当前位置:文档之家› (物理) 高考物理动能定理的综合应用专项训练100(附答案)含解析

(物理) 高考物理动能定理的综合应用专项训练100(附答案)含解析

(物理) 高考物理动能定理的综合应用专项训练100(附答案)含解析
(物理) 高考物理动能定理的综合应用专项训练100(附答案)含解析

(物理)高考物理动能定理的综合应用专项训练100(附答案)含解析

一、高中物理精讲专题测试动能定理的综合应用

1.如图所示,AB是竖直面内的四分之一圆弧形光滑轨道,下端B点与水平直轨道相切.一个小物块自A点由静止开始沿轨道下滑,已知轨道半径为R=0.2m,小物块的质量为m=0.1kg,小物块与水平面间的动摩擦因数μ=0.5,g取10m/s2.求:

(1)小物块在B点时受到的圆弧轨道的支持力大小;

(2)小物块在水平面上滑动的最大距离.

【答案】(1)3N (2)0.4m

【解析】(1)由机械能守恒定律,得

在B点

联立以上两式得F N=3mg=3×0.1×10N=3N.

(2)设小物块在水平面上滑动的最大距离为l,

对小物块运动的整个过程由动能定理得mgR-μmgl=0,

代入数据得

【点睛】解决本题的关键知道只有重力做功,机械能守恒,掌握运用机械能守恒定律以及动能定理进行解题.

2.我国将于2022年举办冬奥会,跳台滑雪是其中最具观赏性的项目之一.如图1-所示,质量m=60 kg的运动员从长直助滑道AB的A处由静止开始以加速度a=3.6 m/s2匀加速滑下,到达助滑道末端B时速度v B=24 m/s,A与B的竖直高度差H=48 m.为了改变运动员的运动方向,在助滑道与起跳台之间用一段弯曲滑道衔接,其中最低点C处附近是一段以O为圆心的圆弧.助滑道末端B与滑道最低点C的高度差h=5 m,运动员在B、C间运动时阻力做功W=-1530 J,g取10 m/s2.

(1)求运动员在AB段下滑时受到阻力F f的大小;

(2)若运动员能够承受的最大压力为其所受重力的6倍,则C点所在圆弧的半径R至少应为多大?

【答案】(1)144 N (2)12.5 m

【解析】

试题分析:(1)运动员在AB上做初速度为零的匀加速运动,设AB的长度为x,斜面的倾角为α,则有

v B2=2ax

根据牛顿第二定律得mgsinα﹣F f=ma 又sinα=H x

由以上三式联立解得 F f=144N

(2)设运动员到达C点时的速度为v C,在由B到达C的过程中,由动能定理有

mgh+W=1

2

mv C2-

1

2

mv B2

设运动员在C点所受的支持力为F N,由牛顿第二定律得 F N﹣mg=m

2 C v R

由运动员能承受的最大压力为其所受重力的6倍,即有 F N=6mg 联立解得 R=12.5m

考点:牛顿第二定律;动能定理

【名师点睛】本题中运动员先做匀加速运动,后做圆周运动,是牛顿第二定律、运动学公式、动能定理和向心力的综合应用,要知道圆周运动向心力的来源,涉及力在空间的效果,可考虑动能定理.

3.如图所示,位于竖直平面内的轨道BCDE,由一半径为R=2m的1

4

光滑圆弧轨道BC和光

滑斜直轨道DE分别与粗糙水平面相切连接而成.现从B点正上方H=1.2m的A点由静止释

放一质量m=1kg的物块,物块刚好从B点进入1

4

圆弧轨道.已知CD的距离L=4m,物块

与水平面的动摩擦因数 =0.25,重力加速度g取10m/s2,不计空气阻力.求:

(1)物块第一次滑到C点时的速度;

(2)物块第一次滑上斜直轨道DE的最大高度;

(3)物块最终停在距离D点多远的位置.

【答案】(1) 8m/s (2) 2.2m (3) 0.8m

【解析】

【分析】

根据动能定理可求物块第一次滑到C点时的速度;物块由A到斜直轨道最高点的过程,由动能定理求出物块第一次滑上斜直轨道DE的最大高度;物块将在轨道BCDE上做往返运

动,直至停下,设物块在水平轨道CD 上通过的总路程为S ,根据动能定理求出. 【详解】

解:(1)根据动能定理可得21()2

mg H R mv += 解得8/v m s =

(2)物块由A 到斜直轨道最高点的过程,由动能定理有:

()0mg H R mgL mgh μ+--=

解得: 2.2h m =

(3)物块将在轨道BCDE 上做往返运动,直至停下,设物块在水平轨道CD 上通过的总路程为S ,则:()0mg H R mgS μ+-= 解得:12.8S m =

因: 30.8S L m =+,故物块最终将停在距离D 点0.8m 处的位置.

