当前位置:文档之家› 热力学的第二定律的认识和思考

热力学的第二定律的认识和思考

热力学的第二定律的认识和思考
热力学的第二定律的认识和思考

仲恺农业工程学院

论文题目:热力学的第二定律的认识和思考

论文作者:钟家业

作者学号:

所在院系:机电工程学院

专业班级:

指导老师:

摘要热力学第二定律是热力学的基本定律之一,是指热永远都只能由热处转到冷处(在自然状态下)。它是关于在有限空间和时间内,一切和热运动有关的物理、化学过程具有不可逆性的经验总结。广义生命演化意义上的熵,体现了生命系统衰落的过程。

关键词热力学第二定律,第二类永动机,熵,时间,生活

1. 热力学第二定律及发展

1.1、热力学第二定律建立的历史过程

19世纪初,人们对蒸汽机的理论研究还是非常缺乏的。热力学第二定律就是在研究如何提高热机效率问题的推动下,逐步被发现的,并用于解决与热现象有关的过程进行方向的问题。1824年,法国陆军工程师卡诺在他发表的论文“论火的动力”中提出了著名的“卡诺定理”,找到了提高热机效率的根本途径。从1840年到1847年间,在迈尔、焦耳、亥姆霍兹等人的努力下,热力学第一定律以及更普遍的能量守恒定律建立起来了。1848年,开尔文爵士(威廉·汤姆生)根据卡诺定理,建立了热力学温标(绝对温标)。这些为热力学第二定律的建立准备了条件。 1850年,克劳修斯从“热动说”出发重新审查了卡诺的工作,考虑到热传导总是自发地将热量从高温物体传给低温物体这一事实,得出了热力学第二定律的初次表述。后来历经多次简练和修改,逐渐演变为现行物理教科书中公认的“克劳修斯表述”。与此同时,开尔文也独立地从卡诺的工作中得出了热力学第二定律的另一种表述,后来演变为更精炼的现行物理教科书中公认的“开尔文表述”。上述对热力学第二定律的两种表述是等价的,由一种表述的正确性完全可以推导出另一种表述的正确性。他们都是指明了自然界宏观过程的方向性,或不可逆性。克劳修斯的说法是从热传递方向上说的,即热量只能自发地从高温物体传向低温物体,而不可能从低温物体传向高温物体而不引起其他变化。利用致冷机就可以把热量从低温物体传向高温物体,但是外界必须做功。开尔文的说法则是从热功转化方面去说的。功完全转化为热,即机械能完全转化为内能可以的,在水平地面上运动的木块由于摩擦生热而最终停不来就是一个例子。但反过来,从单一热源吸取热量完全转化成有用功而不引起其他影响则是不可能的。[1] 1.2、热力学第二定律的表述

1.2.1、热力学第二定律的开尔文表述

不可能从单一热源吸取热量, 使之完全变为有用的功而不产生其他影响。这是按照机械能与内能转化过程的方向性来表述的。表述中的“单一热源”是指温度均匀并且恒定不变的热源。若热源不是单一热源,则工作物质就可以从热源中温度较高的一部分吸热而向热源中温度较低的另一部分放热, 这实际上相当于两个热源。“其他影响”是指除了单一热源所吸收的热用来作功以外的任何其他变化. 当有其他影响产生时 ,把由单一热源吸来的热量全部用来对外作功是可能的。开尔文表述还可表达为:第二种永动机是不可能造成的。所谓第二种永动机就是一种违反开尔文表述的机器,它能从单一热源吸收热量,使之完全变为有用的功而不产生其他影响, 但这种机器不违反能量转化与守恒定律。如果这种热机能够制成,那么就可以利用空气或海洋作为热源,从它们那里不断吸取热量而做功。果真如此,令人头痛的能源问题也就解决了,因为海洋的内能几乎是取之不尽的。

1.2.2 热力学第二定律的克劳修斯表述

不可能把热量从低温物体传到高温物体而不引起其他变化。这是按照热传导的方

向性表述的。可以证明, 热力学第二定律的开尔文表述和克劳修斯表述是等效的。热力学第二定律是总结概括了大量事实而提出的,由热力学第二定律作出的推论都与实验结果符合,从而证明了这一定律的正确性。经验告诉我们, 功可以完全转变为热,而热力学第二定律指出,要把热完全变为功而不产生其他影响则是不可能的。但这一结论由热力学第一定律是得不到的,因为无论功变热或热变功都不违反热力学第一定律。经验还告诉我们 ,当两个温度不同的物体互相接触时,热量由高温物体向低温物体传递。但是热力学第二定律的克劳修斯表述指出,热量不可能自发地由低温向高温传递。而这一结论也是不能从热力学第一定律得到的,因为这个过程也不违反热力学第一定律。由此看出 ,热力学第二定律是独立于热力学第一定律的新规律 ,是一个能够反映过程进行方向的规律。热力学第二定律说明物体的内能不能完全地(在不产生其他影响下)转变为功,相反,功却可以完全地转变为物体的内能。因此,功转化为内能的过程带有单向性,是不可逆的。在自然界中存在着大量的不可逆现象,例如,热量从高温物体自发地传向低温物体 ,气体自发地向真空膨胀, 两种气体自发混合( 互扩散) 等 . 显然热力学第二定律隐含地指出了其他不可逆过程的单向性。所以 ,热力学第二定律是所有单向变化过程的一般规律。

下面我们从反面来说明这两种说法的确是等价的:

①如果我们否定克劳修斯的说法,认为热量可以自发地从低温物体B传向高温物体A,见图4-1(a)的示意图,设这个热量为Q,我们再设想有一个卡诺热机,从高温热源A吸取热量Q,一部分转化为有用功W,另一部分Q′传给了低温热源B,这样的整个过程中,高温热源A没有发生变化,相当于只从低温热源B吸收了(Q-Q′)的热量而全部转化为有用功,而不产生其他影响,从而开尔文的说法也就被否定了。

②反过来,如果我们否定了开尔文的说法,认为可以从单一热源A吸取热量,全部转化为有用功而不产生其他影响,见图4-1(b)的示意图,设这部分热量为Q1,做的有用功为W1(Q1-W1),我们再设想这部分有用功是带动一个理想的致冷机工作,它从另一个低温热源B处吸收热量Q2,向热源A放出热量Q1′,则满足Q1′=Q2+W1,而Q1=W1,所以Q1′=Q2+Q1。这样,总的效果相当于从低温热源B处吸收了热量Q。,向高温热源A放出的热量Q1′,在补偿了Q1以后,正好也是Q2,这就等于热量Q。自发地从低温热源B传向了高温热源地并没有发生其他变化,这就否定了克劳修斯的说法。

1.2.3 热力学第二定律的普遍表述

1865年,克劳修斯引进“熵”的概念来反映这种运动变化的过程和方向, 从而可以从数学上严格地表述热力学第二定律。“熵”一词来源于希腊语 entropia, 原意是转换 ,中文意思是热量被绝对温度除所得的商。克劳修斯指出,在一个孤立系统(或叫封闭系统)内, 熵的变化总是大于或等于零, 也就是说,孤立系统的运动变化总是要沿着使熵增大的方向进行, 最后的平衡状态则对应于熵的最大可能值。于是热力学第二定律的最普遍表述为:可以找到这样一个态函数——熵 ,它在可逆过程中的变化等于系统所吸收的热量与热源的绝对温度之比;在不可逆过程中, 这个比值小于熵的变化。即对于无穷小的过程 ,有

(1)

结合热力学第一定律得

( 2)

在( 2) 式中 , 等号对应于可逆过程, 不等号对应于不可逆过程。这个式子是热力学理论的基本方程。假设过程是绝热的, 即 dQ=0,则由( 1) 式得到

( 3)

由此可见, 在绝热过程中, 系统的熵永不减少。对于可逆绝热过程, 系统的熵不变; 对于不可逆绝热过程,系统的熵总是增加,这个结论叫做熵增加原理。根据熵增加原理 ,任何自发的不可逆过程 ,只能向熵增加的方向进行,于是熵函数给予了判断不可逆方向的共同准则. 既然从非平衡态到平衡态的过程中,熵总是增加,那么系统越接近平衡态,其熵值就越大,所以熵的数值就表征系统接近稳定平衡态的程度。1.3、热力学第二定律的适用范围

1.3.1 经典热力学第二定律及其适用范围

热力学第二定律是十九世纪中叶由W·汤坶孙(开尔文爵士)和克劳修斯在研究卡诺的热机理论和热功转换问题时提出来的。他们分别提出了自己的表述,并证明了这两种表述是等价的。后来,普朗克等人还提出了一些表述,同样也进行了等价性证明。热力学第二定律的这种表述的多样性与物理学的有些定律不一样。它是以一个实际过程的不可逆性来表述一个普遍的自然规律。即自然界的一切实际过程自发进行都沿一定的方向(具有单向性)。或者说一切实际过程都具有不可逆性。

两种经典表述都提到的“不产生其它影响”的条件及前面所说的“自发进行”意眯着:所研究的实际过程是在孤立系中进行的,孤立系中这些过程具有单向性。克劳修斯经过十多年的努力,终于找到了热力学第二定律的数学表述,这就是著名的熵增原理:孤立系的熵永不减少。(若Q=0,刚△s≥0 )

