当前位置:文档之家› 流体流动阻力和孔板流量计孔流系数的测定

流体流动阻力和孔板流量计孔流系数的测定

阀门的流量系数,流体阻力系数,压力损失

阀门的流量系数,流体阻力系数,压力损失 阀门的流量系数、流阻系数、压力损失 一、阀门的流量系数 阀门的流量系数是衡量阀门流通能力的指标,流量系数值越大说明流体流过阀门时的压力损失越小。国外工业发达国家的阀门生产厂家大多把不同压力等级、不同类型和不同公称通径阀门的流量系数值列入产品样本,供设计部门和使用单位选用。流量系数值随阀门的尺寸、形式、结构而变化,不同类型和不同规格的阀门都要分别进行试验,才能确定该种阀门的流量系数值。 1.流量系数的定义 流量系数表示流体流经阀门产生单位压力损失时流体的流量。由于单位的不同,流量系数有几种不同的代号和量值。 2.阀门流量系数的计算 3.流量系数的典型数据及影响流量系数的因素 公称通径DN50mm的各种型式阀门的典型流量系数见表。 流量系数值随阀门的尺寸、形式、结构而变。几种典型阀门的流量系数随直径的变化如图1-9所示。 对于同样结构的阀门,流体流过阀门的方向不同。流量系数值也有变化。这种变化一般是由于压力恢复不同而造成的。如果流体流过阀门使阀瓣趋于打开,那么阀瓣和阀体形成的环形扩散通道能使压力有所恢复。当流体流过阀门使阀瓣趋于关闭时,阀座对压力恢复的影响很大。当阀瓣开度为&#+ 或更小时,阀瓣下游的扩散角使得在两个流动方向上都会有一些压力恢复。 对于图1-11所示的高压角阀,当流体的流动使阀门趋于关闭时流量系数较高,因为此时阀座的扩散锥体使流体的压力恢复。阀门内部的几何形状不同,流量系数的曲线也不同。 阀门内部压力恢复的机理,与文丘里管的收缩和扩散造成的压力损失机理一样。当阀门内部的压降相同时,若阀门内压可以恢复,流量系数值就会较大,流量也就会大些。压力恢复与阀门内腔的几何形状有关,但更主要的是取决于阀瓣、阀座的结构。 二、阀门的流阻系数 流体通过阀门时,其流体阻力损失以阀门前后的流体压力降△p表示。 1. 阀门元件的流体阻力 阀门的流阻系数! 取决于阀门产品的尺寸、结构以及内腔形状等。可以认为,阀门体腔内的每个元件都可以看作为一个产生阻力的元件系统(流体转弯、扩大、缩小、再转弯等)。所以阀门内的压力损失约等于阀门各个元件压力损失的总和。 应该指出,系统中一个元件阻力的变化会引起整个系统中阻力的变化或重新分配,也就是说介质流对各管段是相互影响的。 为了评定各元件对阀门阻力的影响,现引用一些常见的阀门元件的阻力数据,这些数据反映了阀门元件的形状和尺寸与流体阻力间的关系。

沿程阻力系数表

在模型图中可以找到沿管道的阻力系数,即λ、re和K/D的关系曲线,这是液压系统中常用的。K是管内壁的绝对粗糙度。 管道沿线水头损失计算:H=λ(L/D)[v^2/(2G)] 对于管内层流:λ=64/re(雷诺数re=VD/ν) 圆管粗糙过渡区:1/√(λ)=-2*LG[K/(3.7d)+2.51/re√(λ)] 对于管的湍流粗糙区:1/√(λ)=-2*LG[K/(3.7d)]也可用作λ=0.11(K/D)^0.25还有许多经验公式: 例如,钢管和铸铁管的Shevlev公式为:过渡粗糙区(V<1.2m/s):λ=(0.0179/D^0.3)*(1+0.867/V)^0.3;阻力平方面积(V>=1.2m/s):λ=0.21/D^0.3 摩擦阻力:流体流经一定直径的直管时,由于流体的内摩擦而产生阻力。电阻与距离的长度成正比。 简介

在计算管道沿程阻力损失(直管阻力)的公式中,λ-摩擦系数与雷诺数Re和壁面粗糙度ε有关,可以通过实验测量或计算。 层流 如何确定一个通道的阻力系数 对于层流,可以从理论上严格推断。 在工程中,湍流的确定有两种方法:一种是基于湍流半经验理论结合实验结果,另一种是直接根据实验结果综合阻力系数的经验公式。前者具有更一般的含义。 沿途阻力系数变化规律3-8计算沿途水头损失的经验公式3-3--8沿途水头损失的经验公式3-9局部水头损失3-9局部水头损失3-7沿程阻力系数的变化规律可从本章各节中了解。对于层流,沿程阻力系数的规律是已知的。到目前为止,还没有一个沿程阻力系数的理论公式。为了探索沿程阻力系数的变化规律,尼古拉斯进行了一系列实验研究,揭示了沿途水头损失的规律。下面介绍这一重要的实验研究成果。1尼古拉斯试验条件。

