当前位置:文档之家› 智能穿戴专用天线AAN5320H1R2G5G V1

智能穿戴专用天线AAN5320H1R2G5G V1

智能穿戴专用天线AAN5320H1R2G5G V1
智能穿戴专用天线AAN5320H1R2G5G V1

Electrical Specification

The specification is defined on EVB.

Dimension and Terminal Configuration

PCB Dimension

Antenna Layout Reference

unit :mm

Return Loss & Radiation Return Loss

Radiation

Frequency 2.45GHz Peak gain 0.87dBi Average gain -2.77dBi

Efficiency

54.80%

Frequency Peak gain Average gain Efficiency

Taping Specifications

Checking note Index Spec (mm) Internal diameter of reel

A

60.20 ± 0.50

External diameter of reel

B

178 ± 1.00

Quantity/per reel 2000 pcs Tape material

Plastic (embossed)

Checking note

Index Spec (mm) Sprocket hole

D0 1.50 +0.10/-0.00 Distance sprocket hole to outside E1 1.75 ± 0.10 Distance sprocket hole to pocket F 5.50 ± 0.05 Distance sprocket hole to

sprocket hole

P0 4.00 ± 0.10 Distance pocket to pocket P1 4.00 ± 0.10 Distance sprocket hole to pocket

P2 2.00 ± 0.05 Tape width

W 12.00 +0.30/-0.10 Pocket width nominal clearance A0 2.28 ± 0.13 Pocket length nominal clearance B0 5.70 ± 0.13 Pocket depth minimum clearance K0 1.58 ± 0.10 Thickness of tape

T

0.23 ± 0.02

Reliability Table

Revision History

MIMO无线技术的研究现状与发展趋势

MIMO无线技术的研究现状与发展趋势 2009-07-28 17:19:47 https://www.doczj.com/doc/5d16368723.html, 来源:互联网 摘要MIMO无线技术是通信领域的一项重要技术突破,堪称新一代无线通信系统中的关键技术之一。文章详细探讨了MIM0无线通信技术的原理,并与智能天线技术进行对比,分析了国内外研究现状与发展趋势,包 ... 摘要 MIMO无线技术是通信领域的一项重要技术突破,堪称新一代无线通信系统中的关键技术之一。文章详细探讨了MIM0无线通信技术的原理,并与智能天线技术进行对比,分析了国内外研究现状与发展趋势,包括MIMO的算法开发、信道建模、天线设计、测试平台构建、芯片开发与技术标准化进展等,为深入认识与研究MIM0通信技术奠定了基础。 1、引言 随着无线互联网多媒体通信的快速发展,无线通信系统的容量与可靠性亟待提升,常规单天线收发通信系统面临严峻挑战。采用常规发射分集、接收分集或智能天线技术已不足以解决新一代无线通信系统的大容量与高可靠性需求问题。可幸的是,结合空时处理的多天线技术——多入多出(MIMO)通信技术,提供了解决该问题的新途径。它在无线链路两端均采用多天线,分别同时接收与发射,能够充分开发空间资源,在无需增加频谱资源和发射功率的情况下,成倍地提升通信系统的容量与可靠性。然而,与常规单天线收发通信系统相比,MIMO通信系统中多天线的应用面临大量亟待研究的问题。 2、MIMO无线通信技术 2.1传统单天线系统向多天线系统演进 传统无线通信系统采用一副发射天线和一副接收天线,称作单入单出(SISO)系统。SISO系统在信道容量上具有一个不可突破的瓶颈——Shannon容量限制。针对移动通信中的多径衰落与提高链路的稳定性,人们提出了天线分集技术。而将天线分集与时间分集联合应用,还能获得空间维与时间维的分集效益。因此,从传统单天线系统向多天线系统演进是无线通信发展的必然趋势。 2.2智能天线向多天线系统演进

智能天线技术原理及其应用

智能天线技术原理及其应用 一、智能天线技术的原理 智能天线原名自适应天线阵列(AAA,Adaptive Antenna Ar-ray)。最初的智能天线技术主要用于雷达、声纳、抗干扰通信等,用来完成空间滤波和定位,后来被引入移动通信系统中。智能天线通常包括波束转换智能天线(Switched Beam Antenna)和自适应阵列智能天线(Adaptive Array Antennal。智能天线的原理是将无线电的信号导向具体的方向,产生空间定向波束,使天线主波束对准用户信号到达方向DOA(DirectionofArrlnal),旁瓣或零陷对准干扰信号到达方向,达到充分高效利用移动用户信号并删除或抑制干扰信号的目的。同时,智能天线技术利用各个移动用户间信号空间特征的差异,通过阵列天线技术在同一信道上接收和发射多个移动用户信号而不发生相互干扰,使无线电频谱的利用和信号的传输更为有效。在不增加系统复杂度的情况下,使用智能天线可满足服务质量和网络扩容的需要。总之。自适应阵列智能天线利用基带数字信号处理技术,通过先进的算法处理,对基站的接收和发射波束进行自适应的赋形,从而达到降低干扰、增加容量、扩大覆盖和提高无线数据传输速率的目的。 移动通信信道传输环境较恶劣。实际环境中的干扰和多径衰落现象异常复杂。多径衰落、时延扩展造成的符号间串扰ISI、FDMATDMA系统(如GSM)由于频率复用引入的同信道干扰、CDMA系统中的MAI等都使链路性能、系统容量下降。使用自适应阵列天线技术能带来很多好处,如扩大系统覆盖区域、提高系统容量、提高数据传输速率、提高频谱利用效率、降低基站发射功率、节省系统成本、减少信号间干扰与电磁环境污染等。自适应阵天线一般采用4-16天线阵元结构,在FDD中阵元间距1/2波长,若阵元间距过大,则接收信号彼此相关程度降低:太小则会在方向图形成不必要的栅瓣,故一般取半波长。而在TDD 中,如美国Ar-rayComm公司在PHS系统中的自适应阵列天线的阵元间距为5个波长。间距宽而波束更窄,而PHS系统中采用TDD模式,因而更容易进行定位处理。即使旁瓣多,但由于用户和信道都比较少,因而不会带来不利的影响。阵元分布方式有直线型、圆环型和平面型。自适应天线是智能天线的主要类型,可以实现全向天线,完成用户信号接收和发送。自适应阵天线系统采用数字信号处理技术识别用户信号到达方向,并在此方向形成天线主波束。自适应阵天线根据用户信号的不同空间传播方向提供不同的空间信道,等同于信号有线传输的线缆,有效克服了干扰对系统的影响。虽然天线阵列是射频前端的很重要的设备,但自适应阵列天线技术最重要的部分还在于基带处理部分。基带部分将自适应天线阵接收到的信号进行加权和合并,从而使信号与干扰加噪声比最大。 二、智能天线在移动通信中的应用 第三代移动通信标准组织已经认识到智能天线在降低网络干扰方面的重要作用,因此,在3G标准如WCDMA和CDMA2000中,支持智能天线的条款已经出现,智能天线已成为3G的重要组成部分。

