当前位置:文档之家› 运筹学--线性规划问题最优解的确定与改进

运筹学--线性规划问题最优解的确定与改进

运筹学--线性规划问题最优解的确定与改进
运筹学--线性规划问题最优解的确定与改进

线性规划问题最优解的确定与改进

线性规划是运筹学的一个重要分支。自1947年丹捷格(G.B.Dantzig )提出了一般线性规划问题求解的方法——单纯形法之后,线性规划在理论上趋向成熟,在实用中日益广泛与深入。线性规划最优解求解问题,在《运筹学》本科版给出了图解法和单纯形法。 一般线性规划问题的标准型为:

1

max (14)n

j j

i z c x ==-∑

1,1,2(15)0,1,2,(16)

n

i j j i j j a x b i m x j n ===-≥=-?∑????

满足约束条件(1-5)式、(1-6)式的解12(,,,)T n X x x x = ,称为线性规划问题的可行解,其中使目标函数达到最大值的可行解称为最优解。

2009年中国科教创新导刊,第三十期李高秀写的《线性规划中最优解的准确确定》中详细介绍了图解法的过程,图解法适合于二元线性规划问题,对于多元线性规划问题图解法相对较难。

图解法过程:

1 线性目标函数最值的分析

对于线性目标函数Z=ax+by ,若b ≠0时,目标函数可变为a z y x b b =-+,则是直线a z

y x b b

=-+在y 轴上的截距。

(1)b>0时,随着直线a z

y x b b

=-+的平移,直线在与可行域有公共点的条件下,它在y 轴上的截距

z b 最大时z 最大;当z

b

最小时z 最小。 (2)b<0时,随着直线a z

y x b b

=-+的平移,直线在与可行域有公共点的条件下,它在y 轴上的

截距z b 最大时z 最小;当z

b

最小时z 最大。

由以上两点可知,要求线性目标函数z=ax+by 的最大最小值要注意y 的系数b 的正负和平移直线在y 轴上的截距。

2 在图上分别作出约束函数和目标函数,平移目标函数线到可行域的交点时,要把目标函数的斜率与相交于这一点的直线的斜率进行比较

上述的最值分析是确定平移目标函数的大概方向,而这次是确定最优解的确凿位置。斜率比较大

小的目的是直观形象的比较两直线的方向和倾斜程度。 具体的做法是:

(1)若目标函数的斜率是正(或负)的,只需要与斜率为正(或负)的直线进行比较,即与斜率同号的比较。

(2)比较斜率的绝对值,绝对值越大所对应的直线的倾斜程度越大,从直观来看直线越陡。根据上述的1和2,可准确的确定最优解的位置

单纯形法:

单纯形法的一般解题步骤可归纳如下:

① 线性规划问题的约束方程组表达成典范型方程组,找出基本可行解作为初始基本可行解。 ② 若基本可行解不存在,即约束条件有矛盾,则问题无解。

③ 若基本可行解存在,从初始基本可行解作为起点,根据最优性条件和可行性条件,引入非基

变量取代某一基变量,找出目标函数值更优的另一基本可行解。

④ 按步骤3进行迭代,直到对应检验数满足最优性条件(这时目标函数值不能再改善),即得到

问题的最优解。

⑤ 若迭代过程中发现问题的目标函数值无界,则终止迭代。

2006年甘肃联合大学学报(自然科学版)第三期,在熊洪斌发表的论文《线性规划最优解的进一步研究》中研究了线性规划最优解的参数表示,通过对某一最优解引入参数向量,得到新的LPP 模型.通过求解LPP 模型便可得到LP 最优解的参数表达式。

人们在求解LP 问题时常用单纯形方法求出一组最优解便终止.这样的思想和方法有时是不可取的.因为方案的单一性不便于决策者在短期内根据条件的变化进行灵活调整,从而使原有期望不变.用参数向量表示最优解,便可实现这一目的。

LLP 方法介绍如下:

1 定义与引理

定义1 区间向量:若一向量的每个分量均为一区间数,则称该向量为区间向量.普通向量也是区间向量的一种特殊形式。

引理1 若LP 问题min ...

cx s t Ax b =,0x ≥有最优解*x 。则*x ω+为原LP 问题最优解的充要条件是:0c ω=

,0A x = ,*0x ω+≥,其中12(,,,)n c c c c = 12(,,,)T n x x x x = , ****12(,,,)T

n x x x x = ,

()ij m n

A a ?=,

12(,,)T

m b b b b = ,

1

0(0,0,,0)T m ?= ,12(,,,)T n ωωωω= 。

2 LPP 模型的建立

考虑标准型LP 问题:min ...

cx s t Ax b =,0x ≥。设其某一最优解*

x ,则有与之对应的LPP 模型:*min 0,0,0cx A x ωω==+≥ 。

由引理1和LP 理论有以下定理:

定理1 设N ξ为LP 问题非基变量的判别数集.(N 为非基变量下标集)则 (1) ,0j j N ξω?∈

含义:ω为零向量,表明决策者选择方案惟一。ω为区间向量,表明决策者可随时根据条件变化调整既定方案,使原有期望不变。 3 ILPP 模型的建立

考虑ILP 问题:min ...

cx s t Ax b =,x Z ∈,0x ≥(z 为整数),则与之对应的ILPP 模型为min 0c ω= ,...0s t A ω=,*0x ω+≥,Z ω∈。

对ILPP 模型,有以下定理:

定理2:

(1,0j j N ξω?∈

4 数值求解

问题:现有一投资商对A 、B 两项产品投资,其投资利润及相关条件如下表:

A 产品

B 产品 数量 情况变化 (1) 情况变化 (2) 利润 1千元/件

1千元/件

机器 2 1 6 2台故障 1台故障 人员

4

5

2

0人请假

1人请假

问:该投资商在正常情况下如何安排生产,利润最大?条件变化又该如何安排生产(A 、B 产品数量需整数)?

解 根据题意,可得下列模型:

12max z x x =+ (1x ,2x 分别是A 、B 的生产数量).

121226;()..4520;0,1,2.i

x x ILP s t x x x i +≤??

+≤??≥=?

本文用割平面法解上述(ILP),则上述(ILP)问题对应的LP 松驰问题为:

12123124max .26;

()..4520;

0,1,2,3,4.i

z x x x x x LP s t x x x x i =+++=??