流体管路流动阻力系数

流量L/h 粗糙管/cmH2O 粗糙管/cmH2O 平均压差△P f cmH2O 左右压差左右压差 500 54.2 55.9 1.7 54.3 55.9 1.6 1.65 700 57.5 60.7 3.2 57.7 60.9 3.2 3.2 900 61.7 67.2 5.5 61.5 66.8 5.3 5.4 1100 65 72.8 7.8 65 72.5 7.5 7.65 1300 68 78.4 10.4 68.1 78.6 10.5 10.45 1500 70.6 84.8 14.2 70.6 84.9 14.3 14.25 1700 72.4 90.7 18.3 72.3 90.5 18.2 18.25 1900 73.4 95.8 22.4 73.3 96.7 23.4 22.9 流量L/h 光滑管/cmH2O 光滑管/cmH2O 平均压差△P f cmH2O 左右压差左右压差 500 50.3 51.1 0.8 50.2 51.4 1.2 1 700 54.3 56.5 2.2 54.3 56.5 2.2 2.2 900 59 62.5 3.5 58.6 62.1 3.5 3.5 1100 63.3 68.4 5.1 62.9 67.8 4.9 5 1300 67.4 74 6.6 67.2 73.9 6.7 6.65 1500 71.3 80.4 9.1 70.9 76.9 6 7.55 1700 73.8 84.9 11.1 73.7 84.7 11 11.05 1900 76.2 89.5 13.3 76.2 89.5 13.3 13.3 流量L/h 局部阻力管/cmH2O 局部阻力管/cmH2O 平均压差△P f cmH2O 左右压差左右压差 500 49.9 51.5 1.6 49.8 51.3 1.5 1.55 700 54.2 56.9 2.7 54.2 57 2.8 2.75 900 58.5 62.8 4.3 58.5 62.5 4 4.15 1100 63.2 69.1 5.9 62.7 68.4 5.7 5.8 1300 66.5 74.2 7.7 66.7 74.4 7.7 7.7 1500 70.2 80.3 10.1 69.9 79.9 10 10.05 1700 72.8 85.6 12.8 72.7 85.4 12.7 12.75 1900 75 90.2 15.2 75 90.2 15.2 15.2

流体力学 实验一 阻力系数的测定实验

流体力学 实验一 阻力系数的测定实验 (一)实验名称:沿程阻力系数的测定 实验目的:(1)测定不同雷诺数Re 时的沿程阻力系数λ; (2)掌握沿程阻力系数的测定方法。 实验原理:对I 、Ⅱ两断面列能量方程式,可求得L 长度上的沿程水头损失 h P P h f ?=-= γ γ2 1 根据达西公式 g v d L h f 22 ? ? =λ 先根据单位时间流过体积计算流量,并算出断面平均流速v ,即可求得沿程阻力系数λ。 2 2 22v h L gd Lv gdh f ?? = =λ 令 2 ;2v h k k L gd ?? ==λ则 实验设备:多功能水力学实验台,秒表。 (右图仅供参考) 实验步骤: 1、准备工作 ⑴记录仪器常数d 、L ,并算出k 值。 ⑵检查测压计管3、4测面是否水平(此时Q=0),如果不在同一水平面上,必须将橡皮管内空气排尽,使两测压管的测面处于水平状态。 ⑶关闭无关测点的小阀门 ⑷打开设计流管相关阀门 ⑸关小总阀门 2、进行实验 ⑴开泵,打开秒表,此时相关测压管中应出现较小高差。 ⑵缓慢调节总阀门,记录相关压强高度、高度差、时间、体积等。 实验数据处理(下表仅参考): d= m L= m NO. h 3 h 4 h ? ? t ? Q V λ

(cm) (cm) (cm) (l) (s) (l/s) (m/s) 1 2 3 4 5 注意事项: 1、若测压管中液位较高,可调节压强控制球,使液位降至中部,以增大量测范围。 2、如出现测压管冒泡现象,不必惊慌,可调节流量或停泵重做。 思考题: 1.本实验的理论依据是什么? 2.如何使沿程阻力系数的测定结果与实际相符? (二)(选作)实验名称:管道突然扩大和突然缩小阻力系数的测定 实验目的:(1)掌握管道突然扩大和突然缩小局部阻力系数计算公式。 (2)掌握测定管道突然扩大和突然缩小的阻力系数的方法。 实验原理: 1、突然扩大 在扩大前后取1-1及2-2断面,因管道系水平放置,可列出上述 断面的能量方程如下: ξ ++ = +g V r P g V r P 222 2 22 1 1g V 22 2 g V g V V r P P 2222 2 2 2 12 1-+ -= ξ 2、突然缩小 在缩小前后取3-3及4-4断面,列能量方程式 ξ ++ = +g V r P g V r P 222 4 42 3 3g V 22 4

(完整word版)流体阻力系数

流体阻力系数 一个物体在流体(液体或气体)中和流体有相对运动时,物体会受到流体的阻力。阻力的方向和物体相对于流体的速度方向相反,其大小和相对速度的大小有关。 在相对速率v 较小时,阻力f的大小与v 成正比: f = kv 式中比例系数k 决定于物体的大小和形状以及流体的性质. 在相对速率较大以致于在物体的后方出现流体漩涡时,阻力的大小将与v平方成正比。对于物体在空气中运动的情形,阻力 f = CρAv v/2 式中,ρ是空气的密度,A 是物体的有效横截面积,C 为阻力系数。 物体在流体中下落时,受到的阻力随速率增大而增大,当阻力和重力平衡时,物体将以匀速下落。物体在流体中下落的最大速率称为终极速率,又称为收尾速率。对在空气中下落的物体,它的终极速率为: 如图