由于孤立系的熵只能增加,即系统只能沿退化的方向进行。这与自然界和人类社会的实

际演化过程相矛盾。因而热力学第二定律自然不适用于生命现象和社会现象这样一些不断进化的领域。

克劳修斯等人将热力学第二定律外推到宇宙,得出了“宇宙的熵趋于一个极大值”的命题。这就是著名的“热寂说”,即全宇宙最终将达到热平衡。长期以来,人们一直认为字宙是静态的,在时间上无始无终,似乎早该处于热寂了。而实际情况正好相反。这自然遭到了当时许多著名的科学家和哲学家的批判。其中一个重要的论点

是:热力学第二定律是在有限的宏现系统中得出的规律,不能外推到无限宇宙。因而,长期以来都认为热力学第二定律不适用于宇观系统。这一论点现在还在大多数教科书与文献中出现。

1.3.2 “宇宙膨胀”模型与“热寂”佯谬的消除

“热寂说”以及对它的批判,都是建立在当时人们对宇宙的认识基础上的。对它的批判总使人感到说服力不强。例如有限条件下得到的结论,就同样有外推成功的先例。热力学第一定律的外推,得出的宇宙的能量守恒就被认为是正确的。上世纪二十年代,以美国天文学家哈勃观察到的星系红移现象为基础而建立起来的大爆炸宇宙学使我们认识到,我们所能观察到的宇宙并不是静态的,而是在不断膨胀。在此基础上,七十年代以后,人们又重新对热寂说进行了考察,发现随着宇宙的膨胀,由于粒子与辐射的温度随膨胀的线度的变化规律不同,即使宇宙最初处于温度均匀的热平衡状态,也会随着膨胀而出现温差,从无序向有序变化,而不会热寂。另一方面,如果宇宙是静态的,则对每一个静态体系总有一个最大熵。而对膨胀的宇宙,每一瞬时对可能达到的最大熵也是不断增加的。只要膨胀得足够快,宇宙实际的熵与最大熵的差异就会越来越大,宇宙离热寂也会越来越远。而不管宇宙是否是有限的和孤立的。这样“热寂佯谬”就以这出入意料的方式迎刃而解了。人们这才发现,“热寂说”的问题是出在人类对宇宙的认识上,而不是出在热力学第二定律的外推上。这样一来,热力学第二定律不适用于宇观系统的限制也就自然解除了。1972年霍金证明黑洞过程的不可逆性和贝肯斯坦引入黑洞熵,建立黑洞热力学,正是热力学第二定律在宇观系统成功运用的范例。

1.3.3 微观系统同样存在不可逆性

如前所述,我们知道热力学第二定律是研究不可逆这一自然现象的科学规律。经典热力学研究的是固体、液体、气体等由大量微观独子(原子、分子、离子) 组成的宏观系统的性质及其变化规律的学问。而不可逆性正是这些系统的共性,是大量粒子的集体行为。但是,自然界是分层次的,宏观和微观也是相对的。在每一个层次上的系统都可以认为是由下一个层次的大量子系统所组成。因而不可逆性不应该只存在于某一个特殊的层次中。例如,一个生物群体可以看成是由大量的生物个体组成的系统,一个生物个体也可以看成是由大量的细胞组成的系统,而细胞同样可以看成是由大量的生物分子所组成的系统。在这些不同的层次上,不可逆性都同样存在细胞的不断老化;个体的生老病死;群体的演化发展。现在我们都可以用由热二律发展起来的耗散

结构理论来对它们进行研究。同样,我们知道:原子、分子等微观粒子也存在着内部的层次和结构。而且我们还知道许多原子存在着放射性衰变现象。1968年美国的菲奇和克罗宁在K介子衰变实验中也发现了时间对称性的破坏。大统一理论还预言,像质子这样的基本粒子也可能是不稳定的,只不过其衰变周期非常长而已。这些都表明:不可逆性同样也存在于微观领域。所以,笔者认为,热力学第二定律既然是用来描写不可逆性这一广泛存在的自然现象的统一规律,就应该可以用来研究微观领域的不可逆性。当然,将热力学第二定律向微观领域的拓展还有待人们的进一步努力。

2热力学第二定律的一些应用

2.1 对时间的理解

我们知道, 热力学第二定律是所有单向变化过程的一般规律,而时间的变化是一个单向的不可逆过程,因此可以说:时间的方向,就是熵增加的方向。这样,热力学第二定律就给出了时间箭头。进一步研究表明,能量守恒与时间的均匀性有关,这就是说,热力学第一定律告诉我们,时间是均匀流逝的。这两条定律合在一起告诉我们:时间在向着特定的方向均匀地流逝着。

2.2黑洞热辐射的发现

1972年,英国物理学家霍金( S. Hawking ,1942-) ,提出了黑洞的“面积定理”。证明了黑洞的面积随时间的变化只能增加,不能减少,即δA≥0(式中A为黑洞面积)。这不由使人想起热力学中的“熵”。但黑洞面积与熵是风马牛不相及的两个概念, 把它们联系起来是不是太荒唐了呢?几乎与此同时, 物理学家贝根斯坦和斯马尔 ,各自独立地得出了关于黑洞的一个重要公式。即

式中 M 、J 、Q 分别是黑洞的总质量、总角动量、总电荷; A 、Ψ、V 分别是黑洞的表面积、转动角速度和表面上的静电势,k称为黑洞的表面重力加速度。此式与热

力学第一定律表达式非常相似。式中U、T、S分别是系统的内能、温度和熵 ; Ω、J 、V、Q 等物理意义与前式类似。不难看出, 黑洞面积A确实像熵S ,而黑洞的表面重力加速度k非常像温度T。难道黑洞真的有温度

吗?为此人们进行了热烈的争论。1973年霍金、巴丁、卡特等卓有成就的黑洞专家联名发表了一篇论文 ,声称:可以模仿热力学定律给出黑洞力学的定律,但黑洞的温度不能看作真实温度,因为黑洞没有辐射(不可能有任何物质跑出黑洞!)。但是,几个月后霍金就宣称 ,他已证明 ,黑洞有热辐射 ,黑洞的温度是真实的, 其值为

式中 k

B

是玻尔兹曼常数。对于一个 M =M s(太阳质量)的黑洞, T = 6×10 -8 K ,可以忽略不计;而对于一个质量为 10亿吨的小黑洞, 温度可达 10 12 K。黑洞热辐射的发现 ,是黑洞研究的重大突破,也是时空理论的重大突破。

2. 3 耗散结构理论的形成

比利时著名物理学家普利高津( I . Prigogine , 1917- )认为热力学第二定律是自然界的一条基本规律。他在不违背热力学第二定律的条件下, 找到了开放系统由

无序状态变为新的有序状态的途径。他指出 ,开放系统的熵变为dS =dS

i + dS

e

,其

中 dS

i 为熵产生,由系统内部不可逆过程产生;dS

e

为熵流, 由系统与外界交换能量

或物质所引起。熵产生dS

i 永远不可能为负值 ,而熵流dS

e

则可正可负还可为零。由

于外界有负熵流入,系统的总熵可以保持不变乃至减小, 系统保持稳定或者达到有序,形成“耗散结构”。他认为,宇宙是一个无限发展的开放系统, 自然界不会变得越来越无序, 而会变得越来越丰富多采 ,会形成各种新的有序结构, 宇宙不可能处于“热寂”。从目前天文观测的事实来看, 宇宙确实不是向着热寂发展, 而是离开热平衡态越来越远。

3 热力学第二定律的统计意义[3]

3.1 系统的宏观态与微观态

宏观态---热力学状态

宏观: 微观粒子不可分辨,以分子数目来区分状态

.微观态---大量分子系统的力学运动状态(ri,vi)

微观: 可区分具体的分子.

?宏观态与微观态是系统同一状态的两种描述方法

. ?宏观概率/热力学概率Ω: 每一宏观态所包含的可实现的微观态的数目

例: abcd四个分子在容器的分布

3.2自由膨胀

(N: 总分子数)

N=1:

退回到左边的概率是1/2

N=2: a,b 两个分子

退回到左边的概率是1/4 N=3: a,b,c三个分子

退回到左边的概率是1/8

N=4: a,b,c,d 四个分子

退回到左边的概率是1/16

N ~NA=6.02×1023 ,退回到左边的概率是

概率太小, 不可能实现.

微观状态: 按具体分子来分

宏观状态: 按分子个数来分

微观状态数: 16

宏观状态数: 5

●随着分子数N的增加,分子在A、B两室平均分配的宏观状态所包含的微观状态数

目越来越多

●当N ~N A=6.02×1023时,分子在AB两室平均分配的宏观状态所包含的

微观状态数目/总的微观状态数目~100% [2]

3.3 热力学第二定律的统计表述

自由膨胀的方向: 概率小的宏观状态→概率大的宏观状态

包含微观状态数目少的宏观状态→包含微观状态数目多的宏观状态热力学第二定律的统计意义: 一个不受外界影响的封闭系统, 其内部发生的过程总是由概率小的宏观状态向概率大的宏观状态进行, 由包含微观状态数目少的宏观状态向包含微观状态数目多的宏观状态进行

. 热功转换:

功→热

分子有规则定向运动→分子无规则运动

适用范围

:

(1) 只适用于包含有大量分子的热力学系统, 对少量分子组成的系统是不适用的.

(2) 只适用于有限空间的封闭系统.