++=??≥=? LP 单纯性表如下:

对表一单纯选得最优表二

由表二中的1x 为源行,可得割平面方程:134333

s x x =-++,将1s 置于尾行并作为基。 于是得ILP 的一组最优解12x =,22x =,max 4z =。

为了考察情况变化是否直接影响投资者利益,我们有必要考虑如下模型ILPP :

121231241234

min()0.

20;..450;

2,2,0,0;

,,1,2,3,4.

s t i Z i ωωωωωωωωωωωωω+=??++=??++=??≥-≥-≥≥?∈=??

通过求解ILPP 问题,可得ILP 的最优解可表示为:111111(2,2,,3),[2,0],.Z ωωωωωω+---∈-∈ 由ILP 最优解的参数表达式可知:在正常状况下,投资者有三种方案可供选择,分别为: 方案一 1120,2, 2.x x ω=== 方案二 1121,1, 3.x x ω=-== 方案三 1122,0, 4.x x ω=-==

根据情况变化(1),投资者只可选择方案三;

根据情况变化(2),投资者只可选择方案二。

通过LP 和ILP 模型的转换求出其最优解集,可让决策者更好地对其可利用资源进行更合理的分配,获得最佳利润,而不像单纯性表法只有一组最优解,一次LP 和ILP 模型有其优越性,可以用于解决最优化问题。

【参考文献】:

[1] 薛声家,刘 惠.一般形式线性规划最优解集的确定[M].广州:暨南大学出版社,2001.2

[2] 熊洪斌. 线性规划最优解的进一步研究[M]. 甘肃:甘肃联合大学学报编辑部,2006.6

[3] 李高秀. 线性规划中最优解的准确确定[M].北京:中国科学技术信息研究所(ISTIC ) 科学技术文献出版社,2009

(完整版)简单的线性规划问题(附答案)

简单的线性规划问题 [ 学习目标 ] 1.了解线性规划的意义以及约束条件、目标函数、可行解、可行域、最优解等基本概念 .2. 了解线性规划问题的图解法,并能应用它解决一些简单的实际问题. 知识点一线性规划中的基本概念 知识点二线性规划问题 1.目标函数的最值 线性目标函数 z=ax+by (b≠0)对应的斜截式直线方程是 y=-a x+z,在 y 轴上的 截距是z, b b b 当 z 变化时,方程表示一组互相平行的直线. 当 b>0,截距最大时, z 取得最大值,截距最小时, z 取得最小值; 当 b<0,截距最大时, z 取得最小值,截距最小时, z 取得最大值. 2.解决简单线性规划问题的一般步骤在确定线性约束条件和线性目标函数的前提下,解决简单线性规划问题的步骤可以概括为:“画、移、求、答”四步,即, (1)画:根据线性约束条件,在平面直角坐标系中,把可行域表示的平面图形准确地画出来,可行域可以是封闭的多边形,也可以是一侧开放的无限大的平面区域.(2)移:运用数形结合的思想,把目标函数表示的直线平行移动,最先通过或最后通过的顶点 (或边界 )便是最优解. (3)求:解方程组求最优解,进而求出目标函数的最大值或最小值. (4)答:写出答案.

知识点三简单线性规划问题的实际应用 1.线性规划的实际问题的类型 (1)给定一定数量的人力、物力资源,问怎样运用这些资源,使完成的任务量最大,收到的效益最大; (2)给定一项任务,问怎样统筹安排,使完成这项任务耗费的人力、物力资源量最小.常见问题有: ①物资调动问题例如,已知两煤矿每年的产量,煤需经两个车站运往外地,两个车站的运输能力是有限的,且已知两煤矿运往两个车站的运输价格,煤矿应怎样编制调动方案,才能使总运费最小? ②产品安排问题例如,某工厂生产甲、乙两种产品,每生产一个单位的甲种或乙种产品需要的A、B、C 三种 材料的数量,此厂每月所能提供的三种材料的限额都是已知的,这个工厂在每个月中应如何安排这两种产品的生产,才能使每月获得的总利润最大? ③下料问题例如,要把一批长钢管截成两种规格的钢管,应怎样下料能使损耗最小?2.解答线性规划实际应用题的步骤 (1)模型建立:正确理解题意,将一般文字语言转化为数学语言,进而建立数学模型,这需要在学习有关例题解答时,仔细体会范例给出的模型建立方法. (2)模型求解:画出可行域,并结合所建立的目标函数的特点,选定可行域中的特殊点作为最优解. (3)模型应用:将求解出来的结论反馈到具体的实例中,设计出最佳的方案. 题型一求线性目标函数的最值 y≤2, 例 1 已知变量 x,y 满足约束条件 x+y≥1,则 z=3x+y 的最大值为 ( ) x-y≤1, A . 12 B .11 C .3 D .- 1 答案 B 解析首先画出可行域,建立在可行域的基础上,分析最值点,然后通过解方程组得最值点 的坐标,代入即可.如图中的阴影部分,即为约束条件对应的可行域,当直线y=-3x+z 经 y=2,x= 3,

必修五——线性规划无数个最优解问题、乘1问题-答案

必修五——线性规划无数个最优解问题、乘1问题 答案和解析 【答案】 1.D 2.A 3.C 4.C 5.A 6.B 7.D 8.B 9.C 10.B 11.B 【解析】 1. 解:作出不等式组{x +y ≥1 x ?y ≥?12x ?y ≤2 表示的平面区域, 得到如图的△ABC 及其内部,其中A (1,0),B (0,1),C (3,4) 设z =F (x ,y )=ax +by (a >0,b >0),将直线l :z =ax +by 进行平移, 当l 经过点C 时,目标函数z 达到最大值 ∴z 最大值=F (3,4)=3a +4b =7,可得17(3a +4b )=1因此,3a +4b =17 (3a +4b )(3a +4b )=17(25+12b a +12a b ) ∵12b a +12a b ≥2√12b a ?12a b =24∴17(25+24)≥17×49=7, 即当且仅当a =b =1时,3a +4b 的最小值为7故选:D 作出题中不等式组表示的平面区域,得如图的△ABC 及其内部,再将目标函数z =ax +by 对应的直线进行平移,可得当x =3,y =4时,z 最大值为3a +4b =7.然后利用常数代换结合基本不等式,可得当且仅当a =b =1时,3a +4 b 的最小值为7. 本题给出二元一次不等式组,在已知目标函数z =ax +by 最大值为7的情况下求3a +4b 的最小值.着重考查了运用基本不等式求最值和简单的线性规划等知识,属于中档题. 2. 解:满足约束条件{x +y ?4<0y ≥x x ≥0的可行域如下图所示

