当前位置:文档之家› 清华大学 集成电路制造工艺 王水弟 课件第1章概述-2

清华大学 集成电路制造工艺 王水弟 课件第1章概述-2

集成电路制造工艺流程之详细解答

集成电路制造工艺流程之详细解答 1.晶圆制造( 晶体生长-切片-边缘研磨-抛光-包裹-运输 ) 晶体生长(Crystal Growth) 晶体生长需要高精度的自动化拉晶系统。 将石英矿石经由电弧炉提炼,盐酸氯化,并经蒸馏后,制成了高纯度的多晶硅,其纯度高达0.99999999999。 采用精炼石英矿而获得的多晶硅,加入少量的电活性“掺杂剂”,如砷、硼、磷或锑,一同放入位于高温炉中融解。 多晶硅块及掺杂剂融化以后,用一根长晶线缆作为籽晶,插入到融化的多晶硅中直至底部。然后,旋转线缆并慢慢拉出,最后,再将其冷却结晶,就形成圆柱状的单晶硅晶棒,即硅棒。 此过程称为“长晶”。 硅棒一般长3英尺,直径有6英寸、8英寸、12英寸等不同尺寸。 硅晶棒再经过研磨、抛光和切片后,即成为制造集成电路的基本原料——晶圆。 切片(Slicing) /边缘研磨(Edge Grinding)/抛光(Surface Polishing) 切片是利用特殊的内圆刀片,将硅棒切成具有精确几何尺寸的薄晶圆。 然后,对晶圆表面和边缘进行抛光、研磨并清洗,将刚切割的晶圆的锐利边缘整成圆弧形,去除粗糙的划痕和杂质,就获得近乎完美的硅晶圆。 包裹(Wrapping)/运输(Shipping) 晶圆制造完成以后,还需要专业的设备对这些近乎完美的硅晶圆进行包裹和运输。 晶圆输送载体可为半导体制造商提供快速一致和可靠的晶圆取放,并提高生产力。 2.沉积 外延沉积 Epitaxial Deposition 在晶圆使用过程中,外延层是在半导体晶圆上沉积的第一层。 现代大多数外延生长沉积是在硅底层上利用低压化学气相沉积(LPCVD)方法生长硅薄膜。外延层由超纯硅形成,是作为缓冲层阻止有害杂质进入硅衬底的。 过去一般是双极工艺需要使用外延层,CMOS技术不使用。 由于外延层可能会使有少量缺陷的晶圆能够被使用,所以今后可能会在300mm晶圆上更多

材料化学课件

材料化学课件 一、教学目标: (一)科学知识: 1. 知道一些常见的天然材料和人造材料。 2. 初步能区分常见物品中使用的天然材料和人造材料,知道生活离不开材料。 (二)能力培养 1. 主动搜集关于新材料的信息。 2. 懂得动手制作新材料的一些方法。 (三)情感态度价值观 1. 乐于与人合作。 2. 意识到人类为了满足自身的需求,不断在发明新材料。 3. 增强对新事物的敏感性,激发创新意识。 二、重点难点: 使学生知道生活中各种各样的材料在总体上可分为天然材料和人造材料两类,并意识到人类为了满足自身的需求,不断地发明新材料。 三、教学准备 教师:对身边具有代表性的材料进行收集,制作“塑料”的材料(酒精灯、烧杯、牛奶、醋、勺子等)。(课前每小组材料全组装好,放置在小组桌面中间,把纱布也是先扎在烧杯口,) 学生:课前收集材料的知识,收集身边的材料。事先布置家里物品调查作业。 四、教学过程: (一)情景导入: 导入:波波等几位好友一起到妍妍家做客。波波说“真皮沙发真舒服”,彬彬说“难道还有假的皮沙发吗?”。谁说的对?你怎么来区别呢?真皮沙发的材料来自

动物,仿皮沙发的材料来自人造皮革。这是存在的事实,今天我们来通过学习了解天然材料及人造材料的区别。 (目的:引入天然材料和人造材料概念,引领学生对身边材料的观察与思考,从而引入课题。) (二)活动一:古人用的材料 情景:出示课本图片。 描述:这是我们人类的远古时代,我们看看古人生活和劳作的情景:炉子用石头砌成,器皿是用黏土制成的陶土罐,锤子用石块、绳子、木条组合起来,捕鱼船来自粗大植物的树干,手里拿的武器用木棍等加工而成,衣服和帐篷则是来自动物皮毛,制作的生活、生产用品材料全部是存在于自然环境中的天然材料。 思考:古人用这些材料制作生活用品,这些材料来自哪里呢? 学生讨论汇报: 归纳:存在于自然环境种的材料是天然材料,如木材、岩石、粘土、动物皮毛、棉花、蚕丝、石油等。 学生观察:天然材料可以制成很多我们现代人的生活用品,看看用哪些天然材料制作了生产、生活用品?同时指导学生填好记录表。 目的:帮助学生初步建立起天然材料的概念,引导学生关注材料的发展情况。 归纳:古人用黏土、树木、骨头、毛皮以及岩石来建筑、制衣、炊厨、制造狩猎武器等,但还不知道如何去改变他们所发现的天然材料,许多世纪以后,人们发现了通过塑造或切削它们而改变这些材料的方法。后来,人们进而发现了通过加热或化学反应去处理天然材料,所以有些用品虽然都来自天然材料,但其技术含量是完全不同的,让学生意识到人类为了满足自身的需要而不断地创新,因此从某种意义上讲,人类文明发展史就是对材料占有、认识、制造、使用与发展的历史。 (出示课件部分天然材料的'用途:木材——做木制家具;黏土——制成陶罐;石油——提炼出的物质能合成橡胶和塑料;蚕丝——编织成丝巾;棉花——编织成棉质衣服;岩石——用来建造房屋。) (三)活动二:自己动手做“塑料” 任务:自己动手做塑料。 材料:出示牛奶、食醋、勺子、烧杯(或小锅)、酒精灯、石棉网、塑料汤匙、纱布、碟子。

