当前位置:文档之家› 二氧化锆陶瓷的制备及性能分析

二氧化锆陶瓷的制备及性能分析

二氧化锆陶瓷的制备及性能分析
二氧化锆陶瓷的制备及性能分析

特种陶瓷综合论文

院(部、中心)材料科学与工程学院

姓名 x x x 学号 xxx 专业材料科学与工程班级 xx

课程名称特种陶瓷材料综合论文

设计题目名称氧化锆陶瓷的制备及性能分析

起止时间

成绩

指导教师

xxx大学教务处制

目录

一、氧化锆的基本性质及应用 (1)

1.1氧化锆的基本性质 (1)

1.2氧化锆的应用 (1)

二、氧化锆粉料的制备 (1)

2.1常用微粉 (2)

2.2 超细粉制备 (2)

三、氧化锆陶瓷的成型 (4)

3.1 热压铸成型 (4)

3.2 干压成型 (4)

3.3 等静压成型 (6)

3.4注浆成型 (6)

3.5流延成型 (6)

3.6凝胶注模成型 (7)

四、氧化锆陶瓷的烧结 (7)

4.1 真空烧结炉 (8)

4.2实验室烧结炉 (10)

五、氧化锆陶瓷的性能测试 (11)

5.1体积密度、吸水率和气孔率的测定 (11)

5.2 抗压强度的测定 (12)

5.3 三点抗弯强度 (12)

5.4 SEM 测试分析 (12)

一、氧化锆的基本性质及应用

1.1氧化锆的基本性质

氧化锆是自然界中以斜锆石存在的一种矿物,是一种耐高温、耐磨损、耐腐蚀的无机非金属材料。它的熔点高达2700摄氏度。白色重质无定形粉末,无臭、无味。溶于2份硫酸和1份水的混合液中,微溶于盐酸和硝酸,慢溶于氢氟酸,几乎不溶于水。有刺激性。相对密度5.85。熔点 2680℃。沸点4300℃。硬度次于金刚石[1]。能带间隙大约为5-7eV 。一般常含有少量的氧化铪。化学性质不活泼,且高熔点、高电阻率、高折射率和低热膨胀系数的性质,使它成为重要的耐高温材料、陶瓷绝缘材料和陶瓷遮光剂。纯的ZrO 2在常压下共有三种晶型:从低温到高温一次为单斜相、四方相、和立方相。氧化锆晶型转变如下:[2] 221170℃2370℃t 2

950℃m ZrO ZrO c ZrO ---

1.2氧化锆的应用

主要用于压电陶瓷制品、日用陶瓷、耐火材料及贵重金属熔炼用的锆砖、锆管、坩埚等。也用于生产钢及有色金属、光学玻璃和氧化锆纤维。还用于陶瓷颜料、静电涂料及烤漆[3]。

氧化锆还是一种很优秀的高科技生物材料。生物相容性好,优于各种金属合金,包括黄金。氧化锆全瓷牙具有极高的密合性,且对牙龈无刺激、无过敏反应,很适合应用于口腔。导热性能极低,仅为黄金的十七分之一,更有利于牙髓的保护。质量轻,密度仅为黄金的四分之一,患者佩戴更舒适。

二、氧化锆粉料的制备

氧化锆陶瓷的生产要求制备高纯、分散性能好、粒子超细、粒度分布窄的粉体,氧化锆超细粉末的制备方法很多。氧化锆的提纯主要有氯化和热分解法、碱

金属氧化分解法、石灰熔融法、等离子弧法、沉淀法、胶体法、水解法、喷雾热解法等。

2.1常用微粉

目前使用的ZrO 微粉,颗粒尺寸一般在1-88um之间。工业上生产微粉常用机械研磨法,原理如下:

块状原料→粉碎(一般使用流化床气流磨)→磁选→清洗→干燥→筛分→包装。需要注意的是,在细磨阶段要防止介质对原料的污染,一般研磨介质用ZrO2和ZTA。

2.2 超细粉制备

超细粉末的粒径一般为10—100nm之间,由于具有一系列优异的性质(如表面效应、小尺寸效应、量子效应、隧道效应等),目前已经成为高科技的前沿和重点。ZrO2超细粉末的制备方法很多,包括物理方法和湿化学方法,如化学共沉淀法、水热法、气相沉积法和气相热分解法等。

2.2.1化学共沉淀法

a.中和沉淀法

利用碱液从氯氧化锆(ZrOC1)盐溶液中沉淀出含水氧化锆:

ZrOC12+2NH40H+(n+1)H20=Zr(OH)4·nH20+2NH4C1

工艺流程为:

ZrOC12·8H20用H2O溶解→用NH4OH溶液中和滴定→过滤→洗涤→100一120oC干燥→800℃下煅烧lh→ZrO2

一般ZrOC12.8H2O浓度可控制在0.25-0.4mol/L;浓度大时,产量大,但固液分离困难。沉淀容易包裹并吸附杂质。沉淀PH值在8—9之间为宜,温度可控制在60—80oC之间,太低时,胶体沉淀体积大,杂质吸附严重,造成过滤、洗涤困难;偏高时。将使沉淀和溶解这一动态平衡加速,可能使凝胶晶化。

b.水解沉淀法

采用长时间的沸腾氯氧化锆溶液使水解生成的氯化氢不断蒸发出去,从而使如下水解反应平衡不断向右移动。

ZrOCl2+(n+3)H2O=Zr(OH)4·nH20+2HC1

工艺流程为:

Zrocl2?8H2O→沉淀50h→过滤→洗涤→100℃下水解沉淀50h→过滤→洗涤→110-110oC干燥→粉碎→850℃下煅烧0.5h→ZrO2

操作上与中和沉淀法大体相同,只是ZrOCl2浓度应控制小些,一般在0.2~0.3mol/L,此法操作简便,但耗能较大。

c.醇盐水解沉淀法

工艺流程为:

(液态)(苯作催化剂)→错醇盐合成→过滤除去NHC1→结晶纯化→加水进行水解沉淀→过滤→100~110oC干燥—→粉碎→85O℃下煅烧0.5h→ZrO2锆醇盐的合成反应和水解反应方程如下:

ZrC14+4C3H7OH+4NH3=Zr(OC3H7)4+2NH4C1(苯作催化剂)

Zr(OC3H7)4+2H20=ZrO2+4C3H7OH(苯作催化剂)

2.2.2水热法

在密封的压力容器中(如高压釜),以水或有机溶剂作为反应介质,锆盐作为反应原料,再加入其它前驱反应物。在这种特殊的物理、化学环境下,粉体的形成经历了一个溶解—结晶过程,制得的ZrO2超细粉末颗粒呈球状或短柱状,粒径为15rim,而且产品纯度高,烧结性能好。最近将微波技术、超临界干燥技术、反应电极埋弧技术等引入水热制备系统,使水热法超细粉末制备技术有了新的改进和发展。

2.2.3气相沉积法和气相热分解法

通过气相反应ZrC14+02=ZrO2+Cl2可制得ZrO2粉。用此法制得的ZrO2粉纯度高、颗粒细。用醇盐加热、分解Zr(OR)4(g)=ZrO2+2ROH+烯烃(式中R 表示烷基)。除以上的ZrO2制备方法之外,还有水热结晶、溶胶一凝胶法、等离子体法和电弧炉法、喷雾干燥等方法。

2.2.4其他方法

随着研究的不断深入,一些研究者探索了新的制备超细粉的思路。如高温喷雾热解法、喷雾感应耦合等离子体法等[12],这些方法利用先进的仪器设备,生产工艺与传统化学制粉工艺截然不同,是将分解、合成、干燥甚至煅烧过程合并