∵y?5x?1表示可行域内一点(x ,y )与P (1,5)连线的斜率 又∵k PA =5?41?0=1,k PB =5?22?1=-3, ∴y?5x?1的范围是(-∞,-3)∪(1,+∞) 故选A 画出满足约束条件的可行域,分析目标函数的几何意义,数形结合即可分析出目标函数的取值范围. 本题考查的知识点是简单线性规划的应用,其中分析出目标函数的几何意义是表示可行域内一点(x ,y )与P (1,5)连线的斜率是解答的关键. 3. 解:由约束条件{y ≥0 y ?x +1≤0y ?2x +4≥0作出可行域如图, 由z =y -ax (a ≠0),得y =ax +z , ∵a ≠0, ∴要使z =y -ax (a ≠0)取得的最优解(x ,y )有无数个, a 不能为负值,当a >0时,直线y =ax +z 与线段AC 所在直线重合时,使z =y -ax 取得最大值的最优解有无数个; 直线y =ax +z 与线段BC 所在直线重合时,使z =y -ax 取得最小值的最优解有无数个.

运筹学第二章线性规划

第二章线性规划 教学目的和要求: 目的:使学生具备线性规划的基本知识以及应用线性规划的基本能力。 要求:理解线性规划概念,标准型,解的概念,基本定理;掌握单纯形法,人工变量法,了 解图解法。 重点:线性规划标准型,解的概念,单纯形法,人工变量法。 难点:线性规划基本定理,单纯形法。 教学方法:讲授法,习题法。 学时分配:12学时 作业安排:见教材P 38. 线性规划是运筹学的一个重要分支。1939年苏联科学家康托罗维奇提出了生产组织和计划中的线性规划模型。1947年美国学者丹捷格(George B.Dantzig)提出了求解一般线性规划问题的方法。此后,线性规划理论日趋成熟,应用也日益广泛和深入。 第一节线性规划问题 一、问题的提出 在企业的生产经营活动中经常会面临这样两类问题:一是如何合理地利用有限的人力、物力、财力等资源,取得最佳的经济效果;二是在取得一定的经济效果的前提下,如何合理安排使用人力、物力、财力等资源,使花费的成本最低。 例1.生产计划问题 某工厂利用甲、乙、丙、丁四种设备生产A 、B 、C 三种产品,具体数据如下表所示。 A 、B 、C 单位产品的利润分别是4.5、5、7(百元)。问如何安排生产计划,才能使所获总利润最大? 解:设产品A 、B 、C 产量分别为X 1,X 2,X 3件,Z 表示利润,要求总利润最大,即求Z=4.5X 1+5X 2+7X 3 的最大值,故记作极大化Z=4.5X 1+5X 2+7X 3,另外对甲、乙、丙、丁设备需满足2X 1+2X 2+4X 3≦800, X 1+2X 2+3X 3≦650,4X 1+2X 2+3X 3≦850,2X 1+4X 2+2X 3≦700;同时产量应非负,故X j ≧0 (j=1,2,3); 以上问题可用数学模型表示为: 极大化Z=4.5X 1+5X 2+7X 3 满足 2X 1+2X 2+4X 3≦800 X 1+2X 2+3X 3≦650 4X 1+2X 2+3X 3≦850 2X 1+4X 2+2X 3≦700 X j ≧0 (j=1,2,3) 例2.运输问题 设某种物资有m 个产地;A 1,A 2, …,A m ,它们的产量分别为a 1,a 2, …,a m ,有n 个销地B 1,B 2, …,B n 需要这种物资,它们的销量分别为b 1,b 2, …,b n 。已知A i 到B j 的单位运价是C ij (i=1,2, …,m; j=1,2, …,n)。 设供销满足平衡条件,即 。 问怎样组织运输,才能满足要求,且使总运费最少? ---- 7 5 4.5 单位利润 700 2 4 2 丁 850 3 2 4 丙 650 3 2 1 乙 800 4 2 2 甲 设备可供工时(h) C B A 产品 设备 ∑=∑==n 1j j b m 1i i a

简单线性规划问题教案

332简单线性规划问题 “简单的线性规划”是在学生学习了直线方程的基础上,介绍直线方程的一个简 单应用,这是《新大纲》对数学知识应用的重视?线性规划是利用数学为工具,来研究一定的人、财、物、时、空等资源在一定条件下,如何精打细算巧安排,用最少的资源,取得最大的经济效益?它是数学规划中理论较完整、方法较成熟、应用较广泛的一个分支,并能解决科学研究、工程设计、经营管理等许多方面的实际问题?中学 所学的线性规划只是规划论中的极小一部分,但这部分内容体现了数学的工具性、应用性,同时也渗透了化归、数形结合的数学思想,为学生今后解决实际问题提供了一种重要的解题方法一一数学建模法.通过这部分内容的学习,可使学生进一步了解数学在解决实际问题中的应用,培养学生学习数学的兴趣和应用数学的意识和解决实际问题的能力 依据课程标准及教材分析,二元一次不等式表示平面区域以及线性规划的有关概念比较抽象,按学生现有的知识和认知水平难以透彻理解,再加上学生对代数问题等 价转化为几何问题以及数学建模方法解决实际问题有一个学习消化的过程,故本节知 识内容定为了解层次 本节内容渗透了多种数学思想,是向学生进行数学思想方法教学的好教材,也是培养学生观察、作图等能力的好教材 本节内容与实际问题联系紧密,有利于培养学生学习数学的兴趣和“用数学”的意识以及解决实际问题的能力 教学重点重点是二元一次不等式(组)表示平面的区域教学难点难点是把实际问题转化为线性规划问题,并给出解答?解决难点的关键是根据实际问题中的已知条件,找出约束条件和目标函数,利用图解法求得最优解?为突 出重点,本节教学应指导学生紧紧抓住化归、数形结合的数学思想方法将实际问题数学化、代数问题几何化课时安排2课时 三维目标 一、知识与技能 1. 掌握线性规划的意义以及约束条件、目标函数、可行解、可行域、最优解等基本概念; 2. 运用线性规划问题的图解法,并能应用它解决一些简单的实际问题I 二、过程与方法 1. 培养学生观察、联想以及作图的能力,渗透集合、化归、数形结合的数学思想,提高学生“建模”和解决实际问题的能力; 2. 结合教学内容,培养学生学习数学的兴趣和“用数学”的意识,激励学生创新. 三、情感态度与价值观 1. 通过本节教学着重培养学生掌握“数形结合”的数学思想,尽管侧重于用“数”研究“形”,但同时也用“形”去研究“数”,培养学生观察、联想、猜测、 归纳等数学能力; 2. 结合教学内容,培养学生学习数学的兴趣和“用数学”的意识,激励学生勇于 创新.