清华大学电路原理第三次仿真实验报

清华大学电路原理第三次仿真实验报

————————————————————————————————作者:————————————————————————————————日期:

[文档标题] 班级:电13 姓名:苗键强 学号:2011010645 日期:2013年1月11日

实验名称: 一、利用运算放大器的正反馈设计占空比可调的脉冲序列发生器; 二、利用运算放大器构成的脉冲序列发生器和积分器构成三角波发生器。 实验任务: 一、设计占空比可调的脉冲序列发生器 要求: (1)给出电路原理图,分析占空比可调的原因。 (2)给出仿真电路图。 (3)给出示波器 Expand 方式下整个示波器界面,分别给出占空比为 20%和70%时的脉冲序列波形和对应的电容电压波形。 二、利用运算放大器构成的脉冲序列发生器和积分器构成三角波发生器 要求: (1)给出电路原理图,分析三角波产生的原因。 (2)给出仿真电路图。 (3)给出示波器 Expand 方式下整个示波器界面,要求同时显示脉冲序列和三角波的波形。 理论分析及仿真电路: 一、设计占空比可调的脉冲序列发生器 通过Multisim仿真,设计电路图如下: 在此电路图中,通过计算可知,脉冲序列周期为:

T=2 U 滞 U 输出 CR5up+2 U 滞 U 输出 CR5down=2 U 滞 U 输出 CR5(1) 因而,占空比为: η=R5up R5 (2) 得到示波器示数如下: 当R5up R5 =0.2时,得到示波器示数如下: 其占空比为 η=46.154 223.932 =20.6% 当R5up R5 =0.7时,得到示波器示数如下:

清华考研 电路原理课件 第2章 简单电阻电路的分析方法

清华大学电路原理电子课件 江辑光版 参考教材: 《电路原理》(第2版)清华大学出版社,2007年3月江辑光刘秀成《电路原理》清华大学出版社,2007年3月于歆杰朱桂萍陆文娟《电路》(第5版)高等教育出版社,2006年5月邱关源罗先觉

简单电阻电路的分析方法简单电阻电路的分析方法 第2章 简单电阻电路的分析方法 2.1 串联电阻电路 2.1 串联电阻电路 2. 4 理想电源的串联和并联 2. 4 理想电源的串联和并联 2.5 电压源与电流源的等效转换 2.5 电压源与电流源的等效转换 2. 3 星形联接与三角形联接的电阻的等效变换 2. 3 星形联接与三角形联接的电阻的等效变换 2.6 两个电阻电路的例子 2.6 两个电阻电路的例子 本章重点 本章重点 2.2 并联电阻电路 2.2 并联电阻电路

? 本章本章重点重点重点 ? 电阻的串联、并联和串并联 返回目录

2.1 串联电阻电路 (Series Connection)

R eq =( R 1+ R 2…+R n ) =∑ R k R eq =( R 1+ R 2 + +……+R n ) =∑ R k u R R u k k eq =等效电阻等于串联的各电阻之和

例 两个电阻分压(voltage division ), 如下图所示 例 两个电阻分压(voltage division ), 如下图所示 u R R R u 2 11 1+= u R R R u 2 12 2+?=i 2 , p 2 = R 2i 2 ,? : p n = R 1 : R 2 : ?= (R 1+ R 2+ ? +R + R i 2 + ? + R i 2 返回目录

集成电路制造工艺流程

集成电路制造工艺流程 1.晶圆制造( 晶体生长-切片-边缘研磨-抛光-包裹-运输 ) 晶体生长(Crystal Growth) 晶体生长需要高精度的自动化拉晶系统。 将石英矿石经由电弧炉提炼,盐酸氯化,并经蒸馏后,制成了高纯度的多晶硅,其纯度高达0.。 采用精炼石英矿而获得的多晶硅,加入少量的电活性“掺杂剂”,如砷、硼、磷或锑,一同放入位于高温炉中融解。 多晶硅块及掺杂剂融化以后,用一根长晶线缆作为籽晶,插入到融化的多晶硅中直至底部。然后,旋转线缆并慢慢拉出,最后,再将其冷却结晶,就形成圆柱状的单晶硅晶棒,即硅棒。 此过程称为“长晶”。 硅棒一般长3英尺,直径有6英寸、8英寸、12英寸等不同尺寸。 硅晶棒再经过研磨、抛光和切片后,即成为制造集成电路的基本原料——晶圆。 切片(Slicing) /边缘研磨(Edge Grinding)/抛光(Surface Polishing) 切片是利用特殊的内圆刀片,将硅棒切成具有精确几何尺寸的薄晶圆。 然后,对晶圆表面和边缘进行抛光、研磨并清洗,将刚切割的晶圆的锐利边缘整成圆弧形,去除粗糙的划痕和杂质,就获得近乎完美的硅晶圆。 包裹(Wrapping)/运输(Shipping) 晶圆制造完成以后,还需要专业的设备对这些近乎完美的硅晶圆进行包裹和运输。 晶圆输送载体可为半导体制造商提供快速一致和可靠的晶圆取放,并提高生产力。 2.沉积 外延沉积 Epitaxial Deposition 在晶圆使用过程中,外延层是在半导体晶圆上沉积的第一层。 现代大多数外延生长沉积是在硅底层上利用低压化学气相沉积(LPCVD)方法生长硅薄膜。外延层由超纯硅形成,是作为缓冲层阻止有害杂质进入硅衬底的。 过去一般是双极工艺需要使用外延层,CMOS技术不使用。 由于外延层可能会使有少量缺陷的晶圆能够被使用,所以今后可能会在300mm晶圆上更多

