当前位置:文档之家› 脱硫装置项目可行性研究报告

脱硫装置项目可行性研究报告

脱硫装置项目可行性研究报告
脱硫装置项目可行性研究报告

脱硫装置项目

可行性研究报告

xxx投资公司

脱硫装置项目可行性研究报告目录

第一章基本情况

第二章背景及必要性研究分析第三章市场研究

第四章建设规划方案

第五章选址方案评估

第六章建设方案设计

第七章项目工艺技术

第八章项目环境保护分析

第九章项目安全保护

第十章项目风险情况

第十一章节能评价

第十二章进度方案

第十三章项目投资可行性分析

第十四章经济评价分析

第十五章招标方案

第十六章项目总结、建议

第一章基本情况

一、项目承办单位基本情况

(一)公司名称

xxx投资公司

(二)公司简介

顺应经济新常态,需要公司积极转变发展方式,实现内涵式增长。为此,公司要求各级单位通过创新驱动、结构优化、产业升级、提升产品和

服务质量、提高效率和效益等路径,努力实现“做实、做强、做大、做好、做长”的发展理念。

公司始终秉承“集领先智造,创美好未来”的企业使命,发展先进制造,不断提升自主研发与生产工艺的核心技术能力,贴近客户需求,助力

中国智造,持续为社会提供先进科技,覆盖上下游业务领域的行业综合服

务商。

经过多年发展,公司已经形成一个成熟的核心管理团队,团队具有丰

富的从业经验,对于整个行业的发展、企业的定位都有着较深刻的认识,

形成了科学合理的公司发展战略和经营理念,有利于公司在市场竞争中赢

得主动权。

(三)公司经济效益分析

上一年度,xxx科技公司实现营业收入29424.61万元,同比增长

20.65%(5036.38万元)。其中,主营业业务脱硫装置生产及销售收入为27862.46万元,占营业总收入的94.69%。

根据初步统计测算,公司实现利润总额6535.61万元,较去年同期相比增长701.56万元,增长率12.03%;实现净利润4901.71万元,较去年同期相比增长1044.29万元,增长率27.07%。

上年度主要经济指标

二、项目概况

(一)项目名称

脱硫装置项目

(二)项目选址

xx经济开发区

(三)项目用地规模

项目总用地面积52239.44平方米(折合约78.32亩)。

(四)项目用地控制指标

该工程规划建筑系数61.02%,建筑容积率1.43,建设区域绿化覆盖率5.58%,固定资产投资强度186.01万元/亩。

(五)土建工程指标

项目净用地面积52239.44平方米,建筑物基底占地面积31876.51平方米,总建筑面积74702.40平方米,其中:规划建设主体工程58248.16平方米,项目规划绿化面积4164.77平方米。

(六)设备选型方案

项目计划购置设备共计173台(套),设备购置费6224.63万元。

(七)节能分析

1、项目年用电量847996.45千瓦时,折合104.22吨标准煤。

2、项目年总用水量18905.56立方米,折合1.61吨标准煤。

3、“脱硫装置项目投资建设项目”,年用电量847996.45千瓦时,年

总用水量18905.56立方米,项目年综合总耗能量(当量值)105.83吨标准煤/年。达产年综合节能量45.36吨标准煤/年,项目总节能率20.45%,能

源利用效果良好。

(八)环境保护

项目符合xx经济开发区发展规划,符合xx经济开发区产业结构调整

规划和国家的产业发展政策;对产生的各类污染物都采取了切实可行的治

理措施,严格控制在国家规定的排放标准内,项目建设不会对区域生态环

境产生明显的影响。

(九)项目总投资及资金构成

项目预计总投资19368.58万元,其中:固定资产投资14568.30万元,占项目总投资的75.22%;流动资金4800.28万元,占项目总投资的24.78%。

(十)资金筹措

该项目现阶段投资均由企业自筹。

(十一)项目预期经济效益规划目标

预期达产年营业收入45698.00万元,总成本费用35918.32万元,税

金及附加370.83万元,利润总额9779.68万元,利税总额11499.43万元,税后净利润7334.76万元,达产年纳税总额4164.67万元;达产年投资利

润率50.49%,投资利税率59.37%,投资回报率37.87%,全部投资回收期4.14年,提供就业职位704个。

(十二)进度规划

本期工程项目建设期限规划12个月。

选派组织能力强、技术素质高、施工经验丰富、最优秀的工程技术人员和施工队伍投入本项目施工。

三、报告说明

《项目可行性研究报告》从系统总体出发,对技术、经济、财务、商业以至环境保护、法律等多个方面进行分析和论证,通过对的市场需求、资源供应、建设规模、工艺路线、设备选型、环境影响、资金筹措、盈利能力等方面的研究调查,在专家研究经验的基础上对项目经济效益及社会效益进行科学预测,从而为客户提供全面的、客观的、可靠的投资价值评估及项目建设进程等咨询意见。

四、项目评价

1、本期工程项目符合国家产业发展政策和规划要求,符合xx经济开发区及xx经济开发区脱硫装置行业布局和结构调整政策;项目的建设对促进xx经济开发区脱硫装置产业结构、技术结构、组织结构、产品结构的调整优化有着积极的推动意义。

2、xxx科技公司为适应国内外市场需求,拟建“脱硫装置项目”,本期工程项目的建设能够有力促进xx经济开发区经济发展,为社会提供就业

职位704个,达产年纳税总额4164.67万元,可以促进xx经济开发区区域经济的繁荣发展和社会稳定,为地方财政收入做出积极的贡献。

3、项目达产年投资利润率50.49%,投资利税率59.37%,全部投资回报率37.87%,全部投资回收期4.14年,固定资产投资回收期4.14年(含建设期),项目具有较强的盈利能力和抗风险能力。

4、公共服务体系建设是服务企业、补齐短板的重要举措。在企业信息化、知识产权、人才培养、投融资咨询、品牌推广、项目对接等方面,向企业提供覆盖其整个生命周期的完善的公共服务。推动各个综合和专业平台间的互联互通、资源共享,形成覆盖面广、市场影响大的公共服务网络体系,服务企业发展。