如何认识线性规划实际问题中有关最优解的精确问题

如何认识线性规划实际问题中有关最优解的精确问题 课本线性规划第二节,提到两个实际问题,一个要求将最优解精确到0.1,一个要求将最优解是整数,如果说师生们对例4的答案还可接受的话,那么,例3到最后四舍五入式的解答实在让人难以把握,况且最优解应为(12.3,34.5),那么关于这种最优解需要得到精确的题目有没有统一的解答步骤,我的回答是有。 在实际问题中,可行域一般都是一整片区域不存在间断现象,所以题目所要求的最优解无论精确到0.1还是精确到0.01,符合要求的最优解都确实存在在可行域中,我们要做的应该是把它找出来,而不是通过任何手段去精确。如何才能把它找出来呢?我的办法是,不考虑x、y需要精确的要求,先依其他条件列出不等式组,作出可行域,求出符合题中其他条件的最优解,然后看此最优解是否符合题目要求,若符合,则即为所求解.若不符合,则应继续滑动参照线,求出经过可行域内的符合要求的且与原点距离最远(或最近)的点的直线,在该线经过可行域的部分上寻找最优解即可。具体操作请看以下示范 课本例3、某工厂生产甲、乙两种产品,已知生产甲种产品1t需消耗A种矿石10t、B种矿石5t、煤4t;生产乙种产品1t需消耗A种矿石4t、B种矿石4t、煤9t。每1 t甲种产品的利润是600元,每1 t甲种产品的利润是1000元。工厂在生产这两种产品的计划中要求消耗A种矿石不超过300t、B种矿石不超过200t、煤不超过360t。甲、乙两种产品应各生产多少(精确到0.1t),能使利润总额达到最大? 解:设生产甲、乙两种产品分别为x t、y t,利润总额为z元,那么

104300542004936000 x y x y x y x y +≤??+≤?? +≤??≥?≥?? Z=600x+1000y 作直线l :600x+1000y=0 即直线l :3x+5y=0 把直线l 向右上方平移,使其划过可行域,此时3x+5y>0 当直线经过点M 3601000 (,)2929时3x+5y 达到最大,即z 也达到最大, 此时3x+5y=6080 29 ≈209.655, 若要将最优解精确到0.1,需将直线向回平移到3x+5y=209.6 由35209.649360 x y x y +=??+=? 得到3x+5y=209.6与可行域左边界的交点A (12.343,34.514) 由35209.654200x y x y +=??+=? 得到3x+5y=209.6与可行域右边界的交 点B (12.431,34.462) 可知有可能成为最优解的点的横坐标为12.4 代入3x+5y=209.6得到纵坐标约为34.48,不符合题目精确到0.1要求

《运筹学》习题线性规划部分练习题及答案.doc

《运筹学》线性规划部分练习题 一、思考题 1. 什么是线性规划模型,在模型中各系数的经济意义是什么? 2. 线性规划问题的一般形式有何特征? 3. 建立一个实际问题的数学模型一般要几步? 4. 两个变量的线性规划问题的图解法的一般步骤是什么? 5. 求解线性规划问题时可能出现几种结果,那种结果反映建模时有错误? 6. 什么是线性规划的标准型,如何把一个非标准形式的线性规划问题转化成标准形式。 7. 试述线性规划问题的可行解、基础解、基础可行解、最优解、最优基础解的概念及它们之间的相互关系。 8. 试述单纯形法的计算步骤,如何在单纯形表上判别问题具有唯一最优解、有无穷多个最优解、无界解或无可行解。 9. 在什么样的情况下采用人工变量法,人工变量法包括哪两种解法? 10.大M 法中,M 的作用是什么?对最小化问题,在目标函数中人工变量的系数取什么?最大化问题呢? 11.什么是单纯形法的两阶段法?两阶段法的第一段是为了解决什么问题?在怎样的情况下,继续第二阶段? 二、判断下列说法是否正确。 1. 线性规划问题的最优解一定在可行域的顶点达到。 2. 线性规划的可行解集是凸集。 3. 如果一个线性规划问题有两个不同的最优解,则它有无穷多个最优解。 4. 线性规划模型中增加一个约束条件,可行域的范围一般将缩小,减少一个约束条件,可行域的范围一般将扩大。 5. 线性规划问题的每一个基本解对应可行域的一个顶点。 6. 如果一个线性规划问题有可行解,那么它必有最优解。 7. 用单纯形法求解标准形式(求最小值)的线性规划问题时,与0 >j σ对应的变量都可以被选作换入变量。 8. 单纯形法计算中,如不按最小非负比值原则选出换出变量,则在下一个解中至少有一个基变量的值是负的。 9. 单纯形法计算中,选取最大正检验数k σ对应的变量k x 作为换入变量,可使目 标函数值得到最快的减少。 10. 一旦一个人工变量在迭代中变为非基变量后,该变量及相应列的数字可以从单纯形表中删除,而不影响计算结果。 三、建立下面问题的数学模型 1. 某公司计划在三年的计划期内,有四个建设项目可以投资:项目Ⅰ从第一年到 第三年年初都可以投资。预计每年年初投资,年末可收回本利120% ,每年又可以重新将所获本利纳入投资计划;项目Ⅱ需要在第一年初投资,经过两年可收回本利150% ,又可以重新将所获本利纳入投资计划,但用于该项目的最大投资额不得超过20万元;项目Ⅲ需要在第二年年初投资,经过两年可收回本利160% ,但用于该项目的最大投资额不得超过15万元;项目Ⅳ需要在第三年年初投资,年末可收回本利140% ,但用于该项目的最大投资额不得超过10万元。在这个计划期内,该公司第一年可供投资的资金有30万元。问怎样的投资方案,才能使该公司在这个计划期获得最大利润? 2.某饲养场饲养动物,设每头动物每天至少需要700克蛋白质、30克矿物质、 100克维生素。现有五种饲料可供选用,各种饲料每公斤营养成分含量及单 价如下表2—1所示:

高考线性规划必考题型(非常全)