2013年清华大学电路原理考研真题

2013年清华大学电路原理考研真题 1、(1)理想变压器+并联谐振:理想变压器的副边借有并联的电感与电容,告诉了电感与电容支路的电流表读数相等,由这个条件可求出电路工作的频率值,再代入原边的电感值计算得到原边电路的阻抗,最后求出原边电流;(2)卷积:是一个指数函数和一个延时正比例函数的卷积,直接用公式计算即可,可以把指数函数选作先对称后平移的项,这样只需分三个时间段进行讨论即可; 2、三相电路:(1)电源和负载均为星形连接,且三相对称,直接抽单相计算线电流;(2)共B接法的二表法测电路的三相有功功率,要画图和计算两块功率表的读数,注意的读数为负数;(3)当A相负载对中性点短路后求各相电源的有功,先用节点法求出各相电流,再计算各相电源的有功功率; 3、理想运放的问题:共有2级理想运放,其中第一级为负反馈,第二级为正反馈,解答时先要判断出这一信息,然后(1)求第一级的输出,因为第一级运放是负反馈,故可以用“虚断”和“虚短”,得到输出(实为一个反向比例放大器);(2)求第二级的输出,因为是正反馈,所以“虚断”仍成立,但“虚短”不成立,不过,由正反馈的性质,运放要么工作在正向饱和区,要么工作在反向饱和区,即输出始终为,故可以假设输出为其中一个饱和电压,比较反相输入端和非反相输入端的电压值即可确定第二级的输出(实为一个滞回比较器); 4、一阶电路的方框图问题:动态元件是电容,它接在方框左端,首先告诉了方框右端支路上的电流的零输入响应,由此可得从电容两端看入的入端电阻,即为从方框左端看入的Thevenin等效电阻,其次可得到时刻的电量,画出这个等效电路图;然后改变电容值,改变电容的初始电压值,并在方框右端的支路上接上一个冲激电压源,求电容电压的响应:可以利用叠加定理,分解为零输入响应和零状态响应分别求解,零输入响应可根据前述Thevenin等效电阻直接写出,零状态响应可以先用互易定理(因为方框内的元件全是线性电阻,满足互易定理)结合前述“时刻的电量,画出这个等效电路图”得到左端的短路电流,再由Thevenin等效电阻进而得到从电容两端向右看入的Thevenin等效电路,然后先求阶跃响应,再求导得到冲激源作用下的冲激响应;最后叠加得到全响应; 5、列写状态方程:含有一个压控电流源的受控源,有2个电容和1个电感,用直接法,最后消去非状态变量即可得解答; 6、含有互感的非正弦周期电路(15分):(1)求电感电流,互感没有公共节点,无法去耦等效,只能用一般方法解,该题的电源有2种频率,有3个网孔,2个电感和1个电容,最关键的是左下角网孔的电源是电流源,因此可以设出电感电流的值,再由KCL表示出剩余支路的电流,最后对某一个网孔列写KVL,解方程即可得到要求的电感电流的值,只需列写一个方程,但要注意正确地写出互感电压的表达式;(2)求电流源发出的功率,由第一问的解求出电流源两端的电压,即可得到解答; 7、含有理想二极管的二阶电路:需要判断理想二极管何时关断、何时导通,这是解题的关键。从0时刻开始,二极管关断,电路是一个二阶电路,求出电感电流的响应,直到二极管的端电压一直由增大到零,这就是所求临界点,即电感电流达到最大值的时间节点,此后二极管导通,左右两部分电路是2个独立的一阶电路。因此(1)电路可以分为2个工作时间段,分别画出前述的二阶等效电路

材料化学 课程报告

北京科技大学 课程报告 题目:GaN纳米材料研究进展 课程名称:材料化学基础 学院: 专业: 班级: 学生姓名: 学生学号: 日期:

前言: 随着光电产业的不断发展,对半导体材料的要求也越来越高。进入20世纪90年代以后,由于一些关键技术获得突破以及材料生长和器件工艺水平的不断提高,使GaN薄膜研究空前活跃,GaN基器件发展十分迅速。氮化镓(GaN) =3.39eV)、发光效率高、电子属III-V族宽直接带隙半导体,具有带隙宽(E g 漂移饱和速度高、热导率高、硬度大、介电常数小、化学性质稳定、抗辐射、耐高温等优点。由于以上优越的性能,GaN具有着巨大的应用潜力和广阔的市场前景,如高亮度蓝光发光二极管(LED)、紫外—蓝光激光二极管(LD)、异质结场效应晶体管(HFETs)、紫外探测器等光电子器件、抗辐射、高频、高温、高压等电子器件。[1]GaN也因此被誉为继第一代锗、磷化铟化合物半导体材料之后的第三代主导半导体材料,成为目前全球半导体研究者们关注的焦点。[2]第三代半导体也被誉为高温半导体,且其具有更宽的禁带宽度,因此可以广泛用于导弹防御、相控阵雷达、通信、电子对抗以及智能武器等军事装备,也可用于半导体照明以及光存储与处理,是推动信息技术在新世纪继续发展的关键技术。[3]日本和欧美都非常重视开展对宽禁带半导体技术的研究,分别制定和实施了各自的宽禁带半导体技术发展计划。日本于2001年就出台了“下一代半导体材料和工艺技术开发”计划,将GaN晶体管视为未来民用通信系统的核心,希望“GaN基HEMT”能替代目前在无线基站中起放大信号作用的硅和砷化镓芯片,并还可应用于汽车雷达等领域。而欧美则将宽禁带半导体技术视为下一代军事系统与装备的关键。2002年美国国防先进研究计划局实施了WBGSTI(宽禁带半导体技术)计划,成为加速改进SiC、GaN以及AlN等宽禁带半导体材料特性的重要“催化剂”。欧洲也于2005年制定并实施KORRIGAN(GaN集成电路

CMOS集成电路制造工艺流程

C M O S集成电路制造工艺 流程 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

陕西国防工业职业技术学院课程报告 课程微电子产品开发与应用 论文题目CMOS集成电路制造工艺流程 班级电子3141 姓名及学号王京(24#) 任课教师张喜凤 目录