关键字:2.2.4 流体流动阻力的计算 流动阻力的大小与流体本身的物理性质、流动状况及壁面的形状等因素有关。 化工管路系统主要由两部分组成,一部分是直管,另一部分是管件、阀门等。相应流体流动阻力也分为两种: 直管阻力:流体流经一定直径的直管时由于内摩擦而产生的阻力; 局部阻力:流体流经管件、阀门等局部地方由于流速大小及方向的改变而引起的阻力。 1. 流体在直管中的流动阻力 如图1-24所示,流体在水平等径直管中作定态流动。 在1-1′和2-2′截面间列柏努利方程, 因是直径相同的水平管, 若管道为倾斜管,则 由此可见,无论是水平安装,还是倾斜安装,流体的流动阻力均表现为静压能的减少,仅当水平安装时,流动阻力恰好等于两截面的静压能之差。 把能量损失表示为动能的某一倍数。 令 则(2-19) 式(2-19)为流体在直管内流动阻力的通式,称为范宁(Fanning)公式。式中为无因次系数,称为摩擦系数或摩擦因数,与流体流动的Re及管壁状况有关。 根据柏努利方程的其它形式,也可写出相应的范宁公式表示式: 压头损失(2-20) 压力损失 (2-21) 值得注意的是,压力损失是流体流动能量损失的一种表示形式,与两截面间的压力差意义不同,只有当管路为水平时,二者才相等。 应当指出,范宁公式对层流与湍流均适用,只是两种情况下摩擦系数不同。以下对层流与湍流时摩擦系数分别讨论。 (1)层流时的摩擦系数 流体在直管中作层流流动时摩擦系数的计算式: (2-22) 即层流时摩擦系数λ是雷诺数Re的函数。 (2)湍流时的摩擦系数

沿程阻力 中国石油大学(华东)流体力学实验报告

实验七、沿程阻力实验 一、实验目的填空 1.掌握测定镀锌铁管管道沿程阻力系数的方法; 2.在双对数坐标纸上绘制λ-Re的关系曲线; 3.进一步理解沿程阻力系数随雷诺数的变化规律。 二、实验装置 在图1-7-1下方的横线上正确填写实验装置各部分的名称 本实验采用管流实验装置中的第1根管路,即实验装置中最细的管路。在测量较大压差时,采用两用式压差计中的汞-水压差计;压差较小时换用水-气压差计。 另外,还需要的测量工具有量水箱、量筒、秒表、温度计、水的粘温表。 F1——文秋利流量计;F2——孔板流量计;F3——电磁流量计; C——量水箱;V——阀门;K——局部阻力实验管路 图1-7-1 管流综合实验装置流程图 三、实验原理在横线正确写出以下公式 本实验所用的管路是水平放置且等直径,因此利用能量方程式可推得管路两点间的沿程水头

损失计算公式: 2 2f L v h D g λ = (1-7-1) 式中: λ——沿程阻力系数; L ——实验管段两端面之间的距离,m ; D ——实验管内径,m ; g ——重力加速度(g=9.8 m/s 2); v ——管内平均流速,m/s ; h f ——沿程水头损失,由压差计测定。 由式(1-7-1)可以得到沿程阻力系数λ的表达式: 2 2f h D g L v λ= (1-7-2) 沿程阻力系数λ在层流时只与雷诺数有关,而在紊流时则与雷诺数、管壁粗糙度有关。 当实验管路粗糙度保持不变时,可得出该管的λ-Re 的关系曲线。 四、实验要求 填空 1.有关常数 实验装置编号:No. 7 管路直径:D = 1.58 cm ; 水的温度:T = 13.4 ℃; 水的密度:ρ= 0.999348g/cm 3; 动力粘度系数:μ= 1.19004 mPa ?s ; 运动粘度系数:ν= 0.011908 cm 2/s ; 两测点之间的距离:L = 500 cm

附录一 井巷摩擦阻力系数值

附录一井巷摩擦阻力系数α值 一、水平巷道 1.不支护巷道α×104值 附表1-1不支护巷道的α×104值 2.混凝土、混凝土砖及砖石砌碹的平巷×104值 附表1-2 砌碹平巷的α×104值 注:巷道断面小者取大值 3.圆木棚子支护的巷道α×104值 附表1-3圆木棚子支护的巷道α×104值

注:0/d L =? 中,△-支架纵口径,无因次;L-支架间距,cm ;d 0 -支架的直径或厚度,cm 。 表中α×104 值适合于支架后净断面S =3m 2 的巷道,对于其它断面的巷道应乘以校正系数。 4.金属支架的巷道α×104 值 1)工字梁拱形和梯形支架巷道的α×104 值 附表1-4工字梁拱形和梯形支架的巷道α×104 值 注:d 0为金属梁截面的高度 2)金属横梁和帮柱混合支护的平巷α×104 值 附表1-5金属梁、柱支护的平巷α×104 值 注:①“帮柱”是混凝土或砌碹的柱子,呈方形 ②顶梁是由工字钢或16号槽钢加工的 5.钢筋混凝土预制支架的巷道α×104 值为88.2~186.2(纵口径大取值也大) 6.锚杆或喷浆巷道的α×104 值为78.4~117.6 注:装有带式输送机的巷道α×104 值可增加147~196,设有水管、风管、木梯台阶的 巷道α×104 值增加98;当巷道堵塞严重时,α×104 值增加29.4~98。

二、井筒、暗井及溜道 1.无任何装备的清洁的混凝土和钢筋混凝土井筒α×104 值。 附表1-6 无装备混凝土井筒α×104 值 2.砖和混凝土砖砌的无任何装备的井筒,其值α×104 按上表增大1倍。 3.有装备的井筒,井壁用混凝土、钢筋混凝土、混凝土砖及砖砌碹的平巷α×104 值 为343~490(选取时应考虑到罐道梁的间距、装备物纵口径以及有关梯子间和梯子间规格等)。 4.木支护的暗井和溜道α×104 值见。 附表1-7 木支护的暗井和溜道α×104 值 三、采煤工作面 1.炮采面 采用摩擦式金属支柱时,α×104 值为270~350; 采用木支柱时,α×104 值为300~350。 2.普采面 采用单体液压支柱时,α×104 值为420~500; 采用摩擦式金属支柱时,α×104 值为450~500。 3.综采面 采用支撑式液压支架时,α×104 值为300~420;

局部阻力系数测定(给学生)