在一起的高效方法。但是这些方法在如何进一步提高传热效率,并在保证细度的前提下,如何扩大产量、降低成本尚需进一步研究探索。

三、氧化锆陶瓷的成型

氧化锆陶瓷以其优异的高温物理和力学性能而得到广泛应用,尤其被用于苛刻条件下使用的关键部件。由于ZrO2的导热性能低、热膨胀系数大,因此ZrO2制品的热稳定性较差。但采用部分稳定ZrO2原料制得的制品晶型组成的ZrO2原料制得的陶瓷制品的热稳定性最好。因此制造ZrO2结构陶瓷往往采用部分稳定ZrO2原料而不是全稳定ZrO2原料。生产ZrO2 结构陶瓷一般用3mo1%Y203稳定的ZrO2超细粉。 ZrO2结构陶瓷的成型方法有:热压铸成型、干压成型和等静压成型、注浆成型、流延成型等。

3.1 热压铸成型

对于ZrO2结构陶瓷小型产品或形状复杂的产品。一般采用热压铸成型方法。该成型方法比较简单,特别适宜于生产批量大或形状复杂的中小型产品。但ZrO2热压铸产品排蜡时易出现开裂、变形等缺陷,这是因为ZrO2陶瓷料浆颗粒粒径较小,粉料比表面积大,调制热压铸浆料时,石蜡及油酸的加人量要明显高于其它陶瓷制品,从而造成坯体收缩大,排蜡时易出现开裂、变形等缺陷。因此调试浆料时,要掌握好石蜡及油酸的加入量和加人方式,设计合理的排蜡烧成曲线及其它相关工艺参数,可以避免上述缺陷的出现。

3.2 干压成型

对形状简单、适于干压成型的中小型ZrO2陶瓷产品常采用干压方法成型。ZrO2 陶瓷干压时出现的常见问题是产品分层,这是因为ZrO2超细粉造粒料的颗粒很细,因而颗粒轻、流动性差,干压成型时容易出现分层现象。从生产实践中得知,产品分层与成型模具的光洁度和配合情况、成型压力、加压方式、加压速度和保压时间、脱模方式、脱模速度均有关系,下面就上述几方面因素对干压成型的影响分述如下:

a.模具的光洁度和配合情况

干压成型对模具质量要求较高,首先要求模具硬度达到一定的要求。由于ZrO2 稳定料的颗粒很细,流动性差,因而对模具的光洁度要求很高,若光洁度达不到要求,则干压时影响料的流动,从而导致分层的出现。同时,若模具配合不好,间隙大,则由于ZrO2 粉料颗粒细,压制时粉料会从模具间隙中流出,从而造成模具四周的粉料少,这样压制时四周就不能压实,从而会因压力传递不一致而出现分层,故对模具的配合要求较高。

b.成型压力

成型压力在ZrO2干压成型过程中是较关键的,压力太小和太大都不能压制出理想的坯体。压力太小,则烧后产品的密度小,产品收缩大,坯体压实程度不够容易出现分层;而压力太大,坯体也容易出现裂纹、分层和脱模困难等现象。合适的成型压力需要通过生产实践来摸索。

C.加压方式

般干压成型时加压方式有两种,一种是单面加压,另一种是双面加压。当单面加压时,则直接受压的一端压力大,出现明显的压力梯度,粉料的流动性越差,则坯体内出现的压力差也就越大,越容易出现分层。双面加压时,坯体两端直接受压,因此两端密度大,中间密度小,其压力梯度的有效传递距离为单面加压的一半,故坯体的密度比单面加压要均匀得多。因此ZrO2陶瓷干压成型时宜采用双面加压的方式。

d.加压速度和保压时间

加压速度和保压时间控制不好也会造成ZrO2坯体出现分层等缺陷。压模下落的速度应缓慢一些,如加压速度过快,则坯体中气体不易排出,从而导致坯体出现分层,表面致密而中间松散,以及存在气泡等现象。如保压时间过短,则压力还未传到应有的深度时,外力就已卸掉,这样坯体中气体不易排出,就难以得到较为理想的坯体,会导致坯体出现分层以及存在气泡等现象。同时保压时间应均匀一致,否则会引起产品厚薄不均,造成废品。

e.脱模方式和脱模速度

干压脱模时一般采用工具将坯体从模腔中顶出,脱模速度要均匀缓慢,如不注意会引起坯体开裂。实践表明脱模时脱模工具要平整,否则会引起坯体受力

不均而造成开裂。总之,干压成型和上述几方面因素都有关系,要成型出理想的坯体,以上各方面都要控制好。

3.3 等静压成型

对形状特殊和尺寸大的ZrO2结构陶瓷,需采用等静压成型。等静压成型的坯体由于各方向所受压力均匀相等,且压力大,因此成型后的坯体密度高,均匀性好,烧成收缩小,不易变形、开裂、分层。该成型方法可避免干压时易出现的分层,特别是成型较厚的ZrO2制品,干压时极易出现分层,而等静压成型则可避免,因此该成型方法是生产ZrO2制品常用的方法。但等静压成型后的坯体需要加工,因此会浪费一部分原料,同时由于坯体很硬,加工比较麻烦,且加工速度要求缓慢,否则坯体易发生断裂,生产效率不高。

3.4注浆成型

注浆成型的成型过程包括物理脱水过程和化学凝聚过程,物理脱水通过多孔的石膏模的毛细作用排除浆料中的水分,化学凝聚过程是因为在石膏模表面CaSO4 的溶解生成的Ca2+提高了浆料中的离子强度,造成浆料的絮凝。在物理脱水和化学凝聚的作用下,陶瓷粉体颗粒在石膏模壁上沉积成型。注浆成型适合制备形状复杂的大型陶瓷部件,但坯体质量,包括外形、密度、强度等都较差,工人劳动强度大且不适合自动化作业。

3.5流延成型

流延成型是把陶瓷粉料与大量的有机粘结剂、增塑剂、分散剂等充分混合,得到可以流动的粘稠浆料,把浆料加入流延机的料斗,用刮刀控制厚度,经加料嘴向传送带流出,烘干后得到膜坯。此工艺适合制备薄膜材料,为了获得较好的柔韧性而加入大量的有机物,要求严格控制工艺参数,否则易造成起皮、条纹、薄膜强度低或不易剥离等缺陷。所用的有机物有毒性,会产生环境污染,应尽可能采用无毒或少毒体系,减少环境污染。

3.6凝胶注模成型

凝胶注模成型技术是美国橡树岭国家实验室的研究者在20世纪90年代初首先发明的一种新的胶态快速成型工艺。凝胶注模成型方法的工艺流程如图4.1所示。其核心是使用有机单体溶液,该溶液能聚合成为高强度的、横向连接的聚合物-溶剂的凝胶。陶瓷粉体溶于有机单体的溶液中所形成的浆料浇注在模具中,单体混合物聚合形成胶凝的部件。由于横向连接的聚合物-溶剂中仅有10%~20%(质量分数)的聚合物,因此,易于通过干燥步骤去除凝胶部件中的溶剂。同时,由于聚合物的横向连接,在干燥过程中,聚合物不能随溶剂迁移。此方法可用于制造单相的和复合的陶瓷部件,可成型复杂形状、准净尺寸的陶瓷部件,而且其生坯强度高达20~30Mpa以上,可进行再加工。该方法存在主要问题是致密化过程中胚体的收缩率比较高,容易导致胚体变形;有些有机单体存在氧阻聚而导致表面起皮和脱落;由于温度诱导有机单体聚合工艺,引起温度剃度导致内应力存在使坯体开列破损等。

四、氧化锆陶瓷的烧结

ZrO2在不同温度下,存在着三种同质异形体,即立方晶系、单斜晶系和四方晶系。当ZrO2从高温冷却到室温要经历c→t→m的同质异构转变,其中t→m的相变过程则要产生3%-5%的体积膨胀,加热至1170℃时m- ZrO2转变为t- ZrO2,这个过程则发生体积收缩[2]。ZrO2陶瓷的烧成时,体积随着相变而变化,很容易出现开裂,因此烧成曲线的选择在ZrO2陶瓷烧成过程中是非常重要的。要注意控制升温速率,特别在其晶相转变温度区域内,升温速率要放慢,对厚胎和大件制品更要注意升温速率。

ZrO2陶瓷的烧结温度随原料的制备方法、细度、添加剂种类和加入量的多少而不同,一般在1500~1 650oC之间,因此ZrO2陶瓷没有统一的烧成曲线,其适宜的烧成制度要通过烧成试验能得到。