综上所述,项目的建设和实施无论是经济效益、社会效益还是环境保护、清洁生产都是积极可行的。

五、主要经济指标

主要经济指标一览表

第二章背景及必要性研究分析

一、项目建设背景

1、近年来,中国崛起势不可挡,成为了继美国之后第二个跻身超10

万亿美元经济体俱乐部的国家。在世界经济的版图上,中国变成了前所未

有的“优等生”。由于经济表现亮眼,中国备受全球瞩目,国际媒体也经

常把中美两个国家放在一起比较。根据世界银行的数据,2017年美国的经

济总量达到19.5万亿美元,中国紧随其后达到了13.1万亿美元。相比之下,美国提早12年达到这个经济规模,即在2005年的时候达到13.09万

亿美元,当时的经济增速达到3.4%。不过,目前我国是经济增速最快的新

兴经济体之一,经济增速维持在中高水平,2017年达到6.9%。如果我国持

续保持这个水平,超越美国不成问题。享有世界权威的英国经济与商业研

究中心(CEBR)给出了答案,在其最新发布的全球经济前景排名表(2018)中提到,按美元计价,中国将在2032年超越美国成为全球第一大经济体,

这与其他经济研究机构预测的时间相差不大。另外,在2023年前后,中国

人均年收入将超过1.2万美元,进入世界银行认可的高收入国家行列,届

时中国将成功突破“中等收入陷阱”。中国经济总量超越美国并非空穴来风,一直以来推动美国经济增长的重要因素是消费,如今中国也完全依赖

内需拉动经济。近年来,中国的经济结构持续优化,服务业比重不断提高,这意味着消费对经济增长的贡献率持续提升。数据显示,2017年,最终消

费对我国经济增长的贡献率为58.8%,连续4年成为拉动经济增长的第一驱动力。而在发达经济体国家,消费一般占到6~7成,由此可见我国正在向

消费型大国迈进。

2、2014年,全国劳动力成本是十年前的2.7倍,再加上原材料价格上涨、高能耗成本、高物流成本的影响,我国制造业低成本优势逐步丧失。

优衣库、耐克、富士康等世界知名企业纷纷在东南亚和印度开设新厂,加

快撤离中国的步伐。2014年全年,东莞倒闭了428家企业;被称为制造之都,以生产皮鞋、服装、眼镜、打火机文明世界的温州,日前正在经历着

制造产业空心化。

3、积极引导相关产业园区围绕重点发展领域,打造一批专业化水准高、共性需求强、开放高效的战略性新兴产业公共技术服务平台。同时,充分

发挥行业协会和龙头企业带动作用,推动产业链上下游协同合作,探索建

立产业基础研发的开放共享机制,有效降低企业的研发和运营成本。

4、投资项目建设有利于促进项目建设地先进制造业的发展,有利于形

成市场规模和良好经济社会效益的产业集群,推动产业结构转型升级;坚

持自主创新与技术引进、利用全球创新资源有机结合;推进产学研联合攻关,构建“政府―企业―高校―科研院所―金融机构”相结合的产业技术

研发模式,推动一批关键共性技术开发,大力推进科技成果产业化;同时,积极引进境外先进技术,加快引进、消化、吸收和再创新。

二、必要性分析

1、实践证明,稳中求进工作总基调是我们治国理政的重要原则,也是

做好经济工作的方法论。要清醒看到,我国经济运行仍存在不少突出矛盾

和问题,世界经济仍处于缓慢复苏的进程中。越是面对复杂的国内国际经

济形势,就越要认识到明年贯彻好稳中求进工作总基调具有特别重要的意义。稳是主基调,稳是大局,在稳的前提下才能在关键领域有所进取,才

能在把握好度的前提下奋发有为。

2、推进制造业智能化转型,支持实施智能制造工程。智能制造是新一

代信息技术与先进制造技术的深度融合,加快推进制造业智能化转型,是

推动产业向高端迈进,实现制造业转型升级的关键所在,也是“中国制造2025”的重中之重。2015年,财政部会同工信部启动智能制造工作。“十

三五”时期,中央财政将持续支持实施智能制造综合标准化与新模式应用,主要夯实智能制造发展基础。经过几年来的持续支持,智能制造所支持项

目关键技术装备自主化率达到70%以上,打造了一批以国产装备、国产软件、国产数控系统为代表的数字化车间,不仅支撑了国家智能制造标准体系的

建设,推动了国产软硬件产品的创新应用,而且带动了社会投资,探索形

成了市场主导、政府引导的智能制造发展模式。

3、实施创新驱动发展战略是提升综合国力和国家竞争力的根本支撑,

是适应新一轮科技革命和产业变革的必然要求,是实现“两个一百年”奋

斗目标的科技支撑,也是当前中国转换经济增长模式的核心支持要素。实

施创新驱动发展战略,要统筹科技、教育、人才三个规划纲要,解决影响

我国未来发展的重大科学和技术问题,奠定我国从科技大国想科技强国迈

进的基础。

4、投资项目的建设可以大幅度提升项目产品的生产、研发水平,有利

于促进我国相关行业稳定健康发展;项目承办单位具有较高项目产品制造

工艺技术、生产设备和新产品的研发能力,近年来,项目承办单位在消化、吸收国际先进项目产品制造技术的基础上,持续加大对项目产品生产技术

及相关材料的研发投入,形成了在国内同行业领先的技术优势。

三、项目建设有利条件

项目承办单位现有资产运营优良,财务管理制度健全且完善,企业的

资金雄厚,凭借优异的产品质量、严谨科学的管理和灵活通畅的销售网络,连年实现盈利,能够为项目建设提供充足的计划自筹资金。

第三章市场研究

目前,区域内拥有各类脱硫装置企业844家,规模以上企业20家,从业人员42200人。截至2017年底,区域内脱硫装置产值123281.68万元,较2016年110210.69万元增长11.86%。产值前十位企业合计收入57898.53万元,较去年48822.44万元同比增长18.59%。

区域内脱硫装置行业经营情况

区域内脱硫装置企业经营状况良好。以AAA为例,2017年产值

14185.14万元,较上年度12738.09万元增长11.36%,其中主营业务收入13497.62万元。2017年实现利润总额4020.78万元,同比增长21.70%;实现净利润1437.03万元,同比增长12.63%;纳税总额104.73万元,同比增长15.43%。2017年底,AAA资产总额31777.47万元,资产负债率27.11%。

2017年区域内脱硫装置企业实现工业增加值48852.99万元,同比

2016年41330.79万元增长18.20%;行业净利润14353.32万元,同比2016年12280.39万元增长16.88%;行业纳税总额39464.83万元,同比2016年33289.61万元增长18.55%;脱硫装置行业完成投资37610.61万元,同比2016年32283.79万元增长16.50%。

区域内脱硫装置行业营业能力分析

区域内经济发展持续向好,预计到2020年地区生产总值6000.04亿元,年均增长6.02%。预计区域内脱硫装置行业市场需求规模将达到185170.24

万元,利润总额61414.94万元,净利润20434.33万元,纳税11456.37万元,工业增加值57389.52万元,产业贡献率11.03%。

区域内脱硫装置行业市场预测(单位:万元)

第四章建设规划方案

一、产品规划

项目主要产品为脱硫装置,根据市场情况,预计年产值45698.00万元。

项目承办单位计划在项目建设地建设项目,具有得天独厚的地理条件,与xx省同行业其他企业相比,拥有“立地条件好、经营成本低、投资效益高、比较竞争力强”的优势,因此,发展相关产业前景广阔。

二、建设规模

(一)用地规模

该项目总征地面积52239.44平方米(折合约78.32亩),其中:净用

地面积52239.44平方米(红线范围折合约78.32亩)。项目规划总建筑面

积74702.40平方米,其中:规划建设主体工程58248.16平方米,计容建

筑面积74702.40平方米;预计建筑工程投资5857.82万元。

(二)设备购置

项目计划购置设备共计173台(套),设备购置费6224.63万元。

(三)产能规模

项目计划总投资19368.58万元;预计年实现营业收入45698.00万元。

第五章选址方案评估

一、项目选址原则

节约土地资源,充分利用空闲地、非耕地或荒地,尽可能不占良田或

少占耕地;应充分利用天然地形,选择土地综合利用率高、征地费用少的

场址。

二、项目选址

该项目选址位于xx经济开发区。

园区围绕《中国制造2025》10大重点发展领域,通过改造、提升、补链、拓新,延伸产业链,发展高端装备、先进轨道交通装备、节能与新能

源汽车、电力装备、农机装备等产业链条,围绕项目引进一批延链、补链

企业,打造装备制造产业链。

三、建设条件分析

项目承办单位现有资产运营优良,财务管理制度健全且完善,企业的

资金雄厚,凭借优异的产品质量、严谨科学的管理和灵活通畅的销售网络,连年实现盈利,能够为项目建设提供充足的计划自筹资金。

四、用地控制指标

投资项目占地税收产出率符合国土资源部发布的《工业项目建设用地

控制指标》(国土资发【2008】24号)中规定的产品制造行业占地税收产

出率≥150.00万元/公顷的规定;同时,满足项目建设地确定的“占地税收产出率≥150.00万元/公顷”的具体要求。

五、地总体要求

本期工程项目建设规划建筑系数61.02%,建筑容积率1.43,建设区域

绿化覆盖率5.58%,固定资产投资强度186.01万元/亩。

土建工程投资一览表

六、节约用地措施

采用大跨度连跨厂房,方便生产设备的布置,提高厂房面积的利用率,有利于节约土地资源;原料及辅助材料仓库采用简易货架,提高了库房的

面积和空间利用率,从而有效地节约土地资源。

七、总图布置方案

燃煤电厂脱硫废水处理技术方案设计

脱硫废水处理工艺设计初步构思 1脱硫废水的主要来源 煤粉在锅炉燃烧后会产生烟气,烟气经电除尘器设备除尘后进入引风机再引出到脱硫系统,经增压风机、吸收塔、除雾器后,洁净的烟气通过烟囱排入大气。 在吸收塔中,随着吸收剂吸收二氧化硫过程的不断进行,吸收剂有效成分不断被消耗从而生成的亚硫酸钙经强制氧化生成石膏,在吸收剂洗涤烟气时,烟气中的氯化物也会逐渐溶解到吸收液中从而产生氯离子的富集。氯离子浓度的增高会带来两个不利的影响:一是降低了吸收液的pH值,以致引起脱硫率的下降和CaSO4结垢倾向的增大;此外,氯离子浓度过高会降低副产品(石膏)的品质,从而降低产出石膏的价值。当吸收塔浆液质量浓度达到700g/L,吸收剂基本完全反应,脱硫能力相当弱,吸收塔浆液中氯离子的质量浓度达到最大允许质量浓度(20mg/L)左右,这就要将吸收塔浆液抽出送至石膏脱水车间使用真空皮带脱水机脱水。脱硫系统排放的废水,处理的清洗系统排出的废水、水力旋流器的溢流水和皮带过滤机的滤液都是废水产生的来源。 2 脱硫废水水质的基本特点 脱硫废水的成分及浓度对处理系统的运行管理有很大影响,是影响处理设备的选择、腐蚀等的关键性因素。脱硫废水一般具有以下几个特点。 (1)水质呈弱酸性:国外 pH 值变化围为 5.0~6.5,国一般为 4.0~6.0。酸性的脱硫废水对系统管道、构筑物及相关动力设备有很强的腐蚀性。 (2)悬浮物含量高,其质量浓度可达数万mg/L,而且大部分的颗粒物黏性低。(3)COD、氟化物、重金属超标,其中包括第 1 类污染物,如 As、 Hg、Pb 等。(4)脱硫废水的一般温度在45度左右。 (5)脱硫废水生化需氧量(BOD5)低。

