当前位置:文档之家› 第06章 向量代数与空间解析几何习题详解知识分享

第06章 向量代数与空间解析几何习题详解知识分享

第06章 向量代数与空间解析几何习题详解知识分享
第06章 向量代数与空间解析几何习题详解知识分享

第06章向量代数与空间解析几何习题详

第六章 向量代数与空间解析几何

习 题 6—3

1、已知)3,2,1(A ,)4,1,2(-B ,求线段AB 的垂直平分面的方程. 解:设),,(z y x M 是所求平面上任一点,据题意有|,|||MB MA =

()()()2

22321-+-+-z y x ()()(),412222-+++-=

z y x

化简得所求方程26270x y z -+-=.这就是所求平面上的点的坐标所满足的方程, 而不在此平面上的点的坐标都不满足这个方程,所以这个方程就是所求平面的方程.

2、 一动点移动时,与)0,0,4(A 及xOy 平面等距离,求该动点的轨迹方程. 解:设在给定的坐标系下,动点),,(z y x M ,所求的轨迹为C ,则

(,,)M x y z C MA z u u u r ∈?

= 亦即 z z y x =++-2

22)4( 0)4(22=+-∴y x 从

而所求的轨迹方程为0)4(22=+-y x .

3、 求下列各球面的方程:

(1)圆心)3,1,2(-,半径为6=R ; (2)圆心在原点,且经过点)3,2,6(-; (3)一条直径的两端点是)3,1,4()5,32(--与;(4)通过原点与

)4,0,0(),0,3,1(),0,0,4(-

解:(1)所求的球面方程为:36)3()1()2(222=-+++-z y x (2)由已知,半径73)2(6222=+-+=R ,所以球面方程为

49222=++z y x

(3)由已知,球面的球心坐标12

3

5,1213,3242=-=-=+-==+=c b a , 球的半径21)35()31()24(2

1

222=++++-=

R ,所以球面方程为: 21)1()1()3(222=-+++-z y x

(4)设所求的球面方程为:0222222=++++++l kz hy gx z y x

因该球面经过点)4,0,0(),0,3,1(),0,0,4(),0,0,0(-,所以????

???=-=++=+=0

8160621008160

k h g g l 解之得

????

??

?=-=-==2

210

k g h l ∴所求的球面方程为0424222=+--++z y x z y x .

4、将yOz 坐标面上的抛物线22y z =绕z 旋转一周,求所生成的旋转曲面的方程.

解:222x y z +=(旋转抛物面) .

5、将zOx 坐标面上的双曲线122

22=-c

z a x 分别绕x 轴和z 轴旋转一周,求所生

成的旋转曲面的方程.

解: 绕x 轴旋转得122222=+-c z y a x 绕z 轴旋转得122

2

22=-+c

z a y x . 6、指出下列曲面的名称,并作图:

(1)22

149x z +=;(2)22y z =;(3)221x z += ;(4)

22220x y z x ++-=;

(5)2

2

2

y x z +=;(6)22

441x y z -+=;(7)22

1916

x y z +

+=; (8)222

149

x y z -+=-;(9)1334222=++

z y x ;(10)2223122z y x +=+.

解: (1)椭圆柱面;(2) 抛物柱面;(3) 圆柱面;(4)球面;(5)圆锥面;(6)双曲抛物面;

(7)椭圆抛物面;(8)双叶双曲面;(9)为旋转椭球面;(10)单叶双曲面.

7、指出下列方程在平面解析几何和空间解析几何中分别表示什么图形? (1)1+=x y ;(2)422=+y x ;(3)122=-y x ;

(4)22x y =.

解:(1)1+=x y 在平面解析几何中表示直线,在空间解析几何中表示平面;

(2)422=+y x 在平面解析几何中表示圆周,在空间解析几何中表示圆柱面;

(3)122=-y x 在平面解析几何中表示双曲线,在空间解析几何中表示双曲柱面;

(4)y x 22=在平面解析几何中表示抛物线,在空间解析几何中表示抛物柱面.

8、 说明下列旋转曲面是怎样形成的?

(1)1994222=++z y x ;(2)14

222

=+-z y x (3)1222=--z y x ;(4)

222)(y x a z +=-

解:(1)xOy 平面上椭圆19

42

2=+y x 绕x 轴旋转而成;或者 xOz 平面上椭圆

22

149

+=x z 绕x 轴旋转而成 (2)xOy 平面上的双曲线14

22

=-y x 绕y 轴旋转而成;或者 yOz 平面上的双曲

线22

14

-=y z 绕y 轴旋转而成

(3)xOy 平面上的双曲线122=-y x 绕x 轴旋转而成;或者 xOz 平面上的双曲线

221x z -=绕x 轴旋转而成

(4)yOz 平面上的直线a y z +=绕z 轴旋转而成或者 xOz 平面上的直线z x a =+绕z 轴旋转而成.

9、 画出下列各曲面所围立体的图形:

(1)012243=-++z y x 与三个坐标平面所围成;(2)

42,42=+-=y x x z 及三坐标平面所围成;

(3)22=0,(0)=1z z =a a >,y =x,x +y 及0x =在第一卦限所围成;(4)2222,8z x y z x y =+=--所围.

解:(1)平面012243=-++z y x 与三个坐标平面围成一个在第一卦限的四面体;

(2)抛物柱面24z x =-与平面24x y +=及三坐标平面所围成;

(3)坐标面=0z 、0x =及平面(0)z =a a >、y=x 和圆柱面22=1x +y 在第一卦限所围成;

(4)开口向上的旋转抛物面22z x y =+与开口向下的抛物面228z x y =--所围.作图略.

习 题 6—4

1、画出下列曲线在第一卦限内的图形

(1)???==21y x ;(2)?????=---=0

422y x y x z ;(3)?????=+=+222222a z x a

y x

解:(1)是平面1x =与2y =相交所得的一条直线;

(2)上半球面z =与平面0x y -=的交线为1

4

圆弧; (3)圆柱面222x y a +=与222x z a +=的交线.图形略.

2、分别求母线平行于x 轴及y 轴而且通过曲线?????=-+=++0

16

2222222y z x z y x 的柱面方程.

解:消去x 坐标得16322=-z y ,为母线平行于x 轴的柱面;

消去y 坐标得:162322=+z x ,为母线平行于y 轴的柱面.

3、求在yOz 平面内以坐标原点为圆心的单位圆的方程(任写出三种不同形式的方程).

解:???==+0122x z y ;???==++01222x z y x ; ?????=+=++1

1

22222z y z y x .

4、试求平面20x -=与椭球面222

116124x y z ++=相交所得椭圆的半轴与顶点.

解:将椭圆方程22211612420x y z x ?++=???-=?化简为:22

193

2y z x ?+

=???=?

,可知其为平面2=x 上的椭圆,半轴分别为3,3,顶点分别为)3,0,2(),3,0,2(),0,3,2(),0,3,2(--.

5 、将下面曲线的一般方程化为参数方程

(1)2229

x y z y x ?++=?=?; (2)?

??==+++-04)1()1(22z z y x

解:(1)原曲线方程即:?

??

??=+=199

222z x x

y ,化为

???

?

??

??

?=≤≤==t z t t y t x sin 3)20(cos 23cos 23π; (2))20(0sin 3cos 31πθθ

θ≤≤???

??

??==+=z y x . 6、求螺旋线??

?

??===θθθ

b z a y a x sin cos 在三个坐标面上的投影曲线的直角坐标方程.

解:???==+0222z a y x ;?????==0sin x b z a y ;??

???==0

cos

y b z a x .

7、指出下列方程所表示的曲线

(1)22225

3?++=?=?x y z x (2)???==++1

3094222z z y x ;

(3)???-==+-32542

2

2

x z y x ; (4)???==+-+40842

2

y x z y ; (5)??

???=-=-0

214

922x z y . 解:(1)圆; (2)椭圆; (3)双曲线; (4)抛物线; (5)双曲线.

8、 求曲线???==-+30

222z x z y 在xOy 面上的投影曲线方程,并指出原曲线是何

种曲线.

解:原曲线即:???=-=39

22z x y ,是位于平面3=z 上的抛物线,在xOy 面上的

投影曲线为???=-=0

9

22z x y

9、 求曲线 ??

?

??=

=++21

1222z z y x 在坐标面上的投影. 解:(1)消去变量z 后得,4322=+y x 在xOy 面上的投影为,0432

2???

??==+z y x 它

是中心在原点,半径为

2

3

的圆周. (2)因为曲线在平面2

1

=

z 上,所以在xOz 面上的投影为线段.;2

3

||,0

21≤

?????==x y z (3)同理在yOz 面上的投影也为线段..2

3

||,

021≤

???

??==y x z

10、 求抛物面x z y =+22与平面 02=-+z y x 的交线在三个坐标面上的投影曲线方程.