3.4熵与宏观概率Ω------ 玻耳兹曼公式

S=klnΩ

其中 k---玻耳兹曼常数Ω---宏观状态所包含的微观状态数目

例.1mol理想气体自由膨胀的熵变

.

推导:

热力学角度: 非平衡态→平衡态

S小→ S大

统计角度: 概率Ω小→概率Ω大

S = f(Ω)

S=S1+S2=f(Ω1)+ f(Ω2)

S = f(Ω)= f(Ω1·Ω2)

∴f(Ω1·Ω2)=f(Ω1)+ f(Ω2)

数学上可以推出: S = f(Ω)∝lnΩ

S = klnΩ

3.5 与无序度的关系

无序度---混乱程度

无序度低 (有序度高), 则概率小→S 小

无序度高 (有序度低), 则概率大→S 大

自然过程:概率小→概率大 S小→ S大

例:

有规则定向运动→无规则运动

3.6 熵函数的微观意义(与熵增原理的关系)[4]

(1) 熵与宏观状态所包含的微观状态数目相联系

(2) 熵是(宏观态所对应的大量微观粒子热运动所引起的)无序程度的定量量度.

(3) 熵增的方向即向微观状态数多的宏观状态转变的方向, 使系统更混乱, 更无序

4 热力学第二定律的思考

4.1热力学第二定律与时间反演性

时间T到-T的变换叫做时间反演,这相当于时间倒流,在力学中保守系具有时

间反演性,而“耗散系”不具有时间反演性。“耗散”是一个宏观的概念,几乎所有的微观过程都是可逆的,而从微观过度到宏观过程就可能变为不可逆的过程。在“耗散”系中能量的转变设计热力学过程,相当于从宏观看来具有整体的能量转化为杂乱无章的分子热运动动能和分子势能。而在“保守系”中能量没有转化为杂乱无章的热运动动能和势能,只在动能和势能之间转化。

4.2理解时间的流逝

热力学第二定律是自然界所有单方向变化过程的共同规律,而时间的变化就是一个单向的不可逆的过程,因此可以这样假设:时间的运动方向,就是熵增加的方向。由此,热力学第二定律就给出了一个时间箭头,通过进一步研究表明,能量守恒与时间的均匀性有关,即热力学第一定律告诉我们,时间是均匀流逝的。这两条定律合在一起就是:时间在向着特定的方向均匀地流逝着。

4.3 在信息熵中的应用

人类在长期的电讯通信实践中,不断在力图提高通信的有效性和可靠性。提高有效性就是尽可能用最窄的频带,尽可能快和尽可能降低能耗,即提高通信的经济性;高可靠性,就是要力图消除或减少噪音,以提高通信的质量。随着电子通信发展到一定阶段后,人们在实践中发现,在一定的条件下,要同时实现上述这两个要求,会遇到不可克服的困难:要减少噪音的干扰,信息传输速率就得降低;反之,提高了传输速率就不能有效地避免噪扰,在一定的具体的客观条件下,想要同时提高电讯通信的效率和可靠性的企图总是失败的。于是有人想到在限定的条件下同时提高通信的效率和可靠性的要求可能存在一种理论上的界限。1948年,美国贝尔电讯实验所的工程师申农提出了了一个数学模型,对于信息的产生和传输这些概念从量的方面给以定义,提出了信道和信息量等概念,利用熵的形成导入了信道容量这一新的重要概念,并且确定了信号频带宽度、超扰值和信道传输率三者之间的一般关系。从而,我们可以用信息熵来描述信道上传输信息的容量。这就是热力学第二定律在信息传输技术中的一些应用。[2] [5]

4.4 与生命活动的联系

在生命自然演化的意义上,熵概念的本质是生命系统(机体)创造机能下降,熵增的过程是生命系统自衰落至死亡的老化过程。如果我们以单一的生命体作为一个系统,那它是一个开放系统,与环境既有物质交换,也有能量的流通;基于此,而生

命体可以进行众多的生命活动,而这又是为了摄取“负熵”——或者认为是通过外界的能量来减少生命体本身的熵,就如同一个热机与另外的热库进行热交换使这个系统恢复到原始状态。如果这么看似乎无法满足熵增原理中条件“孤立系统”,但是,每个生命体都必须维持自己生命活动的稳定性状态,也就是生命学中的“稳态”,而这个状态则必然与整个环境相不同,因此当我们粗略的看待一个生态系统时,可以将这个生命体当作“孤立系统中的一份子”。

从物质能量流动的角度讲,生命过程是一个物质能量的传输和集中过程,物质能量的集中就是生物的生长。当生物不再生长时,生物的生存过程就是纯粹的物质能量传输过程。从热力学的角度讲,生命过程可以认为是一个符合热力学第二定律的区域性的自发的熵减过程,在包括生命体及其生存环境的总系统中,熵是增加的。熵减过程就是生物的生长过程。当熵减过程结束后,维持已有的负熵值的过程就是生物的生存过程。为了生产负熵,更为了维持已有的负熵值,系统必须始终存在一个熵增的物质能量传输过程。新陈代谢过程中,除了包含有一个熵减的物质能量集中过程外,还包含了一个使生物生长不违反第二定律的熵增的物质能量的传输过程。显然,只有当生命系统是一个与外界有物质和能量交换的开放系统时,符合第二定律的熵减过程才有可能发生。下面我们简单地通过生命体生存发展的几个过程加以阐述:(一)生从一个受精卵开始,生命体拥有了一个属于自己的系统,这个系统独立于所生活的自然,而生命的一个必然进程就是“抵抗熵增”——为了避免死亡而摄取“负熵”。

(二)老薛定谔在他著名的《生命是什么》一书中,认为生命体是“以负熵为生的”。生命体为了维持它的有序结构,必须“吃进负熵”,耗散结构理论的创始人普里高津也认为,系统的熵由系统自身不断产生的正熵和外界流入系统的熵两部分组成。因此,要维持一个有序的、具有负熵值的系统,则必须由外界不断的向系统输入负熵。正是指这个道理,衰老是一个长期的持续性的过程,为了对抗这个过程,吸取负熵是其途径,不同的生命体吸取负熵的方法不同,对于绿色植物则通过光合作用来减少自身的熵,而对于动物(当然包括人类)来说,食物就是负熵,这就是我们需要不断进食的原因所在。之所以食物是负熵,其实更准确的说法是将食物中的能量用于减少生命体自身的熵,类似于一个热机与另外的热库进行热交换使这个系统恢复到原始状态这个过程。实际上,进食摄取能量进而回归机体稳态就是生命的主要意义。但是摄入负熵的能力会随着时间而减弱,当人类摄入的负熵少到体内的平衡受到破坏时,

体内的熵达到了一个限度时人的生命也就要终结了。而这之前“摄入负熵能力下降”的过程就是衰老。

(三)死生命的结局是什么?对于这个问题,很简单,就是死亡,也可说是同化,尘归尘,土归土,将生命中的物质,能量回归系统,与系统同化,而物理学中指出,这种想对于独立的混合具有更大的混乱度,其所拥有的熵也是最大的,这是整个系统遵循热力学第二定律的必然结果,所以“死亡”、“同化”、“熵增”是必须的,不可违抗的,生命的活动是一个不可逆的过程,因为这个系统必须遵循热力学中熵增的规律。

5 总结

我们把自然生命系统和工程热力系统演化的熵称为“机体熵”或“机能熵”,也可以称为“系统熵”。这是真正意义上的熵,具有广义生命演化意义上的熵,体现了生命系统衰落的过程。通过上述的讨论,我们已经感觉到,生命现象的物理学解释,或者更具体的讲,生命现象的热力学解释,生命现象的物质能量流动解释,已使我们可以在一定程度上理解和把握生命的本质,显然,上述的关于生命现象的物理解释,才仅仅是一个开端,许多问题还没有说明,本文试图从物理学的角度、从物质能量流动的角度对生命现象给出一些解释。但就我目前所掌握的物理学方面的知识而言,还无法就上述所有问题给出明确的解释。因此,本文只能给出一些粗浅的解释,但也是基本的解释,我想,热力学第二定律的意义已经远远超出了热力学的范围,用热力学第二定律解释生命活动的本质则是一个非常有趣的过程,不仅加深了对这条定律的理解,同时也让人看到了科学的美。如果能沿着这样一个思路深入挖掘,必将会对生命体生存发展有更深入的理解,这一议题对于人类社会的发展也将产生非常重要的影响。

参考文献:

1、《物理学史》. 郭奕玲, 沈慧君. 北京: 清华大学出版社, 1993.