石油化工与化工装置工艺包内容与深度规定

石油化工与化工装置 工艺包内容与深度规定 1 适用范围 本标准规定了工艺包的内容与深度要求,以保证工程设计有可靠的技术基础,满足开展基础设计的要求,并根据具体项目情况决定是否编制工艺操作手册、分析化验手册。 本规定适用于本公司编制并提供给顾客审查的石油化工、化工装置工艺包;也可以在对外购买/转让技术时作为工艺包内容深度谈判的基础。实际购买/转让的工艺包内容可以按照合同规定进行增减。 2 术语和定义 工艺包是内容符合本规定要求的工艺技术的商品化文件;是顾客审查、验收工艺技术的依据;是科研成果转化为生产力的中间介质;是石油化工与化工装置工程建设的基础。 3 石油化工与化工装置工艺包内容 3.1 设计基础 3.1.1 概况 3.1.1.1 装置概况及特点,项目背景、与相关装置的关系。 3.1.1.2 技术来源及授权 说明工艺技术所属的专利、专有技术及其中一般技术的提供者。说明专利使用、授权的限制及排他性要求。 3.1.1.3 设计范围 说明工艺包设计所涉及的范围,界区的划分。 3.1.2 装置规模及组成 可以用原料每年或每小时加工量或主要产品每年或每小时产量表示装置规模。要说明规模所依据的年操作小时数。 如果有不同的工况,应分别说明装置在不同工况下的能力。 由多个产出产品、中间产品、副产品组成的联合装置,要列出各部分的名称;各部分加工量和产品、副产品、中间产品的产率、转化率、产量。 3.1.3 原料、产品、中间产品、副产品的性质、规格要求 说明原料状态、组成、杂质含量、馏程、色泽、比重、粘度、折光率等所有必须指定的参数。同时列出每一个参数的分析方法标准号,特殊分析方法要加以说明。如果不同工况有不同的原料,要分别列出。 分别说明产品、中间产品、副产品的规格要求以及所依据的标准,同时按标准列出

脱硫废水处理系统

10废水处理系统 10.1工艺流程 10.1.1工艺流程概述 废水旋流站的溢流直接进入废水处理系统的中和、沉降、絮凝三联箱,然后进入澄清 器和出水箱,其间的出水梯次布置,形成重力流。澄清器污泥排放量约 178朋加、污泥含水 量为90%。 澄清器污泥大部分排往板框压滤机,压滤机的底部排泥含水率不大于 75%排泥经电动泥斗 缓冲装入运泥车。小部分回流污泥送回中和箱, 设螺杆泵进行输送。 回流污泥是为三联箱的 结晶反应提供晶种,回流量人工调节。压滤机排出的滤液及清洗滤布的污水自流至滤液箱, 通过泵将该水送至三联箱进行处理。 系统设置生石灰粉仓,生石灰粉通过计量装置进入石灰乳制备箱,再通过螺杆输送泵 送入石灰乳计量箱。石灰乳、有机硫、混凝剂、助凝剂、盐酸等 5个计量箱后分设 5组计量 泵,完成向三联箱及出水箱自动在线调节计量加药。 计量泵为可调节机械隔膜泵, 每组计量 泵均为2台,一用一备。 10.1.2废水处理系统工艺流程如下所示: 废水 中和箱 * 沉降箱 * 絮凝箱 4 澄清器 * 出水箱 * 达标排放 10.2控制万式 由废水旋流站送来的废水进入工艺流程始点处,即由设在进水管路上的电磁流量计发送 系统开启信号,整个废水处理系统即进入工作状态。 各药剂投加泵启动,中和、沉降、絮凝、 出水各工艺搅拌器和各加药箱搅拌器启动, 设在中和箱和出水箱上的 PH 监测仪,设在各设备 上的液位计和泥位计开始传送信号。当废水停送,进水电磁流量信号降至 2mVh 以下,整个 废水处理系统进入停机待用状态 设在中和箱中的 PH 计对中和箱中废水进行酸碱度检测,并向系统 DCS 发送4— 20mA pH 盐酸加 药箱 石灰乳加 药箱 泥饼外运

脱硫废水处理t设计方案

脱硫废水处理 设 计 方 案 责任公司 2010年12月

目录前言2 1 总论3 2 工程设计依据、原则和范围3 2.1 设计依据3 2.2 设计原则3 2.3 设计范围4 3 工程设计参数4 3.1 设计处理规模4 3.2 进水水质4 3.3 出水水质4 4 工艺流程选择与确定5 4.1工艺分析与确定5 4.2工艺特点5 4.3工艺流程5 4.4工艺流程说明6 4.5沿程水质变化分析表7 5 各处理工艺设计及计算8 5.1各处理单元参数选择及设计计算8 5.2各单元构/建筑物/设备配置15 6 工程投资估算16 6.1工程投资估算16 6.2土建部分投资估算18 6.3设备投资估算20 7运行费用分析21 7.1主要用电设备21 7.2 运行费用分析21 8 人员培训及售后服务20 8.1人员培训20 8.2售后服务21

前言 。 在污水处理站的建设中,我公司愿意真诚参与,贡献我们的技术和力量。

1 总论 脱硫废水的水质特点如下:a脱硫废水呈弱酸性,pH值一般为4~7。b悬浮物含量高,实验证明脱硫废水中的悬浮物主要是石膏颗粒、二氧化硅、以及铁、铝的氢氧化物。c 脱硫废水中的阳离子为钙、镁、铁、铝、重金属离子。d脱硫废水中的阴离子主要有C1-、SO42-、SO32-、等。e化学耗氧量与通常的废水不同。 2 工程设计依据、原则和范围 2.1 设计依据 《室外排水设计规范》GBJ50014-2006 ; 《建筑给水排水设计规范》GBJ50015-2003; 《国家污水综合排放标准》GB8978-1996; 《辽宁省污水综合排放标准》DB21/1627-2008 《地表水环境质量标准》GB3838-2002; 《废水出水水质的监测与控制符合火力发电厂废水治理设计技术规程》 DL/T5046-2006 《钢制平台扶梯设计规范》DLGJ158-2001 《钢制压力容器》GB150-1998 国内外关于此类废水处理技术资料; 污水处理有关设计和验收规范规程; 国家相关环保政策法规 2.2 设计原则 (1)严格遵守国家有关环保法律法规和技术政策,确保各项出水指标均达到排放水质要求; (2)水处理设备力求简便高效、操作管理方便、占地面积小、造价低廉、运行安全及避免对周围的环境造成污染;

石油化工设备项目规划方案

石油化工设备项目规划方案 规划设计/投资分析/产业运营

石油化工设备项目规划方案 石油化工行业是我国的基础性产业,它为农业、能源、交通、机械、电子、纺织、轻工、建筑、建材等工农业和人民日常生活提供相应配套和服务,在国民经济中占有举足轻重的地位。总体来看,中国石油和石化行业未来发展潜力巨大,具有较强的比较优势和较大的发展空间。 该石油化工设备项目计划总投资14216.42万元,其中:固定资产投资11342.19万元,占项目总投资的79.78%;流动资金2874.23万元,占项目总投资的20.22%。 达产年营业收入22996.00万元,总成本费用18120.93万元,税金及附加237.52万元,利润总额4875.07万元,利税总额5785.01万元,税后净利润3656.30万元,达产年纳税总额2128.71万元;达产年投资利润率34.29%,投资利税率40.69%,投资回报率25.72%,全部投资回收期5.39年,提供就业职位469个。 报告根据项目的经营特点,对项目进行定量的财务分析,测算项目投产期、达产年营业收入和综合总成本费用,计算项目财务效益指标,结合融资方案进行偿债能力分析,并开展项目不确定性分析等。 ......