解: 交线方程为???=-+=+0222z y x x z y ,(1)消去z 得投影,0

4522??

?==-++z x xy y x (2)消去y 得投影2252400x z xz x y ?+--=?=?,(3)消去x 得投影2220

0y z y z x ?++-=?=?

.

习 题 6—5

1、写出过点()3,2,10M 且以{}1,2,2=n 为法向量的平面方程.

解:平面的点法式方程为()()()032212=-+-+-z y x .

2、求过三点()()()01,0,0,1,0,0,0,1C B A 的平面方程.

解:设所求平面方程为0=+++d cz by ax ,将C B A ,,的坐标代入方程,可得

d c b a -===,故所求平面方程为1=++z y x .

3、求过点()1,0,0且与平面1243=++z y x 平行的平面方程. 解:依题意可取所求平面的法向量为}2,4,3{=n ,从而其方程为

()()()0120403=-+-+-z y x 即 2243=++z y x .

4、求通过x 轴和点(4, -3, -1)的平面的方程.

解:平面通过x 轴, 一方面表明它的法线向量垂直于x 轴, 即A =0; 另一方面表明 它必通过原点, 即D =0. 因此可设这平面的方程为By +Cz =0.又因为这平面通过点(4, -3, -1), 所以有-3B -C =0, 或C =-3B . 将其代入所设方程并除以B (B ≠0), 便得所求的平面方程为y -3z =0.

5、求过点)1,1,1(,且垂直于平面7=+-z y x 和051223=+-+z y x 的平面方程.

解:},1,1,1{1-=n ρ }12,2,3{2-=n ρ取法向量},5,15,10{21=?=n n n ?

?ρ所求平面方

程为化简得: .0632=-++z y x

6、设平面过原点及点)1,1,1(,且与平面8x y z -+=垂直,求此平面方程. 解: 设所求平面为,0=+++D Cz By Ax 由平面过点)1,1,1(知平

0,A B C D +++=由平面过原点知0D =,{1,1,1},n ⊥-r

Q

0A B C ∴-+=,0A C B ?=-=,所求平面方程为0.x z -=

7、写出下列平面方程:

(1)xOy 平面;(2)过z 轴的平面;(3)平行于zOx 的平面;(4)在x ,

y ,z 轴上的截距相等的平面.

解:(1)0=z ,(2)0=+by ax (b a ,为不等于零的常数), 、(3)c y = (c 为常数), (4) a z y x =++ (0)a ≠.

习 题 6—6

1、求下列各直线的方程:

(1)通过点)1,0,3(-A 和点)1,5,2(-B 的直线; (2) 过点()1,1,1且与直线

4

3

3221-=

-=-z y x 平行的直线. (3)通过点)3,51(-M 且与z y x ,,三轴分别成???120,45,60的直线; (4)一直线过点(2,3,4)-A ,且和y 轴垂直相交,求其方程. (5)通过点)2,0,1(-M 且与两直线11111-+==-z y x 和0

1

111+=

--=z y x 垂直的直线;

(6)通过点)5,3,2(--M 且与平面02536=+--z y x 垂直的直线. 解:(1)所求的直线方程为:015323-=-=++z y x 即:01

553-=

-=+z y x ,亦即

1

113-=

-=+z y x . (2)依题意,可取L 的方向向量为{}4,3,2=s ,则直线L 的方程为

4

1

3121-=-=-z y x . (3)所求直线的方向向量为:{}???

?

??-=???21,22,21120cos ,45cos ,60cos ,故直线方程为:

13

2

511--=+=-z y x .

(4)因为直线和y 轴垂直相交,所以交点为),0,3,0(-B 取{2,0,4},BA s ??→

==所求直线方程

.4

4

0322-=+=-z y x (5)所求直线的方向向量为:{

}{}{}2,1,10,1,11,1,1---=-?-,所以,直线方程为:

2

2

111+=

=-z y x . (6)所求直线的方向向量为:{}5,3,6--,所以直线方程为: 235

635

x y z -++==

--.

2、求直线1,

234x y z x y z ++=-??

-+=-?

的点向式方程与参数方程.

解 在直线上任取一点),,(000z y x ,取10=x ,0630

200

00???=--=++?z y z y 解

2,000-==z y .所求点的坐标为)2,0,1(-,取直线的方向向量

{}{}3,1,21,1,1-?=s k j i k

j i 343

12111--=-=,所以直线的点向式方程为:

,321041-+=--=-z y x 令102,413x y z t --+===--则所求参数方程: .3241??

?

??--=-=+=t

z t

y t

x

3、判别下列各对直线的相互位置,如果是相交的或平行的直线求出它们所在的平面,如果相交时请求出夹角的余弦.

(1)???=-+=+-0623022y x z y x 与???=-+=--+01420112z x z y x ;(2)??

???--=+==2

12t z t y t

x 与

142

475

x y z --+==-.

解:(1)将所给的直线方程化为标准式为:4

343

223z y x =-=--

4

3227-=

--=-z

y x Θ 234

234-==-- ∴二直线平行.又点)0,4

3,23(与点(7,2,0)在二直线上,∴向

量??????=??????

--0,45,2110,432,237平行于二直线所确定的平面,该平面的法向量

为:{}{}19,22,50,45,2114,3,2--=?

??

????-,从而平面方程为:

0)0(19)2(22)7(5=-+---z y x ,即 0919225=++-z y x .

(2)因为121

4

7

5

-≠≠

-,所以两直线不平行,又因为05

7412

10

31=--=?,所以两

直线相交,二直线所决定的平面的法向量为{

}{}{}1,1,35,7,412,1--=-?-,∴二直线所决定的平面的方程为:330x y z -++=.设两直线的夹角为?

,则

cos ?=

=

4、判别下列直线与平面的相关位置: (1)

37423z y x =-+=--与3224=--z y x ;(2)7

23z

y x =-=与8723=+-z y x ;

(3)???=---=-+-0

120

5235z y x z y x 与07734=-+-z y x ;

(4)??

?

??-=+-==4992t z t y t x 与010743=-+-z y x .

解(1)Θ0)2(3)2()7(4)2(=-?+-?-+?-,而

017302)4(234≠=-?--?-?,所以,直线与平面平行.

(2)Θ0717)2(233≠?+-?-?,所以,直线与平面相交,且因为

7

72233=--=,∴直线与平面垂直.

(3)直线的方向向量为:{}{}{}1,9,51,1,22,3,5=--?-,Θ0179354=?+?-?,所以直线与平面平行或者直线在平面上;取直线上的点)0,5,2(--M ,显然点在

)0,5,2(--M 也在平面上(因为4(2)3(5)70?--?--=),所以,直线在平面上. (4)直线的方向向量为{

}9,2,1-,Θ097)2(413≠?+-?-?∴直线与平面相交但不垂直.

复习题A

一 、判断正误:

1、 若c b b a ?=?且≠0b ,则c a =; ( ? )

解析 c b b a ?-?=)(c a b -?=0时,不能判定=b 0或c a =.例如i a =,

j b =,k c =,有?=?=0a b b c ,但c a ≠.

2、 若c b b a ?=?且≠0b ,则c a =; ( ? )

解析 此结论不一定成立.例如i a =,j b =,)(j i c +-=,则

k j i b a =?=?,k j i j c b =+-?=?)]([,c b b a ?=?,但c a ≠.

3 、若0=?c a ,则=0a 或=0c ; ( ? )

解析 两个相互垂直的非零向量点积也为零.

4、

a b b a ?-=?. ( √ )

解析 这是叉积运算规律中的反交换律.

二、选择题:

1 、 当a 与b 满足( D )时,有b a b a +=+;

(A)⊥a b ; (B)λ=a b (λ为常数); (C)a ∥b ;

(D)?=a b a b .

解析 只有当a 与b 方向相同时,才有a +b =a +b .

(A)中a ,b 夹角不为0,(B),(C)中a ,b 方向可以相同,也可以相反.

2、下列平面方程中,方程( C )过y 轴;

(A) 1=++z y x ; (B) 0=++z y x ; (C) 0=+z x ; (D)

1=+z x .

解析 平面方程0=+++D Cz By Ax 若过y 轴,则0==D B ,故选C .

3 、在空间直角坐标系中,方程2221y x z --=所表示的曲面是( B ); (A) 椭球面; (B) 椭圆抛物面; (C) 椭圆柱面; (D) 单叶双曲面.

解析 对于曲面2221y x z --=,垂直于z 轴的平面截曲面是椭圆,垂直于

x 轴或y 轴的平面截曲面是开口向下的抛物线,根据曲面的截痕法,可以判断

曲面是椭圆抛物面.

4、空间曲线???=-+=5,

222z y x z 在xOy 面上的投影方程为( C );

(A)72

2

=+y x ; (B)???==+5722z y x ; (C) ???==+0

7

22z y x ;

(D)?