2、《改变世界的物理学》. 倪光炯等著. 上海: 复旦大学出版社, 1999

3、《热力学与统计物理学》,龚昌德编,高等教育出版社,1984年版。

4、《热学》李椿、章立源、钱尚武编,人民教育出版社,1982年版。

5、《现代物理知识》,2001年第3期。

热力学第二定律练习题及答案

热力学第二定律练习题 一、是非题,下列各题的叙述是否正确,对的画√错的画× 1、热力学第二定律的克劳修斯说法是:热从低温物体传给高温物体是不可能的 ( ) 2、组成可变的均相系统的热力学基本方程 d G =-S d T +V d p +d n B ,既适用于封闭系统也适用于敞 开系统。 ( ) 3、热力学第三定律的普朗克说法是:纯物质完美晶体在0 K 时的熵值为零。 ( ) 4、隔离系统的熵是守恒的。( ) 5、一定量理想气体的熵只是温度的函数。( ) 6、一个系统从始态到终态,只有进行可逆过程才有熵变。( ) 7、定温定压且无非体积功条件下,一切吸热且熵减少的反应,均不能自发发生。 ( ) 8、系统由状态1经定温、定压过程变化到状态2,非体积功W ’<0,且有W ’>G 和G <0,则此状态变化一定能发生。( ) 9、绝热不可逆膨胀过程中S >0,则其相反的过程即绝热不可逆压缩过程中S <0。( ) 10、克-克方程适用于纯物质的任何两相平衡。 ( ) 11、如果一个化学反应的r H 不随温度变化,则其r S 也不随温度变化, ( ) 12、在多相系统中于一定的T ,p 下物质有从化学势较高的相自发向化学势较低的相转移的趋势。 ( ) 13、在10℃, kPa 下过冷的H 2O ( l )凝结为冰是一个不可逆过程,故此过程的熵变大于零。 ( ) 14、理想气体的熵变公式 只适用于可逆过程。 ( ) 15、系统经绝热不可逆循环过程中S = 0,。 ( ) 二、选择题 1 、对于只做膨胀功的封闭系统的(A /T )V 值是:( ) (1)大于零 (2) 小于零 (3)等于零 (4)不确定 2、 从热力学四个基本过程可导出V U S ??? ????=( ) (1) (2) (3) (4) T p S p A H U G V S V T ???????????? ? ? ? ????????????? 3、1mol 理想气体(1)经定温自由膨胀使体积增加1倍;(2)经定温可逆膨胀使体积增加1倍;(3)经绝热自由膨胀使体积增加1倍;(4)经绝热可逆膨胀使体积增加1倍。在下列结论中何者正确( )

热力学第二定律习题详解

习题十一 一、选择题 1.你认为以下哪个循环过程是不可能实现的 [ ] (A )由绝热线、等温线、等压线组成的循环; (B )由绝热线、等温线、等容线组成的循环; (C )由等容线、等压线、绝热线组成的循环; (D )由两条绝热线和一条等温线组成的循环。 答案:D 解:由热力学第二定律可知,单一热源的热机是不可能实现的,故本题答案为D 。 2.甲说:由热力学第一定律可证明,任何热机的效率不能等于1。乙说:热力学第二定律可以表述为效率等于100%的热机不可能制成。丙说:由热力学第一定律可以证明任何可逆热机的效率都等于2 1 1T T -。丁说:由热力学第一定律可以证明理想气体可逆卡诺热机的效率等于2 1 1T T - 。对于以上叙述,有以下几种评述,那种评述是对的 [ ] (A )甲、乙、丙、丁全对; (B )甲、乙、丙、丁全错; (C )甲、乙、丁对,丙错; (D )乙、丁对,甲、丙错。 答案:D 解:效率等于100%的热机并不违反热力学第一定律,由此可以判断A 、C 选择错误。乙的说法是对的,这样就否定了B 。丁的说法也是对的,由效率定义式2 1 1Q Q η=-,由于在可逆卡诺循环中有2211Q T Q T =,所以理想气体可逆卡诺热机的效率等于21 1T T -。故本题答案为D 。 3.一定量理想气体向真空做绝热自由膨胀,体积由1V 增至2V ,此过程中气体的 [ ] (A )内能不变,熵增加; (B )内能不变,熵减少; (C )内能不变,熵不变; (D )内能增加,熵增加。 答案:A 解:绝热自由膨胀过程,做功为零,根据热力学第一定律2 1V V Q U pdV =?+?,系统内能 不变;但这是不可逆过程,所以熵增加,答案A 正确。 4.在功与热的转变过程中,下面的那些叙述是正确的?[ ] (A )能制成一种循环动作的热机,只从一个热源吸取热量,使之完全变为有用功;

热力学第二定律习题解答

第八章热力学第二定律 一选择题 1. 下列说法中,哪些是正确的( ) (1)可逆过程一定是平衡过程; (2)平衡过程一定是可逆的; (3)不可逆过程一定是非平衡过程;(4)非平衡过程一定是不可逆的。 A. (1)、(4) B. (2)、(3) C. (1)、(3) D. (1)、(2)、(3)、(4) 解:答案选A。 2. 关于可逆过程和不可逆过程的判断,正确的是( ) (1) 可逆热力学过程一定是准静态过程; (2) 准静态过程一定是可逆过程; (3) 不可逆过程就是不能向相反方向进行的过程;

(4) 凡是有摩擦的过程一定是不可逆的。 A. (1)、(2) 、(3) B. (1)、(2)、(4) C. (1)、(4) D. (2)、(4) 解:答案选C。 3. 根据热力学第二定律,下列哪种说法是正确的( ) A.功可以全部转换为热,但热不能全部 转换为功; B.热可以从高温物体传到低温物体,但 不能从低温物体传到高温物体; C.气体能够自由膨胀,但不能自动收缩;D.有规则运动的能量能够变成无规则运 动的能量,但无规则运动的能量不能 变成有规则运动的能量。 解:答案选C。 4 一绝热容器被隔板分成两半,一半是真空,另一半是理想气体,若把隔板抽出,气体将进行自由膨胀,达到平衡后:

( ) A. 温度不变,熵增加; B. 温度升高,熵增加; C. 温度降低,熵增加; D. 温度不变,熵不变。 解:绝热自由膨胀过程气体不做功,也无热量交换,故内能不变,所以温度不变。因过程是不可逆的,所以熵增加。 故答案选A 。 5. 设有以下一些过程,在这些过程中使系统的熵增加的过程是( ) (1) 两种不同气体在等温下互相混合; (2) 理想气体在等体下降温; (3) 液体在等温下汽化; (4) 理想气体在等温下压缩; (5) 理想气体绝热自由膨胀。 A. (1)、(2)、(3) B. (2)、(3)、(4) C. (3)、(4)、(5) D. (1)、(3)、(5) 解:答案选D。

热力学第二定律的建立

热力学第二定律的建立

热力学第二定律的建立 1850年克劳修斯提出热力学第二定律以后,至20世纪初,一直被作为与热力学第一定律并列的热力学两大基本定律,引起学术界特别是物理学界的极大重视。这两个基本定律的发现,使热力学在19世纪50年代初时起,被看作近代物理学中的一个新兴的学科,和物理学家们极其热衷的重要领域,得到物理学家和化学家们的关注。 1、热力学第二定律产生的历史背景 18世纪末惠更斯和巴本(Dents Papin,1647~1714)实验研究的燃气汽缸,塞维利(Thomas Savery,1650~1715)于1798年制成的“矿工之友”,及纽可门(Newcomen Thomas,1663~1729)于1712年发明的“大气机”等早期的蒸汽机,都是利用两个不同温度的热源(锅炉和水)并使部分热量耗散的方法使蒸汽机作功的,也可以说不自觉地运用热力学第二定律的思想,进行设计的。瓦特改进纽可门蒸汽机的关键,是以冷凝器取代大气作为第二热源,因而使耗散的热量大大降低。为了进一步减少热的耗散量和

提高热效率与功率,18世纪末和19世纪40年代又先后研制成中低压和高低压二级膨胀式蒸汽机。热机的整个发展史说明,它的热效率可以不断提高和耗散的热量可以逐渐减少。但是,热机的热效率至今虽然逐渐有所提高,但耗散的热量永远也不可能消除。因此,卡诺的可逆循环只可趋近而永远也无法达到。这就提出了一个十分重要的问题,就是卡诺提出的“在蒸汽机内,动力的产生不是由于热质的实际消耗,而是由热体传到冷体,也就是重新建立了平衡”的论断中,最后的话是不正确的,这不仅因为他相信热质说引起的,而且因为在无数事实中,这种热平衡在一个实际热机中是不可达到的。事实说明,机械功可以完全转化为热,但在不引起其他变化的条件下,热却不可能完全转化为机械功。 人们设想,如果出现一个制成这样永动机的先例,即一个孤立热力学系统会从低温热源取热而永恒地做功,那么大地和海洋几乎可以作为无尽的低温热源,做功将是取之不尽的。事实上这与热力学原理相矛盾的,这就意味着可能有一个新的热力学基本定律在起着作用。综上可见,虽然有的事件是不违背热力学第一定律的但也不可