石油化工设备项目规划方案目录 第一章申报单位及项目概况 一、项目申报单位概况 二、项目概况 第二章发展规划、产业政策和行业准入分析 一、发展规划分析 二、产业政策分析 三、行业准入分析 第三章资源开发及综合利用分析 一、资源开发方案。 二、资源利用方案 三、资源节约措施 第四章节能方案分析 一、用能标准和节能规范。 二、能耗状况和能耗指标分析 三、节能措施和节能效果分析 第五章建设用地、征地拆迁及移民安置分析 一、项目选址及用地方案

火力发电厂脱硫废水“零排放”处理技术

火力发电厂脱硫废水“零排放”处理技术 随着中国水环保政策趋于严控,火力发电厂脱硫废水“零排放”理念不断升温。脱硫废水是火电厂最难处理的末端废水,单一技术路线的废水处理方案往往难以兼顾目标与成本。本文分析了各种深度处理方法以及具体的应用环境,提出针对不同成分的废水需要有不同的应对处理措施,对于推动脱硫废水处理工作,实现脱硫废水零排放具有重要意义。 一、脱硫废水来源采用湿法脱硫工艺的燃煤电厂在运行中,需要维持脱硫装置(FGD)当中浆液循环系统的平衡度,避免离子等可能对脱硫系统和设备带来的不利影响,同时排放系统中的废水,保持脱硫系统水平衡。从来源上看,脱硫废水主要从石膏旋流器或废水旋流器的溢流处产生。经研究发现,在脱硫废水中,有相当比例的重金属以及各种无机盐等,如果这些含有高浓度盐分的废水不经过有效处理就直接排放到大自然环境中,会严重影响生态健康,也不利于地下水资源的保护。二、脱硫废水进行零排放处理的必要性目前,燃煤电厂烟气脱硫装置应用最广泛的是石灰石-石膏湿法脱硫工艺。为保证脱硫系统的安全运行和保证石膏品质而排放的脱硫废水,其中含有大量的杂质,如悬浮物、无机盐离子、重金属离子等,很多物质为国家环保标准中要求严格控制的第一类污染物,需要进行净化处理才能排放水体。国内多数燃煤电厂净化脱硫废水采用的常规处理工艺即“三联箱”技术,采用物理化学方法,通过中和、沉降、絮凝和澄清等过程对脱硫废水进行处理,通常使用的药剂包括氢氧化钙/氢氧化钠、有机硫、铁盐、助凝剂、盐酸等。该工艺能够去除脱硫废水中对环境危害较大的重金属等有害物质和悬浮物,但不能去除氯离子,处理出水为高含盐废水,具有强腐蚀性,无法回收利用。排入自然水系后还会影响环境,潜在环境风险高。随着国家对环境污染的治理日益提速,对废水的排放要求也越来越严格。燃煤电厂在资源约束与排放限制方面的压力陡然上升,脱硫废水排放已经是燃煤电厂面临的严重的环保问题。传统的脱硫废水处理工艺达到的水质排放标准越来越不符合当下国家越来越严格的环保发展形势,电力企业实现脱硫废水零排放的需求越来越迫切,减排和近零排放成为必然趋势。三、脱硫废水的产生及其水质特点脱硫废水主要来自石膏旋流器或废水旋流器的溢流,是维持脱硫装置浆液循环系统物质平衡,控制石灰石浆液中可溶部分(即Cl-)含量、保证石膏质量的必要工艺环节。废水中所含物质繁杂,大体分为氯化物、氟化物、亚硫酸盐、硫酸盐、硫化物、悬浮物以及重金属离子(如Hg2+,Pb2+、Cr2+等)、氨氮等。脱硫废水具有污染物成份复杂、波动范围大等特点。pH值较低,呈酸性,水中悬浮物含量高、盐含量高、存在重金属超标的可能,氯根含量很高,腐蚀性很强,是电厂中最难处置的废水。四、脱硫废水深度处理方法1.废水浓缩处理技术目前,国内的脱硫废水浓缩处理主要采用膜浓缩、热法浓缩和烟气浓缩技术路线。(1)膜浓缩技术目前,膜浓缩技术广泛应用于脱硫废水的深度处理和浓缩研究,以减少废水处理系统中蒸发结晶的污水处理量,使得电厂零排放技术更经济可行。(1.1)反渗透(RO)技术。在外界高压力作用下,利用反渗透膜的选择透过性,水溶液中水由高浓度一侧向低浓度一侧移动,使得溶液中的溶质与水得到分离。(1.2)电渗析技术。利用离子交换膜的选择透过性,溶液中的带电阴、阳离子在直流电场作用下定向迁移,实现对废水的浓缩和分离。Cui等利用电渗析法去除脱硫废水中的氯离子,结果表明,在最佳条件下,当氯离子质量浓度为19.2g/L时,氯离子的去除率为83.3%,得到副产品Cl2、H2和Ca(OH)2,处理成本0.15$/kg。(2)热法浓缩技术热法浓缩技术包括多效蒸发(MED)和机械蒸汽再压缩(MVR)等。(2.1)多效蒸发(MED)技术。将蒸汽的热能进行循环并多次重复利用,以减少热能消耗,降低成本。加热后的盐水在多个串联的蒸发器中蒸发,利用前效蒸发产生的二次蒸汽,作为后效蒸发器的热源,后效中水的沸点温度和压力比前效低,效与效之间的热能再生利用可以重复多次。(2.2)机械蒸汽再压缩(MVR)技术。将蒸发器蒸发产生的原本需要冷却水冷凝的二次蒸汽,经压缩机压缩后,提高压力和饱和温度,增加热焓,再送入蒸发器作为热源,替代新鲜蒸汽循环利用,二次蒸汽的潜热得以充分利用,同时还省去了二次蒸汽冷却水

石油化工项目投资估算方法实例

93石油化工项目投资估算 石油化工建设项目投资估算;麟慧;Ⅰ建设项目投资的基础知识;不同设计阶段总投资的名称及组成;一、可行性研究投资估算编制方法;投资估算编制方法主要有:单位生产能力估算法、规模;(一)单位生产能力估算法;单位生产能力估算法是一种较为粗略的投资估算方法,;单位生产能力估算法一种较为粗略的投资估算方法,主;例1:假设2006年某炼油厂建设一套100万吨/;解:假定从 石油化工建设项目投资估算 麟慧 Ⅰ建设项目投资的基础知识 不同设计阶段总投资的名称及组成 一、可行性研究投资估算编制方法 投资估算编制方法主要有:单位生产能力估算法、规模指数法、工程量法、相关系数法等。 (一)单位生产能力估算法

单位生产能力估算法是一种较为粗略的投资估算方法,是根据已知生产能加工能力(或产品量)的装置建设投资求得单位生产能力(或单位产品)的投资,然后乘以拟建装置的生产能力(或产品量),即可得到拟建装置的建设投资。 单位生产能力估算法一种较为粗略的投资估算方法,主要用于新建装置的投资估算,十分简便迅速,但要求估算人员掌握足够的典型工程的历史数据资料,而且这些数据均应与单位生产能力或单位产品造价匹配才可应用。新装置必须与所选用装置的历史数据资料相类似,仅存在生产能力大小和时间上的差异,否则会造成较大的误差。 例1:假设2006年某炼油厂建设一套100万吨/年加氢精制装置的建设投资额为27000万元,若在2009年开工建设一套设计生产能力为120万吨/年的同类装置需要多少建设投资? 解:假定从2006到2009年平均每年工程造价指数为1.04,即每年递增4%,则: (1)计算已建装置单位生产能力的建设投资 27000/100=270(元/吨) (2)估算新建120万吨/年同类装置的建设投资 270×120×(1.04)3-1=35043.84 (万元)