4.如图所示,光滑坡道顶端距水平面高度为h ,质量为m 的小物块A 从坡道顶端由静止滑下,进入水平面上的滑道时无机械能损失,为使A 制动,将轻弹簧的一端固定在水平滑道延长线M 处的墙上,另一端恰位于滑道的末端O 点.已知在OM 段,物块A 与水平面间的动摩擦因数均为μ,其余各处的摩擦不计,重力加速度为g ,求:

(1)物块速度滑到O 点时的速度大小;

(2)弹簧为最大压缩量d 时的弹性势能 (设弹簧处于原长时弹性势能为零) (3)若物块A 能够被弹回到坡道上,则它能够上升的最大高度是多少? 【答案】(12gh 2)mgh mgd μ-;(3)2h d μ- 【解析】 【分析】

根据题意,明确各段的运动状态,清楚各力的做功情况,再根据功能关系和能量守恒定律分析具体问题. 【详解】

(1)从顶端到O 点的过程中,由机械能守恒定律得:

212

mgh mv =

解得:

2v gh

(2)在水平滑道上物块A 克服摩擦力所做的功为:

W mgd μ=

由能量守恒定律得:

2

12

P mv E mgd μ=+ 联立上式解得:

P E mgh mgd μ=-

(3)物块A 被弹回的过程中,克服摩擦力所做的功仍为;

W mgd μ=

由能量守恒定律得 :

P mgh E mgd μ'=-

解得物块A 能够上升的最大高度为:

2h h d μ'=-

【点睛】

考察功能关系和能量守恒定律的运用.

5.如图所示,在海滨游乐场里有一种滑沙运动.某人坐在滑板上从斜坡的高处A 点由静止开始滑下,滑到斜坡底端B 点后,沿水平的滑道再滑行一段距离到C 点停下来.如果人和滑板的总质量m =60kg ,滑板与斜坡滑道和水平滑道间的动摩擦因数均为μ=0.5,斜坡的倾角θ=37°(sin 37°=0.6,cos 37°=0.8),斜坡与水平滑道间是平滑连接的,整个运动过程中空气阻力忽略不计,重力加速度g 取10m/s 2. 求:

(1)人从斜坡上滑下的加速度为多大?

(2)若由于场地的限制,水平滑道的最大距离BC 为L =20.0m ,则人在斜坡上滑下的距离AB 应不超过多少?

【答案】(1)2.0 m/s 2; (2)50m 【解析】 【分析】

(1)根据牛顿第二定律求出人从斜坡上下滑的加速度.

(2)根据牛顿第二定律求出在水平面上运动的加速度,结合水平轨道的最大距离求出B 点的速度,结合速度位移公式求出AB 的最大长度. 【详解】

(1)根据牛顿第二定律得,人从斜坡上滑下的加速度为:

a 1=3737

mgsin mgcos m

μ?-?

=gsin37°-μgcos37°=6-0.5×8m/s 2=2m/s 2.

(2)在水平面上做匀减速运动的加速度大小为:a 2=μg =5m /s 2,

根据速度位移公式得,B 点的速度为:222520/102/B v a L m s m s ??===

根据速度位移公式得:21

2005024

B AB v L m m a ===. 【点睛】

本题考查了牛顿第二定律和运动学公式的基本运用,知道加速度是联系力学和运动学的桥梁,本题也可以结合动能定理进行求解.

6.如图所示,摩托车做特技表演时,以v 0=10m /s 的速度从地面冲上高台,t =5s 后以同样大小的速度从高台水平飞出.人和车的总质量m =1.8×102kg ,台高h =5.0m .摩托车冲上高台过程中功率恒定为P =2kW ,不计空气阻力,取g =10m /s 2.求:

(1) 人和摩托车从高台飞出时的动能E k ; (2) 摩托车落地点到高台的水平距离s ; (3) 摩托车冲上高台过程中克服阻力所做的功W f . 【答案】(1)9×103J (2)10m (3)1×103J 【解析】 【分析】 【详解】

试题分析:根据动能表达式列式求解即可;人和摩托车从高台飞出做平抛运动,根据平抛的运动规律即可求出平抛的水平距离;根据动能定理即可求解克服阻力所做的功. (1)由题知,抛出时动能:2

30019102

k E mv J =

=? (2)根据平抛运动规律,在竖直方向有:212

h gt = 解得:t=1s

则水平距离010s v t m ==

(3)摩托车冲上高台过程中,由动能定理得:0f Pt mgh W --= 解得:3

110f W J =? 【点睛】

本题考查了动能定理和平抛运动的综合,知道平抛运动水平方向和竖直方向上的运动规律,以及能够熟练运用动能定理.