线性规划专题 一、命题规律讲解 1、 求线性(非线性)目标函数最值题 2、 求可行域的面积题 3、 求目标函数中参数取值范围题 4、 求约束条件中参数取值范围题 5、 利用线性规划解答应用题 一、线性约束条件下线性函数的最值问题 线性约束条件下线性函数的最值问题即简单线性规划问题,它的线性约束条件是一个二元一次不等式组,目标函数是一个二元一次函数,可行域就是线性约束条件中不等式所对应的方程所表示的直线所围成的区域,区域内的各点的点坐标(),x y 即简单线性规划的可行解,在可行解中的使得目标函数取得最大值和最小值的点的坐标(),x y 即简单线性规划的最优解。 例1 已知43 35251x y x y x -≤-?? +≤??≥? ,2z x y =+,求z 的最大值和最小值 例2已知,x y 满足124126x y x y x y +=?? +≥??-≥-? ,求z=5x y -的最大值和最小值 二、非线性约束条件下线性函数的最值问题 高中数学中的最值问题很多可以转化为非线性约束条件下线性函数的最值问题。它们的约束条件是一个二元不等式组,目标函数是一个二元一次函数,可行域是直线或曲线所围成的图形(或一条曲线段),区域内的各点的点坐标(),x y 即可行解,在可行解中的使得目标函数取得最大值和最小值的点的坐标 (),x y 即最优解。 例3 已知,x y 满足,2 2 4x y +=,求32x y +的最大值和最小值 例4 求函数4 y x x =+[]()1,5x ∈的最大值和最小值。

三、线性约束条件下非线性函数的最值问题 这类问题也是高中数学中常见的问题,它也可以用线性规划的思想来进行解决。它的约束条件是一个二元一次不等式组,目标函数是一个二元函数,可行域是直线所围成的图形(或一条线段),区域内的各点的点坐标(),x y 即可行解,在可行解中的使得目标函数取得最大值和最小值的点的坐标(),x y 即最优解。 例5 已知实数,x y 满足不等式组10101x y x y y +-≤??-+≥??≥-? ,求22 448x y x y +--+的最小值。 例6 实数,x y 满足不等式组0 0220 y x y x y ≥?? -≥??--≥? ,求11y x -+的最小值 四、非线性约束条件下非线性函数的最值问题 在高中数学中还有一些常见的问题也可以用线性规划的思想来解决,它的约束条件是一个二元不等式组,目标函数也是一个二元函数,可行域是由曲线或直线所围成的图形(或一条曲线段),区域内的各点的点坐标(),x y 即可行解,在可行解中的使得目标函数取得最大值和最小值的点的坐标(),x y 即最优解。 例7 已知,x y 满足y 2 y x +的最大值和最小值

1用“线性规划问题的最优解在边界上”简解高考题

用“线性规划问题的最优解在边界上”简解高考题 线性规划问题是指在线性约束条件(即关于变量y x ,的二元一次不等式或不等式组)下,求线性目标函数by ax z +=的最大值或最小值问题.在线性规划问题中,满足线性约束条件的解),(y x 叫做可行解,可行解的集合叫做可行域(可行域的边界是直线、射线或线段),使目标函数取得最值的可行解叫做这个线性规划问题的最优解.求解线性规划问题,通常是通过平移初始直线0=+by ax 来解决的,所以有下面的结论: (1)若线性规划问题存在最优解,则最优解一定在边界上. (2)若目标函数by ax z +=在两个不同的点B A ,处均取到最大值或均取到最小值,则初始直线0=+by ax 与直线AB 平行(此时线段AB 一定是可行域的边界,且线段AB 上的所有点都是最优解). (3)若可行域有凸顶点,则目标函数在可行域的所有凸顶点处的函数值中的最大(小)值就是目标函数的最大(小)值. 下面用这些结论简解几道线性规划题. 题1 (2015年高考山东卷理科第6题)已知x ,y 满足约束条件?????x -y ≥0,x +y ≤2,y ≥0. 若z =ax +y 的最大值为4,则a =( ) A .3 B .2 C .-2 D .-3 解 B.题中的可行域为图1中的OAB ?(其顶点坐标分别是)0,2(),1,1(),0,0(B A O )及其内部的区域. 图1 再由结论(3),可得3=a 或2.再检验,得2=a . 题2 (2015年高考福建卷文科第10题)变量x ,y 满足约束条件?????x +y ≥0,x -2y +2≥0,mx -y ≤0. 若z =

线性规划最优解的几种可能情况

线性规划最优解的几种可能情况: 1.有唯一的最优解(可行域为封闭的有界区域、可行域为非封闭的无界区域) 2.有一个以上的最优解(可行域为封闭的有界区域、可行域为非封闭的无界区域) 3.无界解(目标函数无界,即虽有可行解,但在可行域中,目标函数可以无限增大或无限 减小) 4.无可行解(可行域为空集) Min型与Max型单纯形表的唯一区别: 检验数反号 Min型单纯形表中 -当检验数均大于等于零时为最优; -令负检验数中最小的对应变量为换入变量。 Max型单纯形表中 -当检验数均小于等于零时为最优; -令正的检验数中最大的对应变量为换入变量。 ①②②③④⑤⑤⑥⑴⑵⑵⑶ 解的几种情况在单纯形表上的体现(Max型): 1)唯一最优解判别:最优表中所有非基变量的检验数非零,则线性规划具有唯一最优解。2)多重最优解判别:最优表中存在非基变量的检验数为零,则线则性规划具有多重最优解(或无穷多最优解)。 3)无界解判别:某个检验数大于零且换入变量对应的列中所有的分量皆非正,则线性规划具有无界解。 4)无可行解的判断:当用大M单纯形法计算得到最优解并基变量中还存在非零人工变量时,则表明原问题无可行解。 5)退化解的判别:存在某个基变量为零的基本可行解。 4.2 对偶问题的基本性质 1.对称性对偶问题的对偶是原问题。 2.弱对偶性若X是原问题的可行解,Y是对偶问题的可行解,则存在 求目标函数最大化时,在单纯形表中: ①如果检验数均非正,而b列中有负值,这时使用 对偶单纯形法; ②如果所有bi ≥0, 检验数有正值,使用 单纯形法: ③如果b列中有负值,且检验数中有正值,这时必须引入 人工变量,建立新的单纯形表,重新计算