汽油脱硫技术

汽油脱硫技术 摘要:我国成品汽油中90%以上的含硫化合物来自催化裂化汽油,降低成品油中硫含量的关键是降低FCC汽油的硫含量。本文主要综述了FCC汽油脱硫技术的优缺点。 关键词:催化裂化;汽油;脱硫技术 前言 据统计,我国车用汽油中90%的硫来自催化裂化。而催化裂化汽油中的硫化物存在形式以硫醇、硫醚、二硫化物和噻吩类硫化物为主,其中噻吩类硫的含量占总硫含量的60%以上,而硫醚硫和噻吩硫的含量占总硫的85%以上。因此,催化汽油脱硫过程中如何促进噻吩类和硫醚类化合物的转化是降低催化汽油硫含量的关键。围绕低硫和超低硫油品的生产,开发出了许多相关的脱硫技术,目前相关的脱硫技术大体上可以分为两类:加氢脱硫和非加氢脱硫。加氢脱硫技术主要包括催化裂化进料加氢脱硫技术、选择性加氢脱硫技术、非选择性加氢脱硫技术和催化蒸馏加氢脱硫技术;非加氢脱硫技术主要包括吸附脱硫、氧化脱硫和生物脱硫以及添加剂技术等。 1. 加氢脱硫技术 1.1 FCC原料加氢预处理脱硫技术 是通过对FCC原料油加氢处理来降低FCC汽油硫含量,可将FCC原料硫含量降至0.2%以下,从而使FCC汽油硫含量降到200μg/g。 对催化裂化原料油进行加氢处理,可以同时降低催化裂化汽油和馏分油的硫含量,可以显著地改善产品的产率和质量。但投资高(FCC原料加氢预处理所需投资为其他方法的4~5倍),要消耗氢气,操作费用高,且难以满足硫含量小于30μg/g的要求。 1.2 FCC过程直接脱硫技术 该技术是在FCC过程中使用具有降低硫含量的催化剂和助剂以及其他工艺新技术,从而在催化裂化反应过程中直接达到降硫的目的。 该类技术的特点是使用方便、不需增加投资和操作费用,缺点是脱硫效果差。 1.3 FCC汽油加氢处理

脱硫废水处理系统

10废水处理系统 工艺流程 10.1.1工艺流程概述 废水旋流站的溢流直接进入废水处理系统的中和、沉降、絮凝三联 箱,然后进入澄清器和出水箱,其间的出水梯次布置,形成重力流。澄清 器污泥排放量约178m3/d、污泥含水量为90% 。 澄清器污泥大部分排往板框压滤机,压滤机的底部排泥含水率不大于75%,排泥经电动泥斗缓冲装入运泥车。小部分回流污泥送回中和箱,设螺杆泵 进行输送。回流污泥是为三联箱的结晶反应提供晶种,回流量人工调节。 压滤机排出的滤液及清洗滤布的污水自流至滤液箱,通过泵将该水送至三 联箱进行处理。 系统设置生石灰粉仓,生石灰粉通过计量装置进入石灰乳制备箱,再 通过螺杆输送泵送入石灰乳计量箱。石灰乳、有机硫、混凝剂、助凝剂、 盐酸等5个计量箱后分设5组计量泵,完成向三联箱及出水箱自动在线调 节计量加药。计量泵为可调节机械隔膜泵,每组计量泵均为2台,一用一备。 10.1.2废水处理系统工艺流程如下所示: 控制方式中和箱沉降絮凝澄清出水石灰乳有机混凝助凝盐酸达标排 废水

由废水旋流站送来的废水进入工艺流程始点处,即由设在进水管路上的 电磁流量计发送系统开启信号,整个废水处理系统即进入工作状态。各药剂投加泵启动,中和、沉降、絮凝、出水各工艺搅拌器和各加药箱搅拌器启动, 设在中和箱和出水箱上的PH监测仪,设在各设备上的液位计和泥位计开始 传送信号。当废水停送,进水电磁流量信号降至2m3/h以下,整个废水处理系统进入停机待用状态 设在中和箱中的PH计对中和箱中废水进行酸碱度检测,并向系统DCS 发送4—20mA pH模拟信号,经DCS处理向石灰乳加药泵的变频器发送指令 调整加药泵转速,维持中和的设定pH值。 设在澄清器中的污泥浓度计对澄清器中的污泥界面进行检测,并将检测结果向系统DCS发送4—20mA模拟信号,经DCS处理向板框压滤机发送启动 指令,确认板框压滤机已处于备用状态,污泥处理即行开启。 设在出水箱中的PH计对出水箱中水进行酸碱度检测,并将检测结果向 系统DCS发送4—20mA模拟信号,当出水PH超过9时,DCS即向盐酸计量泵发出开启指令,中和出水达到符合排放标准。 混凝剂和助凝剂加药系统的加药量采用流量控制,操作方式采用DCS远方操作或就地启停。同时设在出水箱中的污泥浓度计对出水箱中的SS进行在线检测,并将检测结果向DCS发送4—20mA模拟信号,当出水的SS超标时,DCS发出报警信号,提示调整聚合硫酸铁和聚丙烯酰胺的加药量改善絮 凝效果。

脱硫废水处理方法

脱硫废水处理方法 湿式烟气脱硫装置可净化含有众多杂质的烟气,各种金属及非金属污染物在脱硫吸收塔 中发生反应被去除,生成可溶性物质和固体物质,而未充分处理的烟气脱硫废水直接排放会 对环境造成极大威胁。石灰石-石膏湿法烟气脱硫工艺主要处理热力发电厂化石燃料燃烧产生 的S02,山于湿法烟气脱硫工艺优越的性能,其在烟气处理领域得到广泛应用,成为当今世 界燃煤发电厂烟气脱硫的主导工艺。据美国环境署报道,美国已有108座燃煤电厂安装了湿 式烟气脱硫装置,预测到2025年安装湿式烟气脱硫装置的燃煤电厂将占燃煤电厂总数的69%。 石灰石-石膏湿法烟气脱硫废水成分极其复杂,主要为重金属、酸根离子、悬浮物等。口前, 各燃煤电厂的脱硫废水成分存在差异,出现这一现象主要是煤源、烟气脱硫吸收塔塔形、锅 炉补给水水质、添加剂类型、操作条件不同导致的。传统的脱硫废水处理工艺采用中和、反 应、絮凝及沉淀的处理方式,但对脱硫废水中高浓度的硫酸根及氯离子等未达到良好的去除 效果。 近年来脱硫废水排放问题受到全世界的广泛关注,我国2006年颁布的《火电厂石灰石- 石膏湿法脱硫废水水质控制指标》(DL/T 997-2006)中虽未对硫酸根和氯离子等排放标准做 岀要求,但采用传统丄艺处理的脱硫废水已不允许直接排放,所以亟待研究烟气脱硫废水的 处理新工艺。U 前我国脱硫废水的处理工艺主要有常规物理化学沉淀法、化学沉淀-微滤膜法、 多级过滤+反渗透法。山于脱硫废水水质较差,反渗透及预处理工艺费用高,尚未得到推广。 杨培秀等采用零溢流水湿排渣系统处理脱硫废水,但是受到排渣方式的限制。此外,脱硫废 水的各种零排放技术作为有潜力的解决方案被提岀,但鉴于零排放技术的高能源消耗强度和 许多尚未解决的技术问题,不能保证其成功地长期使用。对于其他技术如离子交换和人工湿 地也进行了大量探讨,但成功的前景似乎不大。综上所述,该行业仍然在寻找一个可靠的、 低成本和高性能的烟气脱硫废水处理技术。 2脱硫废水的危害 脱硫废水成分复杂,对设备管道和水体结构都有一定的影响,其危害主要体现在以下方 面: (1) 脱硫废水中的高浓度悬浮物严重影响水的浊度,并且在设备及管道中易产生结垢现象, 影响脱硫装置的运行。 (2) 脱硫废水呈弱酸性,重金属污染物在其中都有较好的溶解性,虽然它们的含量较少, 但直接排放对水生生物具有一定毒害作用,并通过食物链传递到较高营养阶层的生物。 (3) 脱硫废水中氯离子浓度很高,会引起设备及管道的孔腐蚀、缝隙腐蚀、应力腐蚀,当 浓度达到一定程度后会严重影响吸收塔的运行和使用寿命,还会抑制吸收塔内物理和化学反 应过程,影响S02吸收,降低脱硫效率;山于氯离子的存在会抑制吸收剂的溶解,所以脱硫吸 收剂的消耗量随氯化物浓度的增大而增大,同时石膏浆液中剩余的吸收剂增大,使吸收剂的 脱硫效率降低,还会造成后续石膏脱水困难,导致成品石膏中含水量增大,影响石膏品质。 ? ―?沉浸?n *污泥外运

脱硫废水工艺介绍

脱硫废水工艺简介 1. 脱硫废水的来源及水质概况 脱硫废水来自脱硫综合楼石膏脱水系统废水旋流器的溢流,脱硫废水的水质 与脱硫工艺、烟气成分、灰及吸附剂等多种因素有关。 脱硫废水的主要超标项目为悬浮物、PH值、汞、铜、铅、镍、锌、砷、氟、钙、镁、铝、铁以及氯根、硫酸根、亚硫酸根、碳酸根等。 2. 脱硫废水处理工艺流程 脱硫废水连续排至废水处理装置进行处理。脱硫废水处理系统包括废水处理、加药、污泥处理等3个分系统。现就3个系统分述如下: 2.1废水处理系统 脱硫废水存入废水缓冲池后由废水提升泵送入中和、沉降、絮凝箱处理,后 经澄清池溢流至出水箱、在出水箱内经pH调整后达标排放。 1)工艺流程: 石灰乳有机硫絮凝剂助凝剂盐酸脱硫废水中和箱沉降箱絮凝箱澄清器出水箱排放 剩余污泥 2)工艺说明: 在中和箱中,废水的pH值通过加入石灰乳调升至9.0—9.5范围以便沉淀大部分重金