氧化锆陶瓷可采用的烧结方法有:⑴无压烧结,⑵热压烧结和反应热压烧结,⑶热等静压烧结(HIP),⑷微波烧结,⑸超高压烧结,⑹放电等离子体烧结(SPS),⑺原位加压成型烧结等。常以无压烧结为主。

采用不同的烧结方法,将使用不同的烧结设备,现介绍几种烧结设备。

4.1 真空烧结炉

图4-1真空烧结炉

表4-1真空烧结炉规格表

4.2实验室烧结炉

图4-2实验室烧结炉

表4-2烧结炉型号表

技术指标:

1、控制精度:±0.3℃%。

2、采用30段编程PID 智能数显温度控制仪,全新数码显示、智能控制技术,可减少视读和人为操作误差,大大提高工作效率、双排数字显示,按键设定,超温报警。微电脑全自动控制,可编程多段升、保、降温曲线,全自动升温、保温、降温和超温保护,程序运行结束自动停止,无须值守。

3、升温快、环保节能、精度高、性能稳定、保温效果好。

4、炉膛采用洁净刚玉莫来石(陶瓷纤维)开模而成,保温性能好,抗热震,耐高温。

5、额定温度:1500℃,1600℃,1700℃。

五、氧化锆陶瓷的性能测试

5.1体积密度、吸水率和气孔率的测定 用液体浸泡试样,然后再用沸水煮 3h ,尽量使试样达到饱和。用液体静力

天平和电 子天平称干试样质量(m 1 )、饱和试样表观质量(m 2 )、饱和试样空气中质量(m 3 )和浸渍液 体的密度(D l )。

体积密度按下式计算: 1132[/()]100%b D m D m m =?-? (3.1)

吸水率按下式计算: 311[()/]100%a w m m m =-? (3.2)

气孔率按下式计算: 3132[()/()]100%a p m m m m =--? (3.3)

式中: m 1 —干试样质量; m 2 —饱和试样表观质量; m 3 —饱和试

样空气中质量; D l —实验温度下,浸渍液体密度,单位:g/cm 3 (本实验选用液体为蒸馏水,密度为 1g /cm 3 )。

5.2 抗压强度的测定

5.3 三点抗弯强度

抗弯强度是指材料抵抗弯曲不断裂的能力,主要用于考察陶瓷等脆性材料的强度[4]。一般采用三点抗弯测试或四点测试方法评测。其中四点测试要两个加载力,比较复杂;三点测试最常用。其值与承受的最大压力成正比。通过三点抗弯来进行强度的测定,计算公式为:

单位N/mm2 。F为式样断裂时测得的负荷值;L为试样长度;b为试样宽度;h为试样厚度。

5.4 SEM 测试分析

扫描电子显微镜观察材料的显微组织结构及材料的断口形貌,是目前材料结构研究的最直接的手段之一,这主要是因为这种方法既像光学金相显微镜那样可以提供清晰直观的形貌图像,同时又具有分辨率高、观察景深长、可以采用不同的图像信息形式、可以给出定量或半定量的表面成分分析结果等一系列优点[5]。

参考文献

[1] 二氧化锆;化学品数据库

[2] 尹洪峰,魏剑;复合材料[M];冶金工业出版社;2010年8月

[3] 二氧化锆;化工空间

[4]陈祖熊,王坚;精细陶瓷;化学工业出版社;2005年3月

[5]刘明刚;碳化硅陶瓷的无压烧结及性能研究[D];西安科技大学;2009年5月

氧化锆陶瓷的制备工艺

氧化锆陶瓷的制备工艺 一氧化锆陶瓷的原料 氧化锆工业原料是由含锆矿石提炼出来的。 斜锆石(ZrO2) 自然界锆矿石 锆英石(ZrO2 ·SiO2) 二氧化锆陶瓷的提炼方法 氯化和热分解 碱金属氧化物分解法 石灰溶解法 等离子弧法 提炼氧化锆的主要方法 沉淀法 胶体法 水解法 喷雾热分解法 ㈠氯化和热分解法 ZrO2?SiO2+4C+4Cl2→ZrCl4+SiCl4+4CO 其中ZrCl4和SiCl4以分馏法加以分离,在150–180℃下冷凝出ZrCl4然后加水水解形成氧氯化锆,冷却后结晶出氧氯化锆晶体,经焙烧就得到氧化锆。 ㈡碱金属氧化物分解法 ZrO2?SiO2+NaOH→Na2ZrO3 +Na2SiO4+H2O

ZrO 2?SiO 2+Na 2CO 3→Na 2ZrSiO 3+CO 2 ZrO 2?SiO 2+Na 2C03→Na 2ZrO 3+Na 2Si03+CO 2 ①反应后用水溶解,滤去Na 2Si03; ②Na 2Zr03→水合氢氧化物→用硫酸进行钝化→Zr 5O 8(SO 4)2·x H 20→ 氧化锆粉 ㈢石灰熔融法 CaO+ZrO 2·SiO 2→ZrO 2+CaSiO 3 焙烧后用盐酸浸出除去CaSiO3 ㈣等离子弧法 锆英石砂(ZrO 2?SiO 2) ㈤沉淀法 沉淀法是在羧基氯化锆等水溶性锆盐与稳定剂盐的混合水溶液中加入氨水等碱性类物质,以获得氢氧化物共沉淀的方法。将共沉淀物干 焙烧 氨 水 调 整 PH 值 用水水解 ZrO2 SiO2 注入高温等离子弧中 熔化并离解 凝固后SiO 2粘在ZrO 2结晶表面 用液体NaOH 煮沸可除SiO 2 ZrO 2和硅酸铀 氧化锆 洗涤

氧化锆陶瓷

112 40 氧化锆陶瓷 编辑 白色,含杂质时呈黄色或灰色,一般含有HfO2,不易分离。在常压下纯ZrO2共有三种晶态。氧化锆陶瓷的生产要求制备高纯、分散性能好、粒子超细、粒度分布窄的粉体,氧化锆超细粉末的制备方法很多,氧化锆的提纯主要有氯化和热分解法、碱金属氧化分解法、石灰熔融法、等离子弧法、沉淀法、胶体法、水解法、喷雾热解法等。 目录 1简介 2种类特点 3粉体制备 4生产工艺 5应用 6增韧方法 1简介

氧化锆陶瓷,ZrO2陶瓷,Zirconia Ceramic 2种类特点 纯ZrO2为白色,含杂质时呈黄色或灰色,一般含有HfO2,不易分离。世界上已探明的锆资源约为1900万吨,氧化锆通常是由锆矿石提纯制得。在常压下纯ZrO2共有三种晶态:单斜(Monoclinic)氧化锆(m-ZrO2)、四方(Tetragonal)氧化锆 (t-ZrO2)和立方(Cubic)氧化锆(c-ZrO2),上述三种晶型存在于不同的温度范围,并可以相互转化: 温度密度 单斜(Monoclinic)氧化锆(m-ZrO2) <950℃ 5.65g/cc 四方(Tetragonal)氧化锆(t-ZrO2) 1200-2370℃ 6.10g/cc 立方(Cubic)氧化锆(c-ZrO2) >2370℃ 6.27g/cc 上述三种晶态具有不同的理化特性,在实际应用为获得所需要的晶形和使用性能,通常加入不同类型的稳定剂制成不同类型的氧化锆陶瓷,如部分稳定氧化锆(partially stabilized zirconia,PSZ),当稳定剂为CaO、 MgO、Y2O3时,分别表示为Ca-PSZ、 Mg-PSZ、 Y-PSZ等。由亚稳的t- ZrO2组成的四方氧化锆称之为四方氧化锆多晶体陶瓷(tetragonal zirconia polycrysta,TZP)。当加入的稳定剂是Y2O3 、CeO2,则分别表示为Y-TZP、Ce-TZP等。 3粉体制备 氧化锆陶瓷的生产要求制备高纯、分散性能好、粒子超细、粒度分布窄的粉体,氧化锆超细粉末的制备方法很多,氧化锆的提纯主要有氯化和热分解法、碱金属氧化分解法、石灰熔融法、等离子弧法、沉淀法、胶体法、水解法、喷雾热解法等。粉体加工方法有共沉淀法、溶胶一凝胶法、蒸发法、超临界合成法、微乳液法、水热合成法网及气相沉积法等。 4生产工艺