柔性共形阵天线技术的发展及应用

柔性共形阵天线技术的发展及应用 共形阵天线是和物体外形保持一致的天线阵,将天线阵面与载体外形“共形”,增强了适应性,相对于平面阵天线有很大的优势。在现代无线通信系统中,共形阵天线由于能够与飞机、导弹以及卫星等高速运行的载体平台表面相共形,且并不破坏载体的外形结构及空气动力学等特性,成为天线领域的一个研究热点,是新世纪相控阵雷达发展的一个重要方向。其中,柔性共形阵天线(后面重点介绍)是更先进的一种共形阵天线技术,不仅可以和任意曲面共形,能够随着外形变化进行动态调整适应而且对于飞行器因气动、冷热等引起的振动和外形变化具有更好的适应性。目前中国、美国、日本都在进行相关研究,中国已经研制成功采用圆柱阵的相控阵雷达和直升机共形天线。 共形阵天线技术发展历史 共形阵的研究实际上很早就开始了,上世纪30年代雷达刚刚出现的时候,科学家就开始对圆环阵、圆锥阵等特别形状天线进行研究,它们被视为共形阵的基础和突破口。上世纪80年代以后,随着信息革命的爆发,微电子技术迅速发展,一系列新器件、工艺的出现,为共形阵的运用打下了坚实的基础,目前共形阵已经开始部分实用,共形相控阵天线已经运用到各种雷达,如地面、舰载、机载探测雷达,电子战系统、通信系统等,运用领域也越来越广泛。 共形天线已经走入实用 共形阵天线技术特点 传统的相控阵雷达天线一般采用线阵或者平面阵,它的优点就是结构比较简单,技术处理比较容易,各方面理论比较成熟,因此费用、成本等较低,是目前相控阵雷达广泛使用的天线形式。不过平面相控阵天线也有自己一些先天的不足之处,限制它进一步的发展。 决定雷达探测距离两个参数:孔径和功率。想提高雷达的探测距离,就必须提高雷达的孔径,但是飞机上空间有限,难以找到较大的空间给平面阵,这样共形阵就出现了,共形阵最大的特点就是能够和载体表面共形,这样的话,就可以有效的扩展雷达天线的孔径,相

智能应用的发展趋势

智能控制研究新进展 人工神经网络,一种模仿动物神经网络行为特征,进行分布式并行信息处理的算法数学模型。这种网络依靠系统的复杂程度,通过调整内部大量节点之间相互连接的关系,从而达到处理信息的目的。人工神经网络具有自学习和自适应的能力,可以通过预先提供的一批相互对应的输入-输出数据,分析掌握两者之间潜在的规律,最终根据这些规律,用新的输入数据来推算输出结果,这种学习分析的过程被称为“训练”。 1. 智能控制的特点 ①、不确定性的模型 智能控制的研究对象通常存在严重的不确定性。这里所说的模型不确定性包含两层意思:一是模型未知或知之甚少;二是模型的结构和参数可能在很大范围内变化。 ②、高度的非线性 对于具有高度非线性的控制对象,采用智能控制的方法往往可以较好地解决非线性系统的控制问题。 ③、复杂的任务要求 对于智能控制系统,任务的要求往往比较复杂。 2.智能控制与传统控制的关系 智能控制与传统的或常规的控制有密切的关系,不是相互排斥的。常规控制往往包含在智能控制之中,智能控制也利用常规控制的方法来解决“低级”的控制问题,力图扩充常规控制方法并建立一系列新的理论与方法来解决更具有挑战性的复杂控制问题。 传统的自动控制是建立在确定的模型基础上的,而智能控制的研究对象则存在模型严重的不确定性,即模型未知或知之甚少者模型的结构和参数在很大的范围内变动,比如工业过程的病态结构问题、某些干扰的无法预测,致使无法建立其模型,这些问题对基于模型的传统自动控制来说很难解决。 传统的自动控制系统对控制任务的要求要么使输出量为定值(调节系统),要么使输出量跟随期望的运动轨迹(跟随系统),而智能控制为解决这类复杂的非线性问题找到了一个出路,成为解决这类问题行之有效的途径。工业过程智能控制系统除具有上述几个特点外,又有另外一些特点,如被控对象往往是动态的,而且控制系统在线运动,一般要求有较高的实时响应速度等,恰恰是这些特点又决定了它与其它智能控制系统如智能机器人系统、航空航天控制系统、交通运输控制系统等的区别,决定了它的控制方法以及形式的独特之处。