运筹学--线性规划问题最优解的确定与改进

线性规划问题最优解的确定与改进 线性规划是运筹学的一个重要分支。自1947年丹捷格(G.B.Dantzig )提出了一般线性规划问题求解的方法——单纯形法之后,线性规划在理论上趋向成熟,在实用中日益广泛与深入。线性规划最优解求解问题,在《运筹学》本科版给出了图解法和单纯形法。 一般线性规划问题的标准型为: 1 max (14)n j j i z c x ==-∑ 1,1,2(15)0,1,2,(16) n i j j i j j a x b i m x j n ===-≥=-?∑???? 满足约束条件(1-5)式、(1-6)式的解12(,,,)T n X x x x = ,称为线性规划问题的可行解,其中使目标函数达到最大值的可行解称为最优解。 2009年中国科教创新导刊,第三十期李高秀写的《线性规划中最优解的准确确定》中详细介绍了图解法的过程,图解法适合于二元线性规划问题,对于多元线性规划问题图解法相对较难。 图解法过程: 1 线性目标函数最值的分析 对于线性目标函数Z=ax+by ,若b ≠0时,目标函数可变为a z y x b b =-+,则是直线a z y x b b =-+在y 轴上的截距。 (1)b>0时,随着直线a z y x b b =-+的平移,直线在与可行域有公共点的条件下,它在y 轴上的截距 z b 最大时z 最大;当z b 最小时z 最小。 (2)b<0时,随着直线a z y x b b =-+的平移,直线在与可行域有公共点的条件下,它在y 轴上的 截距z b 最大时z 最小;当z b 最小时z 最大。 由以上两点可知,要求线性目标函数z=ax+by 的最大最小值要注意y 的系数b 的正负和平移直线在y 轴上的截距。 2 在图上分别作出约束函数和目标函数,平移目标函数线到可行域的交点时,要把目标函数的斜率与相交于这一点的直线的斜率进行比较 上述的最值分析是确定平移目标函数的大概方向,而这次是确定最优解的确凿位置。斜率比较大

教你如何做出最佳选择——简单线性规划求最优解

教你如何做出最佳选择 ——简单的线性规划求最优解 在线性约束条件下,求线性目标函数最值问题,称为“线性规划”。目标函数),(y x f z =取得最值时,变量y x ,的对应解),(y x 称为最优解。若Z y x ∈,时,z 取得最值,称),(y x 为最优整数解,简称整解。点),(y x 的横、纵坐标都是整数,称为整点。 求最优整解问题出现在高中数学新教材中,常见的实际应用题型有两种,(1)给出一定数量的人力、物力资源,问怎样安排能使完成的任务量最大,收益最大; (2)给出一项任务,问怎样统筹安排,能使完成这项任务投入的人力、物力最小。因为研究的对象是人、物等个体,故y x ,往往是整数,较y x ,不是整数时求解困难,所以这是一个应用数学知识解决实际问题的新难点,加之教材介绍较为笼统简略,对教师和学生的理解掌握造成了一定的困难,针对这一问题,总结两种寻找最优整解的方法与大家探讨。 这两种求解方法分别是:调整优值法(简称调值法)、枚举整点法(简称枚举法)。调值法是先求非整点最优解,再借助不定方程,调整最优解,最后筛选出最优解;枚举法,因为取得最值的整点分布在可行域内,可从y x ,中选取系数的绝对值较大的一个对其逐一取值,以此为标准分类讨论,取得另一变量的最值,代入目标函数,比较函数值大小,找到最优解。 下面通过几个典型例题,介绍一下这几种方法的具体运用。 例1(调整优值法)要将两种大小不同的钢板截成A 、B 、C 三种规格,每张钢板可同时截得三种规格的小钢板的块数如下表所示: 今需A 、B 、C 三种规格的成品分别为15、18、27块,问各截这两种钢板多少张可得所需三种规格成品,且使所用钢板张数最少? 解析:设需要第一种钢板x 张,第二种钢板y 张,钢板总数z 张,则

若是某线性规划问题的最优解,则也是该问题的最优解 ( )

试题 16 一、填空题 1. 滞后效应速度分析的常用指标有_____________________,____________________。 2. 使用阿尔蒙估计法须事先确定:__________________,_______________________。 3. 考耶克模型可以描述的两个最著名的理论假设是:__________________________和_______________________。 4. 联立方程中的变量分为:_________________和__________________。 5. 联立方程模型有两种基本形式:__________________和___________________。 二、判断题 1. 若21,X X 是某线性规划问题的最优解,则) ()101(21≤≤-+=λλλX X X 也是该问题的最优解。 ( ) 2. 用单纯形法求解标准型的线性规划问题,当所有检验数0≤-j j z c 时,即可判定表中解即为最优解。 ( ) 3. 数学模型123 1231231212max 3572685820.3412 ,0f x x x x x x x x x s t x x x x =++-≥??++≤??+=??≥?+为线性规划模型。 ( ) 4. 表达形式i i bx a y +=是正确的。 ( ) 5. 表达形式i i i bx a y ε++=是正确的。 ( ) 6. 表达形式i i x b a y ??+=是正确的。 ( ) 7. 表达形式i i x b a y ???+=是正确的。 ( ) 8. 在存在异方差情况下,常用的OLS 法总是高估了估计量的标准差。 ( ) 9. 当存在序列相关时,OLS 估计量是有偏的并且也是无效的。 ( ) 10. 消除序列相关的一阶差分变换假定自相关系数ρ必须等于1。 ( ) 三、问答题 1. 简述古典回归模型的基本假定。 2. 试举出三个模糊集合的例子。 3. 叙述Leslie 人口模型的特点。并讨论稳定状况下种群的增长规律。 4. 静态贝叶斯博弈中参与人的策略有什么特点?为什么? 5. 有了海萨尼转换,不完全信息动态博弈和完全但不完美信息动态博弈基本上是相同的,,这种论述是否正确? 四、计算题 1. 在超市购物时你注意到大包装商品比小包装商品便宜这种现象了吗。比如洁银牙膏50g

运筹学中线性规划实例汇总

实验报告 课程名称:运筹学导论 实验名称:线性规划问题实例分析专业名称:信息管理与信息系统 指导教师:刘珊 团队成员:邓欣(20112111 蒋青青(20114298 吴婷婷(20112124 邱子群(20112102 熊游(20112110 余文媛(20112125 日期:2013-10-25 成绩:___________