氧化钇稳定四方氧化锆多晶陶瓷在牙科领域的研究现状

氧化钇稳定四方氧化锆多晶陶瓷在牙科领域的研究现状氧化钇稳定四方氧化锆多晶陶瓷在牙科领域的研究现状/高燕等 ??51?? 高 燕12,张富强12 1上海交通大学医学院附属第九人民医院,上海200011;2上海 市口腔医学研究所,上海200011 与传统牙科陶瓷材料相比,以氧化钇Y2O3为稳 定剂的四方氧化锆t- ZrO2多晶陶瓷Y-TZP由于存在介稳的四方氧化锆向单斜氧化锆m- ZrO2 的应力诱导相变增韧作用,具有较高的韧性,而受到了普遍关注。主 要从材料性能、加工性、美学性能等方面对Y-TZP在牙科领域的研究现状作一综述。氧化锆 Y-TZP 挠曲强度 CAD-CAM Application Status and Development Tendency of Yttria-stabilized Tetragonal Zirconia PolycrystalsY-TZP GAOYan ZHANG Fuqiang 1 Department of Prosthetic Dentistry Shanghai 9th People’Hospital Shanghai 200011;2.Shanghai Jiaotong University and Shanghai Institute of Stomotology Shanghai 200011 Abstract Compared with traditional dental ceramic Y-TZP is becoming more and more popular between dentists and patients due to its stress induced t–m ZrO2 transformation. This paper introduces the mechanical propertymachinable and aesthetic property of Y-TZP. Key words zirconiaY-TZPflexture strengthCAD-CAMt 0 与传统的金瓷修复体比较,全瓷冠桥修复体因其在美学和生物相容性方面性能的改善而受到普遍的关注13。不论是玻璃陶瓷,高铝含量的玻璃渗透陶瓷都不能满足后牙固定局

氧化锆陶瓷(材料科学概论论文)

氧化锆陶瓷 摘要:本文介绍了氧化锆的基本性质、氧化锆超细粉体的制备方法、高性能氧化锆陶瓷材料的成型工艺以及其在各领域的应用情况。 关键词:氧化锆;高性能陶瓷;制备;应用 材料所处的环境极为复杂,材料损坏引起事故的危险性不断增加,研究与开发对损坏能自行诊断并具有自修复能力的材料是十分重要而急迫的任务,氧化锆就是具有这种功能的智能材料! 一、名称:氧化锆陶瓷,ZrO2陶瓷,Zirconia Ceramic 二、种类及特点 纯ZrO2为白色,含杂质时呈黄色或灰色,一般含有HfO2,不易分离。世界上已探明的锆资源约为1900万吨,氧化锆通常是由锆矿石提纯制得。在常压下纯ZrO2共有三种晶态:单斜氧化锆(m-ZrO2)、四方氧化锆(t-ZrO2)和立方氧化锆(c-ZrO2),上述三种晶型存在于不同的温度范围,并可以相互转化: 单斜(Monoclinic)氧化锆(m-ZrO2)<950℃ 5.65g/cc 四方(Tetragonal)氧化锆(t-ZrO2)1200-2370℃ 6.10g/cc 立方(Cubic)氧化锆(c-ZrO2)>2370℃ 6.27g/cc 三、增韧原理 氧化锆增韧的方法,主要是利用氧化锆的相变才能达到的!. 部分稳定ZrO2陶瓷在烧结冷却过程中,t-ZrO2晶粒会自发相变成m-ZrO2,引起体积膨胀,在基体中产生微裂纹,相变诱导的微裂纹会使主裂纹扩展时分叉或改变方向而吸收能量,使主裂纹扩展阻力增大,从而使断裂韧性提高。这种机理称微裂纹增韧。主要增韧方法有:应力诱导相变增韧、微裂纹增韧、残余应力增韧、表面增韧以及复合增韧等。 其中t-ZrO2转化为m-ZrO2相变具有马氏体相变的特征,并且相变伴随有3%~5%的体积膨胀。不加稳定剂的ZrO2陶瓷在烧结温度冷却的过程中,就会由于发生相变而严重开裂。解决的办法是添加离子半径比Zr小的Ca、Mg、Y等金属的氧化物。 材料中的t-ZrO2晶粒在烧成后冷却至室温的过程中仍保持四方相形态,当材料受到外应力的作用时,受应力诱导发生相变,由t相转变为m相。由于ZrO2晶粒相变吸收能量而阻碍裂纹的继续扩展,从而提高了材料的强度和韧性。相转变发生之处的材料组成一般不均匀,因结晶结构的变化,导热和导电率等性能随之而变,这种变化就是材料受到外应力的信号,从而实现了材料的自诊断。 对氧化锆材料压裂而产生裂纹,在300℃热处理50h后,因为t相转变为m 相过程中产生的体积膨胀补偿了裂纹空隙,可以再弥合,实现了材料的自修复。 四、氧化锆粉体的制备 ZrO2超细粉体的制备技术 锆英石的主要成分是ZrSiO4,一般均采用各种火法冶金与湿化学法相结合的工艺,即先采用火法冶金工艺将ZrSiO4破坏,然后用湿化学法将锆浸出,其中间

氧化锆陶瓷

氧化锆陶瓷 一.简介 1.氧化锆的性质: (1)含锆的矿石:斜锆石(ZrO2),锆英石(ZrO2 ·SiO2); (2)颜色:白色(高纯ZrO2);黄色或灰色(含少量杂质的ZrO2),常含二氧化铪杂质;(3)密度:5.65~6.27g/cm3; (4)熔点:2715℃。 (5)氧化锆具有熔点和沸点高、硬度大、常温下为绝缘体、而高温下则具有导电性等优良性质。 2.氧化锆晶型转化和稳定化处理: 在常压下纯ZrO2共有三种晶态:单斜(Monoclinic)氧化锆(m-ZrO2)、四方(Tetragonal)氧化锆(t-ZrO2)和立方(Cubic)氧化锆(c-ZrO2),上述三种晶型存在于不同的温度范围,并可以相互转化,如表1。ZrO2四方相与单斜相之间的转变是马氏体相变,由于四方相转变为单斜相时有3~5%的体积膨胀和7~8%的切应变。因此,纯ZrO2制品往往在生产过程(从高温到室温的冷却过程)中会发生t-ZrO2 转变为m-ZrO2的相变并伴随着体积变化而产生裂纹,甚至碎裂,因此无多大的工程价值。但是,当加入适当的稳定剂(如Y2O3,MgO2,CaO,CeO2等)后,可以降低c-ZrO2 t-ZrO2→m-ZrO2的相变温度,使高温稳定的c-ZrO2 和t-ZrO2相也能在室温下稳定或亚稳定存在。当加入的稳定剂足够多时,高温稳定的c-ZrO2可以一直保持到室温不发生相变。进一步研究发现氧化锆发生马氏体相变时伴随着体积和形状的变化,能吸收能量,减缓裂纹尖端应力集中,阻止裂纹的扩展,提高陶瓷韧性。因此氧化锆相变增韧陶瓷的研究和应用得到迅速发展,氧化锆相变增韧陶瓷有三种类型,分别为部分稳定氧化锆陶瓷;四方氧化锆多晶体陶瓷及氧化锆增韧陶瓷。 晶态温度密度 <950℃ 5.65g/cc 单斜(Monoclinic)氧化锆 (m-ZrO2) 四方(Tetragonal)氧化锆 1200-2370℃ 6.10g/cc (t-ZrO2) 立方(Cubic)氧化锆(c-ZrO2) >2370℃ 6.27g/cc 表1 在常压下纯ZrO2三种晶态 (1)当ZrO2中稳定剂加入量在某一范围时,高温稳定的c-ZrO2通过适当温度下时效处理使c-ZrO2大晶粒(c相)中析出许多细小纺锤状的t-ZrO2(t相)晶粒,形成c相和t 相组成的双相组织结构。其中c相是稳定的而t相是亚稳定的并一直保存到室温。在外力诱导下有可能诱发t相到m相的马氏体相变并伴随体积膨胀,耗散部分能量、抵消了部分外力从而起到增韧作用,称为应力诱导相变增韧。这种陶瓷称之为部分稳定氧化锆,当稳定剂为CaO、MgO、Y2O3时,分别表示为Ca-PSZ、Mg-PSZ、Y-PSZ等。 (2)当ZrO2中稳定剂加入量控制在适当量时可以使t-ZrO2以亚稳状态稳定保存到室温,那么块体氧化锆陶瓷的组织结构是亚稳的t- ZrO2细晶组成的四方氧化锆多晶体称之为四方氧化锆多晶体陶瓷(。在外力作用下可相变t-ZrO2发生相变,增韧不可相变的ZrO2基