智能天线平台研究论文

智能天线平台研究论文 摘要:介绍了智能天线的起源、发展以及天线实验平台的研究概况;提出了一个智能天线实验平台的实现方案。该方案基于新一代数字信号处理器TMS320C6701,采用高速A/D、D/A以及零中频I/Q调制解调技术,工作于2.4GHz,采用八元天线阵列。该平台用于移动通信中智能天线算法、空时编码、MIMO技术和软件无线电技术的研究。 关键词:移动通信智能天线DSP软件无线电 1智能天线技术的起源与发展 智能天线的概念是二十世纪80年代末到90年代初提出的。广义的智能天线可以理解为能够收集、处理信息并利用已获得的知识自动调整结构参数以适应不同情况的天线。目前大家讨论的智能天线系统都与移动,特点是蜂窝移动系统紧相连,一般指由多个天线单元组成的天线阵列系统。它可以利用数字信号处理技术的多个不同的用户产生多个不贩空间波束。每个波速的最大方向自动地对准各自用户的方法,而把零接收方向对准干扰方向,从而提高移动通信系统的性能。 近年来大量的研究表明,智能天线可以在以下方面提高未来移动通信系统的性能:(1)扩大系统的覆盖区域;(2)提高系统容量;(3)提高频谱利用率;(4)减少信号间干扰(如同信道干扰、多址干扰和多径干扰等);(5)降低基站发射功率,减少电磁环境污染。 智能天线最初以自适应天线的形式广泛应用于雷达、声纳及军事通信领域。由于价值等因素一直未能普及到其他通信领域。近二十年来,移动通信事业飞展,移动礁用户呈爆炸性增长,通信资源匮乏日益严重,通信容量不足、通信质量下降等成亟待解决的问题。如何消除同信道干扰、多十干扰与多径衰落的影响成为提高无线通信系统性能考虑的主要因素。自二十世界80年代开始,即第一代蜂窝移动通信系统开始,人们便开始探讨利用自适应天线消除同信道干扰和多径衰落的影响、获得多分集增益。到二十世纪90年代初,这一思想发展为智能天线的概念;二十世纪90年代末,随着软件无线电技术的发展,人们进一步提出了软件天线的概念。近年来,由于数字信号处理技术的迅速发展,数字信号处理芯片处理能力不断提高,使利用数字技术在基带进行波束成形成为可能,由此代替

智能天线技术的工作原理概要

智能天线技术的工作原理 智能天线技术的工作原理,特征和技术优势分析 智能天线(SmartAntenna或IntelligentAntenna)最初应用于雷达,声纳及军用通信领域.近年来,现代数字信号 处理技术发展迅速,DSP芯片处理能力的不断提高和芯片价格的不断下降,使得 利用数字技术在基带形成天线波束成为可行,促使智能天线技术开始在.采用波束空间处理方式可以从多波束中选择信号最强的几个波束,以取得符合质量要求的信号,在满足阵列接收效果的前提下减少运算量和降低系统复杂度.波束赋型算法概况 智能天线技术研究的核心是波束赋型的算法.从是否需要参考信号(导频序列或导频信道)的角度来划分,这些算法可分为盲算法,半盲算法和非盲算法三类.非盲算法是指须借助参考信号的算法.由于发送时的参考信号是预先知道的,对接收到的参考信号进行处理可以确定出信道响应,再按一定准则(如著名的迫零准则)确定各加权值,或者直接根据某一准则自适应地调整权值(也即算法模型的抽头系数),以使输出误差尽量减小或稳定在可预知的范围内.常用的准则有 MMSE(最小均方误差),LMS(最小均方)和RLS(递归最小二乘)等等;而自适应调整则采取最优化方法,最常见的就是最大梯度下降法.盲算法则无须发送参考信号或导频信号,而是充分利用调制信号本身固有的,与具体承载信息比特无关的一些特征(如恒包络,子空间,有限符号集,循环平稳等)来调整权值以使输出误差尽量小.常见的算法有常数模算法(CMA),子空间算法,判决反馈算法等等.常数模算法利用了调制信号具有恒定的包络这一特点,具体又分最小二乘CMA算法,解析CMA算法,多目标LS-CMA算法等;子空间算法则将接收端包含有其它用户干扰及信道噪声的混合空间划分为信号子空间和噪声子空间,对信号子空间进行处理;判决反馈算法则由收端自己估计发送的信号,通过多次的迭代,使智能天线输出向最优结果不断逼近.非盲算法相对盲算法而言,通常误差较小,收敛速度也较快,但发送参考信号浪费了一定的系统带宽.为此,学者们又发展了半盲算法,即先用非盲算法确定初始权值,再用盲算法进行跟踪和调整.这样做一方面可综合二者的优点,一方面也是与实际的通信系统相一致的,因为通常导频信息不是时时发送而是与对应的业务信道时分复用的.智能天线的优点 智能天线可以明显改善无线通信系统的性能,提高系统的容量.具体体现在下列方面: 提高频谱利用率.采用智能天线技术代替普通天线,提高小区内频谱复用率,可以在不新建或尽量少建基站的基础上增加系统容量,降低运营商成本. 迅速解决稠密市区容量瓶颈.未来的智能天线应能允许任一无线信道与任一波束配对,这样就可按需分配信道,保证呼叫阻塞严重的地区获得较多信道资源,等效于增加了此类地区的无线网络容量. 抑制干扰信号.智能天线对来自各个方向的波束进行空间滤波.它通过对各天线元的激励进行调整,优化天线阵列方向图,将零点对准干扰方向,大大提高阵列的输出信干比,改善了系统质量,提高了系统可靠性.对于软容量的CDMA系统,信干比的提高还意味着系统容量的提高. 抗衰落.高频无线通信的主要问题是信号的衰落,普通全向天线或定向天线都会因衰落使信号失真较大.如果采用智能天线