属;废水中的石膏沉淀至饱和浓度。 在沉降箱中,通过加入有机硫进一步沉淀不能以氢氧化物形式沉淀出来的重金属。 在絮凝箱中,加入絮凝剂(FeCIS04)和聚合电解质(助凝剂)以便使沉淀颗粒长大更易沉降。 在澄清器中,悬浮物从中分离出来后,沉积在澄清器底部,一部分通过压滤机处理后外运;一部分污泥作为接触污泥通过污泥循环泵返回到中和箱,以提供沉淀所需的晶核,获得更好地沉降。 澄清器出水自流进入出水箱,经过调整pH达到6.0?9.0范围,通过出水泵排放。 2.2加药系统 加药系统包括石灰乳加药系统、有机硫加药系统、絮凝剂加药系统、助凝剂加药系统及盐酸加药系统2.2.1石灰乳加药系统: (1)工艺流程: Ca(OH)2粉末|石灰粉仓 石灰乳制备箱石灰乳循环泵石灰乳计量箱石灰乳加药泵中和箱 (2)工艺说明: 装置由1个消石灰粉仓、1个振动料斗(或其他防堵下料设备)、1台消石灰粉精称给料机或星型给料机、1台石灰浆制备箱、2台石灰浆循环泵、1台石灰乳计量箱、2台石灰乳计量泵、辅助设备、管路、阀门、管件、仪表等组成。 1) Ca(OH)2加药装置为一完整的Ca(OH)2溶解和投加单元系统。 2)消石灰粉仓至少可储存7天用量的消石灰粉。消石灰粉由泵车运来,自动卸入石灰粉仓。仓顶须设除尘器,防止上下料过程中出现粉尘污染。仓顶应设检修人孔和安全卸压阀,筒仓应配在线料位计。 3)消石灰粉仓底部锥斗设振打装置(亦可选用其他防堵防结设备)防止石灰粉桥结,促使石灰均匀下料。下料段须设插板阀和给料阀,故障检修时能够有效防止粉仓内石灰料下落。 4)设石灰粉精称给料机或星型给料机一台,能够精确下料并计量。 5)石灰粉由给料机送入石灰浆制备箱,加水配制成20?25%的浆液。 6)配制好的石灰浆由石灰浆循环泵送入石灰乳计量箱,稀释成5?10%的石灰乳液,再由石灰乳计量泵送入中和箱。

脱硫废水处理系统设计分析

脱硫废水处理系统设计分析 脱硫废水具有高悬浮物含量、高盐含量、强腐蚀性的特点,含有的杂 质主要有过饱和的亚硫酸盐、硫酸盐以及重金属,其中很多是GB8978 -1996中要求控制的一类污染物。作为电厂的一种处理难度大的废水,脱硫废水处理系统在运行过程中容易出现多种问题,导致目前国内很 多电厂的脱硫废水设备处于停运状态或出水不能达到GB8978-1996排 放标准。本文对脱硫废水处理系统设计缺陷和运行问题进行分析,提 出了相对应的改进和应对措施,使电厂脱硫废水处理系统出水能够满 足达标或回用要求。 1常见脱硫废水处理工艺 常见FGD脱硫废水处理系统为“三联箱处理+澄清”工艺,三联箱包 括中和箱、反应箱和絮凝箱,具体工艺流程如图1所示。FGD旋流站来脱硫废水在废水缓冲池内进行曝气混合均匀,然后通过废水泵送至三 联箱。在三联箱的中和箱中投加石灰乳或氢氧化钠,快速搅拌使原来 酸性的废水呈碱性(pH控制在9.0~9.5),此过程中大多数重金属形 成微溶的氢氧化物从废水中沉淀出来。中和箱内出水自流至反应箱, 在反应箱投加有机硫和凝聚剂,将不能以氢氧化物形式沉淀的残余重 金属以硫化物沉淀的形式去除。反应箱出水进入絮凝箱,在絮凝箱内 投加助凝剂,在低转速搅拌下进行絮凝反应,促进絮体进一步长大。 絮凝箱出水自流进入澄清器。废水絮体在澄清器内进一步长大,并通 过上部斜板进行沉淀分离,上部清水经加酸调节pH至6~9后自流进 入清水池。澄清器污泥送至压滤机进行压滤。 2存有问题分析 2.1设计方面1)废水旋流器问题。脱硫系统废水旋流器设计容量和 旋流子喷嘴尺寸选型不当,废水旋流效果差,脱硫废水来水含固量较高,造成系统设备之间连接管道沉积堵塞的问题,如中和箱、沉降箱、絮凝箱之间的连接管道经常因为悬浮物沉积而造成管道堵塞,且清理 困难。2)脱硫废水处理系统未设计废水缓冲池。有些脱硫废水处理系

脱硫废水处理方案

废水处理系统方案

1.3装置组成及工艺描述 1.3.1 概述 脱硫装置浆液内的水在不断循环的过程中,会富集重金属元素和Cl-等,一方面加速脱硫设备的腐蚀,另一方面影响石膏的品质,因此,脱硫装置要排放一定量的废水,进入废水处理系统,废水偏弱酸性,含有大量的盐类和重金属离子等。本处理工艺主要针对的物质是重金属离子、酸根、卤族离子和SS。采用中和、络合和絮凝沉淀的化学工艺流程,处理后的水排放至电厂的冲灰水池。污泥脱水系统的污泥运至干灰场贮存。 脱硫废水处理主要由以下子系统组成: 1)4套加药系统 2)1套废水系统 3)1套污泥处理系统 1.3.2加药系统 加药系统主要设备由氢氧化钠、有机硫、混凝剂、助凝剂4套计量箱及其后分设的4组计量泵。 NaOH为30%溶液,不再稀释;由槽车加入到NaOH储罐中。碱计量泵加药流量由设在三联箱内的PH测试仪信号经变频柜柜内逻辑控制,通过变频在线调整NaOH 计量泵的加药流量,稳定废水的中和处理于设定的PH值。 有机硫为商品级15%溶液由人工直接计量加入计量箱,每一立方溶液加药40公斤;它的计量泵加药量由进水管路上的流量计的测试信号经变频柜柜内逻辑控制,通过变频在线调整加药流量,维持优化的络合工艺参数。 混凝剂液体聚合铁为按液水比1:1~2由人工直接计量加入计量箱,并兑水稀释;(若为固体原料,根据30%配药比例直接在计量箱内进行配制,若为聚合铝替代,配制成10%溶液)。 助凝剂-阴离子型聚丙烯酰胺(PAM)则由人工加入其计量箱配制成0.3%溶液,然后由助凝剂计量泵泵入三联箱。助凝剂计量泵的加药量由进水管路上的流量计的测试信号经变频柜柜内逻辑控制,通过变频在线调整加药流量,维持优化的混凝工艺参数。

(完整版)氨法脱硫废水处理工艺流程.(详细方案)

目录 氨法脱硫废水处理工艺流程 (2) 1、废水处理系统 (2) 1.1脱硫废水处理过程 (2) 1.2脱硫废水处理步骤 (2) 2、化学加药及压滤系统 (4) 2.1助凝剂加药系统 (4) 2.2污泥压缩系统 (7) 3、脱硫废水处理系统概述 (8) 3.1脱硫废水处理工艺 (8) 3.2化学加药系统工艺 (11) 4、污泥流程 (14) 5、运行操作及监控 (14) 5.1.1供料准备 (14) 5.1.2仪表及控制器件准备 (15) 5.1.3污泥料位测量 (15) 5.1.4浊度测量 (16) 5.2.运行及监控 (16) 6、维护及保养 (17) 6.1.运行故障及排除 (17) 6.2.机械故障处理 (17)