热力学第二定律的建立及意义

1引言 热力学第二定律是在研究如何提高热机效率的推动下, 逐步被人们发现的。19蒸汽机的发明,使提高热机效率的问题成为当时生产领域中的重要课题之一. 19 世纪20 年代, 法国工程师卡诺从理论上研究了热机的效率问题. 卡诺的理论已经深含了热力学第二定律的基本思想,但由于受到热质说的束缚,使他当时未能完全探究到问题的底蕴。这时,有人设计这样一种机械——它可以从一个热源无限地取热从而做功,这被称为第二类永动机。1850 年,克劳修斯在卡诺的基础上统一了能量守恒和转化定律与卡诺原理,指出:一个自动运作的机器,不可能把热从低温物体移到高温物体而不发生任何变化,这就是热力学第二定律。不久,1851年开尔文又提出:不可能从单一热源取热,使之完全变为有用功而不产生其他影响;或不可能用无生命的机器把物质的任何部分冷至比周围最低温度还低,从而获得机械功。这就是热力学第二定律的“开尔文表述”。在提出第二定律的同时,克劳修斯还提出了熵的概念,并将热力学第二定律表述为:在孤立系统中,实际发生的过程总是使整个系统的熵增加。奥斯特瓦尔德则表述为:第二类永动机不可能制造成功。热力学第二定律的各种表述以不同的角度共同阐述了热力学第二定律的概念,完整的表达出热力学第二定律的建立条件并且引出了热力学第二定律在其他方面的于应用及意义。 2热力学第二定律的建立及意义 2.1热力学第二定律的建立 热力学第二定律是在研究如何提高热机效率的推动下, 逐步被人们发现的。但是它的科学价值并不仅仅限于解决热机效率问题。热力学第二定律对涉及热现象的过程, 特别是过程进行的方向问题具有深刻的指导意义它在本质上是一条统计规律。与热力学第一定律一起, 构成了热力学的主要理论基础。 18世纪法国人巴本发明了第一部蒸汽机,后来瓦特改进的蒸汽机在19 世纪得到广泛地应用, 因此提高热机效率的问题成为当时生产领域中的重要课题之一. 19 世纪20 年代, 法国工程师卡诺(S.Carnot, 1796~ 1832) 从理论上研究了热机的效率问题。

热力学第二定律习题

热力学第二定律习题 选择题 .ΔG=0 的过程应满足的条件是 (A) 等温等压且非体积功为零的可逆过程(B) 等温等压且非体积功为零的过程(C) 等温等容且非体积功为零的过程(D) 可逆绝热过程答案:A .在一定温度下,发生变化的孤立体系,其总熵 (A)不变(B)可能增大或减小(C)总是减小(D)总是增大 答案:D。因孤立系发生的变化必为自发过程,根据熵增原理其熵必增加。 .对任一过程,与反应途径无关的是 (A) 体系的内能变化(B) 体系对外作的功(C) 体系得到的功(D) 体系吸收的热 答案:A。只有内能为状态函数与途径无关,仅取决于始态和终态。 .氮气进行绝热可逆膨胀 ΔU=0(B) ΔS=0(C) ΔA=0(D) ΔG=0 答案:B。绝热系统的可逆过程熵变为零。

.关于吉布斯函数G, 下面的说法中不正确的是 (A)ΔG≤W'在做非体积功的各种热力学过程中都成立 (B)在等温等压且不做非体积功的条件下, 对于各种可能的变动, 系统在平衡态的吉氏函数最小 (C)在等温等压且不做非体积功时, 吉氏函数增加的过程不可能发生 (D)在等温等压下,一个系统的吉氏函数减少值大于非体积功的过程不可能发生。 答案:A。因只有在恒温恒压过程中ΔG≤W'才成立。 .关于热力学第二定律下列哪种说法是错误的 (A)热不能自动从低温流向高温 (B)不可能从单一热源吸热做功而无其它变化 (C)第二类永动机是造不成的 (D热不可能全部转化为功 答案:D。正确的说法应该是,热不可能全部转化为功而不引起其它变化 .关于克劳修斯-克拉佩龙方程下列说法错误的是 (A) 该方程仅适用于液-气平衡 (B) 该方程既适用于液-气平衡又适用于固-气平衡 (C) 该方程假定气体的体积远大于液体或固体的体积 (D) 该方程假定与固相或液相平衡的气体为理想气体

热力学第二定律概念及公式总结

热力学第二定律 一、 自发反应-不可逆性(自发反应乃是热力学的不可逆过程) 一个自发反应发生之后,不可能使系统和环境都恢复到原来的状态而不留下任何影响,也就是说自发反应是有方向性的,是不可逆的。 二、 热力学第二定律 1. 热力学的两种说法: Clausius:不可能把热从低温物体传到高温物体,而不引起其它变化 Kelvin :不可能从单一热源取出热使之完全变为功,而不发生其他的变化 2. 文字表述: 第二类永动机是不可能造成的(单一热源吸热,并将所吸收的热完全转化为功) 功 热 【功完全转化为热,热不完全转化为功】 (无条件,无痕迹,不引起环境的改变) 可逆性:系统和环境同时复原 3. 自发过程:(无需依靠消耗环境的作用就能自动进行的过程) 特征:(1)自发过程单方面趋于平衡;(2)均不可逆性;(3)对环境做功,可从自发过程获得可用功 三、 卡诺定理(在相同高温热源和低温热源之间工作的热机) ηη≤ηη (不可逆热机的效率小于可逆热机) 所有工作于同温热源与同温冷源之间的可逆机,其热机效率都相同,且与工作物质无关 四、 熵的概念 1. 在卡诺循环中,得到热效应与温度的商值加和等于零:ηηηη+η ηηη=η 任意可逆过程的热温商的值决定于始终状态,而与可逆途径无关 热温商具有状态函数的性质 :周而复始 数值还原 从物理学概念,对任意一个循环过程,若一个物理量的改变值的总和为0,则该物理量为状态函数 2. 热温商:热量与温度的商 3. 熵:热力学状态函数 熵的变化值可用可逆过程的热温商值来衡量 ηη :起始的商 ηη :终态的熵 ηη=(ηηη)η (数值上相等) 4. 熵的性质: (1)熵是状态函数,是体系自身的性质 是系统的状态函数,是容量性质 (2)熵是一个广度性质的函数,总的熵的变化量等于各部分熵的变化量之和 (3)只有可逆过程的热温商之和等于熵变 (4)可逆过程热温商不是熵,只是过程中熵函数变化值的度量 (5)可用克劳修斯不等式来判别过程的可逆性 (6)在绝热过程中,若过程是可逆的,则系统的熵不变 (7)在任何一个隔离系统中,若进行了不可逆过程,系统的熵就要增大,所以在隔离系统中,一切能自动进行的过程都引起熵的增大。若系统已处于平衡状态,则其中的任何过程一定是可逆的。 五、克劳修斯不等式与熵增加原理 不可逆过程中,熵的变化量大于热温商 ηηη→η?(∑ηηηηηηη)η>0 1. 某一过程发生后,体系的热温商小于过程的熵变,过程有可能进行不可逆过程 2. 某一过程发生后,热温商等于熵变,则该过程是可逆过程

热力学第二定律有两种常用表述

读热学第二定律的建立及其意义有感 热力学第二定律有两种常用表述: (1)克劳修斯在1850年在研究热机的工作原理的基础上提出了热力学第二定律的一种表述:不可能使热量从低温物体传递到高温物体,而不引起其他变化。这里的“不引起其他的变化”和“自发地”是等价的。 (2)开尔文在1851年提出了热力学第二定律的另一种表述:不可能从单一热源吸收热量并把它全部用来做功,而不引起其他变化。它也可以表述为第二类永动机是不可能制成的。由于自然界的自发过程都是有联系的,是相互依存的。描述自发过程方向性的第二定律也是等价的。 热力学第二定律揭示了有大量分子参与的宏观过程的方向性,对于我们认识自然、利用自然有重要的指导意义。 两种表述等价的证明: 如果假设热量由高温传向低温的不可逆性消失了,即热量能自动地经过某种假想装置从低温传向高温。这是我们可以设计一部热机,使它在一次循环中由高温热库(热源)吸热,对外做功,向低温热库放热(),这种热机能自动进行动作,然后利用那个假想装置使热量自动地传给高温热库,而使低温热库恢复原来状态。当我们把该假想装置与此热机看成一个整体时,它们就能从热库吸出热量而全部转变为对外做的功,而不引起其他任何变化。这就是说,功变热的不可逆性也消失了。 同理,反之也成立。 热力学第二定律是独立于热力学第一定律的另一实验定律,它指出系统变化进行的可能方向和达到平衡的必要条件,是自然界最基本、最普遍的规律之一。 引入熵,热力学第二定律可表述为: 在孤立系内,任何变化不可能导致熵的总值减少,即 ΔS ≥0 (孤立系) “=”号---绝热可逆等熵过程 “>”号---绝热不可逆熵增加过程

02-热力学第二定律Word版

二、热力学第二定律(601题) 一、选择题 ( 共152题 ) 1. 1 分 (0624) 理想气体绝热向真空膨胀,则: ( ) (A) ΔS = 0,W = 0 (B) ΔH = 0,ΔU = 0 (C) ΔG = 0,ΔH = 0 (D) ΔU = 0,ΔG = 0 2. 1 分 (0671) 熵变S是: (1) 不可逆过程热温商之和 (2) 可逆过程热温商之和 (3) 与过程无关的状态函数 (4) 与过程有关的状态函数 以上正确的是:( ) (A) 1,2 (B) 2,3 (C) 2 (D) 4 3. 2 分 (0675) 理想气体在等温条件下反抗恒定外压膨胀,该变化过程中体系的熵变?S 体 及环境的熵 变?S 环 应为:() (A) ?S 体>0,?S 环 =0 (B)?S 体 <0,?S 环 =0 (C) ?S 体>0,?S 环 <0 (D)?S 体 <0,?S 环 >0 4. 2 分 (0693) 下列四种表述: (1) 等温等压下的可逆相变过程中,体系的熵变ΔS =ΔH相变/T相变 (2) 体系经历一自发过程总有 d S > 0 (3) 自发过程的方向就是混乱度增加的方向 (4) 在绝热可逆过程中,体系的熵变为零 两者都不正确者为: ( ) (A) (1),(2) (B) (3),(4) (C) (2),(3) (D) (1),(4) 5. 2 分 (0694) 有三个大热源,其温度T3>T2>T1,现有一热机在下面两种不同情况下工作: (1) 从T3热源吸取Q热量循环一周对外作功W1,放给T1热源热量为(Q-W1) (2) T3热源先将Q热量传给T2热源,热机从T2热源吸取Q热量循环一周, 对外作功 W2,放给T1热源 (Q-W2) 的热量 则上述两过程中功的大小为: ( ) (A) W1> W2 (B) W1= W2 (C) W1< W2 (D) W1≥W2 6. 1 分 (0695) 求任一不可逆绝热过程的熵变ΔS时,可以通过以下哪个途径求得? ( ) (A) 始终态相同的可逆绝热过程 (B) 始终态相同的可逆恒温过程 (C) 始终态相同的可逆非绝热过程 (D) (B) 和 (C) 均可 7. 2 分 (0696)