CMOS集成电路制造工艺流程 摘要:本文介绍了CMOS集成电路的制造工艺流程,主要制造工艺及各工艺步骤中的核心要素,及CMOS器件的应用。 引言:集成电路的设计与测试是当代计算机技术研究的主要问题之一。硅双极工艺面世后约3年时间,于1962年又开发出硅平面MOS工艺技术,并制成了MOS集成电路。与双极集成电路相比,MOS集成电路的功耗低、结构简单、集成度和成品率高,但工作速度较慢。由于它们各具优劣势,且各自有适合的应用场合,双极集成工艺和MOS集成工艺便齐头平行发展。 关键词:工艺技术,CMOS制造工艺流程 1.CMOS器件 CMOS器件,是NMOS和PMOS晶体管形成的互补结构,电流小,功耗低,早期的CMOS电路速度较慢,后来不断得到改进,现已大大提高了速度。 分类 CMOS器件也有不同的结构,如铝栅和硅栅CMOS、以及p阱、n阱和双阱CMOS。铝栅CMOS和硅栅CMOS的主要差别,是器件的栅极结构所用材料的不同。P阱CMOS,则是在n型硅衬底上制造p沟管,在p阱中制造n沟管,其阱可采用外延法、扩散法或离子注入方法形成。该工艺应用得最早,也是应用得最广的工艺,适用于标准CMOS电路及CMOS与双极npn兼容的电路。N阱CMOS,是在p型硅衬底上制造n沟晶体管,在n阱中制造p沟晶体管,其阱一般采用离子注入方法形成。该工艺可使NMOS晶体管的性能最优化,适用于制造以NMOS为主的CMOS以及E/D-NMOS和p沟MOS兼容的CMOS电路。双阱CMOS,是在低阻n+衬底上再外延一层中高阻n――硅层,然后在外延层中制造n 阱和p阱,并分别在n、p阱中制造p沟和n沟晶体管,从而使PMOS和NMOS晶体管都在高阻、低浓度的阱中形成,有利于降低寄生电容,增加跨导,增强p沟和n沟晶体管的平衡性,适用于高性能电路的制造。

(工艺技术)集成电路的基本制造工艺

第1章 集成电路的基本制造工艺 1.6 一般TTL 集成电路与集成运算放大器电路在选择外延层电阻率上有何区别?为什么? 答:集成运算放大器电路的外延层电阻率比一般TTL 集成电路的外延层电阻率高。 第2章 集成电路中的晶体管及其寄生效应 复 习 思 考 题 2.2 利用截锥体电阻公式,计算TTL “与非”门输出管的CS r ,其图形如图题2.2 所示。 提示:先求截锥体的高度 up BL epi mc jc epi T x x T T -----= 然后利用公式: b a a b WL T r c -? = /ln 1ρ , 2 1 2?? =--BL C E BL S C W L R r b a a b WL T r c -? = /ln 3ρ 321C C C CS r r r r ++= 注意:在计算W 、L 时, 应考虑横向扩散。 2.3 伴随一个横向PNP 器件产生两个寄生的PNP 晶体管,试问当横向PNP 器件在4种可能的偏置情况下,哪一种偏置会使得寄生晶体管的影响最大? 答:当横向PNP 管处于饱和状态时,会使得寄生晶体管的影响最大。 2.8 试设计一个单基极、单发射极和单集电极的输出晶体管,要求其在20mA 的电流负载下 ,OL V ≤0.4V ,请在坐标纸上放大500倍画出其版图。给出设计条件如下: 答: 解题思路 ⑴由0I 、α求有效发射区周长Eeff L ; ⑵由设计条件画图 ①先画发射区引线孔; ②由孔四边各距A D 画出发射区扩散孔; ③由A D 先画出基区扩散孔的三边; ④由B E D -画出基区引线孔; ⑤由A D 画出基区扩散孔的另一边;

超大规模集成电路及其生产工艺流程

超大规模集成电路及其生产工艺流程 现今世界上超大规模集成电路厂(Integrated Circuit, 简称IC,台湾称之为晶圆厂)主要集中分布于美国、日本、西欧、新加坡及台湾等少数发达国家和地区,其中台湾地区占有举足轻重的地位。但由于近年来台湾地区历经地震、金融危机、政府更迭等一系列事件影响,使得本来就存在资源匮乏、市场狭小、人心浮动的台湾岛更加动荡不安,于是就引发了一场晶圆厂外迁的风潮。而具有幅员辽阔、资源充足、巨大潜在市场、充沛的人力资源供给等方面优势的祖国大陆当然顺理成章地成为了其首选的迁往地。 晶圆厂所生产的产品实际上包括两大部分:晶圆切片(也简称为晶圆)和超大规模集成电路芯片(可简称为芯片)。前者只是一片像镜子一样的光滑圆形薄片,从严格的意义上来讲,并没有什么实际应用价值,只不过是供其后芯片生产工序深加工的原材料。而后者才是直接应用在应在计算机、电子、通讯等许多行业上的最终产品,它可以包括CPU、内存单元和其它各种专业应用芯片。 一、晶圆 所谓晶圆实际上就是我国以往习惯上所称的单晶硅,在六、七十年代我国就已研制出了单晶硅,并被列为当年的十天新闻之一。但由于其后续的集成电路制造工序繁多(从原料开始融炼到最终产品包装大约需400多道工序)、工艺复杂且技术难度非常高,以后多年我国一直末能完全掌握其一系列关键技术。所以至今仅能很小规模地生产其部分产品,不能形成规模经济生产,在质量和数量上与一些已形成完整晶圆制造业的发达国家和地区相比存在着巨大的差距。 二、晶圆的生产工艺流程: 从大的方面来讲,晶圆生产包括晶棒制造和晶片制造两面大步骤,它又可细分为以下几道主要工序(其中晶棒制造只包括下面的第一道工序,其余的全部属晶片制造,所以有时又统称它们为晶柱切片后处理工序): 多晶硅——单晶硅——晶棒成长——晶棒裁切与检测——外径研磨——切片——圆边——表层研磨——蚀刻——去疵——抛光—(外延——蚀刻——去疵)—清洗——检验——包装 1、晶棒成长工序:它又可细分为: 1)、融化(Melt Down):将块状的高纯度多晶硅置石英坩锅内,加热到其熔点1420℃以上,使其完全融化。2)、颈部成长(Neck Growth):待硅融浆的温度稳定之后,将,〈1.0.0〉方向的晶种慢慢插入其中,接着将晶种慢慢往上提升,使其直径缩小到一定尺寸(一般约6mm左右),维持此真径并拉长100---200mm,以消除晶种内的晶粒排列取向差异。 3)、晶冠成长(Crown Growth):颈部成长完成后,慢慢降低提升速度和温度,使颈直径逐渐加响应到所需尺寸(如5、6、8、12时等)。 4)、晶体成长(Body Growth):不断调整提升速度和融炼温度,维持固定的晶棒直径,只到晶棒长度达到预定值。 5、)尾部成长(Tail Growth):当晶棒长度达到预定值后再逐渐加快提升速度并提高融炼温度,使晶棒直径逐渐变小,以避免因热应力造成排差和滑移等现象产生,最终使晶棒与液面完全分离。到此即得到一根完整的晶棒。 2、晶棒裁切与检测(Cutting & Inspection):将长成的晶棒去掉直径偏小的头、尾部分,并对尺寸进行检测,以决定下步加工的工艺参数。 3、外径研磨(Surface Grinding & Shaping):由于在晶棒成长过程中,其外径尺寸和圆度均有一定偏差,其外园柱面也凹凸不平,所以必须对外径进行修整、研磨,使其尺寸、形状误差均小于允许偏差。 4、切片(Wire Saw Slicing):由于硅的硬度非常大,所以在本序里,采用环状、其内径边缘嵌有钻石颗粒的薄锯片将晶棒切割成一片片薄片。 5、圆边(Edge profiling):由于刚切下来的晶片外边缘很锋利,单晶硅又是脆性材料,为避免边角崩裂影响晶片强度、破坏晶片表面光洁和对后工序带来污染颗粒,必须用专用的电脑控制设备自动修整晶片边缘形状和外径尺寸。 6、研磨(Lapping):研磨的目的在于去掉切割时在晶片表面产生的锯痕和破损,使晶片表面达到所要求的光洁度。