基于软件无线电的智能天线技术研究

基于软件无线电的智能天线技术研究 摘要:针对无线通信领域中存在的多种通信体系共存,各种标准竞争激烈等问题提出基于软件无线电的智能天线技术。简述了目前软件无线电的研究状况及无线电的关键技术之一——智能天线,采用软件无线电和智能天线融合的方法研究,较好地解决了体系共存和频带资源使用问题。基于软件无线电技术的智能天线采用开放式结构,系统可重构,通过同时对信号在时间和空间上进行采样和处理,可以更充分地开发信号中蕴含的有用信息。 关键词:软件无线电;智能天线 1. 引言 智能天线是一种用于个人移动通信,能够根据所处的电磁环境智能地调节自身参数,从而使通信系统保持最佳性能的阵列天线,它通过调节各阵元信号的加权幅度和相位来改变阵列的方向图形状,从而对干扰信号进行抑制,提高所需信号的信噪比,改善整个通信系统的性能。 2. 智能天线的基本特点 2.1智能天线与通常的自适应天线的不同点 1)首先,两者的应用目的不同。自适应天线阵是采用迭代自适应算法,应用于军事抗干扰通信的阵列天线,主要用于雷达系统的目标跟踪和干扰抵消;而发展智能天线的初衷是通过抑制干扰和抵抗衰落来增加移动系统的容量,提高频谱利用率,进而实现SDMA。 2)常规自适应天线阵一般接收到的干扰信号具有很强的功率电平,并且干扰源数目与天线阵列单元数相当。而在无线通信系统中,由于多用户通信以及多径传播环境,使得到达天线阵列的干扰数目远大于天线阵列单元数,同时其功率电平一般都小于直射信号。 3)自适应天线只是从干扰中捕获一个源的期望信号,而智能天线是多用户系统,需要从同一信道中提取出各个用户的信号,不仅包括智能化接收,还包括多用户多波束智能化发射。考虑到用户的移动将带来信道的时变性,因此智能天线实现起来更复杂,技术要求更高。2.2.智能天线应用于移动通信具有以下优势: 1)可以大大减少电波传播中的多径衰落。由于无线通信系统的性能很大程度上取决于衰落的深度和速度,因此,降低信号在传播中的变化可以提高通信系统的性能。 2)可以大大提高系统容量。采用智能天线可以提高信号干扰比SlR,而系统容量取决于SIR,SIR的提高意味着容量的增加。 3)可以延长移动台电池的使用寿命。天线波束赋形的结果等效于提高天线的增益,因此

智能机器人的现状和发展趋势

智能移动机器人的现状和发展 姓名 学号 班级:

智能移动机器人的现状及其发展 摘要:本文扼要地介绍了智能移动机器人技术的发展现状,以及世界各国智能移动机器人的发展水平,然后介绍了智能移动机器人的分类,从几个典型的方面介绍了智能移动机器人在各行各业的广泛应用,讨论了智能移动机器人的发展趋势以及对未来技术的展望,最后提出了自己的建议和设想,分析我国在智能移动机器人方面发展并提出期望。 关键词:智能移动机器人;发展现状;应用;趋势 1引言 机器人是一种可编程和多功能的,用来搬运材料、零件、工具的操作机,或是为了执行不同的任务而具有可改变和可编程动作的专门系统。智能移动机器人则是一个在感知 - 思维 - 效应方面全面模拟人的机器系统,外形不一定像人。它是人工智能技术的综合试验场,可以全面地考察人工智能各个领域的技术,研究它们相互之间的关系。还可以在有害环境中代替人从事危险工作、上天下海、战场作业等方面大显身手。一部智能移动机器人应该具备三方面的能力:感知环境的能力、执行某种任务而对环境施加影响的能力和把感知与行动联系起来的能 力。智能移动机器人与工业机器人的根本区别在于,智能移动机器人具有感知功 能与识别、判断及规划功能[1] 。 随着智能移动机器人的应用领域的扩大,人们期望智能移动机器人在更多领 域为人类服务,代替人类完成更复杂的工作。然而,智能移动机器人所处的环境 往往是未知的、很难预测。智能移动机器人所要完成的工作任务也越来越复杂; 对智能移动机器人行为进行人工分析、设计也变得越来越困难。目前,国内外对 智能移动机器人的研究不断深入。 本文对智能移动机器人的现状和发展趋势进行了综述,分析了国内外的智能 移动机器人的发展,讨论了智能移动机器人在发展中存在的问题,最后提出了对 智能移动机器人发展的一些设想。 1

第四代移动通信系统中的多天线技术

第四代移动通信系统中的多天线技术[转] (2008-09-15 15:46:44) 转载 分类:信息论与编码 标签: 杂谈 一、引言 由于第三代移动通信系统(3G)还存在一些不足,包括很难达到较高的通信速率,提供服务速率的动态范围不大,不能满足各种业务类型要求,以及分配给3G系统的频率资源已经趋于饱和等,于是人们提出了第四代移动通信系统(4G)的构想。4G的关键技术包括: (1)调制和信号传输技术(OFDM); (2)先进的信道编码方式(Turbo码和LDPC); (3)多址接入方案(MC-CDMA和FH-OFCDMA); (4)软件无线电技术; (5)MIMO和智能天线技术; (6)基于公共IP网的开放结构。 研究表明,在基于CDMA技术的3G中使用多天线技术能够有效降低多址干扰,空时处理能够极大增加CDMA系统容量。凭在提高频谱利用率方面的卓越表现,MIMO和智能天线成为4G发展中炙手可热的课题。 二、智能天线技术 智能天线最初用于雷达、声纳及军事通信领域。使用智能天线可以在不显著增加系统复杂程度的情况下满足服务质量和扩充容量的需要。 1.基本原理和结构 智能天线利用数字信号处理技术,采用先进的波束转换技术(switched beam technology)和自适应空间数字处理技术(adaptive spatial digital processing technology),判断有用信号到达方向(DOA)通过选择适当的合并权值,在此方向上形成天线主波束,同时将低增益旁瓣或零陷对准干扰信号方向。在发射时,能使期望用户的接收信号功率最大化,同时使窄波束照射范围外的非期望用户受到的干扰最小,甚至为零。 智能天线引入空分多址(SDMA)方式。在相同时隙、相同频率或相同地址码的情况下,用户仍可以根据信号空间传播路径的不同而区分。实际应用中,天线阵多采用均匀线阵或均匀圆阵。智能天线系统由天线阵;波束成形成网络;自适应算法控制三部分组成