热力学第二定律习题解析

第二章热力学第二定律 习题 一 . 选择题: 1. 理想气体绝热向真空膨胀,则 ( ) (A) △S = 0,W = 0 (B) △H = 0,△U = 0 (C) △G = 0,△H = 0 (D) △U = 0,△G = 0 2. 熵变△S 是 (1) 不可逆过程热温商之和 (2) 可逆过程热温商之和 (3) 与过程无关的状态函数 (4) 与过程有关的状态函数 以上正确的是() (A) 1,2 (B) 2,3 (C) 2 (D) 4 3. 对于孤立体系中发生的实际过程,下式中不正确的是:() (A) W = 0 (B) Q = 0 (C) △S > 0 (D) △H = 0 4. 理想气体经可逆与不可逆两种绝热过程() (A) 可以从同一始态出发达到同一终态 (B) 不可以达到同一终态 (C) 不能断定 (A)、(B) 中哪一种正确 (D) 可以达到同一终态,视绝热膨胀还是绝热压缩而定 5. P?、273.15K 水凝结为冰,可以判断体系的下列热力学量中何者一定为零? (A) △U (B) △H (C) △S (D) △G 6. 在绝热恒容的反应器中,H2和 Cl2化合成 HCl,此过程中下列各状态函数的变 化值哪个为零? ( ) (A) △r U m (B) △r H m (C) △r S m (D) △r G m 7. 在绝热条件下,用大于气筒内的压力,迅速推动活塞压缩气体,此过程的熵变为: ( ) (A) 大于零 (B) 等于零 (C) 小于零 (D) 不能确定 8. H2和 O2在绝热钢瓶中生成水的过程:() (A) △H = 0 (B) △U = 0 (C) △S = 0 (D) △G = 0

热力学第二定律详解

热力学第二定律(英文:second law of thermodynamics)是热力学的四条基本定律之一,表述热力学过程的不可逆性——孤立系统自发地朝着热力学平衡方向──最大熵状态──演化,同样地,第二类永动机永不可能实现。 这一定律的历史可追溯至尼古拉·卡诺对于热机效率的研究,及其于1824年提出的卡诺定理。定律有许多种表述,其中最具代表性的是克劳修斯表述(1850年)和开尔文表述(1851年),这些表述都可被证明是等价的。定律的数学表述主要借助鲁道夫·克劳修斯所引入的熵的概念,具体表述为克劳修斯定理。 虽然这一定律在热力学范畴内是一条经验定律,无法得到解释,但随着统计力学的发展,这一定律得到了解释。 这一定律本身及所引入的熵的概念对于物理学及其他科学领域有深远意义。定律本身可作为过程不可逆性[2]:p.262及时间流向的判据。而路德维希·玻尔兹曼对于熵的微观解释——系统微观粒子无序程度的量度,更使这概念被引用到物理学之外诸多领域,如信息论及生态学等 克劳修斯表述 克劳修斯 克劳修斯表述是以热量传递的不可逆性(即热量总是自 发地从高温热源流向低温热源)作为出发点。 虽然可以借助制冷机使热量从低温热源流向高温热源, 但这过程是借助外界对制冷机做功实现的,即这过程除 了有热量的传递,还有功转化为热的其他影响。 1850年克劳修斯将这一规律总结为: 不可能把热量从低温物体传递到高温物体而不产生其他影响。 开尔文表述 参见:永动机#第二类永动机

开尔文勋爵 开尔文表述是以第二类永动机不可能实现这一规律作为 出发点。 第二类永动机是指可以将从单一热源吸热全部转化为 功,但大量事实证明这个过程是不可能实现的。功能够 自发地、无条件地全部转化为热;但热转化为功是有条 件的,而且转化效率有所限制。也就是说功自发转化为热这一过程只能单向进行而不可逆。 1851年开尔文勋爵把这一普遍规律总结为: 不可能从单一热源吸收能量,使之完全变为有用功而不产生其他影响。 两种表述的等价性 上述两种表述可以论证是等价的: 1.如果开尔文表述不真,那么克劳修斯表述不真:假设存在违反开尔文表述 的热机A,可以从低温热源吸收热量并将其全部转化为有用功。假设存在热机B,可以把功完全转化为热量并传递给高温热源(这在现实中可实现)。此时若让A、B联合工作,则可以看到从低温热源流向高温热源,而并未产生任何其他影响,即克劳修斯表述不真。 2.如果克劳修斯表述不真,那么开尔文表述不真:假设存在违反克劳修斯表 述的制冷机A,可以在不利用外界对其做的功的情况下,使热量由低温热源流向高温热源。假设存在热机B,可以从高温热源吸收热量 并将其中的热量转化为有用功,同时将热量传递给低温热源(这在现实中可实现)。此时若让A、B联合工作,则可以看到A与B联合组成的热机从高温热源吸收热量并将其完全转化为有 用功,而并未产生任何其他影响,即开尔文表述不真。 从上述二点,可以看出上述两种表述是等价的。

热力学的第二定律的认识和思考

仲恺农业工程学院 论文题目:热力学的第二定律的认识和思考 论文作者:钟家业 作者学号: 所在院系:机电工程学院 专业班级: 指导老师:

摘要热力学第二定律是热力学的基本定律之一,是指热永远都只能由热处转到冷处(在自然状态下)。它是关于在有限空间和时间内,一切和热运动有关的物理、化学过程具有不可逆性的经验总结。广义生命演化意义上的熵,体现了生命系统衰落的过程。 关键词热力学第二定律,第二类永动机,熵,时间,生活 1. 热力学第二定律及发展 1.1、热力学第二定律建立的历史过程 19世纪初,人们对蒸汽机的理论研究还是非常缺乏的。热力学第二定律就是在研究如何提高热机效率问题的推动下,逐步被发现的,并用于解决与热现象有关的过程进行方向的问题。1824年,法国陆军工程师卡诺在他发表的论文“论火的动力”中提出了著名的“卡诺定理”,找到了提高热机效率的根本途径。从1840年到1847年间,在迈尔、焦耳、亥姆霍兹等人的努力下,热力学第一定律以及更普遍的能量守恒定律建立起来了。1848年,开尔文爵士(威廉·汤姆生)根据卡诺定理,建立了热力学温标(绝对温标)。这些为热力学第二定律的建立准备了条件。 1850年,克劳修斯从“热动说”出发重新审查了卡诺的工作,考虑到热传导总是自发地将热量从高温物体传给低温物体这一事实,得出了热力学第二定律的初次表述。后来历经多次简练和修改,逐渐演变为现行物理教科书中公认的“克劳修斯表述”。与此同时,开尔文也独立地从卡诺的工作中得出了热力学第二定律的另一种表述,后来演变为更精炼的现行物理教科书中公认的“开尔文表述”。上述对热力学第二定律的两种表述是等价的,由一种表述的正确性完全可以推导出另一种表述的正确性。他们都是指明了自然界宏观过程的方向性,或不可逆性。克劳修斯的说法是从热传递方向上说的,即热量只能自发地从高温物体传向低温物体,而不可能从低温物体传向高温物体而不引起其他变化。利用致冷机就可以把热量从低温物体传向高温物体,但是外界必须做功。开尔文的说法则是从热功转化方面去说的。功完全转化为热,即机械能完全转化为内能可以的,在水平地面上运动的木块由于摩擦生热而最终停不来就是一个例子。但反过来,从单一热源吸取热量完全转化成有用功而不引起其他影响则是不可能的。[1] 1.2、热力学第二定律的表述 1.2.1、热力学第二定律的开尔文表述

热力学第二定律的发展与应用

浅论热力学第二定律的发展与应用

————————————————————————————————作者:————————————————————————————————日期:

热工学课程论文 题目浅论热力学第二定律的发展与应用 学院工程技术学院 专业机械设计制造及其自动化 年级2012级 学号 姓名 指导教师 成绩 2014年12 月

目录 摘要 (5) 1 前言 (5) 2 热力学第二定律的建立及其发展 (5) 2.1 热力学第二定律建立的历史过程 (5) 2.2 热力学第二定律的实质 (6) 2.2.1可逆过程与不可逆过程 (6) 2.2.2开氏与克氏的两种表述 (6) 2.3 热力学第二定律的含义 (7) 3 热力学第二定律的应用 (7) 3.1 通过熵增原理,理解能源危机 (7) 3.2 理解时间的流逝 (8) 3.3 黑洞温度的发现 (8) 3.4 形成宇宙的耗散结构理论 (9) 4 总结 (9) 参考文献: (9)