局部阻力系数测定 实 验 报 告 班级:___________ 学号:___________ 姓名:___________ 课程:___________

一、实验目的 1、学会量测突扩、突缩圆管局部阻力损失系数的方法。 2、加深对局部阻力损失的感性认识 3、加深局部阻力损失机理的理解。 二、实验原理 1、有压管道恒定流遇到管道边界局部突变的情况时,流动会分离形成剪切层, 剪切层流动不稳定,引起流动结构的重新调整,并产生旋涡,造成不可逆的能量耗散。与沿程因摩擦造成的分布损失不同,这部分损失可以看成是集中在管道边界的突变处,单位质量流体的能量损失称为局部水头损失,参见图1。 2、局部水头损失系数是局部水头损失与速度水头的比例系数,即 2 h j ζ= 当上下游断面平均流速不同时,应明确它对应的是那个速度水头。例如对于 突扩圆管就有 =ζj h 1和2h j ζ=之分。其他情况的局部水头损失系数在查表或使用经验公式确定时也应该注意这一点。通常情况下对应下游的速度水头。 3、局部水头损失的机理复杂,除了突扩圆管的情况以外,一般难于用解析

方法确定,而要通过实测来得到各种局部水头损失系数。 对于突扩圆管,在不考虑突扩段沿程阻力损失的前提下,可推导出局部阻力损失因数的表达式 ( )-1=1ζ2 , 2ζ2=1 -A 2 ( )1 2 1A 对于突缩圆管,局部阻力损失因数的经验公式: 1-( )=ζ1 2 0.5 三、实验步骤 1、做好实验前的各项准备工作,记录与实验有关的常数。 2、往恒压水箱中充水,排除实验管道中的滞留气体。待水箱溢流后,检查泄水阀全关时,各测压管液面是否齐平,若不平,则需排气调平。 3、打开泄水阀至最大开度,等流量稳定后,测记测压管读数,同时用体积法测量流量。 4、调整泄水阀不同开度,重复上述过程5次,分别测记测压管读数及流量。 5、实验完成后关闭泄水阀,检查测压管液面是否齐平,如平齐,关闭电源实验结束,否则,需重做。 四、实验数据及整理 1、基础数据:d 1= m; d 2= m; d 3= m ; 水温= ℃

通风摩擦阻力系数

中华人民共和国煤炭工业部 矿井通风巷道摩擦阻力系数(a标)表 (试行) 主编部门:沈阳煤矿设计研究院 批准部门:煤炭工业部规划设计总院 试行日期:1985年1月1日 整理: 校核: 二ΟΟ三年一月

说明 1.井巷道通风摩擦阻力系数表,是我国自行实测的矿井巷道通风阻力系数,(除锚喷支护外其它各种支护巷道系验证测定)于1983年3月由煤炭工业部设计管理局主持召开了鉴定会,本表系根据鉴定会纪要精神,进行修改后,汇编而成。 2.表中摩擦阻力系数a标是标准状态下(t=20℃,P=760mmHg,ψ=60%)空气重率r=1.2kg ?/m3时的a值。 3.巷道类别划分原则,以支护特征、巷道壁面特征、巷道装备等与摩擦阻力系数相关的影响因素分类,不以巷道使用名称和进、回风道等分类。 4.表中凡是平巷的皆包含无行人台阶的倾斜巷道,凡是斜巷皆指设有行人台阶而言,通风行人巷为不铺轨的巷道,胶带输送机巷均铺设一条单轨轨道。 5.无轨道的锚喷胶带输送机巷道的a值,未能实测,暂可参照锚喷通风行人巷(无轨道、台阶)的a值与胶带机的附加a值综合选取。即光爆凸凹度<150mm,a=(10.9~17.6)×10-4;普爆凸凹度>150mm,a=(11.6~19.9)×10-4。 6.光面爆破与壁面凸凹度划分的标准以煤炭部制订的“煤矿井巷工程光面爆破、锚杆、喷浆、喷射混凝土支护施工试行规程”为准,普通爆破系指采用光面爆破的煤矿一般常用的爆破方法。 7.巷道壁面平滑与粗糙的划分标准,以粗糙度的平均突起高度为准。混凝土井巷壁面,壁面平滑的粗糙度平均突起高度为0.00025m,壁面粗糙的粗糙度平均突起高度为0.0007m,为测量和选取方便,将壁面经过抹光或粉刷的视为壁面平滑,壁面未经过抹光或未粉刷的视为壁面粗糙。 8.系数值的来源依据,除已注明资料出处之外的实测值,均可查找本资料的附件部分,以便于选取系数值时参考现场条件。 9.本表所给出的a值,应用时需要乘以10-4,并不需再考虑装有设备、台阶和工作面采煤机的a附加值。 10.经实测、资料统计提供各类的a附加值:装有胶带输送机的巷道,a附加值(4~10)×10-4;没有行人台阶的巷道,a附加值(1~3)×10-4;巷道堵塞较严重时,a附加值(3~10)×10-4;弯曲的巷道,a附加值(2~5)×10-4;巷道断面局部变化(单、双轨)a附加值3×10-4;铺轨无道渣填充的平巷a附加值(1~3)×10-4;工作面采煤机的a附加值(6~9)×10-4. 11.1mmH2O=9.80665Pa h摩=(a×L×U/S3)×Q2 =R×Q2