7.滑板运动是深受青少年喜爱的一项极限运动。如图所示为某一滑道的示意图,轨道 AB 可视为竖直平面内半径为R 的

1

4

光滑圆弧,圆心为O ,OA 水平。轨道最低点B 距水平面CD 高度为14

R ,C 点位于B 点正下方。滑板和运动员(可看作质点)总质量为m ,由A 点

静止下滑,从轨道中B 点飞出,落在水平面上的E 点。重力加速度为g 。求: (1)运动员运动到B 点时速度的大小; (2)运动员运动到B 点时对轨道压力的大小; (3)C 、E 两点间的距离。

【答案】(1) 2B v gR =mg (3)R 【解析】 【详解】

(1) 运动员从A 到B ,根据动能定理

2

B 102

mgR mv =-

解得:

B 2v gR (2) 运动员到达B 点时

2B

B v N mg m R

-=

运动员对轨道的压力为

'B 3N N mg ==

(3)运动员空中飞行时间

212

h gt =

解得:

2R t g

=

C 、E 间距离为

B x v t R ==

8.如图所示,水平轨道BC 的左端与固定的光滑竖直1/4圆轨道相切与B 点,右端与一倾角为300的光滑斜面轨道在C 点平滑连接(即物体经过C 点时速度的大小不变),斜面顶端固定一轻质弹簧,一质量为2Kg 的滑块从圆弧轨道的顶端A 点由静止释放,经水平轨道后滑上斜面并压缩弹簧,第一次可将弹簧压缩至D 点,已知光滑圆轨道的半径R=0.45m ,水平轨道BC 长为0.4m ,其动摩擦因数μ=0.2,光滑斜面轨道上CD 长为0.6m ,g 取

10m/s2,求

①滑块第一次经过B点时对轨道的压力

②整个过程中弹簧具有最大的弹性时能;

③滑块在水平轨道BC上运动的总时间及滑块最终停在何处?

【答案】(1)60N(2)1.4J(3)2.25m

【解析】(1)滑块从A点到B点,由动能定理可得:

解得:3m/s

滑块在B点:

解得:=60N

由牛顿第三定律可得:物块对B点的压力60N

(2)滑块第一次到达D点时,弹簧具有最大的弹性势能.

滑块从A点到D点,设该过程弹簧弹力对滑块做的功为W,由动能定理可得:

解得:=1.4J

(3)将滑块在BC段的运动全程看作匀减速直线运动,加速度=2m/s2

则滑块在水平轨道BC上运动的总时间 1.5s

滑块最终停止在水平轨道BC间,设滑块在BC段运动的总路程为s,从滑块第一次经过B 点到最终停下来的全过程,由动能定理可得:

解得=2.25m

结合BC段的长度可知,滑块最终停止在BC间距B点0.15m处(或距C点0.25m处)

9.如图所示,AB是倾角为θ的粗糙直轨道,BCD是光滑的圆弧轨道,AB恰好在B点与圆弧相切,圆弧的半径为R,一个质量为m的物体 (可以看做质点)从直轨道上的P点由静止释放,结果它能在两轨道间做往返运动.已知P点与圆弧的圆心O等高,物体与轨道AB 间的动摩擦因数为μ,求:

(1)物体做往返运动的整个过程中,在AB 轨道上通过的总路程; (2)最终当物体通过圆弧轨道最低点E 时,物体对轨道压力的大小和方向. 【答案】(1)R

L μ

=(2)(32cos )N

N F F mg θ'==-,方向竖直向下 【解析】

试题分析:(1)物体每完成一次往返运动,在AB 斜面上能上升的高度都减少一些,最终当它达B 点时,速度变为零,对物体从P 到B 全过程用动能定理,有

cos cos 0mgR mgL θμθ-=

得物体在AB 轨道上通过的总路程为R

L μ

=

(2)最终物体以B 为最高点在圆弧轨道底部做往返运动,设物体从B 运动到E 时速度为v ,由动能定理 有2

1(1cos )2

mgR mv θ-=

在E 点,由牛顿第二定律有2

N mv F mg R

-=

得物体受到的支持力(32cos )N F mg θ=-

根据牛顿第三定律,物体对轨道的压力大小为(32cos )N

N F F mg θ'==-,方向竖直向下.

