。近年最高地下水位标高为36.00m左右(上层滞水)。 第二章基坑降水、支护方案设计 第1节设计依据

、该工程的《岩土工程勘察报告》及部分设计图纸 二、《建筑基坑支护技 三、《建筑地基与基础 四、《混凝土结构设计术规程》(JGJ 120-99) 设计规范》(GB50007-2002) 规范》(GB50010-2002)

降水计算说明书

XX项目 基坑降水计算说明书 一、基本条件 XX基坑深度从建筑正负零到基坑底深度5.45m,基坑降水井轴线所围区域近似为梯形,长边最长约200m,短边最宽约160m,基坑周长约640m,降水面积约26600m2。 场地为Ⅰ级阶地,场地地层主要为场区内地基土自上而下依次为:(Q4ml)①杂填土、(Q4ai+pl)②含砂粉质黏土、③细砂、④圆砾、⑤卵石、⑥圆砾混黏性土、(γ52)⑦~⑨花岗岩。场地地层的典型剖面如图。 图:场地地层典型剖面 根据本工程《岩土工程勘察报告》,场地地下水属孔隙潜水类型,具有微承压性质,主要埋藏于③~④层中。地下水主要接受大气降水及侧向径流补给,并以蒸发及地下径流方式排泄。地下水位受季节影响,每年6~9月为丰水期,12月至翌年3月为枯水期,年变化幅度1.00m左右。勘察期间(1月初)为枯水期;地下水稳定水位埋深3.20~5.10m,平均稳定水位3.90m,高程184.49~185.57m,平均高程185.40m。 根据当地经验,粉质黏土的渗透系数经验值K=0.2-0.4m/d;细砂层的渗透系数为经验值K=1-3m/d;圆砾层的渗透系数为经验值K=60-80m/d;卵石层的渗透

系数为经验值k=80-100m/d ;粉质黏土混圆砾层的渗透系数为经验值k=5-10m/d ;花岗岩(全风化)层的渗透系数为经验值k=4-6m/d 。根据勘察单位的潜水完整井抽水试验,建议混合含水层渗透系数K=70m/d 。本工程降水含水层主要为砂层及圆砾,取混合含水层渗透系数k=70m/d 。 二、降水目的 基坑开挖深度内存在地下水,为保证地下室基础施工的质量及安全,需将地下水降至基础底板下1.0m 。 三、降水参数选取 ①渗透系数k 本工程降水含水层主要为砂层及圆砾,取混合含水层渗透系数k=70m/d 。 ②降水影响半径R 降水影响半径宜通过试验确定,本工程依据《吉林市万达广场(A1大商业)地块补充水文地质勘察报告》(中国市政工程东北设计研究总院,2014.10),降水影响半径R=340m 。 ③潜水含水层厚度H 根据《本工程岩土勘察报告》,含水层厚度12-14m 。本工程取H=12m 。 ④基坑等效半径r 0 基坑圆形概化的等效半径r 0,概化为圆形基坑,其等效半径按下列规定计算: 矩形基坑等效半径m A r 9214 .3266000=== π ⑤地下水设计降深s d 本工程场地勘察时地下水平均稳定水位标高185.40m ,基坑底标高184.10m ,则水位降深m m m m s d 30.20.110.18440.185=+-= 四、基坑涌水量计算 本地块井点降水按潜水非完整井计算基坑涌水量,计算公式如下:

涌水量计算

第三节、隧道洞室涌水量预测 一、水文地质参数计算 为取得计算洞室涌水量的水文地质参数,进行钻孔提(抽)水试验,利用提水试验和抽水试验结果,采用地下水动力学方法及相关计算公式,大部分按潜水非完整井计算出提水的渗透系数K 抽水,另外根据提水后的恢复水位与时间的关系,即s~t 关系计算出恢复的渗透系数K 恢复 ,并参照当地岩性的渗透系数K , 将该三种方法求得的渗透系数K 值并结合钻探过程中冲洗液的消耗量,岩体的破碎性、岩性的矿物组成及充填胶结情况,给定一个建议的渗透系数K 值。求得水文地质参数, 其提水时K 值计算公式如下: K= 2 2) lg (lg 733.0h H r R Q --ω 其中:K ——渗透系数(m/d )。 Q ——出水量(m 3/d )。 R ——影响半径(此值根据《工程地质手册》第二版表9-3-12查得) r ω——钻孔半径(m )。 H ——自然情况下潜水含水层的厚度(m )。 h ——抽水稳定时含水层的厚度(m )。 恢复水位计算渗透系数K 值公式如下: ()2 12 ln 25.3S S t r H r K ωω+= (完整井) 其中:K ——渗透系数(m/d )。 r ω——钻孔半径(m )。 H ——自然情况下潜水含水层的厚度(m )。 S 1——抽水稳定时的水位降深(m )。 S 2——地下水恢复时间t 后水位距离静止水位的深度(m )。 t ——水位从S 1恢复到S 2的时间(d )。 具体计算过程及计算结果见附表5:钻孔提(抽)水试验渗透系数(恢复水位)计算成果表。 二、洞室涌水量的估算方法 (一)、洞室涌水量的补给来源 为了更准确预测隧道洞室涌水量,通过野外水文地质调绘,并分析洞室地下水的补给来源,含水岩性的空间分布、富水性,结合钻孔对地下深处地质情况的揭露,参考物探测井成果,我们认为隧道洞室涌水量的补给来源由以下几部分组成: a .洞室影响范围内汇集的大气降水渗漏补给量; b .洞室附近地下水的补给量(包含隧道上行线、下行线间含水层的静储量及洞室两侧地下水的侧向补给量); c .地表水流过洞室上方时的渗入补给量; d .地表水通过节理裂隙、断层破碎带给洞室的侧向补给量; e .断层破碎带导入洞室的地下水量。 (二)、洞室涌水量的估算方法 根据以上对洞室涌水量补给来源的分析,结合隧址区工程地质、水文地质条件及隧址区气候、大气降雨等特征,本次计算我们按隧道开挖正常涌水量及特大暴雨、地表水沿断层或溶洞导入洞室等极端特殊情况下极端涌水量两种情况考虑。 1、正常涌水量 正常涌水量的计算我们选择以下的计算方法: (1)大气降水入渗法:

轻型井点降水设计计算例题(材料特制)

轻型井点系统设计计算示例 某多层厂房地下室呈凹字形,其平面尺寸如图1-76所示,基础底面标高为-4.5m,电梯井部分深达-5.30m,天然地面标高为-0.40m。根据地质勘测资料:标高在-1.40m以上为亚粘土,再往下为粉砂土,地下水静水位在-1.80m处,土的渗透系数为5m/d。基坑边坡采用1∶0.5,为施工方便,坑底开挖平面尺寸比设计平面尺寸每边放出0.5m。 图1—76 某地下室现场 根据本工程基坑的平面形状和深度,轻型井点选用环形布置并在凹字形中间插入一排井点,如图1-77所示。 井点管的直径选用50mm,布置时距坑壁取1.0m,其所需的埋置深度(从地面算至滤管顶部)用(公式1-54)计算,则至少为: (4.5-0.4)+0.5+17.5×0.1=6.34m 由于考虑轻型井点降水深度一般以6m为宜及现有井点管标准长度为6m,因此将总管 埋设在地面下0.6m处即先挖0.6m深的沟槽,然后在槽底铺设总管。此时井点管所需的长度: 6.34-0.6+0.20(露出槽底高度)=5.91(m),(小于6.0,可满足要求)。 电梯井处的基坑深度比其他部分要深0.8m ,所以该处井点管长度改用7m。

井点管的间距,考虑粉砂土的渗透系数不大,初步选用1.6m 。 总管的直径选用127mm ,长度根据图布置方式算得: 2(67.6+2×1.0)+(46.4+2×1.0)+(46.4-2×1.8-2×1.0) = 276.2 (m) 抽水设备根据总管长度选用三套,其布置位置与总管的划分范围如图所示。 图1—36 某工程基坑轻型井点系统布置 a )平面布置图(1、2、3—三套抽水设备编号、同时表示挖土时情况); b )高程布置图 现将以上初步布置核算如下。 1)涌水量计算 按无压不完整井考虑,由于凹字形中间插有一排井点,分为两半计算:含水层的有效深度H0按表1-9求出: ,所以 m H (99.10)00.194.4(85.10=+=) 基坑中心的降水深度)(2.35.08.15.4m s =+-= 83.00 .194.494 .41' / =+=+s s

渗透系数+基坑总涌水量计算公式汇总 2

3. 经验估算法 渗透系数k值还可以用一些经验公式来估算,例如1991年哈森提出用有效粒径d10计算较均匀砂土的渗透系数的公式 哈森(Hazen) (2-9) 1955年,太沙基提出了考虑土体孔隙比e的经验公式 太沙基(Kael·Terzaghi 1883~1963),近代土力学及基础工程学的创始人,1883年10月2 日生于布拉格(当时属奥地利)。早期从事钢筋混凝土的研究工作,1912年获奥地利格拉茨高等工业学院博士学位。1921~1923年,发表了饱和粘土的一维固结理论,提出了有效应力原理。1925年出版了最早的《土力学》专著。1929~1938年任维也纳技术大学教授,1938年后任美国哈佛大学教授。他一生论著有200多篇,代表性的论著有《理论土力学》和《土力学的工程实践》。1936年太沙基发起成立国际土力学及基础工程协会,并任协会主席至1957年。 (2-10) 以上二式中的d10均以mm计,k值的单位是cm/s。 这些经验公式虽然有其实用的一面,但都有其适用条件和局限性,可靠性较差,一般只在作粗略估算时采用。在无实测资料时,还可以参照有关规范或已建成工程的资料来选定k值,有关常见土的渗透系数参考值如表2-1 。 表2-1 土的渗透系数参考值