集成电路制造工艺

摘要 集成电路广泛应用于生活生产中,对其深入了解很有必要,在此完论文中整的阐述集成电路原理及其制造工艺本报告从集成电路的最初设计制造开始讲起全面讲述了集成电路的整个发展过程制造工艺以及集成电路未来的发展前途。集成电路广泛应用于生活的各个领域,特别是超大规模集成电路应用之后,使我们的生活方式有了翻天覆地的变化。各种电器小型化智能化给我们生活带来了各种方便。所以对于电子专业了解集成电路的是发展及其制造非常有必要的。关键词集成电路半导体晶体管激光蚀刻 集成电路的前世今生 说起集成电路就必须要提到它的组成最小单位晶体管。1947 年在美国的贝尔实验室威廉·邵克雷、约翰·巴顿和沃特·布拉顿成功地制造出第一个晶体管。晶体管的出现使电子元件由原来的电子管慢慢地向晶体管转变,是电器小型化低功耗化成为了可能。20 世纪最初的10 年,通信系统已开始应用半导体材料。开始出现了由半导体材料进行检波的矿石收音机。1945 年贝尔实验室布拉顿、巴丁等人组成的半导体研究小组经过一系列的实验和观察,逐步认识到半导体中电流放大效应产生的原因。布拉顿发现,在锗片的底面接上电极,在另一面插上细针并通上电流,然后让另一根细针尽量靠近它,并通上微弱的电流,这样就会使原来的电流产生很大的变化。微弱电流少量的变化,会对另外的电流产生很大的影响,这就是“放大”作用。第一次在实验室实际验证的半导体的电流放大作用。不久之后他们制造出了能把音频信号放大100 倍的晶体管。晶体管最终被用到了集成电路上面。晶体管相对于电子管着它本身固有的优点: 1.构件没有消耗:无论多么优良的电子管,都将因阴极原子的变化和慢性漏气而逐渐老化。由于技术上的原因,晶体管制作之初也存在同样的问题。随着材料制作上的进步以及多方面的改善,晶体管的寿命一般比电子管长100 到1000 倍。2.消耗电能极少:耗电量仅为电子管的几十分之一。它不像电子管那样需要加热灯丝以产生自由电子。一台晶体管的收音机只要几节干电池就可以半年。 3.不需预热:一开机就工作。用晶体管做的收音机一开就响,晶体管电视机一开就很快出现画面。电子管设备就做不到这一点。4.结实可靠:比电子管可靠100 倍,耐冲击、耐振动,这都是电子管所无法比拟的。晶体管的体积只有电子管的十分之一到百分之一,放热很少,可用于设计小型、复杂、可靠的电路。晶体管的制造工艺虽然精密,但工序简便,有利于提高元器件的安装密度。光有了晶体管还是不够,因为要把晶体管集成到一片半导体硅片上才能便于把电路集成把电子产品小型化。那怎么把晶体管集成呢,这便是后来出现的集成芯片。采用一定的工艺,把一个电路中所需的晶体管、二极管、电阻、电容和电感等元件及布线互连一起,制作在一小块或几小块半导体晶片或介质基片上,然后封装在一个管壳内,成为具有所需电路功能的微型结构;其中所有元件在结构上已组成一个整体,使电子元件向着微小型化、低功耗和高可靠性化。集成电路经过30 多年的发展由开始的小规模集成电路到到大规模集成电路再到现在的超大规模乃至巨大规模的集成电路,集成电路有了飞跃式的发展集成度也越来越高,从微米级别到现在的纳米级别。模拟集成电路主要是指由电容、电阻、晶体管等组成的模拟电路集成在一起用来处理模拟信号的集成电路。有许多的模拟集成电路,如运算放大器、模拟乘法器、锁相环、电源管理芯片等。模拟集成电路的主要构成电路有:放大器、滤波器、反馈 电路、基准源电路、开关电容电路等。数字集成电路是将元器件和连线集成于同一半导体芯片上而制成的数字逻辑电路或系统。用来产生、放大和处理各种数字信号(指在时间上和幅度上离散取值的信号)。而集成电路的普及离不开因特尔公司。1968 年:罗伯特·诺