浅论热力学第二定律的发展与应用 xxx xxx 西南大学工程技术学院 2012级机械设计制造及其自动化1班 摘要:热力学第二定律是热力学的基本定律之一,是指热不可能自发地、不付代价地从低温物体传到高温物体或者说不可能制造出只从一个热源取得热量,使之完全变成机械能而不引起其他变化的循环发动机。它是关于在有限空间和时间内,一切和热运动有关的物理、化学过程具有不可逆性的经验总结。本文综述了该定律的提出、演变历程、并介绍了它在工农业生产和生活中的应用。 关键词:热力学第二定律演变历程应用 1 前言 热力学第二定律,不仅决定了能量转移的方向问题,对信息技术,生命科学以及人文科学的发展都起到了非常重要的作用,应用极其广泛。热力学第二定律对新世纪的科学技术乃至整个社会的发展都产生重要影响。 2 热力学第二定律的建立及其发展 2.1 热力学第二定律建立的历史过程 19世纪初,巴本、纽可门等发明的蒸汽机经过许多人特别是瓦特的重大改进,已广泛应用于工厂、矿山、交通运输,但当时人们对蒸汽机的理论研究还是非常缺乏的。热力学第二定律就是在研究如何提高热机效率问题的推动下,逐步

高中物理-热力学第二定律练习题

高中物理-热力学第二定律练习题 1.热力学定律表明自然界中与热现象有关的宏观过程( ) A.有的只遵守热力学第一定律 B.有的只遵守热力学第二定律 C.有的既不遵守热力学第一定律,也不遵守热力学第二定律 D.所有的都遵守热力学第一、第二定律 2.如图为电冰箱的工作原理示意图。压缩机工作时,强迫制冷剂在冰箱内外的管道中不断循环。在蒸发器中制冷剂汽化吸收箱体内的热量,经过冷凝器时制冷剂液化,放出热量到箱体外,下列说法中正确的是( ) A.热量可以自发地从冰箱内传到冰箱外 B.电冰箱的制冷系统能够不断地把冰箱内的热量传到外界,是因为其消耗了电能 C.电冰箱的工作原理不违反热力学第一定律 D.电冰箱的工作原理违反热力学第一定律 3.(·大连高二检测)下列说法正确的是( ) A.机械能和内能的转化具有方向性 B.电能不可能全部转化为内能 C.第二类永动机虽然不违反能量守恒定律,但它是制造不出来的 D.在火力发电机中燃气的内能不可能全部转化成电能 4.下列宏观过程能用热力学第二定律解释的是( )

A.大米和小米混合后小米能自发地填充到大米空隙中而经过一段时间大米、小米不会自动分开 B.将一滴红墨水滴入一杯清水中,会均匀扩散到整杯水中,经过一段时间,墨水和清水不会自动分开 C.冬季的夜晚,放在室外的物体随气温的降低,不会由内能自发地转化为机械能而动起来 D.随着节能减排措施的不断完善,最终也不会使汽车热机的效率达到100% 5.(·课标全国理综)关于热力学定律,下列说法正确的是( ) A.为了增加物体的内能,必须对物体做功或向它传递热量 B.对某物体做功,必定会使该物体的内能增加 C.可以从单一热源吸收热量,使之完全变为功 D.不可能使热量从低温物体传向高温物体 E.功转变为热的实际宏观过程是不可逆过程 6. 用两种不同的金属丝组成一个回路,接触点1插在热水中,接触点2插在冷水中,如图所示,电流计指针会发生偏转,这就是温差发电现象。关于这一现象的正确说法是( ) A.这一实验过程不违反热力学第二定律 B.在实验过程中,热水一定降温,冷水一定升温 C.在实验过程中,热水的内能全部转化成电能,电能则部分转化成冷水的内能 D.在实验过程中,热水的内能只有部分转化成电能,电能则全

(完整word版)热力学第二定律复习题

热力学第二定律 (r δ/0Q T =∑)→熵函数引出 0< (不可能发生的过程) 0= (可逆过程) 0>(自发、不可逆过程) S ?环) I R ηη≤ 不等式:) 0A B i A B S →→?≥ 函数G 和Helmholtz 函数A 的目的 A U TS ≡-,G H TS ≡- d d d d d d d d T S p V T S V p S T p V S T V p -+---+ W ' =0,组成恒定封闭系统的 可逆和不可逆过程。但积分时 要用可逆途径的V ~p 或T ~S 间 的函数关系。 应用条件: V )S =-(?p /?S )V , (?T /?p )S =(?V /?S )p V )T =(?p /?T )V , (?S /?p )T =-(?V /?T )p 应用:用易于测量的量表示不 能直接测量的量,常用于热力 学关系式的推导和证明 <0 (自发过程) =0 (平衡(可逆)过程) 判据△A T ,V ,W ’=0 判据△G T ,p ,W ’=0 <0 (自发过程) =0 (平衡(可逆)过程)

基本计算公式 /()/ r S Q T dU W T δδ ?==- ??, △S环=-Q体/T环△A=△U-△(TS) ,d A=-S d T-p d V △G=△H-△(TS) ,d G=-S d T-V d p 不同变化过程△S、△A、△G 的计算简单pVT 变化(常压 下) 凝聚相及 实际气体 恒温:△S =-Q r/T;△A T≈0 ,△G T≈V△p≈0(仅对凝聚相) △A=△U-△(TS),△G=△H-△(TS); △A≈△G 恒压变温 2 1 , (/) T p m T S nC T dT ?=?nC p,m ln(T2/T1) C p,m=常数 恒容变温 2 1 , (/) T V m T S nC T dT ?=?nC V,m ln(T2/T1) C V,m=常数 △A=△U-△(TS),△G=△H-△(TS); △A≈△G 理想气体 △A、△G 的计算 恒温:△A T=△G T=nRT ln(p2/p1)=- nRT ln(V2/V1) 变温:△A=△U-△(TS),△G=△H-△(TS) 计算△S△S=nC V,m ln(T2/T1)+nR ln(V2/V1) = nC p,m ln(T2/T1)-nR ln(p2/p1) = nC V,m ln(p2/p1)+ nC p,m ln(V2/V1) 纯物质两 相平衡时 T~p关系g?l或s两相 平衡时T~p关系 任意两相平衡T~p关系: m m d/d/ p T T V H ββ αα =??(Clapeyron方程) 微分式:vap m 2 d ln d H p T RT ? =(C-C方程) 定积分式:ln(p2/p1)=-△vap H m/R(1/T2-1/T1) 不定积分式:ln p=-△vap H m/RT+C 恒压相变化 不可逆:设计始、末态相同的可逆过程计 S=△H/T;△G=0;△A ≈0(凝聚态间相变) =-△n(g)RT (g?l或s) 化学 变化 标准摩尔生成Gibbs函数 r m,B G ?定义 r m B m,B B S S ν ?=∑,r m B f m,B B H H ν ?=? ∑, r m r m r m G H T S ?=?-?或 r m B f m,B G G ν ?=? ∑ G-H方程 (?△G/?T)p=(△G-△H)/T或[?(△G/T)/?T]p=-△H/T2 (?△A/?T)V=(△A-△U)/T或[?(△A/T)/?T]V=-△U/T2 积分式:2 r m0 ()//ln1/21/6 G T T H T IR a T bT cT ?=?+-?-?-? 应用:利用G-H方程的积分式,可通过已知T1时的△G(T1)或 △A(T1)求T2时的△G(T2)或△A(T2) 微分式 热力学第三定律及其物理意义 规定熵、标准摩尔熵定义 任一物质标准摩尔熵的计算

热力学第二定律习题

第二章热力学第二定律(09级习题) 一、单选题 1、下列关于卡诺循环的描述中,正确的是() A.卡诺循环完成后,体系复原,环境不能复原,是不可逆循环 B.卡诺循环完成后,体系复原,环境不能复原,是可逆循环 C.卡诺循环完成后,体系复原,环境也复原,是不可逆循环 D.卡诺循环完成后,体系复原,环境也复原,是可逆循环 2、工作在393K和293K的两个大热源间的卡诺热机,其效率约为() A.83% B.25% C.100% D.20% 3、对于理想气体的等温压缩过程,(1)Q=W、(2)ΔU=ΔH、(3)ΔS=0、(4)ΔS<0、(5)ΔS>0上述五个关系式 中,不正确的是() A.(1) (2) B.(2) (4) C.(1) (4) D.(3) (5) 4、设ΔS1与ΔS2分别表示为n molO2(视为理气),经等压与等容过程,温度从T升至2T时的熵变,则ΔS1/ΔS2 等于() A.5/3 B.5/7 C.7/5 D.3/5 5、不可逆循环过程中,体系的熵变值() A.大于零 B.小于零 C.等于零 D.不能确定 6、对理想气体的自由膨胀过程,(1)Q=ΔH、(2)ΔH>Q、(3)ΔS=0、(4)ΔS>0。上述四个关系中,正确的是 () A.(2) (3) B.(1) (3) C.(1) (4) D.(2) (4) 7、1mol理想气体从300K,1×106Pa绝热向真空膨胀至1×105Pa,则该过程() A.ΔS>0、ΔG>ΔA B.ΔS<0、ΔG<ΔA C.ΔS=0、ΔG=ΔA D.ΔA<0、ΔG=ΔA 8、孤立体系发生一自发过程,则() A.ΔA>0 B.ΔA=0 C.ΔA<0 D.ΔA的符号不能确定 9、下列过程中ΔG=0的过程是( ) A.绝热可逆且W'=0的过程 B.等温等容且W'=0的可逆过程 C.等温等压且W'=0的可逆过程 D.等温且W'=0的可逆过程 10、-ΔG (T,p) > -W'的过程是( )