3_流体流动时摩擦阻力系数的测定

生物系统传输过程实验报告 实验报告 课程名称:生物系统传输过程实验 指导老师:叶章颖 成绩:______ 实验名称:流体流动时摩擦阻力系数的测定 实验类型:__探究型实验__ 一、实验目的和要求(必填) 二、实验内容和原理(必填) 三、主要仪器设备(必填) 四、操作方法和实验步骤 五、实验数据记录和处理 六、实验结果与分析(必填) 一、实验目的 测定流体流动时的沿程阻力系数和局部阻力系数及不同流型下直管沿程阻力系数λ随雷诺数Re 的变化关系。掌握流量压强的测量方法。 二、实验装置 1.实验设备的基本情况 实验流程示意图见图1。 水泵2将储水槽1中的水抽出,送入实验系统,首先经玻璃转子流量计15、16测量流量,然后送入被测直管段测量流体在光滑管或粗糙管的流动阻力,或经10测量局部阻力后回到储水槽,水循环使用。被测直管段流体流动阻力△p 可根据其数值大小分别采用变送器12或空气-水倒置∪型管22来测量。 图1 流动阻力实验流程示意图 1-水箱;2-离心泵;3、4-放水阀;5、13-缓冲罐;6-局部阻力近端测压阀;7、15-局部阻力远端测压阀;8、20-粗糙管测压回水阀;9、19-光滑管测压回水阀;10-局部阻力管阀;11-U 型管进水阀;12-压力传感器;14-流量调节阀; 15、16-水转子流量计;17-光滑管阀;18-粗糙管阀; 21-倒置U 型管放空阀;22-倒置U 型管;23-水箱放水阀;24-放水阀; 专业:生物系统工程 姓名:邵建智 学号:3110100122 日期:2013.9.30 地点: 院楼D228

2.设备的主要技术数据 (1) 被测光滑直管段: 管径d —0.008m ; 管长L —1.69m ; 材料—不锈钢管 被测粗糙直管段: 管径 d —0.010m ; 管长L —1.69m ; 材料—不锈钢管 (2)被测局部阻力直管段: 管径 d —0.015m ;管长 L —1.2m ; 材料—不锈钢管 (3)压力传感器: 型号:LXWY 测量范围: 200 KPa (4)直流数字电压表: 测量范围: 0 ~ 200 KPa (5)离心泵: 型号: WB70/055 流量: 8(m 3/h) 扬程: 12(m) 电机功率: 550(W) (6)玻璃转子流量计: 型号 测量范围 精度 LZB —40 100~1000(L /h) 1.5 LZB —10 10~100(L /h) 2.5 3.实验设备的功能与特点 本实验装置可用于实验教学和科研。利用该实验装置,可学习和掌握光滑直管、粗糙直管的阻力系数与雷诺准数的测量方法;也可学习局部阻力的测量方法;学习几种压差测量方法;加深对流体流动阻力概念的理解。 本实验装置的特点: ⑴ 本实验装置数据稳定,重现性好,能给实验者明确的流体流动阻力概念。 ⑵ 雷诺准数的数据范围宽,可作出102~104三个数量级。能够测量出光滑管、粗糙管的阻力系数与雷诺准数的关系,同时也可以测量阀门局部阻力。 ⑶ 实验采用循环水系统,节约实验费用。 ⑷ 测量系统采用量程不同的两种流量计和压差测量仪表,测量精度较高。 ⑸ 采用压力传感器—数字表系统,测量大流量下的流体流动阻力, 实验数据稳定可靠。 三、实验原理 1. 直管摩擦系数λ与雷诺数Re 的测定 直管的摩擦阻力系数是雷诺数和相对粗糙度的函数,即)/(Re,d f ελ=,对一定的相对粗糙度而言,(Re)f =λ。 流体在一定长度等直径的水平圆管内流动时,其管路阻力引起的能量损失为: g P g P P h f f ρρ?=-=21 (1) 又因为摩擦阻力系数与阻力损失之间有如下关系(范宁公式) g u d l h g P f f 22λρ== ? (2) 整理(1)(2)两式得 2 2u P l d f ???=ρλ (3)

第二章习题及答案

第二章习题及答案

化工原理练习题 五.计算题 1. 密度为1200kg.m的盐水,以25m3.h-1的流量流过内径为75mm的无缝钢管。两液面间的垂直距离为25m,钢管总长为120m,管件、阀门等的局部阻力为钢管阻力的25%。试求泵的轴功率。假设:(1)摩擦系数λ=0.03;(2)泵的效率η=0.6 1.答案***** Z1+u2/2g+P1/ρg+He=Z2+u2/2g+P2/ρg+∑H f Z=0,Z=25m,u≈0,u≈0,P =P ∴H=Z+∑H=25+∑H ∑H=(λ×l/d×u/2g)×1.25 u=V/A=25/(3600×0.785×(0.07 5)) =1.573m.s ∑H=(0.03×120/0.075×1.573/(2×9.81)×1.25 =7.567m盐水柱 H=25+7.567=32.567m N=Q Hρ/102=25×32.567×120 0/

(3600×102) =2.66kw N轴=N/η=2.66/0.6=4.43kw 2.(16分) 如图的输水系统。已知管内径为d=50mm, 在阀门全开时输送系统的Σ(l+le ) =50m,摩擦系数可取λ=0.03,泵的性能曲线,在流量为6 m3.h-1至15 m3.h-1范围内可用下式描述: H=18.92-0.82Q2.,此处H为泵的扬程m,Q为 泵的流量m3.h-1,问: (1)如要求流量为10 m3.h-1,单位质量的水所需外加功为多少? 单位重量的水所需外加功为多少?此泵能否完成任务? (2)如要求输送量减至8 m3.h-1 (通过关小阀门来达到),泵的轴功率减少百分之多少?(设泵的效率变化忽略不计) 答案***** ⑴u=10/(3600×0.785×0.05)=1.415[m.s-1] Σhf =λ[Σ(l+le )/d](u2/2)