自动化毕业论文智能无线技术简介

智能无线技术简介 智能天线原名自适应天线阵列(AAA,Adaptive Antenna Array),最初应用于雷达、声纳、军事方面,主要用来完成空间 滤波和定位,大家熟悉的相挂阵雷达就是一种较简单的自适应无 线阵。移动通信研究者给应用于移动通信的自适应无线阵起了一 个较吸引入的名字:智能无线,英文名为smart antenna或Intelligent antenna。 1.基本结构顾名思义自适应天线阵由多 个天线单元组成,每一个天线后接一个加权器(即乘以某一个系数,这个系数通常是复数,既调节幅度又调节相位,而在相控阵 雷达中只有相位可调),最后用相加器进行合并。这种结构的智 能天线只能完成空域处理,同时具有空域、时域处理能刀的智能 天线在结构上相对复杂些,每个天线后接的是一个延时抽头加权 网(结构上与时城FIR均衡器相同)。自适应或智能的主要含义 是指这些加权系数可以恰当改变自适应调整。上面介绍的其实是 智能天线用作接收天线时的结构,当用它进行发射时结构稍有变化,加权器或加权网络置于天线之前,也没有相加合并器。 2.工 作原理假设满足天线传输窄带条件,即某~人射信号在各天线单 元的响应输出只有相位差异而没有幅度变化,这些相位差异由人 射信号到达各天线所走路线的长度差决定。若人射信号为平面波(只有一个人射方向),则这些相位差由载波波长、人射角度、 天线位置分布唯一确定。给足~粗加权值,一定的人射信号强度,不同人射角度的信号由于在天线问的相位差不同,合并器后的输 出信号强度也会不同。以人射角为横坐标对应的智能无线输出增 益(dB)为纵坐标所作的图被称为方向图(天线术语),智能天 线的方向图不同于全向(omni-)天线(理想时为一直线),而

智能设备应用与前景

智能设备的特点及发展趋势 电脑,智能手机,照相机,洗衣机等传统智能设备的出现颠覆了世界,从此,人类的生活发生了巨大的改变,而这种改变也一直使人们对新时代智能设备的发展抱有无限憧憬。如今,随着物联网的发展,新式智能设备不断传出。 举例1:iwatch苹果智能手表,以最简单的形式在传统手环上嵌入柔性显示屏以及必要的电子元件。双稳定弹簧由薄钢条制成,然后用纤维物包裹并加热封闭。显示器将用胶粘剂粘在手环一侧,而设备的主板、电池和其他部件安装在另一侧。通过这种方式安装部件,在佩戴时手环将盖住重要的电子模块。当其处于“卷曲状态”时,手环仍可呈现出不间断屏幕的形式。上面的传感器,如陀螺仪和加速计,将帮助其定位屏幕上的信息,方便用户浏览,可与智能手机连网。这款设备可以通过蓝牙或WiFi与包括iPhone和其他智能手机在内的便携式设备连网,实现信息共享。用户还可以通过这款设备完成很多工作,包括调整播放清单、查看最近通话记录和回复短信息等。 举例2:智能手环,是新兴起的一个科技领域,它可以跟踪用户的日常活动、睡眠情况和饮食习惯等,并可将数据与iOS、Android 设备同步,帮助用户了解和改善自己的健康状况。 举例3:BrainLink 智能头箍,BrainLink是一个安全可靠,佩戴简易方便的头戴式脑电波传感器。它可以通过蓝牙无线链接手机、平板电脑、手提电脑、台式电脑或智能电视等终端设备。配合相应的应用软件就可以实现意念力互动操控。Brainlink引用了国外先进的脑机

接口技术,其独特的外观设计、强大的培训软件深受广大用户的喜爱。它能让手机或平板电脑即使了解到您的大脑状态,例如是否专注、紧张、放松或疲劳等。您也可以通过主动调节自己的专注度和放松度来给予手机平板电脑指令,从而实现神奇的“意念力操控”。 举例4:智能抽油机,智能抽油机与磕斗机相比,实现了信息自动采集和远程控制功能,解决了长期存在的“干抽”和“卡泵”等难题,并利用无线数据传输系统,可将产量、液面、深度、运行参数、故障警报等数据信息,发送到用户手机或计算机终端上,同时用户也可用手机或计算机远程控制设备的运行,大大提高了工作效率和机械化程度。 举例5:穿戴式胎语依,传统的设备仅仅只是听一个胎心,胎音。胎语仪除了听胎音和胎心之外,还可以实时的把这个曲线绘制出来,医生可以通过这个胎心曲线知道胎儿是不是缺氧,在体内是否健康,更多的除了医学意义之外,因为它是跟无线互联网联合在一起,因此可以把娱乐性趣味性加进来,比如制作胎音音乐,摇篮曲等,因此大数据在智能穿戴设备中显得尤为重要。 举例6:谷歌眼镜,人们可利用语音指令拍摄照片、摄制视频、与他人在网上互动。不会在手机屏幕上提供搜索或导航结果,而是会将地图叠加到用户的视野中。 举例7:指套探测器,这种指套探测器的表面装有一些微小、极薄的传感器,能够检测被感知物的性质(如酸度),而内置于其超薄有机硅材料中的金属电路则负责处理数据。当它发现所寻找的东西

MIMO无线技术的研究现状与发展趋势

MIMO无线技术的研究现状与发展趋势 摘要MIMO无线技术是通信领域的一项重要技术突破,堪称新一代无线通信系统中的关键技术之一。文章详细探讨了MIM0无线通信技术的原理,并与智能天线技术进行对比,分析了国内外研究现状与发展趋势,包 ... 摘要 MIMO无线技术是通信领域的一项重要技术突破,堪称新一代无线通信系统中的关键技术之一。文章详细探讨了MIM0无线通信技术的原理,并与智能天线技术进行对比,分析了国内外研究现状与发展趋势,包括MIMO的算法开发、信道建模、天线设计、测试平台构建、芯片开发与技术标准化进展等,为深入认识与研究MIM0通信技术奠定了基础。 1、引言 随着无线互联网多媒体通信的快速发展,无线通信系统的容量与可靠性亟待提升,常规单天线收发通信系统面临严峻挑战。采用常规发射分集、接收分集或智能天线技术已不足以解决新一代无线通信系统的大容量与高可靠性需求问题。可幸的是,结合空时处理的多天线技术——多入多出(MIMO)通信技术,提供了解决该问题的新途径。它在无线链路两端均采用多天线,分别同时接收与发射,能够充分开发空间资源,在无需增加频谱资源和发射功率的情况下,成倍地提升通信系统的容量与可靠性。然而,与常规单天线收发通信系统相比,MIMO通信系统中多天线的应用面临大量亟待研究的问题。