钇稳定氧化锆纳米粉体制备技术解析

第25卷第6期硅酸盐通报 Vol . 25No . 62006年12月BULLETI N OF THE CH I N ESE CERAM I C S OC I ETY December, 2006 钇稳定氧化锆纳米粉体制备技术研究进展 王洪升, 王贵, 张景德, 徐廷鸿1211 (1. 山东大学材料液态结构及其遗传性教育部重点实验室, 济南250061; 2. 济南大学泉城学院, 济南250061 摘要:纳米YSZ 是一种新型的高科技材料, 有着广泛而重要的用途。本文根据国内外最新研究现状及其发展趋势, 综述了纳米级YSZ 的制备技术, 特别就目前研究比较多的水热法和反胶团法给予了重点阐述, 并就目前制备过程中存在的问题, 解决方法及发展方向作了介绍。 关键词:YSZ; 纳米粉体; 团聚; 制备 The Prepara ti on Progresses of Y SZ Nanom WAN G Hong 2sheng , WAN G Gui , J , XU 2. Quancheng College of J China 1211(Keb Lab . of L iquid Structure and Heredity of MaterialsM J inan 250061, China; Abstract:U ltrafine ne advanced material, which has wide and significant uses . methods of YSZ powder were revie wed in this paper on the basis of ne w op trends, es pecially the hydr other mal method and the reverse m icelles were described in The p r omble m s that need t o be s olvoed and the directi on in the future were given . Key words:YSZ; nanometer powder; aggregati on; p reparati on

氧化锆陶瓷材料的抗热震性能分析

氧化锆陶瓷材料的抗热震性能分析 摘要:文章通过对氧化锆陶瓷材料的热膨胀性以及相变的特征进行分析,着重探讨有效利用氧化锆的相变提高氧化锆材料实际抗热震性能的具体方法,以及如何提高材料抗热震性的可行性办法。 关键词:氧化锆陶瓷材料抗热震性能 材料具有的热学性能以及力学性能决定了陶瓷材料当中热应力的大小,另外构件的几何形状以及环境的介质等也会影响陶瓷材料的热应力的大小。因此,抗热震性代表着陶瓷材料抵抗温度变化能力的大小,也肯定是它热学性能以及力学性能相对应各种受热条件时一个全面的反映。关于陶瓷材料在抗热震能力方面的研究开始于上个世纪五十年代,到目前形成了很多关于抗震性的相关评价理论,不过都在一定程度上有着片面性和局限性。 一、陶瓷材料的抗热震性具体理论分析 陶瓷材料热震破坏包括:在热冲击的循环直接作用下发生的开裂和剥落;在热冲击的作用下瞬间的断裂。基于此,有关脆性的陶瓷材料具体的抗热震性相关的评价理论也涵盖了两个观点。首先是基于热弹性的理论。其说的是材料原本的强度无法抵抗热震温差导致的热应力的时候,就造成了材料的“热震断裂”。通过这个理论,陶瓷材料需要同时具备热导率、高强度和低热膨胀系数、泊松比、杨氏弹性模量、黏度以及热辐射的系数,这样方能够具备较高的抗热震断裂能力。另外,想要提高陶瓷材料实际的抗热震能力,还可以通过对材料的热容以及密度进行适当的降低。 另一理论基于断裂力学的具体概念,也就是材料当中热弹性的应变能完全能够裂纹成核以及扩展而新生的表面需要的能量的时候,裂纹形成并且开始扩展,进而造成了材料热震的损伤。按照该理论,在抗热震损伤性能方面比较好的材料应当符合越高越好的弹性模量以及越低越好的强度。以此能够发现,以上要求和高抗热震断裂的能力具体的要求完全对立。另外,将陶瓷材料实际的断裂能提高以及对材料的实际断裂韧性进行改善,很明显有助于提高材料的抗热震的损伤能力。另外,存在一定量的微裂纹也对提高抗热震的损伤性能有很大的帮助,比如:在气孔率是10%到20%之间的非致密的陶瓷当中,热扩展裂纹的形成通常会遭受来自气孔的抵制,存在的气孔能够帮助钝化裂纹以及减小应力的集中。 作为氧化锆陶瓷材料,有着极为鲜明的常温力学的性能,熔点比较高、在化学稳定性以及热稳定性上都比较好。所以,其的使用经常处于高温的条件之下,因而其抗热震性的性能也是判断其性能的关键指标。氧化锆的许多性质都非常的特殊,比如:氧化锆能够以单料以及四方、立方这三种具体晶型共同存在,还有它特殊的相变特性,这么多特性都可以被我们所利用,用来提高其热膨胀的行为,加强其的抗热震方面的性能。

外科植入物氧化钇稳定四方氧化锆Y-TZP陶瓷材料

《外科植入物---氧化钇稳定四方氧化锆(Y-TZP)陶瓷材料》 行业标准编制说明 一、工作简况 任务来源:根据食药监办械管〔2017〕94号《总局办公厅关于印发2017年医疗器械行业标准制修订项目的通知》,确定由天津市医疗器械质量监督检验中心(以下简称天津中心)负责起草“外科植入物---氧化钇稳定四方氧化锆(Y-TZP)陶瓷材料”(项目编号: N2017012-T-TJ)行业标准。 任务下达后,天津中心对此项工作给予了高度重视,及时于2017年3月28日在武汉召开2017年标准制订工作启动会,并公开征集标准制定工作参与单位。启动会上责成标准项目负责人就《外科植入物---氧化钇稳定四方氧化锆(Y-TZP)陶瓷材料》标准的立项背景、现有工作基础、项目工作安排做了详细介绍,并成立了标准起草工作组。工作组成立后,迅速开展工作,通过查阅相关国际标准、美国标准、国家标准、行业标准等相关资料,基本确定了标准的制定思路。工作组于2017年4月至5月编写标准草案,于2017年6月19日至21日在天津组织召开标准修订中期会议,针对标准草案进行深入讨论,会后形成标准的征求意见稿。 二、编制原则和确定标准主要内容的依据 本标准按照GB/T 1.1-2009《标准化工作导则第1部分:标准的结构和编写》及GB/T 20000.2-2009《标准化工作指南第2部分:采用国际标准》的要求进行编写。 本标准使用重新起草法修改采用ISO 13356-2015: Implants for surgery-Ceramic materials based on yttria-stabilized tetragonal zirconia(Y-TZP) 本标准的主要内容包括: 1)范围 2)规范性引用文件 3)物理及化学性能 4)试验方法 三、主要实验(或验证)的分析、综述报告、技术经济论证、预期的经济效果 详见验证报告。 四、采用国际标准和国外先进标准的程度,以及与国际、国外同类标准水平的对比情况,或与测试的国外样品、样机的有关数据对比的情况。