第二章习题及答案

化工原理练习题 五.计算题 1. 密度为1200kg.m的盐水,以25m3.h-1的流量流过内径为75mm的无缝钢管。两液面间的垂直距离为25m,钢管总长为120m,管件、阀门等的局部阻力为钢管阻力的25%。试求泵的轴功率。假设:(1)摩擦系数λ=0.03;(2)泵的效率η=0.6 1.答案***** Z1+u2/2g+P1/ρg+He=Z2+u2/2g+P2/ρg+∑H f Z=0,Z=25m,u≈0,u≈0,P=P ∴H=Z+∑H=25+∑H ∑H=(λ×l/d×u/2g)×1.25 u=V/A=25/(3600×0.785×(0.07 5)) =1.573m.s ∑H=(0.03×120/0.075×1.573/(2×9.81)×1.25 =7.567m盐水柱 H=25+7.567=32.567m N=Q Hρ/102=25×32.567×120 0/(3600×102) =2.66kw N轴=N/η=2.66/0.6=4.43kw 2.(16分) 如图的输水系统。已知管内径为d=50mm, 在阀门全开时输送系统的Σ(l+le ) =50m,摩擦系数可取λ=0.03,泵的性能曲线,在流量为 6 m3.h-1至15 m3.h-1范围内可用下式描述: H=18.92-0.82Q2.,此处H为泵的扬程m,Q为泵的流量m3.h-1,问: (1)如要求流量为10 m3.h-1,单位质量的水所需外加功为多少? 单位重量的水所需外加功为多少?此泵能否完成任务? (2)如要求输送量减至8 m3.h-1 (通过关小阀门来达到),泵的轴功率减少百分之多少?(设泵的效率变化忽略不计) 答案***** ⑴u=10/(3600×0.785×0.05)=1.415[m.s-1] Σhf =λ[Σ(l+le )/d](u2/2) =0.03×(50/0.05)(1.4152/2)=30.03 Pa/ρ+W=Pa/ρ+Z g+Σhf 1 - 2 W=Z2g+Σhf 1 - 2 =10×9.81+30.03=128.13 [J.kg] H需要=W/g=128.13/9.81=13.06[m] 而H泵=18.92-0.82(10)=13.746[m] H泵>H需故泵可用 ⑵N=H泵Q泵ρg/η ρg/η=常数 ∴N∝H泵Q泵N前∝13.746×10 H泵后=18.92-0.82(8)0 . 8 =14.59 N后∝14.59×8 N后/N前=14.59×8/(13.746×10)=0.849

流体阻力系数测定实验报告

化工原理实验 实验题目: ——流体流动阻力的测定姓名:沈延顺 同组人:覃成鹏 臧婉婷 王俊烨 实验时间:2011.10。24

一、实验题目:流体流动阻力的测定 二、实验时间:2011.10.24 三、姓名:沈延顺 四、同组人员:覃成鹏、臧婉婷、王俊烨 五、实验报告摘要: 进行流体流动的学习,知道流体的性质和如何计算流体阻力的方法。通过流体阻力实验,包括不锈钢管、镀锌钢管、突然扩大管路和层流管路的测定流体的流量和压降通过伯努利方程来推倒阻力系数和雷诺数之间的关系,来验证层流、湍流雷诺数与阻力系数之间的关系。流体阻力的大小关系到输送机械的动力消耗和输送机械的选择,测定流体流动阻力对化工及相关过程工业的设计、生产和科研具有重要意义。 六、实验目的及任务: 1、掌握测定流体流动阻力实验。 2、测定直管的摩擦阻力系数λ及突然扩大管路和阀门的局部阻力系数ζ。 3、测定层流管的摩擦阻力。 4、验证湍流区内摩擦阻力系数λ为雷诺数Re和相对粗糙度的函数。 5、将所得光滑管的λ—Re方程与Blasius方程相比较。 七、基本原理: 1、直管摩擦阻力 不可压缩流体(如水),在圆形直管中做稳定流动时,由于黏性和涡流的作

用产生摩擦阻力;流体在流过突然扩大管、弯头等管件时,由于流体运动的速度和方向突然变化,产生局部阻力。影响流体阻力的因素较多,在工程上通常采用量纲分析方法简化实验,得以在一定条件下具有普遍意义的结果,其方法如下:流体流动阻力与流体的性质,流体流经处的结合尺寸以及流动状态有关,可表示为: 引入下列无量纲数群。 雷诺数 相对粗糙度 管子长径比 从而得到: 令 可得摩擦阻力系数与压头损失之间的关系,这种关系可用实验方法直接测定。 式中——直管阻力,J/kg

2012化工原理a

一、流体流动 ●当20℃的甘油(ρ=1261kg/m3 ,μ=1499厘泊)在内径为100mm的管内流动时,若流速 为1.0m/s 时,其雷诺准数Re为__________,其摩擦阻力系数λ为________. ●对于城市供水、煤气管线的铺设应以支管阻力为主。 ●A.总管线阻力可略,支管线阻力为主 ●现场真空表的读数为8×104 Pa,该处绝对压力为(当时当地大气压为1×105 Pa)。用离心泵在两个敞口容器间输液。若维持两容器的液面高度不变,当关小输送管道的阀门后,管道的总阻力将____。 改变下列条件,对往复泵允许的安装高度没有影响( ) (A)减小泵的出口管路阻力(B)泵从武汉搬迁到拉萨 (C)改变液体的温度(D)改变泵吸入管道的(l+∑l e ) 以下说法错误的是_____。 A.往复泵流量不均匀,常用旁路调节流量。 B.转子流量计读取流量方便,测量精度高,但不耐高温高压 C.往复泵虽然有自吸能力,但安装位置不合适也会发生汽蚀现象 D.孔板流量计压头损失较文丘里流量计小 ●减少流体在管路中流动阻力Σh 的措施 ●某长方形截面的通风管道, 其截面尺寸为30×20mm,其当量直径de ●.如图示常温水由高位槽以1.5m/s流速流向低位槽,管路中装有孔板流量计和一个截止 阀, 已知管道为φ57×3.5mm的钢管,直管与局部阻力的当量长度(不包括截止阀)总和为60m,截止阀在某一开度时的局部阻力系数ζ为7.5。设系统为稳定湍流,管路摩擦系数λ为0.026,孔板流量计孔流系数近似不变。 求:⑴管路中的质量流量及两槽液面的位差△Z; ⑵阀门前后的压强差及汞柱压差计的读数R2。 若将阀门关小,使流速减为原来的0.8倍,设系统仍为稳定湍流,λ近似不变。问:⑶孔板流量计的读数R1 变为原来的多少倍? ●用一台离心泵将水池中的水(密度为1000 kg/m3)送至一表压为62 kPa的水洗塔顶,其流 程如图所示。已知离心泵吸入管段长度(包括局部阻力的当量长度,含入口阻力损失,下同)为60m,泵出口阀全开时排出管线长度200m(含出口阻力损失),全部管路均用φ108×4的碳钢管,管内流体流动摩擦系数均为0.025,其它数据如图所示。试求:(1)当离心泵入口处的真空表读数为25 kPa时系统水的流量q V(m3/s); (2)泵的压头H;若离心泵的效率为80%,泵的轴功率P a; 泵出口阀门全开时管路的特性曲线方程;