6.3.设备维护 (20) 6.4.设备停用 (21) 氨法脱硫废水处理工艺流程 脱硫废水处理包括以下三个分系统:废水处理系统,化学加药系统,污泥处理系统及排污系统。 1、废水处理系统 1.1脱硫废水处理过程 脱硫装置产生的废水经由废水输送泵送至废水处理系统,采用化学加药和接触泥浆连续处理废水,沉淀出来的固形物在澄清浓缩器中分离浓缩,清水排入厂区指定排放点,经澄清/浓缩器浓缩排出的泥浆送至板框压滤机脱水后外运。 1.2脱硫废水处理步骤 1)用氢氧化钙/石灰浆[Ca(OH)2]进行碱化处理,通过设定最优的PH值范围,部分重金属以氢氧化物的形式沉淀出来,并中和废水中的酸性物质。

2)通过加入有机硫,使某些重金属,如镉和汞沉淀出来。 3)通过添加絮凝剂及助凝剂,使固体沉淀物以更易沉降的大粒子絮凝物形式絮凝出来。4)在澄清浓缩器中将固形物从废水中分离。 5)将氢氧化物泥浆输送至压滤机进行脱水。 在沉淀系统中,加入絮凝剂以便使沉淀颗粒长大更易沉降,悬浮物从澄清浓缩器中分离出来后,一部分泥浆通过污泥循环泵返回到中和箱,以利于更好地沉降,另一部分则通过污泥输送泵输送至压滤机进行脱水。处理后的清水送至厂区指定的排放点。 1.3脱硫废水处理流程 处理不合格水质回流至中和箱

脱硫废水零排放技术及投资分析

烟气脱硫过程中产生的废水含有重金属,含盐量较高,这类水盐分较高。厂区其他系统无法接纳,排放后对周边环境产生不利影响。根据常规2×350MW超临界燃煤供热发电机组估算,2台机脱硫废水的量约在10t/h左右,但是本工程打算采用循环水排污水作为锅炉补给水系统的补水,来水含盐量进一步浓缩,采用反渗透浓水作为脱硫用水后,脱硫废水排量将会进一步增加(需要脱硫厂家根据煤质、来水水质进行计算),可能会在20t/h~30t/h。 采用预处理软化+纳滤分盐+膜浓缩+蒸发结晶的处理方式处理脱硫废水,达到脱硫废水零排放。其基本方案如下: 一、预处理软化单元 根据石灰石-石膏湿法脱硫工艺产生的脱硫废水具有高悬浮物、高含盐、易结垢等水质特性,拟采用“两级混凝沉淀”工艺,去除脱硫废水中的悬浮物、重金属、硬度等杂质离子,确保后续膜浓缩单元的连续、稳定运行。

工艺说明: (1)通过两级混凝沉淀,通过投加絮凝剂、有机硫、熟石灰等药剂,去除废水中的悬浮物、重金属、结垢因子等杂质离子,确保进入后续膜浓缩单元水质; (2)两级混凝沉淀产生的无机污泥经离心脱水脱水后,含水率约为80%的污泥外运处置。 二、纳滤分盐 本工程脱硫废水处理系统中硫酸根可通过形成硫酸钙(石膏)回收去除,不需要得到硫酸钠的结晶盐,因此建议采用纳滤法进行分盐。 通过纳滤膜的截留作用,水中的钙镁离子、有机物等基本得到去除,一方面彻底解决了后续RO膜、蒸发器等的污堵,另一方面也大大提高了结晶盐的品质。 纳滤装置进水依次经过纳滤保安过滤器、纳滤高压泵及纳滤装置,并在纳滤进水管分别投加还原剂、碱、阻垢剂等,防止纳

滤膜的结垢和污堵。为提高纳滤膜的回收率,纳滤装置设计为一级三段,每段均设有段间加压泵。纳滤产水进入纳滤水箱,纳滤浓水则回流至调节池再次进行处理。 三、膜浓缩单元 1. 膜浓缩技术选择 为了减少脱硫废水进蒸发结晶单元的水量,节省整套废水处理系统运行成本,可先对脱硫废水进行膜浓缩,浓缩液再进入蒸发结晶单元资源化处理;目前,根据煤化工废水处理行业经验,针对脱硫废水膜浓缩拟采用卷式反渗透(RO)。 2.膜浓缩(RO)单元介绍 膜浓缩单元流程简图如下: 工艺描述: (1)脱硫废水经两级混凝沉淀预处理后,由废水收集调节池均质后,通过水泵提升,进入超滤膜组,去除废水中细小SS 及胶体,使反渗透膜浓缩单元长期、稳定运行,超滤产水进入超滤产水箱,超滤系统利用超滤产水反洗,反洗水回至调节至去除SS后循环处理; (2)超滤产水箱废水通过水泵提升至离子交换树脂单元,通过离子交换树脂单元进一步降低废水中钙、镁离子后,再进入

脱硫废水处理系统设计

10废水处理系统 10.1工艺流程 10.1.1工艺流程概述 废水旋流站的溢流直接进入废水处理系统的中和、沉降、絮凝三联箱,然后进入澄清器和出水箱,其间的出水梯次布置,形成重力流。澄清器污泥排放量约178m3/d、污泥含水量为90% 。 澄清器污泥大部分排往板框压滤机,压滤机的底部排泥含水率不大于75%,排泥经电动泥斗缓冲装入运泥车。小部分回流污泥送回中和箱,设螺杆泵进行输送。回流污泥是为三联箱的结晶反应提供晶种,回流量人工调节。压滤机排出的滤液及清洗滤布的污水自流至滤液箱,通过泵将该水送至三联箱进行处理。 系统设置生石灰粉仓,生石灰粉通过计量装置进入石灰乳制备箱,再通过螺杆输送泵送入石灰乳计量箱。石灰乳、有机硫、混凝剂、助凝剂、盐酸等5个计量箱后分设5组计量泵,完成向三联箱及出水箱自动在线调节计量加药。计量泵为可调节机械隔膜泵,每组计量泵均为2台,一用一备。 10.1.2废水处理系统工艺流程如下所示: 10.2 控制方式 由废水旋流站送来的废水进入工艺流程始点处,即由设在进水管路上的电磁流量计发送系统开启信号,整个废水处理系统即进入工作状态。各药剂投加泵启动,中和、沉降、絮凝、出水各工艺搅拌器和各加药箱搅拌器启动,设在中和箱和出水箱上的PH监测仪,设在各设备上的液位计和泥位计开始传送信号。当废水停送,进水电磁流量信号降至2m3/h以下,整个废水处理系统进入停机待用状态

设在中和箱中的PH计对中和箱中废水进行酸碱度检测,并向系统DCS发送4—20mA pH 模拟信号,经DCS处理向石灰乳加药泵的变频器发送指令调整加药泵转速,维持中和的设定pH值。 设在澄清器中的污泥浓度计对澄清器中的污泥界面进行检测,并将检测结果向系统DCS 发送4—20mA模拟信号,经DCS处理向板框压滤机发送启动指令,确认板框压滤机已处于备用状态,污泥处理即行开启。 设在出水箱中的PH计对出水箱中水进行酸碱度检测,并将检测结果向系统DCS发送4—20mA模拟信号,当出水PH超过9时,DCS即向盐酸计量泵发出开启指令,中和出水达到符合排放标准。 混凝剂和助凝剂加药系统的加药量采用流量控制,操作方式采用DCS远方操作或就地启停。同时设在出水箱中的污泥浓度计对出水箱中的SS进行在线检测,并将检测结果向DCS发送4—20mA模拟信号,当出水的SS超标时,DCS发出报警信号,提示调整聚合硫酸铁和聚丙烯酰胺的加药量改善絮凝效果。 各搅拌器均由MCC柜内的交流接触器控制启停,控制方式有自动和手动两种控制方式。手动方式既可在MCC柜上设通过启停按钮操作又可在人机界面操作。 废水处理系统中所有信号指标以硬接线方式送至脱硫岛的DCS,并可实现废水处理系统 的自动控制,同时废水处理系统也可就地手动操作。DCS系统不在供方供货范围。 10.3 废水各项指标 本脱硫工程废水处理系统设计能力为19m3/h。 10.3.1处理前的废水指标 10.3.2处理后的废水指标

石油化工装置事故处置的基本对策(正式版)

文件编号:TP-AR-L9000 In Terms Of Organization Management, It Is Necessary To Form A Certain Guiding And Planning Executable Plan, So As To Help Decision-Makers To Carry Out Better Production And Management From Multiple Perspectives. (示范文本) 编订:_______________ 审核:_______________ 单位:_______________ 石油化工装置事故处置 的基本对策(正式版)