1.案例描述 南部联盟农场是由以色列三个农场组成的联合组织。该组织做出了一个关于农场农作物的种植计划,如下: 每一个农场的农业产出受限于两个量,即可使用的灌溉土地量和用于灌溉的水量。数据见下表: 适合本地区种植的农作物包括糖用甜菜、棉花和高粱。这三种作物的差异在于它们每亩的期望净收益和水的消耗量不同。另外农业部门已经制定了南部联盟农场作物总亩数的最大配额,见下表: 作物的任何组合可以在任何农场种植,技术部门的任务是找出一个种植方案使南部联盟农场的净收益最大化。 2.建立模型 决策变量为Xi(i=1,2,……,9,表示每个农场每种作物的种植量。 MAX Z=1000(X1+X2+X3+750(X4+X5+X6+250(X7+X8+X9 约束条件: (1)每一个农场使用的土地 X1+X4+X7≤400

X2+X5+X8≤600 X3+X6+X9≤300 (2每一个农场的水量分布 3X1+2X4+X7≤600 3X2+2X5+X8≤800 3X3+2X6+X9≤375 (3每一种作物的总种植量 X1+X2+X3≤600 X4+X5+X6≤500 X7+X8+X9≤325 非负约束Xi≥0 , i=1,2, (9) 3.计算机求解过程 步骤1.生成表格 步骤2.输入数据

线性规划问题的最优解

线性规划问题的最优解 引言 线性规划是运筹学的一个基本分支,其应用极其广泛,其作用以为越来越多的人所重视。线性规划主要就实际问题抽象成数学形式,即求一组变量的值,在满足一定的约束条件下,是某个目标达到最小或最大,而这些约束条件用可以用一组线性不等式或线性方程来表示。而求得目标函数的最优解尤为重要,本文就线性规划问题的最优解求解方法作出阐述,并举出实例加以强化,同时也指出了线性规划问题应用于生产与运作管理的重要性。 1.线性规划问题的最优解探讨 1.1线性规划问题的提出 考虑下面的线性规划问题的标准型: 目标函数: CX Z =min (1) 约束条件: ? ??≥=0X b AX (2) 其中,),,,(21n c c c C =,T n x x x X ),,,(21 =,T m b b b b ),,,(21 =,n m ij a A ?=)(阶矩阵。设B 是A 中m 个线性无关的列向量构成的一个基,m m ij a B ?=)( 阶矩阵,这样将矩阵A 分成两个部分,即A=),(N B ,X=),(N B X X ,C=()N B C C ,,B X ,B C 为基B 对应的非基变量和系数,N X ,N X 为N 对应的非基变量和系数,这样将线性规划问题改写为: minZ ()N B C C ,=?? ? ???B B X X (3) 约束条件:

?????≥=?? ????0),(N B N B X X b X X N B (4) 经过矩阵变换,得出关于基B 的标准型如下: 1min -=B C Z B +(N C -1-B C B N)N X (5) 约束条件: ???≥=+--0,11N B N B X X b B NX B X (6) T m b b b b B ),,,(' '21'1 =- ?????? ? ? ? =++++++-mn mm mm n m m n m m a a a a a a a a a N B 212221 2121111 将(5)(6)展开为: =Z min ' 1i m i i b c ∑=+ ∑ +=n m j 1 (' 1 ij m i i j a c c ∑=-)j x (7) 约束条件: i n m j j ij i b x a x '1 ' =+ ∑+= ,m i ,,2,1 = (8) 0≥j x ,n j ,,2,1 = (9) 令 ' 1 0i m i i b c Z ∑== , =j σ' 1 ij m i i j a c c ∑=- ,n m m j ,,2,1 ++= ,称j σ为检验数。 1.2最优解判别准则 准则一:若 T m b b b X )0,,0,,,,('2'1')1( = ,为对应于基B 的基本可行解,且对于一切的 n m m j ,,2,1 ++= ,j σ>0 ,则X 为线性规划问题的最优解。

线性规划问题及其数学模型

第二章 线性规划的对偶理论与灵敏度分析习题 1. 写出下列线性规划问题的对偶问题。 (1)????? ? ?≥=++≤++≥++++=无约束 3213213213213 21,0,5343 32243422min x x x x x x x x x x x x x x x z (2) ????? ? ?≤≥≤++≥-+-=++++=0 ,0,8374355 22365max 3213213213213 21x x x x x x x x x x x x x x x z 无约束 (3)?? ??? ??? ???==≥=====∑∑∑∑====) ,,1;,,1(0) ,,1(),,1(min 1 111n j m i x n j b x m i a x x c z ij m i j ij n j i ij m i ij n j ij (4)???????????=≥++==<=<=∑∑∑===),,,,1(0),,2,1() ,,1(min 1 211111n n j x m m m i b x a m m i b x a x c z j n j i j ij n j i j ij n j j j 无约束 2. 判断下列说法是否正确,为什么? (1)如果线性规划的原问题存在可行解,则其对偶问题也一定存在可行解; (2)如果线性规划的对偶问题无可行解,则原问题也一定无可行解; ( 3)在互为对偶的一对原问题与对偶问题中,不管原问题是求极大或极小,原问题可行解的目标函数值一定不超过其对偶问题可行解的目标函数值; (4)任何线性规划问题具有唯一的对偶问题。 3. 已知某求极大化线性规划问题用单纯形法求解时的初始单纯形表及最终单纯形表如下表所示,求表中各括弧内未知数的值。

(完整word版)第二章运筹学 线性规划

第二章 线性规划 主要内容:1、线性规划问题及数学模型 2、线性规划问题的解及其性质 3、图解法 4、单纯形法 5、大M 法和两阶段法 重点与难点:线性规划数学模型的建立:一般形成转化为标准型的方法:单纯形法的求解步骤。 要 求:理解本章内容,掌握本章重点与难点问题;深刻理解线性规划问题的基本概念、基本性质,熟练掌握 其求解技巧;培养解决实际问题的能力。 §1 线性规划的数学模型及解的性质 一、数学模型(一般形式) 例 1 已知某市有三种不同体系的建筑应予修建,其耗用资源数量及可用的资源限量如下表,问不同体系的面积应各建多少,才能使提供的住宅面积总数达到最大? 解:设三种体系的建筑面积依次为1x ,2x ,3x 万平方米, 则目标函数为 321max x x x z ++= 约束条件为 ?? ?? ???????=≥≤++≤≤++≤++≤++3,2,10 4005.335.41470021015000 180190110200025301211000 122137105 3211321321321j x x x x x x x x x x x x x x j 例2 某工厂要安排生产甲、乙两种产品。已知:

问:如何安排两种产品的生产数量,才能使总产值最高? 解:设 21,x x 分别为甲、乙两种产品的生产量: 则目标函数为 21127m ax x x z += 约束条件为??? ??? ?=≥≤+≤+≤+2,1,03001032005436049112121j x x x x x x x j 从以上两例可以看出,它们都属于一类优化问题。它们的共同特征: ①每一个问题都有一组决策变量(n x x x 21,)表示某一方案;这组决策变量的值就代表一个具体方案。一般这 些变量的取值是非负的。 ②存在一定的约束条件,这些约束条件可以用一组线性等式或不等式来表示。 ③都有一个要求达到的目标,它可用决策变量的线性函数(称为目标函数)来表示;按问题的不同,要求目标函数实现最大化或最小化。 满足以上三个条件的数学模型称为线性规划的数学模型。其一般形式为: 目标函数 n n x c x c x c z +++= 2211m ax (m in) 约束条件 ()()()????? ????=≥=≥≤+++=≥≤+++=≥≤+++n j x b x a x a x a b x a x a x a b x a x a x a j m n mn m m n n n n ,,2,1,0,,,22112222212111212111 可行解:满足约束条件的一组决策变量,称为可行解。 最优解:使目标函数取得最大(小)值的可行解,称为最优解。 最优值:目标函数的最大(小)值,称为最优值。 二、标准型 (一)问题的标准形式: n n x c x c x c z +++= 2211ma x ????? ?? ??=≥=+++=+++=+++n j x b x a x a x a b x a x a x a b x a x a x a j m n mn m m n n n n ,,2,1,022112222212111212111

求线性规划问题的最优解

求线性规划问题的最优解: 1212121 23m a x 2322124 16.. 5 15,,0 z x x x x x s t x x x x =++≤?? ≤?? ≤??≥? 方法1:图解法。(P15 图1-3) 方法2:求出所有的基可行解,然后比较目标值的大小得到最优解。(P14表1-1) 方法3:单纯形法。

第一步,将模型转化为标准型。 12345 123142512345 m ax 2300022 12 (1)4 16 (2).. 5 15 (3) ,,,,0z x x x x x x x x x x s t x x x x x x x =++++++=??+=??+=??≥? 22100400100 5 1A ?? ? = ? ??? 秩A=3 第二步,求初始基可行解。 取() 345100 01000 1B P P P ?? ? == ? ?? ? 作为初始基矩阵,345, , x x x 为基变量,12, x x 为非基变量, 令12=0,x x =得到初始基可行解()(0) 0,0,12,16,15X =,目标值(0) 0.z = 第三步,对初始基可行解()(0) 0,0,12,16,15X =进行最优性检验。 基可行解()(0) 0,0,12,16,15X =对应的目标值为(0) 0z =,因为12023z x x =++,只要1>0x 或 者2 0x >,目标值都会比(0) 0z =大,即12or x x 之一作为基变量,目标值都会增大,故初始基可行 解()(0) 0,0,12,16,15X =不是最优解。 第四步,作基变换,求目标值比(0) 0z =更大的基可行解。 ① 确定换入基变量。由第三步可知,12, x x 都可作为换入基变量,一般地, {}121122*********, 0,0. m ax ,z x x x x σσσσσσσ=++=++≥≥=。 2 x 作为换入基变量。这里12,σσ称为基可行解(0) X 非基变量12, x x 的检验数。 ② 确定换出基变量。2 x 作为换入基变量,1x 仍为非基变量,下面确定另一个非基变量,由方程组(1)(2)(3)得到 312 41 5212345 1222 164 15 5,,,,0 x x x x x x x x x x x x =--?? =-?? =-??≥?令10,x =且345,,0x x x ≥得到32452 1220 16 0 1550x x x x x =-≥??=≥?? =-≥?,解不等式得到212 15m in ,,32 5x R ??≤=????。 当23x <时,345,,0x x x >,345,,x x x 都不能作为非基变量,但345,,x x x 中必须有一个被换出来作为非基变量,我们注意到当23x =时,3450,0,0x x x >>=,说明5x 可以作为非基变量。 ③ 求目标值更大的基可行解。

高中数学线性规划题型总结

高考线性规划归类解析 一、已知线性约束条件,探求线性目标关系最值问题 2x y2 例 1、设变量 x、y 满足约束条件x y 1 ,则z 2 x 3 y x y1 的最大值为。 解析:如图 1,画出可行域,得在直线2x-y=2 与直线 x-y=-1 的交点 A(3,4) 处,目标函数z 最大值为 18 点评:本题主要考查线性规划问题,由线性约束条件画出可 行域 ,然后求出目标函数的最大值.,是一道较为简单的送分 题。数形结合是数学思想的重要手段之一。 二、已知线性约束条件,探求非线性目标关系最值问题 图 1 x 1, 例 2、已知x y10,则 x2y2的最小值是. 2x y20 解析:如图 2,只要画出满足约束条件的可行域,而x2y2表示 可行域内一点到原点的距离的平方。由图易知A( 1,2)是满足条 件的最优解。 x2y2的最小值是为5。 点评:本题属非线性规划最优解问题。求解关键是在挖掘目标关 系几何意义的前提下,作出可行域,寻求最优解。 三、约束条件设计参数形式,考查目标函数最值范围问题。 图 2 x0C 例 3 、在约束条件y0下,当 3s 5 时,目标函数 y x s y 2x4 z3x 2y 的最大值的变化范围是() A. [6,15] B. [7,15] C. [6,8] D. [7,8] 解析:画出可行域如图 3 所示,当 3s 4 时 , 目标函数 z3x2y在 B(4s,2 s4) 处取得最大值,即 z max3(4s) 2(2s 4)s 4[7,8); 当 4s 5 时 , 目标函数 z 3x2y在点E(0, 处取得最大值,即 z max 3 0 2 48,故z[7,8],从而选 D; 点评:本题设计有新意,作出可行域,寻求最优解条件,然后转化为目标函数Z 关于 S的函数关系是求解的关键。 四、已知平面区域,逆向考查约束条件。 例 4、已知双曲线x2y2 4 的两条渐近线与直线x 3 围成一个三角形 区域 ,表示该区域的不等式组是() x y 0x y 0x y 0x y 0 (A) x y 0(B)x y 0(C) x y0(D) x y 0 0 x 30 x 30 x 30 x 3 解析:双曲线 x2y2 4 的两条渐近线方程为y x ,与直线 x 3围

相关主题
文本预览
相关文档 最新文档