一、基坑总涌水量计算 按井管(筒)是否穿透整个含水层分为完整井和非完整井。按井深分为浅井、中深井和深井。当水井开凿在承压含水层中,而承压水头又高于地面时称承压井或自流井。 (一)、均质含水层潜水完整井基坑涌水量计算: 1、基坑远离水源时: 如图1(a ) 图1 当为潜水含水层时: 当为承压水时: (2)、基坑等效半径当基坑为圆形时就是基坑半径, 当基坑为矩形时如下计算:γ0=0.29(a+b) 当基坑为不规则形状时: )1lg()2(366.10 r R S S H K Q +-=kH S R 2=k S R 10=π A r =

基坑降水计算

6.3基坑降水方案设计 6.3.1降水井型 选6型喷射井点:外管直径为200mm,采用环形布置方案。 6.3.2井点埋深 埋置深度须保证使地下水降到基坑底面以下,本工程案例取降到基坑面以下 1.0m处。埋置深度可由下式确定: L = H h :h i x h i r 0 l (6.2) 式中: L ――井点管的埋置深度(m); H ―― 基坑开挖深度(m);这里H =12m h ——井点管露出地面高度(m),这里可取一般值 0.2m ; h ―― 降水后地下水位至基坑底面的安全距离(m), 本次可取1.0m ; i x ―― 降水漏斗曲线水力坡度,本次为环状,取0.1; h i ——井点管至基坑边线距离(m),本次取1.0m ; r0 -----基坑中心至基坑边线的距离(m),本次工程案 例去最近值宽边的一半,即40m; l ---- 滤管长度(m),本次取1.0m。 故带入公式可得埋置深度L为: L=H h h i x h「0 I =12 0.2 1.0 0.1 (1.0 40) 1.0=18.3m 6.3.3环形井点引用半径 采用“大井法”,参考规范,将矩形(本案例长宽比为 2.5,小于10)基坑折算成半径为X0的理想大圆井,按“大井法”计算涌水量,故本次基坑的引用半径: X0=专 (6.3) 式中: a,b ----- 基坑的长度和宽度(m),a=200m,b=80m

亠1.16型80 4 4 8 m. 2 (6.4) 式中: 例取5d ; -系数,可参照下表格选取: 表6.1 系数n 表 a = °2OO =040 ,贝U 「-1.16 故带入公式可得本次基坑的引用半径 X 。为: 6.3.4井点抽水影响半径 由下列公式可求得抽水影响半径: t 时间,自抽水时间算起(2-5昼夜)(d ),本案 k ―― 土的渗透 系数(m/d ),这里取平均值 k =2.7m/ d ; H w 含水层厚度(m ),本次取承压含水层厚度含水 层厚度④,⑤土层厚度的总和,即为 H w =5.2 ? 6 = 11.2m , m ―― 土的给水度,按表 3.2确定,本次取圆砾 m=0.2,另外由上述计算可得 X o= 73.7m 。

渗透系数+基坑总涌水量计算公式汇总

渗透系数+基坑总涌水量计算公式汇总

————————————————————————————————作者: ————————————————————————————————日期:

3. 经验估算法 渗透系数k值还可以用一些经验公式来估算,例如1991年哈森提出用有效粒径d10计算较均匀砂土的渗透系数的公式 哈森(Hazen) (2-9) 1955年,太沙基提出了考虑土体孔隙比e的经验公式 太沙基(Kael·Terzaghi1883~1963),近代土力学及基础工程学的创始人,1883年10月2日生于布拉格(当时属奥地利)。早期从事钢筋混凝土的研究工作,1912年获奥地利格拉茨高等工业学院博士学位。1921~1923年,发表了饱和粘土的一维固结理论,提出了有效应力原理。1925年出版了最早的《土力学》专著。1929~1938年任维也纳技术大学教授,1938年后任美国哈佛大学教授。他一生论著有200多篇,代表性的论著有《理论土力学》和《土力学的工程实践》。1936年太沙基发起成立国际土力学及基础工程协会,并任协会主席至1957年。 (2-10) 以上二式中的d10均以mm计,k值的单位是cm/s。 这些经验公式虽然有其实用的一面,但都有其适用条件和局限性,可靠性较差,一般只在作粗略估算时采用。在无实测资料时,还可以参照有关规范或已建成工程的资料来选定k值,有关常见土的渗透系数参考值如表2-1 。 表2-1 土的渗透系数参考值 土的类别渗透系数k cm/s 土的?类 别 渗透系数k cm/s 粘土<10-7中砂10-2粉质粘土10-5 ~ 10-6粗砂10-2粉土10-4~10-5砾砂10-1粉砂10-3~ 10-4砾石>10-1细砂10-3