??=-+=02

22z y x z

解析 曲线???==+5722z y x 与xOy 平面平行,在xOy 面上的投影方程为

?

?

?==+07

22z y x .

5 、直线

1

1

121-+=

=-z y x 与平面1=+-z y x 的位置关系是( B ). (A) 垂直; (B) 平行; (C) 夹角为π

4; (D) 夹角为

π4

-. 解析 直线的方向向量s ={2,1,-1},平面的法向量n ={1,-1,1},

n s ?=2-1-1=0,所以,s ⊥n ,直线与平面平行.

三、填空题:

1、若2=b a ,π()2

=$a,b ,则=?b a 2 ,=?b a 0 ;

解 =?b a b a sin()$a,b π2=2,=?b a b a cos()$a,b π2

=0.

2、与平面062=-+-z y x 垂直的单位向量为 }2,1,1{6

6

; 解 平面的法向量 n ={1,-1,2}与平面垂直,其单位向量为

0n =411++=6,所以,与平面垂直的单位向量为}2,1,1{6

6

3、过点)2,1,3(--和)5,0,3(且平行于x 轴的平面方程为 057=-+z y ; 解 已知平面平行于x 轴,则平面方程可设为 0=++D Cz By ,将点 (-

3,1,-2)和(3,0,5)代入方程,有{

20,50,B C D C D -+=+= ? 7,51,

5B D C D ?=-??

?=-?

得 051

57=+--D Dz Dy ,即 057=-+z y .

4、过原点且垂直于平面022=+-z y 的直线为

z y

x -==2

0; 解 直线与平面垂直,则与平面的法向量 n ={0,2,-1}平行,取直线方向向量s =n ={0,2,-1},由于直线过原点,所以直线方程为

z y

x -==2

0 .

5、曲线???=+=1,222z y x z 在xOy 平面上的投影曲线方程为 ???==+.0,

1222z y x

解: 投影柱面为 122

2

=+y x ,故 ???==+0

,

1222z y x 为空间曲线在xOy 平面

上的投影曲线方程.

四、解答题:

1、 已知}1,2,1{-=a ,}2,1,1{=b ,计算(a) b a ?; (b)

()()-?+2a b a b ; (c) 2

b a -;

解: (a) b a ?=211121-k

j i 1,3}5,{--=.

(b) {2,4,2}{1,1,2}{1,5,0}2a b -=--=-,

1,3}{2,{1,1,2}2,1}{1,-=+-=+b a ,

所以()()-?+2a b a b 7}3,1,2{}0,5,1{=-?-=.

(c) 1}3,{0,{1,1,2}2,1}{1,--=--=-b a ,所以2

b a -10)19(2=+=.

2、已知向量21P P 的始点为)5,2,2(1-P

,终点为)7,4,1(2-P ,试求:(1)向量21P P 的坐标表示; (2)向量21P P 的模;(3)向量21P P 的方向余弦; (4)与向量21P P 方向一致的单位向量.

解: (1) }2,6,3{}57),2(4,21{21-=-----=P P ;

74926)3(222==++-=;

(3) 21P P 在z y x ,,三个坐标轴上的方向余弦分别为

362cos ,cos ,cos 777

αβγ=-==;

(4)k j i k j i 72

76737263)(21++-=++-==P P ο.

3、设向量{}1,1,1=-a ,{}1,1,1=-b ,求与a 和b 都垂直的单位向量.

解: 令{}1110,2,2111

=?=-=-i j k

c a b

,01?==??

c c c ,

故与a 、b

都垂直的单位向量为0?±=±??c .

4、向量d ?垂直于向量]1,3,2[-=a ?和]3,2,1[-=b ?,且与]1,1,2[-=c ?

的数量积

为6-,求向量d ?

解: d ?垂直于a ?与b ?

,故d ?平行于b a ???,存在数λ使 ()

b a d ?

???=λ?-=]1,3,2[λ]3,2,1[-]7,7,7[λλλ--=

因6-=?c d ?

?,故6)7(1)7()1(72-=-?+-?-+?λλλ, 73-=λ]3,3,3[-=∴d ?.

5、求满足下列条件的平面方程:

(1)过三点)2,1,0(1P ,)1,2,1(2P 和)4,0,3(3P ;(2)过x 轴且与平面0

25=++z y x 的夹角为π

3

解 (1)解1: 用三点式.所求平面的方程为02

4100

321120

1210

=---------z y x ,即01345=+--z y x .

解2: }1,1,1{-=}2,1,3{-=,由题设知,所求平面的法向量为

k j i k

j i

n 452

1

311

1

3121--=--=?=P P P P , 又因为平面过点)2,1,0(1P ,所以所求平面方程为0)2(4)1(5)0(=-----z y x ,即

01345=+--z y x .

解3: 用下面的方法求出所求平面的法向量},,{C B A =n ,再根据点法式公式写出平面方程也可.

因为3121,P P P P ⊥⊥n n ,所以{

0,320,A B C A B C +-=-+=解得A C A B 4,5-=-=,于是所求平面方程为

0)2(4)1(5)0(=-----z A y A x A ,即 01345=+--z y x .

(2)因所求平面过x 轴,故该平面的法向量},,{C B A =n 垂直于x 轴,n 在

x 轴上的投影0=A ,又平面过原点,所以可设它的方程为0=+Cz By ,由题设

可知0≠B (因为0=B 时,所求平面方程为0=Cz 又0≠C ,即0=z .这样它与已知平面025=++z y x 所夹锐角的余弦为

π1

cos

32

=≠=,所以0

B),令C

B

C

'

=,则有0

=

'

+z

C

y,由题设得

2

2

2

2

2

21

2

)5

(

1

1

2

1

5

3

cos

+

+

'

+

+

?'

+

?

+

?

=

π

C

C

解得3

=

'C或

1

3

C'=-,于是所求平面方程为0

3=

+z

y或0

3=

-z

y.

6、一平面过直线

?

?

?

=

+

-

=

+

+

4

,0

5

z

x

z

y

x

且与平面0

12

8

4=

+

-

-z

y

x垂直,求该平面方程;

解法1:直线

?

?

?

=

+

-

=

+

+

4

,0

5

z

x

z

y

x

在平面上,令x=0,得

5

4

-

=

y,z=4,则

(0,-

5

4

,4)为平面上的点.

设所求平面的法向量为n=}

,

,

{C

B

A,相交得到直线的两平面方程的法向量分别

1

n={1,5,1},

2

n={1,0,-1},则直线的方向向量

s=

1

n?

2

n=

1

1

1

5

1

-

k

j

i

={-5,2,-5},由于所求平面经过直线,故平面的法向量与直线的方向向量垂直,即

?n

s={-5,2,-5}?}

,

,

{C

B

A=C

B

A5

2

5-

+

-=0,

因为所求平面与平面0

12

8

4=

+

-

-z

y

x垂直,则

}8

,4

,1{

}

,

,

{-

-

?

C

B

A=C

B

A8

4-

-=0,解方程组

{5250,

480,

A B C

A B C

-+=

--=?

2,

5

,

2

A C

B C

=-

??

?=-

??

所求平面方程为0

)4

(

)

5

4

(

2

5

)0

(

2=

-

+

+

-

-

-z

C

y

C

x

C,即

12

2

5

4=

+

-

+z

y

x.

解法2: 用平面束(略)

7、求既与两平面1:43x z π-=和2:251x y z π--=的交线平行,又过点

(3,2,5)-的直线方程.

解法1:{}11,0,4=-n ,{}22,1,5=--n ,{}124,3,1s =?=---n n ,从而根据点向式方程,所求直线方程为

325431x y z +--==---,即325

431

x y z +--==

. 解法2:设{},,s m n p =,因为1⊥s n ,所以40m p -=;又2⊥s n ,则

250m n p --=,可解4,3m p n p ==,从而0p ≠.根据点向式方程,所求直线

方程为

32543x y z p p p +--==,即325

431

x y z +--==. 解法3:设平面3π过点(3,2,5)-,且平行于平面1π,则{}311,0,4==-n n 为

3π的法向量,从而3π的方程为1(3)0(2)4(5)0x y z ?++?--?-=,即4230x z -+=.同理,过已知点且平行于平面2π的平面4π的方程为

25330x y z --+=.故所求直线的方程为4230

25330x z x y z -+=??

--+=?

8、 一直线通过点)1,2,1(A ,且垂直于直线1

1

231:

+=

=-z y x L ,又和直线z y x ==相交,求该直线方程;

解: 设所求直线的方向向量为{,,}m n p =s ,因垂直于L ,所以

320m n p ++=;又因为直线过点)1,2,1(A ,则所求直线方程为

p z n y m x 1

21-=-=-,联立121

,①,②320,③

x y z m n p x y z m n p ---?