考点:考查了动能定理,牛顿运动定律,圆周运动等应用

点评:在使用动能定理分析多过程问题时非常方便,关键是对物体受力做功情况以及过程的始末状态非常清楚

10.如图甲所示,游乐场的过山车在圆弧轨道上运行,可以把这种情形抽象为如图乙所示的模型:弧形轨道的下端与半径为R 的竖直圆轨道相接,B 、C 分别为圆轨道的最低点和最高点.质量为m 的小球(可视为质点)从弧形轨道上的A 点由静止滚下,经过B 点且恰好能通过C 点.已知A 、B 间的高度差为h =4R ,重力加速度为g .求:

(1)小球通过C 点时的速度C v ;

(2)小球从A 点运动到C 点的过程中,损失的机械能E 损 【答案】(1) gR (2)1.5mgR 【解析】 【详解】

(1) 小球恰能通过C 点时,由重力提供向心力,由牛顿第二定律得:

2C

v mg m R

=

则得:

C v gR =

(2) 小球从A 点运动到C 点的过程中,根据动能定理得:

2

1202

f C m

g

h R W mv --=-()

解得:

W f =1.5mgR

则小球从A 点运动到C 点的过程中,损失的机械能

= 1.5f gR E W m =损

11.两个对称的与水平面成60°角的粗糙斜轨与一个半径R =2m ,张角为120°的光滑圆弧轨道平滑相连.一个小物块从h =3m 高处开始,从静止开始沿斜面向下运动.物体与斜轨接触面间的动摩擦因数为μ=0.2,g 取10m/s 2. (1)请你分析一下物块将怎样运动? (2)计算物块在斜轨上通过的总路程.

【答案】(1)物块最后在圆弧左右两端点间来回往返运动,且在端点的速度为0;(2)20m 【解析】 【详解】

解:(1)物块最后在圆弧左右两端点间来回往返运动,且在端点的速度为0; (2)物块由释放到最后振动过程到圆弧的左端点或右端点过程,根据动能定理:

()160600mg h R cos mgcos s μ??--?-???=?

代入数据解得物块在斜轨上通过的总路程:20s m =

12.一辆质量m =2×103kg 的小轿车沿平直路面运动,发动机的额定功率P =80kW ,运动

时受到的阻力大小为f =2×103N .试求: (1)小轿车最大速度的大小;

(2)小轿车由v 0=10m/s 的速度开始以额定功率运动60s 前进的距离(汽车最后的速度已经达到最大).

【答案】(1)40m/s (2)1650m 【解析】 【详解】

(1)设小轿车运动的最大速度的大小为m v ,当车子达到最大速度时, 有=F f 牵 根据公式m P fv = 解得v m =40m/s

(2)根据题意和动能定理得:2211=22W mv mv -合末初

则有:22m 011=

22

Pt fs mv mv -- 解得小轿车60s 内前进的距离为s =1650m

高考物理重点专题突破 (70)

1.正确、灵活地理解应用折射率公式 (1)公式为n=sin i sin r(i为真空中的入射角,r为某介质中的折射角)。 (2)根据光路可逆原理,入射角、折射角是可以随光路的逆向而“换位”的,我们可以这样来理解、记忆:折射率等于真空中光线与法线夹角的正弦跟介质中光线与法线夹角的正弦之比,再简单一点说就是大角的正弦与小角的正弦之比。 2.n的应用及有关数学知识 (1)同一介质对紫光折射率大,对红光折射率小,着重理解两点:第一,光的频率由光源决定,与介质无关;第二,同一介质中,频率越大的光折射率越大。 (2)应用n=c v,能准确而迅速地判断出有关光在介质中的传播速度、波长、入射光线与 折射光线偏折程度等问题。 3.产生全反射的条件 光从光密介质射入光疏介质,且入射角大于或等于临界角。 1.半径为R、介质折射率为n的透明圆柱体,过其轴线OO′的截面如图所示。位于截面所在的平面内的一细束光线,以入射角i0由O点入射,折射光线由上边界的A点射出。当光线在O点的入射角减小至某一值时,折射光线在上边界的B点恰好发生全反射。求A、B两点间的距离。 解析:当光线在O点的入射角为i0时,设折射角为r0,由折射定律得sin i0 sin r0=n① 设A点与左端面的距离为d A,由几何关系得