石油化工装置事故处置的基本对策 (正式版) 使用注意:该安全管理资料可用在组织/机构/单位管理上,形成一定的具有指导性,规划性的可执行计划,从而实现多角度地帮助决策人员进行更好的生产与管理。材料内容可根据实际情况作相应修改,请在使用时认真阅读。 石油化工装置的复杂性、极度危险性和事故的突 发性、多变性,对事故处置的有效性、安全性提出了 严峻的课题。这里就事故处置的基本对策作一探讨。 (一)冷却防爆 冷却防爆是消防队到时的首到任务。如果到场 时,装置的全部或局部及地面均在燃烧,应先设法用 泡沫扑灭地面火灾,并在地面及临近沟槽表面喷射泡 沫,抑制流淌火灾实施泡沫覆盖保护,在此基础上对 事故装置及邻近设备实施从上至下的全方位冷却。冷 却中要优先选择重要装置,并分别利用装置邻近高压

固定炮、半固定消火栓系统,快速出水,冷却水枪要来回摆动,不能停留在同一部位,防止冷却不均匀使装置变形,装置爆炸后防爆膜爆破,或装置开裂,冷却时要防止冷却直接进入反应器而扩大事态(许多反应催化剂忌水)。为防止物料泄漏燃爆对消防车辆和作战阵地构成的威胁,消防车辆停靠离装置距离应在50米以上,车辆停靠位置、指挥阵地、分水阵地应设置在上风或侧上风。 (二)关阀断料 关阀断料是减轻或消除石油化工装置事故危害的有效手段。实施关阀断料战术(工艺)措施时,要摸清阀门的位置和形状,物料的数量和反应时流速、阀门关阀时的技术要求(如速度、方向等),并在工厂技术人员参与下进行。如自动调节阀、紧急切断阀门还在工作,可通过自动调节阀的调节和紧急切断阀切

催化汽油加氢脱硫技术简介

催化汽油加氢脱硫技术简介 摘要:本文介绍了国内外催化汽油加氢脱硫技术的工艺以及工业进展情况,并针对国内催化汽油的特点,对我国的加氢脱硫技术提出了建议。 关键词:催化汽油加氢脱硫工艺特点 Technology progress of FCC gasoline hydrodesulphurization Abstract: The main purpose of this article is to introduce different technological features of FCC gasoline hydrodesulphurization technology both at home and abroad, and put forward proposal for domestic development. Key words: FCC gasoline; hydrodesulfurization; technological features 汽油低硫化是一种发展趋势,限制硫含量是生产清洁燃料和控制汽油排放污染最有效的方法之一。目前我国成品汽油的主要调和组分有催化裂化汽油、催化重整汽油、烷基化汽油、异构化汽油等,其中的催化裂化汽油占我国成品汽油的80%以上,因此,如何有效地控制催化汽油的硫含量是控制成品汽油硫含量的关键。与国外汽油相比,我国的催化裂化汽油基本呈现两高两低的特点(高硫高烯烃,低芳烃低辛烷值),由于烯烃是辛烷值比较高的组分,因此如何在脱硫的同时尽量保持烯烃不被饱和,就成了催化汽油加氢脱硫的研究重点。以下便是对国内外的几家选择性加氢脱硫技术的简要介绍。 1.Prime G+技术: AXENS的Prime-G+是在Prime-G的基础上发展起来的,采用固定床双催化剂的加氢脱硫技术。该技术能够在保证脱硫的同时尽量减少烯烃的饱和。其工艺流程包括:全馏分选择性加氢(SHU)及分馏,重汽油选择性加氢脱硫(HDS)。在全馏分加氢过程中,发生以下反应: ● 二烯烃的加氢 ●反式烯烃异构为顺式烯烃 ●轻硫醇及轻硫化物与烯烃发生硫醚化反应转化成较重的硫化物 在SHU过程中,硫醇、轻硫化物和二烯烃含量降低,但总硫量并不降低,仅把轻硫化物转化成重硫化物,无H2S生成,烯烃不被饱和,所以产品辛烷值不损失,SHU后经分馏可以生产低硫和无硫醇的轻石脑油,硫醚化生成的重质硫化物在分馏的时候留在重质汽油中[1]。 重质汽油去后续的选择性加氢(HDS)单元,该单元是在保证高的脱硫水平下控制烯烃饱和率尽量低。该工艺采用了两种催化剂,通过第一种催化剂完成了大部分的脱硫反应,由于催化剂的脱硫率高、选择性好,烯烃饱和量少;第二种催化剂只是降低硫醇含量而没有烯烃饱和,通过两种催化剂的作用,在脱硫的同时保证了辛烷值损失在可允许范围内。其示意流程图如下: Prime G+的特点是:催化裂化全馏分汽油,脱硫率可以达到98%,能够满足硫含量低于10ppm 的超低硫规格。烯烃饱和少,汽油辛烷值损失小,液收率高,同步脱臭,不需要另外进行脱臭操作。该工艺目前在世界范围内应用最广。2008年奥运会之前,中石油大港石化分公司和锦西石化分公司就分别采用了一套Prime G+技术。大港石化分公司加氢脱硫后的汽油硫含量小于

脱硫废水处理方案

脱硫废水处理系统 设 计 方 案 2011年12月7日

目录 1概述 (3) 2系统概况 (3) 3系统连接与运行 (4) 4加药系统 (5) 5废水排放系统 (6) 6设备及构筑物布置 (6) 7主要设备及构筑物清册 (7) 8废水处理流程图 (9)

1 概述 1.1 脱硫废水质资料 脱硫废水主要是锅炉烟气湿法脱硫(石灰石/石膏法)过程中为了维持脱硫装置浆液循环系统物质的平衡,防止烟气中可溶部分即氯浓度超过规定值和保证石膏质量,从吸收塔系统中排放的废水。一般来自于石膏脱水和清洗系统,或是水力旋流器的溢流水及皮带过滤机的滤液。呈弱酸性;悬浮物高;含盐量高;含Hg、Pb等重金属离子。脱硫废水的超标项目主要为悬浮物,pH值,重金属离子,氟化物等。一般脱硫废水水质表如下 1.2 处理后达标排放水质 废水处理后水质排放达到国家污水综合排放标准(GB8978-1996)一级标准要求。 2 系统概况 2.1 脱硫废水处理工艺 FGD来脱硫废水→混合反应器(2台)→脱硫废水池(1座)→脱硫废水泵(2台)→pH调整槽→沉降槽→絮凝槽→澄清器(1台)→清水池(1座)→清水泵(2台)→

达标排放 2.2 污泥处理工艺流程如下: 澄清器(1台)排泥→污泥输送泵(2台)→板框压滤机(1台)→泥饼外运 2.3系统出力本处理系统设计出力5-10t/h。本系统按10t/h设计。 3 系统连接与运行 3.1 脱硫废水池 从FGD工艺楼来的废水,通过投加次氯酸钠,在混合反应器中反应以降低废水的COD (也可在澄清池出水中投加次氯酸钠,而后在混合反应器中反应,具体由调试确定),混合反应器出水进入脱硫废水池贮存(若采用澄清池出水氧化方式运行,则混合反应器出水进入清水池)。废水池容积为150m3,通过废水池的缓冲作用,使处理系统能以稳定的流量运行。 在废水池中通入空气进行曝气,起到搅拌混合作用和降低废水的COD。曝气空气由曝气风机提供,曝气风机数量2台,1用1备。风机进出口设有消音器,以降低风机的噪音。2台曝气风机的运行、停运均由脱硫岛DCS自动控制,也可就地启停。 废水池顶设2台脱硫废水泵,1用1备,出力均为12~16m3/h,与废水池液位信号连锁。2台废水泵的运行、停运均由脱硫岛DCS自动控制,也可就地启停。 3.2 中和、沉降及絮凝 废水箱中的脱硫废水通过废水泵提升至三联箱(pH调整槽、沉降槽、絮凝槽合称为三联箱)。在三联箱中,通过加入石灰乳、凝聚剂、有机硫,完成pH调整、饱和硫酸钙结晶析出、混凝反应等,同时从澄清器底部回流部分泥渣至pH调整槽,加快反应沉淀速度。 在三联箱出水中加入助凝剂,通过管道混合,使絮凝物变得更大、更容易沉淀,使其能在澄清器中沉淀,分离出来。 3.3 澄清器 废水从三联箱自流进入澄清器,废水中的絮凝物通过重力作用沉积在澄清器底部,浓缩成泥渣,由刮泥装置清除,清水则上升至顶部通过环形三角溢流堰自流至清水池。 澄清器旁设2台污泥循环泵,1用1备,出力均为3.5m3/h,将浓缩泥渣一部分作为接触泥渣持续返回至pH调整槽,提供沉淀所需要的晶核。

相关主题
文本预览
相关文档 最新文档