==??==?

++=?

由①,令λ=-=-=-p z n y m x 121,则有??

?

??+=+=+=,

1,2,

1p z n y m x λλλ代入方程②有{12,11,

m n m p λλλλ+=++=+ 可得p m =,代入③解得p n 2-=, 因此,所求直线方程为

11

2211-=

--=-z y x .

9、 指出下列方程表示的图形名称:

(a) 14222=++z y x ;(b) z y x 222=+;(c) 22y x z +=;

(d) 02

2

=-y x ;(e) 12

2

=-y x ; (f) ???=+=2

2

2z y x z .

解: (a) 绕y 轴旋转的旋转椭球面.(b) 绕z 轴旋转的旋转抛物面. (c) 绕z 轴旋转的锥面.

(d) 母线平行于z 轴的两垂直平面:y x =,y x -=. (e) 母线平行于z 轴的双曲柱面.

(f) 旋转抛物面被平行于XOY 面的平面所截得到的圆,半径为2,圆心在(0,0,2)处.

10、求曲面22z x y =+与222()z x y =-+所围立体在xOy 平面上的投影并作其图形.

解: 将所给曲面方程联立消去z ,就得到两曲面交线C 的投影柱面的方程122=+y x ,

所以柱面与xOy 平面的交线???==+'0

1

:22z y x C 所围成的区域221+≤x y 即为曲面

22z x y =+与222()z x y =-+所围立体在xOy 平面上的投影(图略).

空间解析几何与向量代数论文

空间解析几何与向量代数 呼伦贝尔学院 计算机科学与技术学院 服务外包一班 2013级 2014.5.4 小组成员: 宋宝文 柏杨白鸽 李强白坤龙

空间解析几何与向量代数 摘要:深入了解空间解析几何与向量代数的概念,一一讲述他们的区别和用途。向量的集中加减乘法和运算规律,还有空间直线与平面的关系。 关键词:向量;向量代数;空间几何 第一部分:向量代数 第一节:向量 一.向量的概念: 向量:既有大小,又有方向的量成为向量(又称矢量)。 表示法:有向线段a 或a 。 向量的模:向量的打小,记作|a |。 向径(矢径):起点为原点的向量。 自由向量:与起点无关的向量。 单位向量:模为1的向量。 零向量:模为0的向量,记作.0或0 若向量a 与b 大小相等,方向相同,则称a 与b 相等,记作a =b ; 若向量a 与b 方向相同或相反,则称a 与b 平行,记作a //b 规定:零向量与任何向量平行;与a 的模相同,但方向相反的向量称为a 的负向量, 记作-a ;因平行向量可平移到同一直线上,故两向量平行又称两向量共线。若K 3 个向量经平移可移到同一平面上,则称此K 个向量共面。 二.向量的线性运算 1.向量的加法 平行四边形法则: b a +b a 三角形法则: a + b b

a 运算规律:交换律a + b =b +a a 与b 结合律:(a +b )+c =a +(b +c ) 三角形法则可推广到多个向量相加。 2.向量的减法 b -a =b +(a ) a b -a b b -a a 特别当b =a 时,有a -a =a (a )=0 ; 三角不等式:|b +a |; |a -b |; 3.向量与数的乘法是一个数,与a 的乘积是一个新向量,记作a 。 规定: a 与a 同向时,|a |=|a |; 总之:|a | | |a | 三.向量的模、方向角 1.向量的模与两点间的距离公式 设r (x,y,z ),作om r ,则有r op oq or R Z Q O Y P X 由勾股定理得: |r | |OM| B A 对两点A ()与B ()因AB OB OA () 得两点间的距离公式: |AB| |AB | 第二节:数量积 向量积

§ 7 空间解析几何与向量代数习题与答案

第七章 空间解析几何与向量代数 A 一、 1、 平行于向量)6,7,6(-=a 的单位向量为______________. 2、 设已知两点)2,0,3()1,2,4(21M M 和,计算向量21M M 的模,方向余弦和方向角. 3、 设k j i p k j i n k j i m 45,742,853-+=--=++=,求向量p n m a -+=34在x 轴 上的投影,及在y 轴上的分向量. 二、 1、设k j i b k j i a -+=--=2,23,求(1)b a b a b a b a 23)2)(2(??-??及;及(3)a 、b 的夹角的余弦. 2、知)3,1,3(),1,3,3(),2,1,1(321M M M -,求与3221,M M M M 同时垂直的单位向量.

3、设)4,1,2(),2,5,3(=-=b a ,问μλ与满足_________时,轴z b a ⊥+μλ. 三、 1、以点(1,3,-2)为球心,且通过坐标原点的球面方程为__________________. 2、方程0242222=++-++z y x z y x 表示______________曲面. 3、1)将xOy 坐标面上的x y 22=绕x 轴旋转一周,生成的曲面方程为 __ _____________,曲面名称为___________________. 2)将xOy 坐标面上的x y x 222=+绕x 轴旋转一周,生成的曲面方程 _____________,曲面名称为___________________. 3)将xOy 坐标面上的369422=-y x 绕x 轴及y 轴旋转一周,生成的曲面方 程为_____________,曲面名称为_____________________. 4)在平面解析几何中2 x y =表示____________图形。在空间解析几何中 2x y =表示______________图形. 5)画出下列方程所表示的曲面 (1))(42 2 2 y x z += (2))(42 2 y x z += 四、

高等数学空间解析几何与向量代数.docx

第七章空间解析几何与向量代数 第一节空间直角坐标系 教学目的:将学生的思维由平面引导到空间,使学生明确学习空 间解析几何的意义和目的。 教学重点: 1.空间直角坐标系的概念 2.空间两点间的距离公式 教学难点:空间思想的建立 教学内容: 一、空间直角坐标系 1.将数轴(一维)、平面直角坐标系(二维)进一步推广建立空间直角坐标系 (三维)如图7- 1,其符合右手规则。即以右手握住z 轴,当右手的四个手指 从正向x 轴以角度转向正向y 轴时,大拇指的指向就是z 轴的正向。 2 间直角坐标系共有八个卦限,各轴名称分别为:轴、y 轴、轴,坐标面分别为xoy 面、yoz面、zox 面。坐标面以及卦限的划分如图7-2 所示。图7-1 右手规则演示图 7-2 空间直角坐标系图图 7-3空间两点M1M 2的距离图3.空间点M ( x, y, z) 的坐标表示方法。通过坐标把空间的点与一个有序数组 一一对应起来。 注意:特殊点的表示 a)在原点、坐标轴、坐标面上的点; b) 关于坐标轴、坐标面、原点对称点的表示法。4.空间两点间的距离。若M 1 ( x1 , y1 , z1 ) 、 M 2 (x2 , y2 , z2 ) 为空间任意两点,则 M 1M 2的距离(见图7- 3),利用直角三角形勾股定理为: d 2 222 M1M 2M1NNM 2 222 M 1 p pNNM 2

而 M 1 P x 2 x 1 PN y 2 y 1 NM 2 z 2 z 1 所以 d M 1M 2 (x 2 x 1 ) 2 ( y 2 y 1 )2 (z 2 z 1 )2 特殊地:若两点分别为 M ( x, y, z) , o(0,0,0) d oM x 2 y 2 z 2 例 1:求证以 M 1(4,3,1) 、 M 2 (7,1,2) 、 M 3 (5,2,3) 三点为顶点的三角形是一个 等腰三角形。 2 ( 4 7) 2 (3 1) 2 (1 2) 2 14 证明 : M 1M 2 M 2M 3 2 7) 2 (2 1)2 (3 2)2 6 (5 2 4) 2 (2 3) 2 (3 1) 2 6 M 3M 1(5 由于 M 2M 3 M 3 M 1 ,原结论成立。 例 2:设 P 在 x 轴上,它到 P (0, 2 ,3) 的距离为到点 P 2 (0,1, 1) 的距离的两倍, 1 求点 P 的坐标。 解:因为 P 在 x 轴上,设 P 点坐标为 ( x,0,0) PP 1 x 2 2 PP 2 x 2 1 2 x 2 11 32 2 x 2 2 12 PP 1 2 PP 2 x 2 11 2 x 2 2 x 1

向量代数与空间解析几何-期末复习题-高等数学下册-(上海电机学院)

向量代数与空间解析几何-期末复习题-高等数学下册-(上海电机学院)

第七章 空间解析几何 一、选择题 1. 在空间直角坐标系中,点(1,-2,3)在[ D ] A. 第一卦限 B. 第二卦限 C. 第三卦限 D. 第四卦限 2.方程2 222 =+y x 在空间解析几何中表示的图形为 [ C ] A. 椭圆 B. 圆 C. 椭圆柱面 D. 圆柱面 3.直线3 1 2141:1+=+=-z y x l 与?? ?=-++=-+-0 20 1:2z y x y x l ,的夹角是 [ C ] A. 4 π B. 3 π C. 2 π D. 0 4. 在空间直角坐标系中,点(1,2,3)关于xoy 平面的对称点是[ D ] A. (-1,2,3) B. (1,-2,3) C. (-1,-2,3) D. (1,2,-3)