基坑降水设计计算书

沙颍河周口至漯河段航运开发工程大路李枢纽施工一标段 基坑降水设计 计算方案 河南省水利水电工程集团有限公司 二零一四年六月

基坑降水设计计算方案 一、计算依据 (1)、《建筑基坑支护技术规程》(JGJ120-99) (2)、岩土工程勘察报告 (3)、其他相关资料 二、计算过程 (1)、基坑涌水量计算公式 Q=lgR lgX 2.73kMS 0 - 式中:Q ―基坑涌水量(m 3/d ); k ―含水层渗透系数(m/d ); M ―承压含水层厚度(m ); S —基坑中心的水位降低值(m); R —抽水影响半径(m),R=K s 10; X 0—基坑假想半径(m),X 0=π/F ; F —环状井点系统所包围的面积(m 2); 结合施工现场,降水范围L=185m,B=192m ;则F=185×192=35520㎡ X0=π/F =0.564F =106.3m R=K s 10= 99.94m k=2.16m/d ;M=6m ;S=6.8m ; 计算得Q= lg99.94 lg106.366.02.162.73-???8 . =8990.64m 3/d 根据我公司多年施工经验,根据规范所计算涌水量往往比实际小很多,因此有经验得出,按两倍理论量计算涌水量。

则实际涌水量为8990.64×2=17981.28m 3/d (2)承压完整井单井涌水量 Q 1=lgr lgR S -H 2.73kM -)( 式中:r ―过滤器半径(m ); H ―含水层厚度(m ); H=20m ;r=0.21m ; 计算得 Q 1= lgr lgR S)-H 2.73kM -( =21 .0lg 94.99lg 8.6-20616.2732-???)(. =174.43m 3/d (3)计算井数 n=1 Q 1.1Q = 174.43 17981.28 1.1? ≈114(眼) (4)间距 结合施工现场布置得: 需要打降水井线路总长L=2290m 则降水井间距D=L/(n-1) =2290/113 =20.27m 因此,降水井间距控制在20m 左右。 (5)降水井深度 T y Z iX c h L +++++=0 式中:L —降水井深度(m);

降水井计算

降水井计算 Prepared on 22 November 2020

基坑降水计算书 一、基坑涌水量计算 1、原始条件: 计算模型:此井点系统为潜水非完整井,采用基坑外降水。 2、井点管距边坑距离为1.5m ,滤管长度取1.0m ,直径40mm ,配有配套抽水设备;渗透系数(根据勘察报告提供室内渗透系数结合当地经验取值)(m/d )。 3、基坑涌水量计算书 基坑开挖深度6.00m ,基坑面积约为9738m 2。 (1)基坑中心处要求降低水位深度S ,取降水后地下水位位于坑底以下1.0m ,则有S=+=7.00m (2)含水层厚度H ’=16m (3)影响半径0R 基坑等效半径080.69r m = = (4)基坑涌水量()()3 002'1.366298.81lg H S S m Q k d R r -==?? ??? 二、降水井数量计算 1、根据《工程地质手册》公式验算每根井点的允许最大进水量 2、井点管的数量 经验算,34眼水井管出水量基本能满足基坑总涌水量的要求! 三、降水井深度计算 降水井深度可以按照以下公式确定: 式中: H 1=6.00m (基坑深度) H 2=1.0m (降低水位距离基底要求) H 3=2.0m (水力坡度) H 4=2.0m (水位变化幅度) H 5=1.0m (过滤器长度) H 6=1.0m (沉淀管长度) 根据计算,综合考虑现场条件,又由于降水持续时间长,井内必产生沉砂,因此降水井深度取13米,疏干井深度取14米。 20米。 四、补充方案 1、考虑场地南侧有明水影响,降水井加密布设。沿基坑周边布置32口降水井,井深13米,另在坑内布置20口14米深疏干井。 2、基坑集水井、电梯坑等处由于开挖较深,可布设轻型井点辅助降水。 3、降水过程中,若该设计方案中降水井不能满足基坑总涌水量,可增设降水井。

相关主题
文本预览
相关文档 最新文档