2、MIMO无线通信技术 传统单天线系统向多天线系统演进 传统无线通信系统采用一副发射天线和一副接收天线,称作单入单出(SISO)系统。SISO系统在信道容量上具有一个不可突破的瓶颈——Shannon容量限制。针对移动通信中的多径衰落与提高链路的稳定性,人们提出了天线分集技术。而将天线分集与时间分集联合应用,还能获得空间维与时间维的分集效益。因此,从传统单天线系统向多天线系统演进是无线通信发展的必然趋势。 智能天线向多天线系统演进 智能天线的核心思想在于利用联合空间维度与天线分集,通过最优加权合并而最大化信干噪比,使信号出错的概率随独立衰落的天线单元数目呈指数减小,而系统容量随天线单元数目呈对数增长。然而,开关波束阵列仅适于信号角度扩展较小的传播环境,且自适应阵列虽可以用于信号角度扩展较大的多径传播环境,但在高强度的多径分量比较丰富的环境下,自适应天线系统抗衰落的能力相当有限,这是因为智能天线技术没有利用多径传播。由于增大阵元间距与角度扩展及结合空时处理都有利于捕获与分离多径,因此结合天线发射分集与接收分集技术,充分利用而不是抑制多径传播,进一步开发空域资源,提高无线传输性能,成为了无线通信发展的必然趋势,即从智能天线向多天线系统演进。 无线通信技术 MIMO无线通信技术是天线分集与空时处理技术相结合的产物,它源于天线分集与智能天线技术,具有二者的优越性,属于广义的智能天线的范畴。结合天线

智能公共交通系统在中国城市的应用及发展趋势

智能公共交通系统在中国城市的应用及发展趋势 摘要:智能交通系统是目前国内外公认的解决城市交通拥堵问题的重要途径之一,也是费效比最显著的途径.作为国内城市交通系统最重要组成部分之一的公共交通系统,近年来开始出现了大量智能公共交通系统方面的应用尝试.对我国目前城市投入应用的智能公共交通系统(APTS)的应用状况进行了分析,并根据我国当前国情,分析了我国智能公交系统未来可能的应用方向,提出了对智能公共交通系统改进的技术趋势分析. 关键词:智能公共交通系统,GPS,IC卡,应用 引言 我国是发展中国家,虽然近20年来始终保持了经济的高速增长,但是与西方发达国家相比,在城市基础设施尤其是公共交通基础设施方面,依然存在着很大的差距.同时近年来随着我国城镇化水平的快速提高,城镇人口数量在急剧增加.此外,我国的城镇化时期恰好又伴随着机动化,这必然造成有限的城市道路空间与巨大的机动车增长之间的冲突,给本来就非常拥堵的城市交通增加了更大的压力. 从世界范围来看城市交通的发展,几十年来世界各工业化国家城市机动交通的发

展历程,大都走过了先发展小汽车,后控制小汽车,最终选择发展大公交的曲折道路.我国土地资源稀缺,城市人口密集,群众收入水平总体不高,优先发展城市公共交通更是我们的现实选择.近年来,我国各个主要城市在常规公交设施方面投资较大,城市公交运力得以快速增加,万人公交车辆拥有量由2001年的6.1辆增长到2004年的8.4辆.但是城市公共交通客运量并没有相应大幅度提高,部分城市呈现下降趋势.在出行方式结构方面,我国主要大城市公共交通基本呈现下降趋势,公 交客运量和运力的比值均在下降,运力的增加不一定带来运量的增加. 如图1所示,我国主要大城市历年公交运量Π公交运力比值都出现了大幅度下降[1]. 当前,城市居民对公共交通系统最大的不满主要就是公交服务水平低,例如公交出行速度慢、舒适性差、换乘困难等方面.在传统公交系统建设模式下,改善上述问题需要巨额建设经费的支持,其建设成效还要受到城市交通整体环境的影响.与 之相对应,智能公共交通系统则是实现“公交优先”的最有效的途径之一. 所谓智能公共交通系统,就是在公交网络分配、公交调度等关键理论研究的前提下,利用系统工程的理论和方法,将现代通信、信息、电子、控制、计算机、网络、GPS、GIS等新技术集成应用于公共交通系统,通过构建现代化的信息管理系统和控制调度模式,实现公共交通调度、运营、管理的信息化、现代化和智能化,为出行者提供更加安全、舒适、便捷的公共交通服务,从而吸引公交出行,缓解 城市交通拥挤,有效解决城市交通问题,创造更大的社会和经济效益[2]. 1国内智能公共交通管理系统的应用现状 智能公共交通系统作为智能交通系统重要的子系统之一,在我国“十五”科技攻关的智能交通系统(ITS)城市示范中,北京市、上海市、青岛市、杭州市、重庆市等多个城市的ITS建设示范中都包括了 智能公共交通系统的内容.将其作为缓解城市交通拥堵、提高城市公共交通服务水平的重要途径. 当前我国城市智能公共交通系统方面的应用,主要集中在如下几个领域中[3]. 1.1公交车辆智能调度系统