5.将xoz 坐标面上的抛物线x z 42 =绕z 轴旋转一 周,所得旋转曲面方程是[B ] A. ) (42y x z += B. 2 2 2 4y x z +±= C. x z y 422 =+ D. x z y 422 ±=+ 6.平面2x-2y+z+6=0与xoy 平面夹角的余弦是 [B ] A. 13 - B. 13 C. 23 - D. 23 7. 在空间直角坐标系中,点(1,2,3)关于yoz 平面的对称点是[ A ] A. (-1,2,3) B. (1,-2,3) C. (-1,-2,3) D. (1,2,-3) 8.方程 222 22 x y z a b +=表示的是 [ B ] A.椭圆抛物面 B.椭圆锥面 C. 椭球面 D. 球面 9. 已知 a ?={0, 3, 4}, b ?={2, 1, -2},则 = b proj a ?ρ[ C ]

向量与解析几何相结合专题复习

向量与解析几何相结合专题复习 平面向量与解析几何的结合通常涉及到夹角、平行、垂直、共线、轨迹等问题的处理,目标是将几何问题坐标化、符号化、数量化,从而将推理转化为运算。或者考虑向量运算的几何意义,利用其几何意义解决有关问题。 一:将向量及其运算的几何意义转化为平面图形的位置关系或数量关系 【例1.】已知△ABC 中,A 、B 两点的坐标分别为(-4,2)、(3,1),O 为坐标原点。已知||=λ·||,||=λ·||,∥ = (1,2)求顶点C 的坐标。 【解】如图:∵||=λ·||,∴λ=0 | |>CB ∵||=λ·||,∴A 、D 、B 三点共线,D 且λ=0 | |>DB ∴||CB =||DB ∴CD 是△ABC 中∠C 的角平分线。 ∴A 、D 、B 三点共线∥∴O 、C 、D 三点共线,即直线CD 过原点。 ~ 又∵直线CD 的方向向量为=(1,2),∴直线CD 的斜率为2 ∴直线CD 的方程为:y =2x (注意:至此,以将题中的向量条件全部转化为平面解析几何条件,下面用解析几何的方法解决该题) 易得:点A (-4,2)关于直线y =2x 的对称点是A ’ (4,-2), (怎样求对称点) ∵A ’ (4,-2)在直线BC 上 ∴直线BC 的方程为:3x +y -10=0 由?? ?=-+=01032y x x y 得C (2,4) 【解题回顾】本题根据向量共线的条件将题设中的||=λ·||和∥转化

为三点共线,实现了向量条件向平面位置关系的转化;而由λ=||CB =||DB ,实现了向量条件向平面图形的数量关系的转化,从而从整体上实现了由向量条件向平几及解条件的转化。 \ 【例2】.已知1OF =(-3,0),2OF =(3,0),(O 为坐标原点),动点M 满足:||1MF +||2MF =10。 (1)求动点M 的轨迹C ; (2)若点P 、O 是曲线C 上任意两点,且OP ·=0,求2 2 2 OQ OP ?的值 【解】(1)由||1MF +||2MF =10知: 动点M 到两定点F 1和F 2的距离之和为10 根据椭圆的第一定义:动点M 的轨迹为椭圆:116252 2=+y x \ (2)∵点P 、O 是1 16252 2=+y x 上任意两点 设P(ααsin 4,cos 5),Q(ββsin 4,cos 5) (注意 ∵OP ·=0 得:βαβαsin sin 16cos cos 25+=0 ① 而2 、2 2 ?都可以用α、β的三角函数表示,利用①可以解得: 2 2 2 PQ ?=40041 【例3.】在△ABC 中,A(2,3),B(4,6),C(3,-1),点D 满足:CA ·CD =CD ·CB (1)求点D 的轨迹方程; ~

向量代数与空间解析几何

第六章.向量代数与空间解析几何 本章内容在本课程当中是单独的一个部分,应该说是属于几何的内容,之所以需要在微积分的课程里进行单独的讨论,是因为我们在后面学习多元函数的微积分时,必须和这些几何知识发生关系,所谓多元的函数,从几何意义方面来理解,就是定义域在平面乃至更高维度的空间区域上,这样如果要想得到对于多元函数的直观几何理解,就必须对于平面乃至更高维度的空间中的几何现象具有一定的知识。 向量。 向量可以说是几何的最为基本的概念。因为几何对象的两个基本要素:方向和长度,用一个向量就可以完全表达,从向量的概念出发,可以构造出整个的几何世界。 由于本课程的限制,我们不从一般的观念出发来展开向量的理论,而是基于直观的,运用向量来表示的几何当中的有向直线段,来说明我们需要涉及的有限的向量知识。 我们完全可以把一个向量理解为一根有向直线段,而不会出现任何理论上的错误。基于向量的这种直观图象,可以定义向量的基本属性。 首先,我们定义两个向量相等的意思,就是两个向量的大小与方向都相同,对于这里的具体的一种向量—有向直线段,就是必须长度相等,而方向相同,所谓方向相同,按照几何的意义,就是两根直线段相互平行,而且指向相同。 注意,这里初学者常常产生误解的地方,就是认为要求两个有向直线段方向一样,就一定是要求它们在同一个直线上,或者是相互重合,这是因为还不习惯在一般的空间当中考虑问题,特别是要养成在三维空间当中考虑几何对象的习惯,记住方向相同,是与这两个向量的空间位置无关的,只要它们所在的直线相互平行,而指向一致即可。 在两个向量之间定义加法与减法,就是我们在力学当中以及很熟悉的力的合成的平行四边形法则,当然这是一种直接的基于几何图象的定义方式,下面我们通过在空间引入坐标,来得到更一般的定义。 空间直角坐标系以及向量代数。 在空间当中引入坐标的目的,和物理学当中引入单位制一样,是提供一个度量几何对象的方法,首先一个坐标系必须能够提供方向的定义,使得任意的方向都能够由于坐标系而得到确定与唯一的描述;然后必须能够提供长度的单位,基于这个单位能够度量空间长度。 能够满足上面这两个基本要求的坐标系可以有很多的形式,我们经常使用的坐标系就是直角坐标系。 我们已经强调了一个向量的大小与方向是与它所处的空间位置没有关系的,换一个说法,就是一个向量在空间进行平移时,不影响它的大小与方向。那么在空间中,对任意一个向量的度量,都可以通过把这个向量平移到以坐标系的原点为起点的位置,再用它的终点的坐标来表征这个向量的大小与方向。显然,任意的一个向量,只要是通过平移而处于这种方式,就只会唯一的,而空间中的任意一点在一个这样的直角坐标系里的标度也是唯一的。因此这样决定的一个向量的坐标也就是唯一的。 本课程我们主要只考虑三维的情况,因此一个向量可以用一个唯一的坐标来表示,在直角坐标系里,也就是由三个实数组成的三元组:(a ,b ,c )。 基于上面对于唯一性的分析,可以得到坐标表示的向量的相等的含义,就是坐标三元组的分别相等。 进一步,为了更为方便地度量一般的向量,我们引入单位向量的概念,就是在坐标轴方向上具有单位 长度的向量,在直角坐标系当中,习惯的写法,就是 ,,,分别表示在X ,Y ,Z 轴上的单位向量。 按照坐标三元组的写法,就是 =(1,0,0); i r j r k r i r

空间解析几何与向量代数习题

第七章 空间解析几何与向量代数习题 (一)选择题 1. 已知A (1,0,2), B (1,2,1)是空间两点,向量 AB 的模是:( ) A )5 B ) 3 C ) 6 D )9 2. 设a ={1,-1,3}, b ={2,-1,2},求c =3a -2b 是:( ) A ){-1,1,5}. B ) {-1,-1,5}. C ) {1,-1,5}. D ){-1,-1,6}. 3. 设a ={1,-1,3}, b ={2,-1,2},求用标准基i , j , k 表示向量c ; A )-i -2j +5k B )-i -j +3k C )-i -j +5k D )-2i -j +5k 4. 求两平面032=--+z y x 和052=+++z y x 的夹角是:( ) A )2 π B )4 π C )3 π D )π 5. 一质点在力F =3i +4j +5k 的作用下,从点A (1,2,0)移动到点B (3, 2,-1),求力F 所作的功是:( ) A )5焦耳 B )10焦耳 C )3焦耳 D )9焦耳 6. 已知空间三点M (1,1,1)、A (2,2,1)和B (2,1,2),求∠AMB 是:( ) A )2 π B )4 π C )3 π D )π 7. 求点)10,1,2(-M 到直线L :12 21 3+=-=z y x 的距离是:( ) A )138 B 118 C )158 D )1 8. 设,23,a i k b i j k =-=++ 求a b ? 是:( ) A )-i -2j +5k B )-i -j +3k C )-i -j +5k D )3i -3j +3k 9. 设⊿ABC 的顶点为(3,0,2),(5,3,1),(0,1,3)A B C -,求三角形的面积是:( ) A ) 3 62 B ) 3 64 C )3 2 D )3 10. 求平行于z 轴,且过点)1,0,1(1M 和)1,1,2(2-M 的平面方程.是:( ) A )2x+3y=5=0 B )x-y+1=0