管路沿程阻力测定实验报告

实验一 管路沿程阻力测定 一 实验目的 1. 掌握流体流经管道时沿程阻力损失的测定方法。 2.测定流体流过直管时的摩擦阻力,确定摩擦系数λ与Re 的关系。 3.测定流体流过管件时的局部阻力,并求出阻力系数ξ 。 4.学会压差计和流量计的使用。 二 实验原理 流体在管路中流动时,由于粘性剪应力和涡流的存在,不可避免地会引起压强损耗。这种损耗包括流体流经直管的沿程阻力以及流体流动方向的改变或因管子大小、形状的改变所引起的局部阻力。 1.沿程阻力 2u d l p h 2 f ?=?=λρ λ称为直管摩擦系数,滞留时,;湍流时,λ与e R 的关系受管壁粗糙度的影响,需由实验测得。e 64R =λ 根据伯努利方程可知,流体流过的沿程阻力损失,可直接得出所测得的液柱压差计度数R(m)算出:()g -R p 水指ρρ=? 2.局部阻力 1)当量长度法2u d l l h 2e f ???? ? ??+=∑∑λ 2)阻力系数法2 u h 2 p ?=ξ ξ-局部阻力系数,无因次;u-在小截面管中流体的平均流速(m/s ) 三 实验装置与流程 1.本实验装置及设备主要参数: 被测元件:镀锌水管,管长2.0m ,管径(公称直径)0.021m ;闸阀D=3/4. 1)测量仪表:U 型压差计(水银指示液);LW —15型涡轮流量计(精度0.5级,量程0.4~4.0m /h, 仪器编号Ⅰ的仪表常数为599.41(次/升),仪器编号II 的仪表常数为605.30(次/升),MMD 智能流量仪)。 2)循环水泵。 3)循环水箱。

121014134)DZ15-40型自动开关。 5)数显温度表 2.流程: 流体流动阻力损失实验流程图 1)水箱 6)放空阀 11)取压孔 2)控制阀 7)排液阀 12)U 形压差计 3)放空阀 8)数显温度表 13)闸阀 4)U 形压差计 9)泵 14)取压孔 5)平衡阀 10)涡轮流量计 四 实验操作步骤及注意事项 1.水箱充水至80% 2.仪表调整(涡轮流量计﹑MMD 智能流量计仪按说明书调节) 3.打开压差计上平衡阀,关闭各放气阀。 4.启动循环水泵(首先检查泵轴是否转动,开全阀13,全关阀2,后启动)。 5.排气:(1)管路排气;(2)测压管排气;(3)关闭平衡阀,缓慢旋动压差计上放气阀排除压差计中的气泡(注意:先排进压管后排出压管,以防压差计中水银冲走),排气完毕。 6.读取压差计零位读数。 7.开启调节阀至最大,确定流量范围,确定实验点(8~10个),测定直管部分阻力和局部阻力(闸阀全开时)。 8测定读数:改变管道中的流量读出一系列流量s V 、压差1p ?或者2p ?。 注意:每改变一次流量后,必须等流动稳定后,才能保证测定数据的准确。 9实验装置恢复原状,打开压差计上的平衡阀,并清理实验场地。 1 2 3 4 5 6 7 8 9 11 11

化工原理练习题(1)含答案

《化工原理》复习材料 0绪论 0.1单元操作所说的“三传”是指__动量传递___、___热量传递__和___质量传递__。 0.2任何一种单位制都是由__基本单位__和__导出单位__构成的。 0.3重力单位制的基本单位是__长度__、__时间__和__力__。 0.4绝对单位制的基本单位是__长度__、__时间__和__质量__。 第一章 流体流动 一、填空题 1.1.流体静力学方程式仅适用于__连通着__的,__同一种连续__的,不可__压缩__静止流体。 1.2圆形直管内,流体体积流量一定,设计时若将d 增加一倍,则层流时h f 是原值的___16___倍;高度湍流时h f 是原值的___32___倍(忽略d ε变化的影响)。 1.3流量V q 增加一倍,孔板流量计的孔口速度为原来的____2__倍,转子流量计的阻力损失为原来的____1__倍,孔板流量计的阻力损失为原来的__4__倍,转子流量计的环隙通道面积为原来的____2__倍。 1.4流体在圆形管道中做层流流动,如果只将流速提高一倍,则阻力损失为原来的___2___倍,如果只将管径增加一倍而流速不变,则阻力损失为原来的_0.25__倍。 1.5处于同一水平面的液体,维持等压面的条件必须是__静止的___、_连通着的__、__同一种连续的液体__。流体流动时,要测取管截面上的流速分布,应选用___皮托管______流量计测量。 1.6如果流体为理想流体且无外加功的情况下,单位质量流体的机械能衡算式为__常数=++ρp u gz 22_;单位重量流体的机械能衡算式为_常数=++g p g u z ρ22_;单位体积流体的机械能衡算式为___常数=++p u gz 22 ρρ_。