集成电路制造工艺概述

集成电路制造工艺概述

目录 集成电路制造工艺概述 (1) 一、集成电路制造工艺的概念 (1) 二、集成电路制造的发展历程 (1) 三、集成电路制造工艺的流程 (2) 1.晶圆制造 (2) 1.1晶体生长(Crystal Growth) (2) 1.2切片(Slicing) /边缘研磨(Edge Grinding)/抛光(Surface Polishing) (2) 1.3包裹(Wrapping)/运输(Shipping) (2) 2.沉积 (3) 2.1外延沉积 (Epitaxial Deposition) (3) 2、2化学气相沉积 (Chemical Vapor Deposition) (3) 2、3物理气相沉积 (Physical Vapor Deposition) (3) 3.光刻(Photolithography) (3) 4.刻蚀(Etching) (4) 5.离子注入 (Ion Implantation) (4) 6.热处理(Thermal Processing) (4) 7.化学机械研磨(CMP) (4) 8.晶圆检测(Wafer Metrology) (5) 9.晶圆检查Wafer Inspection (Particles) (5) 10.晶圆探针测试(Wafer Probe Test) (5) 11.封装(Assembly & Packaging) (6) 12.成品检测(Final Test) (6) 四、集成电路制造工艺的前景 (6) 五、小结 (6) 参考文献 (7)

集成电路制造工艺概述 电子信息学院电子3121班 摘要:集成电路对于我们工科学生来说并不陌生,我们与它打交道的机会数不胜数。计算机、电视机、手机、网站、取款机等等。集成电路在体积、重量、耗电、寿命、可靠性及电性能方面远远优于晶体管元件组成的电路,在当今这信息化的社会中集成电路已成为各行各业实现信息化、智能化的基础,目前为止已广泛应用于电子设备、仪器仪表及电视机、录像机等电子设备中。关键词:集成电路、制造工艺 一、集成电路制造工艺的概念 集成电路制造工艺是把电路所需要的晶体管、二极管、电阻器和电容器等元件用一定工艺方式制作在一小块硅片、玻璃或陶瓷衬底上,再用适当的工艺进行互连,然后封装在一个管壳内,使整个电路的体积大大缩小,引出线和焊接点的数目也大为减少。 二、集成电路制造的发展历程 早在1952年,英国的杜默(Geoffrey W. A. Dummer) 就提出集成电路的构想。1906年,第一个电子管诞生;1912年前后,电子管的制作日趋成熟引发了无线电技术的发展;1918年前后,逐步发现了半导体材料;1920年,发现半导体材料所具有的光敏特性;1932年前后,运用量子学说建立了能带理论研究半导体现象;1956年,硅台面晶体管问世;1960年12月,世界上第一块硅集成电路制造成功;1966年,美国贝尔实验室使用比较完善的硅外延平面工艺制造成第一块公认的大规模集成电路。1988年,16M DRAM问世,1平方厘米大小的硅片上集成有3500万个晶体管,标志着进入超大规模集成电路阶段的更高阶段。1997年,300MHz奔腾Ⅱ问世,采用0.25μm工艺,奔腾系列芯片的推出让计算机的发展如虎添翼,发展速度让人惊叹。2009年,intel酷睿i系列全新推出,创纪录采用了领先的32纳米工艺,并且下一代22纳米工艺正在研发。集成电路制作工艺的日益成熟和各集成电路厂商的不断竞争,使集成电路发挥了它更大的功能,更好的服务于社会。由此集成电路从产生到成熟大致经历了“电子管——晶

清华大学电路原理考研真题

2013年清华大学电路原理考研真题 以上内容由凯程集训营保录班学员回忆整理,供考研的同学们参考。更多考研辅导班的详细内容,请咨询凯程老师。 1、(1)理想变压器+并联谐振:理想变压器的副边借有并联的电感与电容,告诉了电感与电容支路的电流表读数相等,由这个条件可求出电路工作的频率值,再代入原边的电感值计算得到原边电路的阻抗,最后求出原边电流; (2)卷积:是一个指数函数和一个延时正比例函数的卷积,直接用公式计算即可,可以把指数函数选作先对称后平移的项,这样只需分三个时间段进行讨论即可; 2、三相电路: (1)电源和负载均为星形连接,且三相对称,直接抽单相计算线电流; (2)共B接法的二表法测电路的三相有功功率,要画图和计算两块功率表的读数,注意的读数为负数; (3)当A相负载对中性点短路后求各相电源的有功,先用节点法求出各相电流,再计算各相电源的有功功率; 3、理想运放的问题:共有2级理想运放,其中第一级为负反馈,第二级为正反馈,解答时先要判断出这一信息,然后(1)求第一级的输出,因为第一级运放是负反馈,故可以用“虚断”和“虚短”,得到输出(实为一个反向比例放大器);(2)求第二级的输出,因为是正反馈,所以“虚断”仍成立,但“虚短”不成立,不过,由正反馈的性质,运放要么工作在正向饱和区,要么工作在反向饱和区,即输出始终为,故可以假设输出为其中一个饱和电压,比较反相输入端和非反相输入端的电压值即可确定第二级的输出(实为一个滞回比较器); 4、一阶电路的方框图问题:动态元件是电容,它接在方框左端,首先告诉了方框右端支路上的电流的零输入响应,由此可得从电容两端看入的入端电阻,即为从方框左端看入的Thevenin等效电阻,其次可得到时刻的电量,画出这个等效电路图;然后改变电容值,改变电容的初始电压值,并在方框右端的支路上接上一个冲激电压源,求电容电压的响应:可以利用叠加定理,分解为零输入响应和零状态响应分别求解,零输入响应可根据前述Thevenin等效电阻直接写出,零状态响应可以先用互易定理(因为方框内的元件全是线性电阻,满足互易定理)结合前述“时刻的电量,画出这个等效电路图”得到左端的短路电流,再由Thevenin等效电阻进而得到从电容两端向右看入的Thevenin等效电路,然后先求阶跃响应,再求导得到冲激源作用下的冲激响应;最后叠加得到全响应; 5、列写状态方程:含有一个压控电流源的受控源,有2个电容和1个电感,用直接法,最后消去非状态变量即可得解答; 6、含有互感的非正弦周期电路(15分): (1)求电感电流,互感没有公共节点,无法去耦等效,只能用一般方法解,该题的电源有2种频率,有3个网孔,2个电感和1个电容,最关键的是左下角网孔的电源是电流源,因此可以设出电感电流的值,再由KCL表示出剩余支路的电流,最后对某一个网孔列写KVL,解方程即可得到要求的电感电流的值,只需列写一个方程,但要注意正确地写出互感电压的表达式; (2)求电流源发出的功率,由第一问的解求出电流源两端的电压,即可得到解答;