氧化锆陶瓷的制备工艺

一氧化锆陶瓷的原料 氧化锆工业原料是由含锆矿石提炼出来的。 斜锆石(ZrO2) 自然界锆矿石 锆英石(ZrO2·SiO2) 二氧化锆陶瓷的提炼方法 氯化和热分解 碱金属氧化物分解法 石灰溶解法 等离子弧法 提炼氧化锆的主要方法 沉淀法 胶体法 水解法 喷雾热分解法 ㈠氯化和热分解法 ZrO2SiO2+4C+4Cl2ZrCl4+SiCl4+4CO 其中ZrCl4和SiCl4 以分馏法加以分离,在150–180℃下冷凝出ZrCl4然后加水水解形成氧氯化锆,冷却后结晶出氧氯化锆晶体,经焙烧就得到氧化锆。 ㈡碱金属氧化物分解法 ZrO2SiO2+NaOH→Na2ZrO3 +Na2SiO4+H2O ZrO2SiO2+Na2CO3→Na2ZrSiO3+CO2

ZrO 2SiO 2+Na 2C03 →Na 2ZrO 3+Na 2Si03+CO 2 ①反应后用水溶解,滤去Na 2Si03; ②Na 2Zr03 → 水合氢氧化物 → 用硫酸进行钝化 →Zr 5O 8(SO 4)2·xH 20 → 氧化锆粉 ㈢石灰熔融法 CaO+ZrO 2·SiO 2→ZrO 2+CaSiO 3 焙烧后用盐酸浸出除去CaSiO3 ㈣等离子弧法 锆英石砂(ZrO 2?SiO 2) ㈤沉淀法 沉淀法是在羧基氯化锆等水溶性锆盐与稳定剂盐的混合水溶液中加入氨水等碱性类物质,以获得氢氧化物共沉淀的方法。将共沉淀物干燥后一般得到的是胶态非晶体,经500—700℃左右焙烧而制成ZrO 2 焙烧 氨 水 调 整 用水水解 ZrO2 SiO2 注入高温等离子弧中 熔化并离解 凝固后SiO 2粘在ZrO 2结晶表面 用液体NaOH 煮沸可除SiO 2 ZrO 2 和 硅酸铀 氧化锆 洗 涤

氧化锆陶瓷行业现状

氧化锆陶瓷行业现状 氧化锆陶瓷作为陶瓷中应用最广的一种材料,其计算机技术和数字化控制技术的发展促进了先进陶瓷材料工业的技术进步和快速发展,诸如自动控制连续烧结窑炉、大功率大容量研磨设备、高性能制粉粒设备等净压成型设备等先进的成套设备有利地推动了行业整体水平的提高,同时在生产效率、产品质量等方面也都明显改善,其中山东金澳科技为其行业之最。 微晶氧化锆陶瓷制品作为其它行业或的基础材料,受着其它行业发展水平的影响和限制。从目前氧化锆陶瓷的应用情况看,应用范围越来越宽,用量越来越大,特别是在防磨工程和建筑陶瓷生产方面的用量增加将更为显著。 作为结构陶瓷用的氧化锆是一个非常复杂的体系,其应用不仅取决于化学性能(纯度和组成)、而且还取决于相结构和氧化锆粉末的物理特性。其中金澳科技在这方面体现的尤为突出,其化学组成容易控制,相结构也是较容易调节的。而氧化锆来控制。在低温下存在四方相可能是受多个因素的影响(包括化学反应的阴离子杂技的影响),在四方相和母体无定型相之间的结构是类似的。在晶体中晶格应变和缺陷中心存在,没有考虑t -m转变发生是低于一个给定的颗粒尺寸。这些晶格应变和缺陷中心可能由于化学杂质存在,引起ZrO从无定型状态变成四方相的结晶体。 目前制备亚微氧化锆粉体的方法很多,常见的有共沉淀法、醇盐水解法、氧氯化锆水解法、水热法(高温水解法)、溶胶-凝胶法等, 这些方法各有特点,但也存在很多不足。如共常常法制务粉末存在严重的团聚现象,制备粉末都不能达到很细,分散性能很差,粒度分布不均匀,即使方法恰当,工艺操作合理,也不能区得最理想的粉末。在制造陶瓷时,由于粉末的流动性差,所以压制坯块均匀性差,烧结密度不高。

氧化钇稳定氧化锆涂层的研究现状

第47卷第13期2019年7月广 州 化 工 Guangzhou Chemical Industry Vol.47No.13Jul.2019 氧化钇稳定氧化锆涂层的研究现状 彭春玉 (国家知识产权局专利局专利审查协作广东中心,广东 广州 511356) 摘 要:由于氧化钇稳定氧化锆(YSZ)陶瓷材料在作为热障涂层的使用过程中存在因抗烧结性能差二应力裂纹二涂层脱落 等导致涂层失效的问题,本文主要从热障涂层的制备工艺,抗烧结性能二控制TGO 的生长二抗CMAS 腐蚀及YSZ 面层应变容限等方面的改善方法进行论述,通过提高涂层纯度二改变粘接层及涂层成分二涂层结构及制备柱状结构YSZ 陶瓷面层释放热失配应力等可有效改善涂层在使用过程中的失效问题三 关键词:氧化钇稳定氧化锆;热障涂层;等离子喷涂;电子束物理气相沉积;失效机理  中图分类号:O343.6  文献标志码:A 文章编号:1001-9677(2019)13-0044-03 作者简介:彭春玉(1980-),女,助理研究员,主要从事表面镀覆领域的发明专利实质审查工作三 Research Progress on Failure Mechanism of Thermal Barrier Coating PENG Chun -yu (Patent Examination Cooperation Guangdong Center of the Patent Office,CNIPA, Guangdong Guangzhou 511356,China) Abstract :Due to poor sintering resistance,stress crack,coating shedding and other problems that lead to coating failure in the application of Yttria -stabilized zirconia (YSZ )ceramic materials as thermal barrier coatings,the improvement method of thermal barrier coatings was mainly discussed in terms of sintering resistance,TGO growth control,CMAS corrosion resistance and YSZ surface layer tolerance,which can effectively improve coating failure in application by improving coating purity,changing adhesive layer and coating composition,coating structure and preparing columnar YSZ ceramic surface to release thermal mismatch stress. Key words :Yttria-stabilized zirconia;thermal barrier coating;plasma spray;EB-PVD;failure mechanism 热障涂层(thermal barrier coatings,简称TBCs)可以降低金属基底的温度,提高油料的燃烧温度和燃烧效率,而且还可以防止金属基底的高温腐蚀,应用于金属表面,如涡轮叶片和航空发动机三TBCs 的功能是为流经前述叶片的热铸件提供隔热三氧化钇稳定氧化锆(YSZ)陶瓷材料由于具有高热膨胀系数二低热导率及良好的抗氧化性和稳定性等优异性能,已经被广泛应用于制备热障涂层,热障涂层对于进一步提高合金材料的使用温度发挥着重要的作用,可以提高使用温度70~150℃[1] 三 YSZ 具有低的热导率和相对较高的热膨胀系数,但是它在使用 过程中存在如下问题[2-7]: (1)抗烧结性能差; (2)热生长氧化物(TGO)内部应力诱发裂纹导致涂层脱落; (3)高温作用下形成一种玻璃态沉积物CMAS 与YSZ 中的 Y 2O 3反应,在热化学与热机械的相互作用下,导致YSZ 涂层内部产生裂纹; (4)热膨胀系数存在的差异导致YSZ 面层脱落三 为了改善YSZ 涂层性能,人们对影响YSZ 涂层服役寿命的常见问题及改善需求二改善方法进行了大量的探索和研究三 1 氧化钇稳定氧化锆涂层的制备 氧化钇稳定氧化锆涂层的制备可以通过多种方法实现:如高速火焰喷涂二爆炸喷涂二磁控溅射二离子镀二电弧蒸镀二激光熔覆二化学气相沉积二离子束辅助沉积二等离子喷涂和电子束物理气相沉积等,但是从热障涂层技术的发展及应用来看,涂层的制备技术以等离子喷涂和电子束物理气相沉积[8-12]为主三 1.1 等离子喷涂 等离子喷涂法是一种最突出和最广泛使用的涂层技术,用于涂覆顶涂层和粘结涂层三在该方法中,在阴极附近通过的等离子体气体在到达阳极喷嘴时被加热至等离子体温度,在该等离子体温度下,等离子体气体与载有原料粉末的载气混合,并且熔融粉末颗粒的混合物被制成高速撞击基底,以形成所需的涂层[13]三 用于氧化钇稳定氧化锆涂层制备的等离子喷涂包括大气等 离子喷涂(APS)二高能等离子喷涂(HEPS)和低压等离子喷涂(LPPS)三等离子喷涂的工艺特点是操作简单,加热温度高,对涂层材料的要求宽松,沉积率高,制备成本低三等离子喷涂制