第八章向量代数与空间解析几何教案(同济大学版高数)

第八章 向量代数与空间解析几何 第一节 向量及其线性运算 教学目的:将学生的思维由平面引导到空间,使学生明确学习空间解析几何的意义和目的。使学生对(自由)向量有初步了解,为后继内容的学习打下基础。 教学重点:1.空间直角坐标系的概念 2.空间两点间的距离公式 3.向量的概念 4.向量的运算 教学难点:1.空间思想的建立 2.向量平行与垂直的关系 教学内容: 一、向量的概念 1.向量:既有大小,又有方向的量。在数学上用有向线段来表示向量,其长度表示向量的大小,其方向表示向量的方向。在数学上只研究与起点无关的自由向量(以后简称向量)。 2. 量的表示方法有: a 、i 、F 、OM 等等。 3. 向量相等b a =:如果两个向量大小相等,方向相同,则说(即经过平移后能完全重合的向量)。 4. 量的模:向量的大小,记为a 。 模为1的向量叫单位向量、模为零的向量叫零向量。零向量的方向是任意的。 5. 量平行b a //:两个非零向量如果它们的方向相同或相反。零向量与如何向量都平行。 6. 负向量:大小相等但方向相反的向量,记为a - 二、向量的线性运算 1.加减法c b a =+: 加法运算规律:平行四边形法则(有时也称三角形法则),其满足的运算规律有交换率和结合率见图7-4

2.c b a =- 即c b a =-+)( 3.向量与数的乘法a λ:设λ是一个数,向量a 与λ的乘积a λ规定为 0)1(>λ时,a λ与a 同向,||||a a λλ= 0)2(=λ时,0a =λ 0)3(<λ时,a λ与a 反向,||||||a a λλ= 其满足的运算规律有:结合率、分配率。设0 a 表示与非零向量a 同方向的单位向量,那么 a a a 0= 定理1:设向量a ≠0,那么,向量b 平行于a 的充分必要条件是:存在唯一的实数λ, 使b =a λ 例1:在平行四边形ABCD 中,设a =AB ,b =AD ,试用 a 和 b 表示向量MA 、MB 、MC 和MD ,这里M 是平行 四边形对角线的交点。(见图7-5) 图7-4 解:→→==+AM AC 2b a ,于是)(2 1 b a +- =→ MA 由于→ → -=MA MC , 于是)(21 b a += → MC 又由于→→==+-MD BD 2b a ,于是)(2 1 a b -=→MD 由于→→-=MD MB , 于是)(2 1 a b --=→MB 三、空间直角坐标系 1.将数轴(一维)、平面直角坐标系(二维)进一步推广建立空间直角坐标系(三维)如图7-1,其符合右手规则。即以右手握住z 轴,当右手的四个手指从正向x 轴以2 π 角度转向正向y 轴时,大拇指的指向就是z 轴的正向。

向量代数与空间解析几何教案.doc

第八章向量代数与空间解析几何 第一节向量及其线性运算 教学目的:将学生的思维由平面引导到空间,使学生明确学习空间解析几何的意义和目的。使学生对(自由)向量有初步了解,为后继内容的学习打下基础。教学重点: 1. 空间直角坐标系的概念 2.空间两点间的距离公式 3.向量的概念 4.向量的运算 教学难点: 1. 空间思想的建立 2.向量平行与垂直的关系 教学内容: 一、向量的概念 1.向量:既有大小,又有方向的量。在数学上用有向线段来表示向量,其长度表示向 量的大小,其方向表示向量的方向。在数学上只研究与起点无关的自由向量(以后简称向量)。 2.量的表示方法有: a 、i、F、 OM 等等。 3.向量相等a b :如果两个向量大小相等,方向相同,则说(即经过平移后能完全 重合的向量)。 4.量的模:向量的大小,记为 a 、OM。 模为 1 的向量叫单位向量、模为零的向量叫零向量。零向量的方向是任意的。 5.量平行a // b:两个非零向量如果它们的方向相同或相反。零向量与如何向量都平行。 6.负向量:大小相等但方向相反的向量,记为 a 二、向量的线性运算 b c 1.加减法a b c:加法运算规律:平行四边形法则(有 时也称三角形法则),其满足的运算规律有交换率和结合率见图7 a -4

2.a b c 即 a ( b) c 3.向量与数的乘法 a :设是一个数,向量 a 与的乘积a规定为 (1) 0 时, a 与a 同向, | a | | a | (2) 0 时, a 0 (3) 0 时, a 与a反向,| a | | || a | 其满足的运算规律有:结合率、分配率。设 a 0表示与非零向量 a 同方向的单位向量,那么 a 0a a 定理 1:设向量,那么,向量 b 平行于 a 的充分必要条件是:存在唯一的实数 λ , a≠ 0 使b=a 例 1:在平行四边形ABCD中,设AB a ,AD b ,试用 a 和b表示向量 MA 、MB 、MC 和 MD ,这里M是平行四边形对角线的交点。(见图7-5)图 7- 4 解: a b AC 2 AM ,于是 MA 1 (a b) 2 由于 MC MA ,于是 MC 1 b) (a 2 1 (b a) 又由于 a b BD 2 MD ,于是 MD 1 (b 2 由于 MB MD ,于是 MB a) 2 三、空间直角坐标系 1.将数轴(一维)、平面直角坐标系(二维)进一步推广建立空间直角坐标系(三维) 如图 7- 1,其符合右手规则。即以右手握住z 轴,当右手的四个手指从正向x 轴以角度 2 转向正向 y 轴时,大拇指的指向就是z 轴的正向。 2.间直角坐标系共有八个卦限,各轴名称分别为:x轴、y轴、z轴,坐标面分别 为 xoy 面、yoz面、zox面。坐标面以及卦限的划分如图7-2 所示。 图 图 7-1 右手规则演示 7- 2 空间直角坐标系图图7-3空间两点 M 1 M 2的距离图3.空间点M ( x, y, z)的坐标表示方法。 通过坐标把空间的点与一个有序数组一一对应起来。注意:特殊点的表示

空间解析几何与向量代数

空间解析几何与向量代 数 -CAL-FENGHAI.-(YICAI)-Company One1

第八章 空间解析几何与向量代数 一、 选择题 1.设}.4,,1{},2,3,{y b x a -== 若b a //,则 B (A )、x= y=6 (B)、x= y=6 (C)、x=1 y=-7 (D)、x=-1 y=-3 2.平面x -2z = 0的位置是 D 。 (A)、平行XOZ坐标面。 (B)、平行OY轴 (C)、垂直于OY轴 (D)、通过OY轴 3.下列平面中通过坐标原点的平面是 C 。 (A)、x=1 (B)、x+2z+3y+4=0 (C)、3(x-1)-y+(y+3)=0 (D)、x+y+z=1 4.已知二平面π1:mx+y-3z+1=0与π2:7x-2y-z=0当m = B π1⊥π2。 (A)、1/7 (B)、-1/7 (C)、7 (D)、-7 5.二平面π1:x + y - 11=0, π2: 3x +8=0的夹角θ= C 。 (A)、2 π (B)、π/3 (C)、π/4 (D)、π/6 6.下列直线中平行与XOY 坐标面的是 D 。 (A )233211+=+=-z y x (C )1 0101z y x =-=+ (B ){04404=--=--y x z x (D )?? ???==+=4321z t y t x 7.直线L 1:{7272=-+=++-z y x z y x 与L 2:{836302=-+=--z y x z y x 的关系是 B 。 (A )、L 1⊥L 2 (B )、L 1点P(1,2,1)到平面x+2y+2z-10=0的距离是 1 。 2.当l = -4 ,及m= 3 时,二平面2x+my+3z-5=0与l x-6y-6z+2=0互相平行。 3.过点P(4,-1,3)且平行于直线 51232-==-z y x 的直线方程 为 5 32/1134-=+=-z y x 。 三、计算题 1· 求过点(3 0 1)且与平面3x 7y 5z 120平行的平面方程 解 所求平面的法线向量为n (3 7 5) 所求平面的方程为 3(x 3)7(y 0)5(z 1)0 即3x 7y 5z 40 2. 求过点(2 3 0)且以n (1 2 3)为法线向量的平面的方程 解 根据平面的点法式方程 得所求平面的方程为