清华大学材料学院本科课程介绍

材料学院 00350032 材料科学与工程概论2学分32学时 Introduction to Materials Science and Engineering 随科技发展,材料科学已经成为现代科技和生活中必备的一门知识,涉及到科研和日常生活的各个方面。本课程将为所有感兴趣的大学生普及材料方面的基本知识和理论,介绍材料科学与工程学科的四个基本要素(材料的成分与组织结构、性能、工艺及使用条件下的性能)。从不同材料所具有的共性规律角度阐述以上四方面的基本知识,并着重说明他们彼此之间的本质联系及综合运用的方法。这些知识对于人们认识和使用材料是十分必要的。 00350042 环境材料学2学分32学时 Ecomaterials 环境材料是材料学科中的一个重要门类。环境材料学主要研究在材料加工和使用过程中如何减少对环境的破坏;建立定量的评价材料环境负担性的生态循环评估方法(LCA);将环境负荷作为一个考核材料的新指标,用于指导开发具有环境意识的绿色材料和产品;把资源效率、生态平衡、环境保护、可持续发展等学科知识融入材料科学,保护自然,造福人类。通过本课程学习,理解环境材料的基本内涵,特别是材料与环境相互影响和相互制约的基本知识;了解研制和开发环境兼容性材料的基本方法及设计原则;学习如何评价材料的环境负担性的LCA方法;并对环境材料的类别和发展有所掌握。 00350052 国内外新材料的奇妙应用2学分32学时 Innovations of New Materials 材料是人类生存的物质基础,新材料技术是现代各项其他高新技术的先驱,新材料是划分时代的标志。材料科学技术,是最基础的物质科学。“天生我才必有用”!材料的科学观和方法论,是我们科学思维的重要源泉。本课程以全校理工经管各专业学生为对象,以普及材料科学的基础知识为使命,讲述材料的主要类型及其在高新技术上的应用。本课程以陶瓷材料,金属材料,高分子材料为主线,具体讲述高强度材料、半导体功能材料、智能材料、生物材料、新能源材料等,讲述材料的基本概念、分类方法、科学观点、设计思想、评价方法和关键制造技术,介绍古今中外新材料的巧妙应用,及其带来的经济社会效益。 00350062 稀土功能材料2学分32学时 Functional Rare Earth Materials 稀土具有多方面的优异性能。我国作为稀土大国,开发各种高新性能的稀土功能材料,使我国丰富的稀土资源更好地服务于国民经济。以稀土永磁、超磁致伸缩、巨磁阻、磁致冷、磁光、储氧、储氢、催化、发光、发热、超导等功能材料在汽车、计算机中的应用为例,通过讲授稀土功能材料的机理、国内外研究与应用的最新进展,展望其前景,并组织学生针对各类功能材料展开专题讨论,从而更深入地认识和掌握稀土在功能材料上的应用。 00350092 科学研究导论2学分32学时 Introduction on Scientific Research 本课程是为有志于从事科学研究的同学开设的一门研讨性课程。内容包括:现代科学研究活动的功能、方式和特点;不同领域科学家公认的具有一般性的科学研究的基本原理、准则、规范和方法;科学研究的思维过程与科学理论的发展规律;以及科学研究活动的具体内容(选题、文献调研、实验及装置的设计、实验的实施、数据处理、研究报告写作、科学学术交流等)。 00350112 航空航天材料及其应用基础2学分32学时 Aerospace Materials and Application 以材料科学的基础理论为纲讲授航空航天材料服役的环境特点,实效行为;讲授提高航空航天材料的强度韧性耐热性的原理和方法。讲授轻质高强金属,高温合金,复合材料等加工原理及其在服役期间的物理化学行为。了解航空航天材料的重要作用。 00350121 在实验中认识材料1学分32学时

2016年清华大学电路原理考研,复试真题,考研大纲,考研流程,考研笔记,真题解析

清华考研详解与指导 清华大学2015年国际法考研试题 一、名词解释(50分)(忘了一个,顺序不是这样子的) 1.反致 2.属人法 3.分配性链接 4.法人设立准据法主义 5.反倾销 6.提单 7.税收管辖权 8.浮动汇率 9.许可协议10. 清华大学《827电路原理》考研真题 一、综述 827电路原理试题较之往年覆盖面广,综合性强,重基础,重计算,重速度。其中,对正弦稳态电路的考察有所加强,而动态电路部分相对削弱,现在对各题分述如下。 二、分述 1、(1)理想变压器+并联谐振:理想变压器的副边借有并联的电感与电容,告诉了电感与电容支路的电流表读数相等,由这个条件可求出电路工作的频率值,再代入原边的电感值计算得到原边电路的阻抗,最后求出原边电流;(2)卷积:是一个指数函数和一个延时正比例函数的卷积,直接用公式计算即可,可以把指数函数选作先对称后平移的项,这样只需分三个时间段进行讨论即可; 2、三相电路:(1)电源和负载均为星形连接,且三相对称,直接抽单相计算线电流;(2)共B接法的二表法测电路的三相有功功率,要画图和计算两块功率表的读数,注意的读数为负数;(3)当A相负载对中性点短路后求各相电源的有功,先用节点法求出各相电流,再计算各相电源的有功功率; 3、理想运放的问题:共有2级理想运放,其中第一级为负反馈,第二级为正反馈,解答时先要判断出这一信息,然后(1)求第一级的输出,因为第一级运放是负反馈,故可以用“虚断”和“虚短”,得到输出(实为一个反向比例放大器);(2)求第二级的输出,因为是正反馈,所以“虚断”仍成立,但“虚短”不成立,不过,由正反馈的性质,运放要么工作在正向饱和区,要么工作在反向饱和区,即输出始终