部分稳定氧化锆陶瓷的凝胶注模成型工艺_英文_

硅酸盐学报 · 1620 ·2008年 部分稳定氧化锆陶瓷的凝胶注模成型工艺 仝建峰,陈大明 (北京航空材料研究院,先进复合材料国防科技重点实验室,北京 100095) 摘要:用流变学的方法研究了不同条件,如:固相含量、分散剂加入量、烧结助剂、增塑剂等对碱性部分稳定氧化锆(partially stabilized zirconia, PSZ)悬浮体的流变性的影响。结果表明:分散剂含量对悬浮液的流变性能有明显影响,当PSZ固相体积含量为55%时,分散剂加入量(占固相含量的质量分数)应为0.4%。当固相体积含量为50%~56%时,氧化锆碱性料浆呈现剪切变稀行为,具有较低的黏度(在剪切速率为10 s–1时,低于50mPa?s)。氧化锆陶瓷碱性料浆(pH>7)在低的剪切速率(<100s–1)时,表现为剪切变稀。凝胶注模法生产的PSZ陶瓷坯体的内部结构是均匀的。 关键词:部分稳定氧化锆;凝胶注模;流变特性 中图分类号:O373 文献标识码:A 文章编号:0454–5648(2008)11–1620–05 PREPARATION OF PARTIALLY STABILIZED ZIRCONIA CERAMIC BY AQUEOUS GELCASTING TONG Jianfeng,CHEN Daming (The National Key Laboratory of Advanced Composite Materials, Beijing Institute of Aeronautical Materials, Beijing 100095, China, Beijing 81–3 100095, China) Abstract: A partially stabilized zirconia (PSZ) ceramic was prepared by aqueous gelcasting. The effects of the zeta potentials, solid loading, dispersant content and milling time on the PSZ suspension were studied. The dispersant content has a remarkable effect on the rheological properties of the suspension. The appropriate dispersant mass fraction for PSZ aqueous slurry with the solid loading of 55% in volume is 0.4%. All suspensions (50%?56% solid loading) exhibit a shear-thinning behavior and relatively low viscosity (less than 50mPa?s, at a shear rate of 10s–1), which is suitable for casting. The degree of shear thinning and the viscosity at high shear rates increase with the increasing of volume fraction of solid phase. As the milling time is prolonged, the viscosity of the suspension de-creases first, and then a plateau appears and the average diameter remains unchanged. When the milling time is shorter than 20h, the viscosity of the slurry decreases gradually as the time of milling is increased. After 20h milling, the viscosity of the slurry tends to be consistent. Therefore, the ball milling time should be equal to or more than 20h in order to obtain a stable suspension at equilibrium. The appropriate time for casting the slurry (idle time) can be controlled by the amounts of initiator and catalyst added to the slurry as well as by the processing temperature. According to micrographs, the gelcasting green body is homogeneous. Key words: partially stabilized zirconia; gelcasting; rheologic property Gelcasting is an attractive new ceramic forming proc-ess for making high-quality, complex-shaped ceramic bodies.[1–6] Gelcasting has many distinct advantages compared with conventional ceramic forming processes such as dry pressing, slip casting, tape casting, and injec-tion molding, and it is a near-net-shape forming process. Its products have high green density, low levels of or-ganic additives and machinability in the green state due to a high strength.[7–15] Both non aqueous and aqueous solvents can be used in gelcasting. But aqueous systems are preferred be-cause the use of water as the solvent has many advan-tages, e.g., less departure from traditional ceramic processing and no environmental problems for disposal. In aqueous gelcasting, acrylamide and methylene bis-acrylamide are commonly used to make monomer solu-tions.[11–18] According to previous studies,[1–21 the composition of monomer solution, the amounts of initiator and catalyst added, and the temperature and humidity of the drying atmosphere are important processing parameters to be controlled for optimum gelcasting. In this work, a par 收稿日期:2008–04–25。修改稿收到日期:2008–07–03。基金项目:国家自然科学基金(50672091)资助项目。 第一作者:仝建峰(1972—),男,博士,高级工程师。Received date:2008–04–25. Approved date: 2008–07–03. First author: TONG Jianfeng (1972–), male, doctor, senior engineer. E-mail: jftong@https://www.doczj.com/doc/5d561492.html, 第36卷第11期2008年11月 硅酸盐学报 JOURNAL OF THE CHINESE CERAMIC SOCIETY Vol. 36,No. 11 November,2008

二氧化锆陶瓷的制备及性能分析

特种陶瓷综合论文 院(部、中心)材料科学与工程学院 姓名 x x x 学号 xxx 专业材料科学与工程班级 xx 课程名称特种陶瓷材料综合论文 设计题目名称氧化锆陶瓷的制备及性能分析 起止时间 成绩 指导教师 xxx大学教务处制

目录 一、氧化锆的基本性质及应用 (1) 1.1氧化锆的基本性质 (1) 1.2氧化锆的应用 (1) 二、氧化锆粉料的制备 (1) 2.1常用微粉 (2) 2.2 超细粉制备 (2) 三、氧化锆陶瓷的成型 (4) 3.1 热压铸成型 (4) 3.2 干压成型 (4) 3.3 等静压成型 (6) 3.4注浆成型 (6) 3.5流延成型 (6) 3.6凝胶注模成型 (7) 四、氧化锆陶瓷的烧结 (7) 4.1 真空烧结炉 (8) 4.2实验室烧结炉 (10) 五、氧化锆陶瓷的性能测试 (11) 5.1体积密度、吸水率和气孔率的测定 (11) 5.2 抗压强度的测定 (12) 5.3 三点抗弯强度 (12) 5.4 SEM 测试分析 (12)

一、氧化锆的基本性质及应用 1.1氧化锆的基本性质 氧化锆是自然界中以斜锆石存在的一种矿物,是一种耐高温、耐磨损、耐腐蚀的无机非金属材料。它的熔点高达2700摄氏度。白色重质无定形粉末,无臭、无味。溶于2份硫酸和1份水的混合液中,微溶于盐酸和硝酸,慢溶于氢氟酸,几乎不溶于水。有刺激性。相对密度5.85。熔点 2680℃。沸点4300℃。硬度次于金刚石[1]。能带间隙大约为5-7eV 。一般常含有少量的氧化铪。化学性质不活泼,且高熔点、高电阻率、高折射率和低热膨胀系数的性质,使它成为重要的耐高温材料、陶瓷绝缘材料和陶瓷遮光剂。纯的ZrO 2在常压下共有三种晶型:从低温到高温一次为单斜相、四方相、和立方相。氧化锆晶型转变如下:[2] 221170℃2370℃t 2 950℃m ZrO ZrO c ZrO --- 1.2氧化锆的应用 主要用于压电陶瓷制品、日用陶瓷、耐火材料及贵重金属熔炼用的锆砖、锆管、坩埚等。也用于生产钢及有色金属、光学玻璃和氧化锆纤维。还用于陶瓷颜料、静电涂料及烤漆[3]。 氧化锆还是一种很优秀的高科技生物材料。生物相容性好,优于各种金属合金,包括黄金。氧化锆全瓷牙具有极高的密合性,且对牙龈无刺激、无过敏反应,很适合应用于口腔。导热性能极低,仅为黄金的十七分之一,更有利于牙髓的保护。质量轻,密度仅为黄金的四分之一,患者佩戴更舒适。 二、氧化锆粉料的制备 氧化锆陶瓷的生产要求制备高纯、分散性能好、粒子超细、粒度分布窄的粉体,氧化锆超细粉末的制备方法很多。氧化锆的提纯主要有氯化和热分解法、碱