智能天线综述

文章编号:1006-7043(2000)06-0051-06 智能天线综述 肖炜丹,楼 吉吉,张 曙 (哈尔滨工程大学电子工程系,黑龙江哈尔滨150001) 摘 要:智能天线技术作为ITM -2000(International Mobile Telephone -2000,2000年全球移动电话)的核心技术之一,受到国内外移动通信业的高度重视.本文对智能天线的基本概念、基本原理和国内外研究现状等进行了综合论述,并讨论了其相关技术及应用和发展前景,最后对智能天线技术研究中的难点和应注意的问题发表了看法.① 关 键 词:智能天线;软件无线电;移动通信;ITM -2000;第二代移动通信系统;第三代移动通信系统中图分类号:TN911.25 文献标识码:A Summ arization of Sm art Antennas XIAO Wei-dan ,LOU Zhe ,ZAN G Shu (Dept.of Electronic Eng.,Harbin Engineering University ,Harbin 150001,China ) Abstract :Great attention is paid to the application of smart antennas by mobile communication trade both here and abroad as one of the key techniques for ITM -2000(International Mobile Telephone -2000).The paper presented basic concepts and principles of the smart antennas ,including its research situation at home and abroad ,and then discussed correlated technologies and potential applications.Finally ,the authors ’opinions were presented about the difficulties and the problems that should be considered in the research of smart antennas. K ey w ords :smart antenna ;software radio ;mobile communication ;ITM -2000;2G;3G 近年来全球通信事业飞速发展,通信业务的需求量越来越大,特别是第三代移动通信等新概念的出现,对通信技术提出了更高的要求.第三代移动通信系统的理想目标是有极大的通信容量,有极好的通信质量,有极高的频带利用率.在复杂的移动通信环境和频带资源受限的条件下达到这一目标,主要受3个因素的限制:1)多径衰落;2)时延扩展;3)多址干扰.为克服这些限制,仅仅采用目前的数字通信技术是远远不够的.近几年开始研究的移动通信的智能技术,即智能移动通信技术,包括智能天线、智能传输、智能接收和智能 化通信协议等,为克服和减轻这些限制,达到或接近第三代移动通信系统的理想目的,提供了最有力的技术支持,已成为第三代移动通信系统最重要的技术保证.而其中的智能天线技术以其独特的抗多址干扰和扩容能力,不仅是目前解决个人通信多址干扰、容量限制等问题的最有效的手段,也被公认为是未来移动通信的一种发展趋势,成为第三代移动通信系统的核心技术.为便于广大通信爱好者能够对智能天线技术有所了解,本文将从智能天线的概念、原理、相关技术及其应用做一简要介绍. ①收稿日期:2000-06-01;修订日期:2000-11-15 作者简介:肖炜丹(1975-),男,黑龙江哈尔滨人,哈尔滨工程大学电子工程系硕士研究生,主要研究方向:通信与信息系统. 第21卷第6期 哈 尔 滨 工 程 大 学 学 报 Vol.21,№.62000年12月 Journal of Harbin Engineering University Dec.,2000

智能控制发展趋势及应用

智能控制的发展趋势和应用 学号0000000 姓名****** 老师钟春富

摘要:描述了智能控制产生的历史以及全世界对于智能控制有研究的多个国家在智能控制的研究方向以及研究水平,介绍了智能控制的发展趋势以及智能控制发展面临的问题,详述了智能控制的主要研究方向,说明了智能控制的应用方向以及具体应用,展望了智能控制的发展前景以及对于社会生产和日常生活的积极意义。 关键词:智能控制、模糊控制、神经网控制、专家控制、智能化。 一、智能控制的产生 人类的进化归根结底是智能的进化,而智能反过来又为人类的进步服务。我们学习与研究智能系统、智能机器人和智能控制等,其目的就在于创造和应用智能技术和智能系统,从而为人类进步服务。因此,可以说对智能控制的钟情、期待、开发和应用,是科技发展和人类进步的必然趋势。 在科学技术发展史上,控制科学同其他技术科学一样,它的产生与发展主要由人类的生产发展需求和人类当时的知识水平所决定和限制的。 20世纪以来,特别是第二次世界大战以来,控制科学与技术得到了迅速的发展,由研究单输入单输出被控对象的经典控制理论,发展成了研究多输入多输出被控对象的现代控制理论。1948年,美国著名的控制论创始人维纳(N.Wiener)在他的《控制论》中第一次把动物和机器相提并论,引起哲学界的轩然大波,有人骂控制论是“伪科学”。 直到1954年钱学森博士在《工程控制论》中系统地揭示了控制论这一新兴学科对电子通讯、航空航天和机械制造工业等领域的重要意义和深远影响后,反控制论的热潮才逐渐开始平息。20世纪60年代,由于空间技术,海洋技术和机器人技术发展的需要,控制领域面临着被控对象的复杂性和不确定性,以及人们对控制性能要求越来越高的挑战。被控对象的复杂性和不确定性表现为对象特性的高度非线性和不确定性,高噪声干扰,系统工作点动态突变性,以及分散的传感元件与执行元件,分层和分散的决策机构,复杂的信息模式和庞大的数据量。 面对复杂的对象,复杂的环境和复杂的任务,用传统控制(即经典控制和现代控制)