摩擦系数及其计算

达芬奇1508年提出假设,摩擦系数一般为0.25 阿芒汤1699年,摩擦系数0.3 比尤里芬格1730年,摩擦系数0.3 库伦,十八世纪,确定压力对摩擦系数的影响,并求出几种材料配合的摩擦系数的不同数值。 俄国,科捷利尼科夫、彼得罗夫,十九世纪中叶,摩擦偶件的摩擦系数并非不变摩擦系数影响因素: 1材料本性及摩擦表面是否有膜(润滑油、氧化物、污垢) 2静止接触的延续时间 3施加载荷的速度 4摩擦组合件的刚度及弹性 5滑动速度 6摩擦组合件的温度状态 7压力 8物体的接触特性,表面尺寸,重叠系数 9表面质量及粗糙度 A Static Friction Model for Elastic—Plastic Contacting Rough Surfaces. 形状误差对过盈联接摩擦力的影响分析及其修正 摩擦分类: 1动摩擦力,对应于很大的、不可逆的相对位移,相对位移大小与外施力无关。2非全静摩擦力,对应于很小的、局部可逆的相对位移,位移大小与外施力成正比,称为初位移,微米级。 3全静摩擦力,对应于初位移的极限值,初位移转变成相对位移。 根据运动学特征划分 滑动摩擦、旋转摩擦(变相的滑动摩擦)、滚动摩擦 根据表面状态,是否润滑的特征 1纯净摩擦,无吸附膜、氧化物等 2干摩擦,表面间无润滑油、污垢等 3边界摩擦,表面被一层润滑油分开,润滑油极薄(<0.1微米) 4液体摩擦 5半干摩擦 6半液体摩擦 静摩擦系数,克服两物体的接触耦合、使之摆脱静止状态所耗费的最大切向力对应接触物体所受压力载荷的比率。 滑动摩擦系数,克服两物体相对移动的阻力(超出初位移的范围以外)所耗费的切向力对应接触物体所受压力载荷的比率。 滚动阻力系数,··· 库伦方程,采用的滚动摩擦系数 T——滚动摩擦力,r——圆柱体的半径,P——接触物体所受压力 接触面积、粗糙度、载荷的影响 由于固体表面的粗糙度及波纹度,使得两个固体表面总是在个别的点上发生接触。

流体阻力实验报告

化工原理实验报告 实验名称:流体流动阻力测定 班级: 学号: 姓名: 同组人: 实验日期:

流体阻力实验 一、摘要 通过测定不同阀门开度下的流体流量v q ,以及测定已知长度l 和管径d 的光滑直管和粗糙直管间的压差p ?,根据公式2 2u l p d ρλ?=,其中ρ 为实验温度下流体的密度;流体流速2 4d q u v π= ,以及雷诺数μ ρdu =Re (μ 为实验温度下流体粘度),得出湍流区光滑直管和粗糙直管在不同Re 下的λ值,通过作Re -λ双对数坐标图,可以得出两者的关系曲线,以及和光滑管遵循的Blasius 关系式比较关系,并验证了湍流区内摩擦阻力系数λ为雷诺数Re 和相对粗糙度ε/d 的函数。由公式 2 22 121p u u ρ ζ?+ =- 可求出突然扩大管的局部阻力系数,以及由Re 64=λ求出层流 时的摩擦阻力系数λ,再和雷诺数Re 作图得出层流管Re -λ关系曲线。 关键词:摩擦阻力系数 局部阻力系数 雷诺数Re 相对粗糙度ε/d 二、实验目的 1、掌握测定流体流动阻力实验的一般试验方法; 2、测定直管的摩擦阻力系数λ及突然扩大管的局部阻力系数ζ; 3、测定层流管的摩擦阻力系数λ; 4、验证湍流区内摩擦阻力系数λ为雷诺数Re 和相对粗糙度ε/d 的函数; 5、将所得光滑管的λ-Re 方程与Blasius 方程相比较。

三、实验原理 1、直管阻力损失函数:f (h f ,ρ,μ, l ,d ,ε, u )=0 应用量纲分析法寻找hf (ΔP /ρ)与各影响因素间的关系 1)影响因素 物性:ρ,μ 设备:l ,d ,ε 操作:u (p,Z ) 2)量纲分析 ρ[ML -3],μ[ML -1 T -1], l [L] ,d [L],ε[L],u [LT -1], h f [L 2 T -2] 3)选基本变量(独立,含M ,L ,T ) d ,u ,ρ(l ,u ,ρ等组合也可以) 4)无量纲化非基本变量 μ:π1=μρa u b d c [M 0L 0T 0] =[ML -1 T -1][ML -3]a [LT -1]b [L]c ? a=-1,b=-1,c=-1 变换形式后得:π1=ρud /μ l: π2=l/d ε: π3=ε/d h f : π4=h f /u 2 5)原函数无量纲化 0, ,,2=??? ? ? ?d l d du u h F f εμ ρ 6)实验 22,22u d l u d l d du h f ?=????? ? ??=λεμρ? 摩擦系数:()d ε?λR e,= 层流圆直管(Re<2000):λ=φ(Re )即λ=64/Re 湍流水力学光滑管(Re>4000):λ=0.3163/Re 0.25 湍流普通直管(4000临界点):λ=φ(ε/d)即 ?? ? ??-=d ελ2log 274.11 2、局部阻力损失函数 2 2 u h f ζ= 局部阻力系数:(局部结构)?ζ= 考虑流体阻力等因素,通常管道设计液速值取1~3m/s ,气速值取10~30m/s 。

相关主题
文本预览
相关文档 最新文档