清华大学硕士电路原理-15

清华大学硕士电路原理-15 (总分:100.00,做题时间:90分钟) 一、解答题(总题数:10,分数:100.00) 1.求下列函数f(t)的象函数。 (1)f(t)=1+2t+3e -4t (2)f(t)=3te -5t (3)f(t)如下图所示。 (分数:10.00) __________________________________________________________________________________________ 正确答案:() 解析:解已知原函数f(t),求其象函数F(s)可利用拉普拉斯正变换(以下简称拉氏变换)的定义式,或直接利用常用函数的拉普拉斯变换式及变换的性质。用定义求象函数较繁,而一般给定的原函数是常用函数,可利用变换结果和一些变换的性质直接求象函数。 (1)直接利用常用函数的拉氏变换结果得 (2)直接利用常用函数的拉氏变换结果得 (3)先由题目中的图写出函数的时域表达式为 f(t)=t[ε(t)-ε(t-1)]+[ε(t-1)-ε(t-2)] =tε(t)-(t-1)ε(t-1)-ε(t-2) 利用常用函数的拉氏变换结果和时域的平移性质得其象函数为 (1).求函数f(t)=1+2e -4t +3te -5t的象函数。(分数:5.00) __________________________________________________________________________________________ 正确答案:() 解析:解 (2).函数f(t)为e -t在0~2s之间的波形,如下图所示,求f(t)的象函数。 (分数:5.00) __________________________________________________________________________________________ 正确答案:() 解析:解由题目中的图写出函数f(t)的时域表达式为 f(t)=e -t [ε(t)-ε(t-2)]=e -tε(t)-e -2 e -(t-2)ε(t-2) 则其象函数为 2.已知下列象函数F(s),求原函数f(t)。

集成电路制造工艺原理

集成电路制造工艺原理 课程总体介绍: 1.课程性质及开课时间:本课程为电子科学与技术专业(微电子技术方向和光电子技术方向)的专业选修课。本课程是半导体集成电路、晶体管原理与设计和光集成电路等课程的前修课程。本课程开课时间暂定在第五学期。 2.参考教材:《半导体器件工艺原理》国防工业出版社 华中工学院、西北电讯工程学院合编《半导体器件工艺原理》(上、下册) 国防工业出版社成都电讯工程学院编著 《半导体器件工艺原理》上海科技出版社 《半导体器件制造工艺》上海科技出版社 《集成电路制造技术-原理与实践》 电子工业出版社 《超大规模集成电路技术基础》电子工业出版社 《超大规模集成电路工艺原理-硅和砷化镓》 电子工业出版社 3.目前实际教学学时数:课内课时54学时 4.教学内容简介:本课程主要介绍了以硅外延平面工艺为基础的,与微电子技术相关的器件(硅器件)、集成电路(硅集成电路)的制造工艺原理和技术;介绍了与光电子技术相关的器件(发光器件和激光器件)、集成电路(光集成电路)的制造工艺原理,主要介绍了最典型的化合物半导体砷化镓材料以及与光器件和光集成电路制造相关的工艺原理和技术。 5.教学课时安排:(按54学时) 课程介绍及绪论2学时第一章衬底材料及衬底制备6学时 第二章外延工艺8学时第三章氧化工艺7学时第四章掺杂工艺12学时第五章光刻工艺3学时第六章制版工艺3学时第七章隔离工艺3

学时 第八章表面钝化工艺5学时 第九章表面内电极与互连3学时 第十章器件组装2学时 课程教案: 课程介绍及序论 (2学时) 内容: 课程介绍: 1 教学内容 1.1与微电子技术相关的器件、集成电路的制造工艺原理 1.2 与光电子技术相关的器件、集成电路的制造 1.3 参考教材 2教学课时安排 3学习要求 序论: 课程内容: 1半导体技术概况 1.1 半导体器件制造技术 1.1.1 半导体器件制造的工艺设计 1.1.2 工艺制造 1.1.3 工艺分析 1.1.4 质量控制 1.2 半导体器件制造的关键问题 1.2.1 工艺改革和新工艺的应用 1.2.2 环境条件改革和工艺条件优化 1.2.3 注重情报和产品结构的及时调整 1.2.4 工业化生产 2典型硅外延平面器件管芯制造工艺流程及讨论 2.1 常规npn外延平面管管芯制造工艺流程 2.2 典型pn隔离集成电路管芯制造工艺流程 2.3 两工艺流程的讨论 2.3.1 有关说明 2.3.2 两工艺流程的区别及原因 课程重点:介绍了与电子科学与技术中的两个专业方向(微电子技术方向和光电子技术方向)相关的制造业,指明该制造业是社会的基础工业、是现代化的基础工业,是国家远景规划中置于首位发展的工业。介绍了与微电子技术方向相关的分离器件(硅器件)、集成电路(硅集成电路)的制造工艺原理的内容,指明微电子技术从某种意义上是指大规模集成电路和超大规模集成电路的制造技术。由于集成电路的制造技术是由分离器件的制造技术发展起来的,则从制造工艺上看,两种工艺流程中绝大多数制造工艺是相通

相关主题
文本预览
相关文档 最新文档