高中数学知识点总结之平面向量与空间解析几何(经典必看)

56. 你对向量的有关概念清楚吗? (1)向量——既有大小又有方向的量。 ()向量的模——有向线段的长度,2||a → ()单位向量,3100|||| a a a a →→ → → == ()零向量,4000→ → =|| ()相等的向量长度相等方向相同5???? =→→ a b 在此规定下向量可以在平面(或空间)平行移动而不改变。 (6)并线向量(平行向量)——方向相同或相反的向量。 规定零向量与任意向量平行。 b a b b a → → → → → → ≠?=∥存在唯一实数,使()0λλ (7)向量的加、减法如图: OA OB OC →+→=→ OA OB BA →-→=→ (8)平面向量基本定理(向量的分解定理) e e a → → → 12,是平面内的两个不共线向量,为该平面任一向量,则存在唯一

实数对、,使得,、叫做表示这一平面内所有向量λλλλ12112212a e e e e →→→→→ =+ 的一组基底。 (9)向量的坐标表示 i j x y →→ ,是一对互相垂直的单位向量,则有且只有一对实数,,使得 ()a x i y j x y a a x y → →→→→ =+=,称,为向量的坐标,记作:,,即为向量的坐标() 表示。 ()()设,,,a x y b x y → → ==1122 ()()()则,,,a b x y y y x y x y → →±=±=±±11121122 ()()λλλλa x y x y →==1111,, ()()若,,,A x y B x y 1122 ()则,AB x x y y → =--2121 ()()||AB x x y y A B →= -+-212212,、两点间距离公式 57. 平面向量的数量积 ()··叫做向量与的数量积(或内积)。1a b a b a b →→→→→→ =||||cos θ []θθπ为向量与的夹角,,a b → → ∈0

高考数学解析几何和向量的结合专题

解析几何与向量的结合问题专题 1.教学目标 1.1熟练掌握平面向量的三角形与平行四边形法则、数量积的相关概念以及它与解析几何的结合应用 2.2通过对解析几何中,与向量的结合问题,渗透从特殊到一般的思想、数形结合思想、空间想象能力、逻辑思维能力、推理论证能力以及运算求解能力; 3.3提高学生分析问题、自主探究和解决问题的能力,提升学生数学的核心素养。 2.教学重点、难点 2.1重点:利用数学基础知识与基本技能探究解析几何问题,并培养学生分析问题以及解决问题的能力; 2.2难点:如何找到解决解析几何问题的知识与能力的平衡点,并探寻合理的解决方法,进而培养学生的逻辑思维能力。 3.教学过程 喜欢学习解析几何问题的学生很多,喜欢动脑,非常好的事。但遇到解析几何问题,得分率又不高,细化汇总来看,在一些问题上还有待提高,其中错误率较高的问题都反映在什么地方呢?今天我们就一起来探讨一下。 试卷上刚做过得一题: 例1:已知双曲线C :),0,0(12 2 >>=-n m n y m x 21,F F 是双曲线C 的左、右焦点,直线l 与 双曲线C 交于A,B 两点,E 是A 关于y 轴的对称点。若1,1m n ==,(1,0)A -,直线l 与坐 标轴不垂直,点M 为直线BE 与y 轴的交点,且满足3ME EB =u u u r u u u r ,求直线l 的斜率; 3.1学生分析题目 站在学生角度分析: (1)学生看到32 ME EB =u u u r u u u r ,两个动M B 和, 无法下手。 (2)学生看到32 ME EB =u u u r u u u r ,第一步表示出E 标,由(1,0)A -关于y 轴对称写出(1,0)E , B 第二步:再求出点坐标,如何求B 点坐标呢? 设AB: (1)y k x =+,(,)B B B x y 然后我把直线AB: (1)y k x =+和双曲线方程2 2 1x y -=联立,用韦达定理

向量代数与空间解析几何相关概念和例题

空间解析几何与向量代数 向量及其运算 目的:理解向量的概念及其表示;掌握向量的运算,了解两个向量垂直、平行的条件;掌握空间直角坐标系的概念,能利用坐标作向量的线性运算; 重点与难点 重点:向量的概念及向量的运算。难点:运算法则的掌握 过程: 一、向量 既有大小又有方向的量称作向量 通常用一条有向线段来表示向量.有向线段的长度表示向量的大小,有向线段的方向表示向量的方向. 向量的表示方法有两种:→a、 →AB 向量的模:向量的大小叫做向量的模.向量→a、→AB的模分别记为| |→a、| |→AB. 单位向量:模等于1的向量叫做单位向量. 零向量:模等于0的向量叫做零向量,记作→0.规定:→0方向可以看作是任意的. 相等向量:方向相同大小相等的向量称为相等向量 平行向量(亦称共线向量):两个非零向量如果它们的方向相同或相反,就称这两个向量平行.记作a // b.规定:零向量与任何向量都平行. 二、向量运算 向量的加法 向量的加法:设有两个向量a与b,平移向量使b的起点与a的终点重合,此时从a 的起点到b的终点的向量c称为向量a与b的和,记作a+b,即c=a+b . 当向量a与b不平行时,平移向量使a与b的起点重合,以a、b为邻边作一平行四边形,从公共起点到对角的向量等于向量a与b的和a+b. 向量的减法: 设有两个向量a与b,平移向量使b的起点与a的起点重合,此时连接两向量终点且指向被减数的向量就是差向量。 →→→→→ A O OB OB O A AB- = + =, 2、向量与数的乘法 向量与数的乘法的定义: 向量a与实数λ的乘积记作λa,规定λa是一个向量,它的模|λa|=|λ||a|,它的方向当λ>0时与a相同,当λ<0时与a相反. (1)结合律λ(μa)=μ(λa)=(λμ)a; (2)分配律(λ+μ)a=λa+μa; λ(a+b)=λa+λb. 例1在平行四边形ABCD中,设 ?→ ? AB=a, ?→ ? AD=b.

空间解析几何与向量代数

第八章 空间解析几何与向量代数 一、 选择题 1.设}.4,,1{},2,3,{y b x a -==??若b a ??//,则B (A )、x=0.5y=6(B)、x=-0.5y=6 (C)、x=1y=-7(D)、x=-1y=-3 2.平面x-2z=0的位置是 D 。 (A)、平行XOZ坐标面。 (B)、平行OY轴 (C)、垂直于OY轴 (D)、通过OY轴 3.下列平面中通过坐标原点的平面是 C 。 (A)、x=1(B)、x+2z+3y+4=0(C)、3(x-1)-y+(y+3)=0(D)、x+y+z=1 4.已知二平面π1:mx+y-3z+1=0与π2:7x-2y-z=0当m = B π1⊥π2。 (A)、1/7 (B)、-1/7 (C)、7 (D)、-7 5.二平面π1:x+y-11=0,π2:3x+8=0的夹角θ= C 。 (A)、2 π (B)、π/3 (C)、π/4 (D)、π/6 6.下列直线中平行与XOY 坐标面的是D 。 (A )233211+=+=-z y x (C )1 0101z y x =-=+ (B ){ 4404=--=--y x z x (D )?????==+=4321z t y t x 7.直线L 1:{7272=-+=++-z y x z y x 与L 2:{836302=-+=--z y x z y x 的关系是B 。 (A )、L 1⊥L 2(B )、L 1//L 2(C )、L 1与L 2相交但不垂直。(D )、L 1与L 2为异面直线。 二、填空题

1.点P(1,2,1)到平面x+2y+2z-10=0的距离是 1 。 2.当l =-4,及m=3时,二平面2x+my+3z-5=0与l x-6y-6z+2=0互相平行。 3.过点P(4,-1,3)且平行于直线 51232-==-z y x 的直线方程 为 5 32/1134-=+=-z y x 。 三、计算题 1·求过点(301)且与平面3x 7y 5z 120平行的平面方程 解所求平面的法线向量为n (375)所求平面的方程为 3(x 3)7(y 0)5(z 1)0即3x 7y 5z 40 2.求过点(230)且以n (123)为法线向量的平面的方程 解根据平面的点法式方程得所求平面的方程为 (x 2)2(y 3)3z 0 即x 2y 3z 80 3·求过三点M 1(214)、M 2(132)和M 3(023)的平面的方程 解我们可以用→→3121M M M M ?作为平面的法线向量n 因为→)6 ,4 ,3(21--=M M →)1 ,3 ,2(31--=M M 所以 根据平面的点法式方程得所求平面的方程为 14(x 2)9(y 1)(z 4)0 即14x 9yz 150 4·求过点(413)且平行于直线51123-==-z y x 的直线方程 解所求直线的方向向量为s (215)所求的直线方程为 5·求过两点M 1(321)和M 2(102)的直线方程 解所求直线的方向向量为s (102)(321)(421)所求的直线方程为