第三章 热力学第二定律讲解学习

第三章热力学第二定律 一、选择题 1.理想气体与温度为T 的大热源接触,做等温膨胀吸热Q,而所做的功是变到相同终态最大功的20%,则体系的熵变为() A.ΔS = 5Q /T B.ΔS = Q /T CΔS= Q/5T D.ΔS =T/Q A 2.下列过程哪一种是等熵过程() A. 1mol 某液体在正常沸点下发生相变 B. 1mol 氢气经一恒温可逆过程 C. 1mol 氮气经一绝热可逆膨胀或压缩过程 D. 1mol 氧气经一恒温不可逆过程 C 3.d G = ?S d T+V d p 适用的条件是() A.只做膨胀功的单组分,单相体系 B. 理想气体 C. 定温、定压 D. 封闭体系 A 4.熵变△S 是 (1) 不可逆过程热温商之和 (2) 可逆过程热温商之和 (3) 与过程无关的状态函数 (4) 与过程有关的状态函数 以上正确的是:() A.1,2 B. 2,3 C. 2 D.4 C 5.体系经历一个不可逆循环后() A.体系的熵增加 B.体系吸热大于对外做功 C.环境的熵一定增加 C环境内能减少 C 6.理想气体在绝热可逆膨胀中,对体系的ΔH 和ΔS 下列表示正确的是()A. ΔH > 0, ΔS > 0 B. ΔH = 0, ΔS = 0 C. ΔH < 0, ΔS = 0 D.ΔH < 0, ΔS < 0 B 7.非理想气体绝热可逆压缩过程的△S() A.=0 B.>0 C.<0 D.不能确定 A 8.一定条件下,一定量的纯铁与碳钢相比,其熵值是() A.S(纯铁)>S(碳钢) B.S(纯铁)

第二章热力学第二定律

第二章热力学第二定律 ;选择题 1 . Δ G=O 的过程应满足的条件是 (A) 等温等压且非体积功为零的可逆过程 (B) 等 温等压且非体积功为零的过程 (C)等温 等容且非体积功为零的过程 (D) 可 逆 绝 热 过 程 答案:A 2 .在一定温度下,发生变化的孤立体系,其总熵 (A) 不变(B)可能增大或减小(C)总是减小(D)总是增大答案:D 。因孤立系发生的变化必 为自发过程,根据熵增原理其熵必增加。 3 .对任一过程,与反应途径无关的是 (A)体系的内能变化 (B) 体系对外作的功 (C) 体系得到的功 (D) 执 八、、 答案:A 。只有内能为状态函数与途径无关,仅取决于始态和终态。 4 .下列各式哪个表示了偏摩尔量: 答案:A 。首先根据偏摩尔量的定义,偏导数的下标应为恒温、恒压、恒组成。只有 和D 符合此条件。但 D 中的^i 不是容量函数,故只有 A 是偏摩尔量。 5.氮气进行绝热可逆膨胀 Δ U=O (B) Δ S=O (C) Δ A =O (D) Δ G=O 答 案:B 。绝热系统的可逆过程熵变为零。 6 .关于吉布斯函数 G,下面的说法中不正确的是 (A) Δ G ≤ W 在做非体积功的各种热力学过程中都成立 (B) 在等温等压且不做非体积功的条件下,对于各种可能的变动,系统在平衡态的吉氏函数 最小 (C) 在等温等压且不做非体积功时,吉氏函数增加的过程不可能发生 (D) 在等温等压下,一个系统的吉氏函数减少值大于非体积功的过程不可能发生。 答案:A O 因只有在恒温恒压过程中 Δ G ≤ W'才成立。 7 .关于热力学第二定律下列哪种说法是错误的 (A)热不能自动从低温流向高温 (B)不可能从单一热源吸热做功而无其它变化 (C)第二类永动 机是造不成的(D 热不可能全部转化为功 答案:D 。正确的说法应该是,热不可能全部转化为功而不引起其它变化 &关于克劳修斯-克拉佩龙方程下列说法错误的是 (A)该方程仅适用于液-气平衡(B)该方程既适用于液-气平衡又适用于固-气平衡 (C) 该方程假定气体的体积远大于液体或固体的体积 (D)该方程假定与固相或液相平衡的 气体为理想气体 答案:A 9 .关于熵的说法正确的是 (A)每单位温度的改变所交换的热为熵 (B)可逆过程熵变为零(C)不可逆过程熵将增加 (D) 熵与系统的微观状态数有关 答案:DO (A)熵变的定义dS = Q r /T 其中的热应为可逆热;(B)与(C)均在绝热 体系吸收的 (A) .-n i τ, p 』j (B) .?σ,V,n (C) (D) .' n i T, p,n j

2019届人教版 热力学第二定律 单元测试

热力学第二定律 一、选择题 1.关于热力学第一定律和热力学第二定律,下列论述正确的是(). A.热力学第一定律指出内能可以与其他形式的能相互转化,而热力学第二定律则指出内能不可能完全转化为其他形式的能,故这两条定律是相互矛盾的 B.内能可以转化为其他形式的能,只是会产生其他影响,故两条定律并不矛盾 C.两条定律都是有关能量的转化规律,它们不但不矛盾,而且没有本质区别 D.其实,能量守恒定律已经包含了热力学第一定律和热力学第二定律 2.以下哪个现象不违背热力学第二定律(). A.一杯热茶在打开盖后,茶会自动变得更热 B.没有漏气、没有摩擦的理想热机,其效率可能是100 C.桶中浑浊的泥水在静置一段时间后,泥沙下沉,上面的水变清,泥、水自动分离 D.热量自发地从低温物体传到高温物体 3.下列关于能量耗散的说法,正确的是(). A.能量耗散使能的总量减少,违背了能量守恒定律 B.能量耗散是指耗散在环境中的内能再也不能被人类利用 C.各种形式的能量向内能的转化,是能够自动全额发生的 D.能量耗散导致能量品质的降低 4.关于能源,以下说法中正确的是(). A.煤、石油、天然气等燃料的化学能实际上是太阳能转化而成的 B.能源的利用过程,实质上是能的转化和转移的过程 C.到目前为止,人类所利用的所有能源实际上都是太阳能转化而成的 D.核能和地热能来自地球本身 5.当前世界上日益严重的环境问题主要源于(). A.温室效应B.厄尔尼诺现象 C.人类对环境的污染和破坏D.火山喷发和地震 6.下列叙述中不正确的是(). A.市区禁止摩托车通行是为了提高城区空气质量 B.无氟冰箱的使用会使臭氧层受到不同程度的破坏 C.大气中CO2含量的增多是引起温室效应的主要原因 D.“白色污染”是当前环境保护亟待解决的问题之一 7.如图所示为电冰箱的工作原理图.压缩机工作时,强迫制冷剂在冰箱内外的管道中不断循环.那么,下列说法中正确的是().

热力学第二定律

《热力学第二定律》教学设计 江苏省南通市天星湖中学耿建 这节课的内容是人民教育出版社2005年版高中《物理》选修3-3教材第十章第五节。 【教学目标】 一、知识和技能 1、能判断涉及热现象的宏观过程是具有方向性的; 2、知道并理解热力学第二定律的两种经典表述; 3、形成关于宏观热现象都具有不可逆性的概念; 4、认识到热力学第一定律与热力学第二定律具有同样重要的意义。 二、过程和方法 分析各种热学现象的过程,归纳出现象背后的普遍规律──热力学第二定律。

三、情感、态度和价值观 1、体会科学发现的曲折性和必然性; 2、体会热力学第二定律对于人类实践的指导意义。 【教学重点和难点】 重点:热力学第二定律内容的理解。 难点:热力学第二定律的两种表述的理解。 【设计思路与教学流程】 设计思路: 本节内容的课程标准是:“通过自然界中宏观过程的方向性,了解热力学第二定律。”热力学第二定律是紧跟在热力学第一定律之后的一节内容。学生早在初中就知道了能量的转化与守恒定律,在学完了热力学第一定律之后,对于能量守恒的认识就更深刻了。因此在此基础上提出“利用海水降温释放的热量作为新能源”这一设想,让学生思考、讨论而引入新课。然后再列举一些自发的热学现象,归纳出其中共同的特征:过程的不可逆性。然后就其中的热传导与功热转化两个过程具体分析,归纳出热力学第二定律的两种经典表述:克劳修斯表述和开尔文表述。热力学第二定律的实质就是指宏观自发的涉及热现象的过程都是不可逆的,任何一类宏观自发的热学过程都可以作为热力学第二定律的表述。本节课的难点在于如何理解热力学第二定律的两种表述,特别是开尔文表述。教学中尽可能多地让学生分析实例,再借助于一些多媒体素材(我利用了一些视频及热机、内燃机两个flash动画),从正、反两方面帮助学生形成对热学现象中的过程认识:热量可以自发地从高温物体传到低温物体;功可以全部转化为热;热量可以

相关主题
文本预览
相关文档 最新文档