智能网联汽车技术应用与发展趋势

AUTO AFTERMARKET | 汽车后市场 智能网联汽车技术应用与发展趋势 吉星 李维晋 陕汽重型汽车有限公司 陕西省西安市 710200 摘 要: 智能网联汽车主要是指搭载信息化的执行器、控制器以及传感器装置,与网络技术和通信技术充分融合,实现汽车与云端、路、人的智能信息共享和交换,具有协同控制、智能决策以及环境感知等功能,进而实现“节能、舒适、高效以及安全”驾驶,智能网联汽车能够为驾驶者提供更加节能和安全的出行方式,是汽车行业的未来发展趋势。本文主要针对智能网联汽车技术应用与发展趋势进行分析和探究,希望给予我国汽车制造行业以些许参考和借鉴。 关键词:智能网联汽车;技术应用;发展趋势;分析 随着人工智能和移动互联网技术的蓬勃发展,其已经在诸多领域和行业实现了广泛应用,并且在世界范围内掀起了科技革命的热潮。随着时代的发展,汽车已经成为人们出行的重要工具,是仅次于智能手机的重要移动终端,并且趋于服务化、电动化、互联化以及自动化趋势发展,汽车的价值核心正在不断改变,共享出行、自动驾驶以及车联网开始被更多的人熟知并且认同。智能网联汽车是科技革命下的新兴产物,是互联化和自动化融合的科技体现,其不仅可以带给驾驶员以优质的驾驶体验,同时还具有较强的社会效益,例如减少拥堵、节能减排、保障安全以及改善交通等,拉动社会管理、服务、通讯、电子以及汽车的协同发展。 1 智能互联汽车发展现状 当前,随着汽车行业的快速发展,智能网联汽车逐渐受到公众和社会的高度重视,其是汽车技术的未来发展趋势,具有关联领域多、技术方案多以及功能涵盖多等特点,其关联不同的整车系统,强调车联网技术的应用与融合,产业化发展进程迅速,市场竞争日趋激烈。随着自动驾驶和智能网联技术的发展,世界多个城市根据智能网联汽车的发展,在不同道路开放了测试权限,例如我国在上海以及北京等城市发布了相关执行细 则。智能网联汽车想要完全实行自动驾驶, 真正达到智慧出行的终极目标,要结合人工 智能、卫星导航以及网络技术,消除驾驶员 对汽车的操控以及干扰程度。应用以及完善 辅助驾驶系统(ADAS ),是实现自动驾驶 的重要基础以及核心技术。 2 智能网联汽车技术应用 2.1 技术定义 智能网联汽车目前还处于初级阶段, 以辅助驾驶为主,通过利用辅助驾驶系统 (ADAS ),已经实现了智能化辅助驾驶, 开始进入自动驾驶测试环节。当前,世界很 多大型汽车制造企业都在积极开展自动驾驶 的相关研究工作,提出在2025年推动智能网 联汽车产业化、规模化生产。欧洲、日本、 美国以及中国等汽车产业发达的地区和国家, 开始尝试在辅助驾驶系统(ADAS )中融入 其他智能体系,进而提升其智能标准,推动 智能网联汽车的产业化发展,例如美国和欧 洲提出在2021年,将11项智能技术融入到 辅助驾驶系统(ADAS )中,实现系统的升 级改造,进而提升汽车的智能化程度,为自 动驾驶提供技术支撑。 辅助驾驶系统(ADAS )属于自动安全 技术的改造与升级,其系统包含多项先进技 术,以行车安全为核心和出发点,可以有 效解决汽车在行驶中的纵向以及横向安全 问题。在智能物联汽车中,辅助驾驶系统 (ADAS )的主要技术为:第一,传感器技 术,其作为系统的“眼睛”,具有传递诉求 和保证安全的作用,技术组成较为复杂;第二, 集成技术,其可以对转向系统、制动以及动 力进行电控集成,在高安全、高配置的技术 条件下,系统所具备的集成能力可以提升汽 车安全性能;第三,人机互动技术,其是人 工智能的重要体现,良好的人机互动可以提 升驾驶的安全性、便利性以及舒适性,但是 人机互动技术需要将正确的信息及时传递给 驾驶员,并且与车机系统完美融合,进而起 到优化驾驶体验的效果。 2.2技术应用 辅助驾驶系统(ADAS )是智能网联汽 车实现自动驾驶的技术基础以及核心,随着 汽车竞争行业的不断加剧,多家大型汽车制 造企业都将目光聚焦在自动驾驶上,并且将 其视为未来汽车的发展趋势,对辅助驾驶系 统(ADAS )技术的开发和研究也不断深入, 汽车装配率持续攀升。随着传感技术的快速 发展,消费者对安全驾驶更加重视和关注, 原本在B级别以及C级等高级车型中才会装 164AUTO TIME

4G中的MIMO智能天线技术

4G中的MIMO智能天线技术 一、引言 智能天线通常也称作自适应天线阵列,可以形成特定的天线波束,实现定向发送和接收,主要用于完成空间滤波和定位。从本质上看,它利用了天线阵列中各单元之间的位置关系,即利用了信号的相位关系克服多址干扰及多径干扰,这是它与传统分集技术的本质区别。 MIMO系统是指在发射端和接收端同时使用多个天线的通信系统,其有效地利用随机衰落和可能存在的多径传播来成倍地提高业务传输速率。其核心技术是空时信号处理,即利用在空间中分布的多个时间域和空间域结合进行信号处理。因此,可以被看作是智能天线的扩展。 智能天线系统在移动通信链路的发射端/或接收端带有多根天线,根据信号处理位于通信链路的发射端还是接收端,智能天线技术被定义为多入单出(MISO,Multiple Input Si ngle Output)、单入多出(SIMO,Single Input Multiple Output)和多入多出(MIMO,Multiple Input Multiple Output)等几种方式。 For personal use only in study and research; not for commercial use 二、多入多出智能天线收发机结构及研究进展 从图1可以看出,比特流在经过编码、调制和空时处理(波束成行或空时编码)后,映射成不同的信息符号,从多个天线同时发射出去;在接收端用多个天线接收,进行相应解调、解码及空时处理。

For personal use only in study and research; not for commercial use 图1多输入多输出智能天线收发机结构 MIMO系统中的空时处理技术主要包括波束成形(beamforming)、空时编码(space-time coding)、空间复用(space multiplexing)等。波束成形是智能天线中的关键技术,通过将主要能量对准期望用户以提高信噪比。波束成形能有效地抑制共道干扰,其关键是波束成行权值的确定。 1.MIMO系统的发射方案 For personal use only in study and research; not for commercial use MIMO系统的发射方案主要分为两种类型:最大化数据率的发射方案(空间复用SDM)和最大化分集增益的发射方案(空时编码STC)。最大化数据率发射方案主要通过在不同天线发射相互独立的信号实现空间复用。空时编码的方案是指在发射端对数据流进行联合编码以减小由于信道衰落和噪声所导致的符号错误率,它通过在发射端的联合编码增加信号的冗余度,从而使信号在接收端获得分集增益,但空时编码方案不能提高数据率。 (1)空时编码一些文献中给出了大量的发射机制,这些机制分别可以使频谱效率最大、速率最高、信噪比(SNR,Signal to Noise Ratio)最大,它们都依赖信道状态信息(CSI,Channel State Information)在发射端和接收端的已知程度。CSI在接收端通过信道估计可以获得,然后,通过反馈可以通知发射端。 对于发射端不需要CSI的发射机制,可以引入空时编码或者采用空间复用增益来利用空间维数。空时编码主要分为空时格码和空时块码。接收到的信号通过最大似然(ML,Ma ximum Likelihood)译码器进行检测。最早的空时编码是空时格码STTC(Space-Time Tr ellis Code),在这种方式下,接收端需要多维维特比算法。STTC可以提供的分集等于发射天线的数目,提供的编码增益取决于码字的复杂度而无需牺牲带宽效率。空时分组编码(S

相关主题
文本预览
相关文档 最新文档