向量代数与空间解析几何相关概念和例题

空间解析几何与向量代数 向量及其运算 目的:理解向量的概念及其表示;掌握向量的运算,了解两个向量垂直、平 行的条件;掌握空间直角坐标系的概念,能利用坐标作向量的线性运算; 重点与难点 重点:向量的概念及向量的运算。难点:运算法则的掌握 过程: 一、向量 既有大小又有方向的量称作向量 通常用一条有向线段来表示向量. 有向线段的长度表示向量的大小, 有向线段的方向表示向量的方向. 向量的表示方法有两种: → a 、→ AB 向量的模:向量的大小叫做向量的模. 向量→ a 、→ AB 的模分别记为||→ a 、||→ AB . 单位向量: 模等于1的向量叫做单位向量. 零向量: 模等于0的向量叫做零向量, 记作→0.规定:→ 0方向可以看作是任意的. 相等向量:方向相同大小相等的向量称为相等向量 平行向量(亦称共线向量): 两个非零向量如果它们的方向相同或相反, 就称这两个向量平行.记作a // b .规定: 零向量与任何向量都平行. 二、向量运算 向量的加法 向量的加法: 设有两个向量a 与b , 平移向量使b 的起点与a 的终点重合, 此时从a 的起点到b 的终点的向量c 称为向量a 与b 的和, 记作a +b , 即c =a +b . 当向量a 与b 不平行时, 平移向量使a 与b 的起点重合, 以a 、b 为邻边作一平行四边形, 从公共起点到对角的向量等于向量a 与b 的和a +b . 向量的减法: 设有两个向量a 与b , 平移向量使b 的起点与a 的起点重合, 此时连接两向量终点且指向被减数的向量就是差向量。 → → → → → A O O B OB O A AB -=+=, 2、向量与数的乘法 向量与数的乘法的定义: 向量a 与实数λ的乘积记作λa , 规定λa 是一个向量, 它的模|λa |=|λ||a |, 它的方向当λ>0时与a 相同, 当λ<0时与a 相反. (1)结合律 λ(μa )=μ(λa )=(λμ)a ; (2)分配律 (λ+μ)a =λa +μa ; λ(a +b )=λa +λb . 例1 在平行四边形ABCD 中, 设?→ ?AB =a , ?→ ?AD =b .

高等数学 向量代数与空间解析几何复习

第五章 向量代数与空间解析几何 5.1向量 既有大小又有方向的量 表示:→ -AB 或a (几何表示)向量的大小称为向量的模,记作||AB 、|a |、||a 1. 方向余弦:??? ? ??=||,||,||)cos ,cos ,(cos r r r z y x γβα r =(x ,y ,z ),| r |=2 22z y x ++ 2. 单位向量 )cos ,cos ,(cos γβα=→ a 模为1的向量。 3. 模 → →→ ?=++=a a z y x a 2 22|| 4. 向量加法(减法) ),,(212121z z y y x x b a ±±±=±→ → 5. a ·b =| a |·| b |cos θ212121z z y y x x ++= a ⊥ b ?a ·b =0(a ·b =b ·a ) 6. 叉积、外积 |a ?b | =| a || b |sin θ= z y x z y x b b b a a a k j i a // b ?a ?b =0.( a ?b= - b ?a ) ? 2 12 12 1z z y y x x == 7. 数乘:),,(kz ky kx ka a k ==→ → 例1 1||,2||==→ → b a ,→ a 与→ b 夹角为 3 π ,求||→ →+b a 。 解 2 2 ||cos ||||2||2)()(||→ →→→ → →→ →→ →→ → → → → → ++= ?+?+?= +?+=+b b a a b b b a a a b a b a b a θ 713 cos 12222 = +???+= π 例2 设2)(=??c b a ,求)()]()[(a c c b b a +?+?+。 解 根据向量的运算法则 )()]()[(a c c b b a +?+?+

空间解析几何与向量代数复习题

第八章 空间解析几何与向量代数答案 一、选择题 1. 已知A (1,0,2), B (1,2,1)是空间两点,向量的模是(A ) A 5 B 3 C 6 D 9 2. 设a =(1,-1,3), b =(2,-1,2),求c =3a -2b 是( B ) A (-1,1,5). B (-1,-1,5). C (1,-1,5). D (-1,-1,6). 3. 设a =(1,-1,3), b =(2, 1,-2),求用标准基i , j , k 表示向量c=a-b 为(A ) A -i -2j +5k B -i -j +3k C -i -j +5k D -2i -j +5k 4. 求两平面和的夹角是( C ) A 2π B 4π C 3 π D π 5. 已知空间三点M (1,1,1)、A (2,2,1)和B (2,1,2),求∠AMB 是( C ) A 2π B 4π C 3 π D π 6. 求点到直线L :的距离是:( A ) A 138 B 118 C 158 D 1 7. 设,23,a i k b i j k =-=++r r r r r r r 求a b ?r r 是:( D ) A -i -2j +5k B -i -j +3k C -i -j +5k D 3i -3j +3k 8. 设⊿ABC 的顶点为(3,0,2),(5,3,1),(0,1,3)A B C -,求三角形的面积是:( A ) B 364 C 3 2 D 3 9. 求平行于轴,且过点和的平面方程是:( D ) A 2x+3y=5=0 B x-y+1=0 C x+y+1=0 D . 10、若非零向量a,b 满足关系式-=+a b a b ,则必有( C ); A -+a b =a b ; B =a b ; C 0?a b =; D ?a b =0. 11、设,a b 为非零向量,且a b ⊥, 则必有( C ) A a b a b +=+ B a b a b -=- C +=-a b a b D +=-a b a b

空间解析几何与向量微分

第七章:空间解析几何与向量微分 本章内容简介 在平面解析几何中,通过坐标把平面上的点与一对有序实数对应起来,把平面上的图形和方程对应起来,从而可以用代数方法来研究几何问题,空间解析几何也是按照类似的方法建立起来的。 7.1空间直角坐标系 一、空间点的直角坐标 为了沟通空间图形与数的研究,我们需要建立空间的点与有序数组之间的联系,为此我们通过引进空间直角坐标系来实现。 过定点O,作三条互相垂直的数轴,它们都以O为原点且一般具有相同的长度单位.这三条轴分别叫做x轴(横轴)、y轴(纵轴)、z轴(竖轴);统称坐标轴.通常把x轴和y轴配置在水平面上,而z轴则是铅垂线;它们的正方向要符合右手规则,即以右手握住z轴,当右手的四指从正向x轴以π/2角度转向正向y轴时,大拇指的指向就是z轴的正向,这样的三条坐标轴就组成了一个空间直角坐标系,点O叫做坐标原点。(如下图所示) 三条坐标轴中的任意两条可以确定一个平面,这样定出的三个平面统称坐标面。 取定了空间直角坐标系后,就可以建立起空间的点与有序数组之间的对应关系。 例:设点M为空间一已知点.我们过点M作三个平面分别垂直于x轴、y轴、z轴,它们与x轴、y轴、z轴的交点依次为P、Q、R,这三点在x轴、y轴、z轴的坐标依次为x、y、z.于是空间的一点M就唯一的确定了一个有序数组x,y,z.这组数x,y,z就叫做点M的坐标,并依次称x,y和z为点M的横坐标,纵坐标和竖坐标。(如下图所示)

坐标为x,y,z的点M通常记为M(x,y,z). 这样,通过空间直角坐标系,我们就建立了空间的点M和有序数组x,y,z之间的一一对应关系。 注意:坐标面上和坐标轴上的点,其坐标各有一定的特征. 例:如果点M在yOz平面上,则x=0;同样,zOx面上的点,y=0;如果点M在x轴上,则y=z=0;如果M是原点, 则x=y=z=0,等。 二、空间两点间的距离 设M1(x1,y1,z1)、M2(x2,y2,z2)为空间两点,为了用两点的坐标来表达它们间的距离d我们有公式: 例题:证明以A(4,3,1),B(7,1,2),C(5,2,3)为顶点的三角形△ABC是一等腰三角形. 解答:由两点间距离公式得: 由于,所以△ABC是一等腰三角形 7.2 方向余弦与方向数 解析几何中除了两点间的距离外,还有一个最基本的问题就是如何确定有向线段的或有向直线的方向。 方向角与方向余弦 设有空间两点,若以P1为始点,另一点P2为终点的线段称为有 向线段.记作.通过原点作一与其平行且同向的有向线段.将与Ox,Oy,Oz三个 坐标轴正向夹角分别记作α,β,γ.这三个角α,β,γ称为有向线段的方向角.其中

相关主题
文本预览
相关文档 最新文档