多孔氧化锆陶瓷的设备制作方法与制作流程

本技术公开了一种多孔氧化锆陶瓷的制备方法,先将氧化锆和氧化钇按重量配比混合均匀制备混合料;然后制备聚丙烯醇水溶液和氯化铵水溶液:将所得混合料和溶液一起放入球 磨机中进行球磨;向球磨后的浆料中加入粘结剂、淀粉溶液、表面活性剂,继续球磨 30min;之后加入10%的氯化铵水溶液,高速下球磨3min,迅速倒入模具中成型;将模具和模具中的浆料放入烘箱中进行发泡;然后放入冷冻箱中冷冻,形成凝胶;将凝胶样品进行脱模,经干燥后烧结,得到多孔氧化锆陶瓷。本技术用磷酸锌作为粘结剂,提高了粘结强度,降低了污染,得到的多孔氧化锆陶瓷孔隙率高,孔径均匀,提高了多孔氧化锆陶瓷的性能。 权利要求书 1.一种多孔氧化锆陶瓷的制备方法,其特征在于包括以下步骤: (1)制备氧化锆混合料:首先将氧化锆粉末和氧化钇粉末按照重量配比混合均匀; (2)制备聚丙烯醇水溶液:将聚丙烯醇与去离子水按照一定比例混合,配制聚氯丙烯醇水溶液; (3)制备氯化铵水溶液:用分析纯氯化铵与去离子水配制成质量分数为15%的氯化铵水溶液; (4)制备浆料:将步骤(1)-(3)所得混合料和溶液一起放入球磨机中,再放入刚玉球,球磨3h,得到浆料; (5)向球磨后的浆料中加入粘结剂,并加入质量分数为3%的淀粉溶液,同时加入表面活性剂,然后继续球磨30mi n;之后加入一定量质量分数为10%的氯化铵水溶液,然后在高速下球磨3mi n,之后迅速倒入模具中成型; (6)将模具和模具中的浆料放入烘箱中进行发泡;然后将模具和模具中的浆料放入冷冻箱中

冷冻8h,冷冻的温度为零下15度,在冷冻过程中形成凝胶; (7)将凝胶样品进行脱模,然后将凝胶样品放入乙醇水溶液中10h; (8)将凝胶样品从乙醇溶液中取出,经干燥后在氩气氛保护下进行烧结3h,烧结后自然冷却至室温,得到多孔氧化锆陶瓷。 2.如权利要求1所述的方法,其特征在于:步骤(1)所述氧化锆粉末和氧化钇粉末的重量比为20:1。 3.如权利要求1所述的方法,其特征在于:步骤(2)将聚丙烯醇与去离子水按照一定比例混合后,于70摄氏度下超声分散1h,配制成质量分数为10%的聚丙烯醇水溶液。 4.如权利要求1所述的方法,其特征在于:步骤(5)所述粘结剂为磷酸锌粘结剂,该磷酸锌粘结剂的加入量为步骤(1)氧化锆混合料质量的2-6%。 5.如权利要求1所述的方法,其特征在于:步骤(5)所述的表面活性剂为十二烷基硫酸钠,十二烷基硫酸钠的加入量为步骤(1)氧化锆混合料质量的2-4%。 6.如权利要求1所述的方法,其特征在于:步骤(5)所述氯化铵水溶液的加入量为步骤(1)氧化锆混合料质量的3-5%。 7.如权利要求1所述的方法,其特征在于:步骤(6)烘箱温度为90℃,发泡时间为2h。 8.如权利要求1所述的方法,其特征在于:步骤(8)干燥的温度为120℃,干燥的时间为12h,所述的烧结温度为1600℃。 技术说明书

氧化锆陶瓷

氧化锆陶瓷 -----2011级材料科班 2011 氧化锆陶瓷具有相变增韧和微裂纹增韧,所以有很高的强度和韧性,被誉为“陶瓷钢”,在所有陶瓷中它的断裂韧性是最高。具有优异的室温机械性能。在 此基础上,我们对氧化锆配方和工艺进行优化,获得了细晶结构的高硬度、高强 度和高韧性的氧化锆陶瓷。高硬度、高强度和高韧性就保证了氧化锆陶瓷比其它 传统结构陶瓷具有不可比拟的耐磨性。具有细晶结构的陶瓷通过加工可以获得很 低的表面粗糙度(<0.1u m)。因而减少陶瓷表面的摩擦系数,从而减少磨擦力,提高拉丝的质量(拉出的丝光滑无毛刺,且不易断丝)。氧化锆的这种细晶结构 具有自润滑作用,在拉丝时会越拉越光。氧化锆陶瓷的弹性模量和热膨胀系数与 钢材相近,因而能有机的与钢件组合成复合拉线轮,不会因受热膨胀不一致而造 成损坏或炸裂。使用证明氧化锆陶瓷拉线轮是现代高速拉线机的理想配件。 氧化锆陶瓷是一种新型高技术陶瓷,它与传统的氧化铝陶瓷相比具有以下优点: 1、高强度,高断裂韧性和高硬度 2、优良的耐磨损性能 3、弹性模量和热膨胀系数与金属相近 4、低热导率。(及对比性能参数如表1) 表1 氧化锆陶瓷与普通陶瓷性能参数对比

1.氧化锆陶瓷原料 纯净的ZrO 2为白色粉末,含有杂质时略带黄色或灰色。氧化锆有三种晶相,分别为单斜晶相、四方晶相和立方晶相,三者之间的转变关系如下 1.1氧化锆粉末的制备 常压下纯的氧化锆有三种晶型,低温为单斜晶系,密度 5.65g/cm3, 高温为四方晶系, 密度6.10g/cm3,更高温度下为立方晶系,密度6.27g/cm3,其相互间的转化关系如下: 熔体立方四方单斜??→???→???→????C C C O O O 271522370211702Zr Zr Zr 单斜、四方、立方晶系3种 1170 ℃ 2370 ℃ 2715 ℃ m -ZrO 2 ? t -ZrO 2 ? c -ZrO 2 ? liq-ZrO 2 d = 5.65 6.10 6.27 g/cm 3 m -ZrO 2 → t -ZrO 2 T=~1200 ℃ m -ZrO 2 ← t -ZrO 2 T=~1000 ℃ 3~5%的体积膨胀和7~8%的切应变 ↓ 稳定ZrO 2 ←稳定剂←微裂纹 Y 2O 3,CaO ,MgO et al. 天然ZrO2 和用化学法得到的ZrO2 属于单斜晶系。单斜晶型与四方晶型之间的转变伴随有7% 左右的体积变化。加热时由单斜ZrO2 转变为四方ZrO2,体积收缩,冷却时由四方ZrO2 转变为单斜ZrO2,体积膨胀。但这种收缩与膨胀并不发生在同一温度,前者约在1200℃,后者约在1000℃。由于晶型的转变产生体积变化,会造成开裂,故单纯的氧化锆陶瓷很难生产,通过实践发现加入适量的晶型稳定剂CaO 、MgO 、Y2O3、CeO2 等和其他稀土氧化物,可以使ZrO2 相变温度降低至室温以下,使高温稳定的四方和立方氧化锆在室温也能以稳定或亚稳定形式存在,形成无异常膨胀、收缩的立方、四方晶型的稳定氧化锆(FSZ )和部分稳定氧化锆(PSZ )。 氧化锆中随着稳定剂加入量的不同,会产生不同晶型的氧化锆,相变过程中由于体积和形状的改变,能够吸收能量,减少裂纹尖端应力集中,阻止裂纹扩展,提高陶瓷材料的韧性,从此氧化锆相变增韧陶瓷的研究和应用得到了迅速的发展,主要有三种类型:部分稳定氧化锆陶瓷;四方氧化锆多晶体陶瓷;氧化锆增韧陶瓷。

相关主题
文本预览
相关文档 最新文档