sin r 0= R d A 2+R 2 ② 若折射光线恰好发生全反射,则在B 点的入射角恰好为临界角C ,设B 点与左端面的距离为d B ,由折射定律得 sin C =1n ③ 由几何关系得 sin C = d B d B 2+R 2 ④ 设A 、B 两点间的距离为d ,可得d =d B -d A ⑤ 联立①②③④⑤式得 d =? ????1 n 2-1-n 2-sin 2i 0sin i 0R 。⑥ 答案:? ????1 n 2-1-n 2-sin 2i 0sin i 0R 1.测玻璃的折射率 常用插针法:运用光在玻璃两个界面处的折射。 如图所示为两面平行的玻璃砖对光路的侧移。用插针法找出与入 射光线AO 对应的出射光线O ′B ,确定出O ′点,画出折射光线OO ′,量出入射角i 和折射角r ,根据n = sin i sin r 计算出玻璃的折射率。 2.测水的折射率 常见的方法有成像法、插针法、观察法、视深法等。 (1)成像法 原理:利用水面的反射成像和水面的折射成像。 方法:如图所示,在一盛满水的烧杯中,紧挨杯口竖直插一直尺,在直尺 的对面观察水面,能同时看到直尺在水中的部分和露出水面部分的像,若从点P 看到直尺在水下最低点的刻度B 的像B ′(折射成像)恰好跟直尺在水面上刻度A 的像A ′(反射成像)重合,读出AC 、BC 的长,量出烧杯内径d ,即可求 出水的折射率 n = (BC 2+d 2)(AC 2+d 2) 。

高考物理总复习--物理动能与动能定理及解析

高考物理总复习--物理动能与动能定理及解析 一、高中物理精讲专题测试动能与动能定理 1.滑板运动是极限运动的鼻祖,许多极限运动项目均由滑板项目延伸而来.如图所示是滑板运动的轨道,BC 和DE 是两段光滑圆弧形轨道,BC 段的圆心为O 点、圆心角 θ=60°,半径OC 与水平轨道CD 垂直,滑板与水平轨道CD 间的动摩擦因数μ=0.2.某运动员从轨道上的A 点以v 0=3m/s 的速度水平滑出,在B 点刚好沿轨道的切线方向滑入圆弧轨道BC ,经CD 轨道后冲上DE 轨道,到达E 点时速度减为零,然后返回.已知运动员和滑板的总质量为m =60kg ,B 、E 两点与水平轨道CD 的竖直高度分别为h =2m 和H =2.5m.求: (1)运动员从A 点运动到B 点过程中,到达B 点时的速度大小v B ; (2)水平轨道CD 段的长度L ; (3)通过计算说明,第一次返回时,运动员能否回到B 点?如能,请求出回到B 点时速度的大小;如不能,请求出最后停止的位置距C 点的距离. 【答案】(1)v B =6m/s (2) L =6.5m (3)停在C 点右侧6m 处 【解析】 【分析】 【详解】 (1)在B 点时有v B = cos60? v ,得v B =6m/s (2)从B 点到E 点有2 102 B mgh mgL mgH mv μ--=- ,得L =6.5m (3)设运动员能到达左侧的最大高度为h ′,从B 到第一次返回左侧最高处有 2 1'202 B mgh mgh mg L mv μ--?=-,得h ′=1.2m

最新高考物理选择题冲刺练习(带答案)

专题一力与物体平衡 高频考点一受力分析物体的静态平衡 例1如图所示,水平推力F使物体静止于斜面上,则( ) A.物体一定受3个力的作用 B.物体可能受3个力的作用 C.物体一定受到沿斜面向下的静摩擦力的作用 D.物体一定受到沿斜面向上的静摩擦力的作用 解析:选B.以物体为研究对象受力分析如图,若F cos θ=G sin θ时,物体在水平推力、重力、斜面支持力三力作用下处于平衡状态,则物体受三个力作用;若F cos θ>G sin θ(或F cos θ<G sin θ=时,物体仍可以静止在斜面上,但物体将受到沿斜面向下(或沿斜面向上)的静摩擦力,综上所述B对. 【变式探究】(多选)如图所示,倾角为θ的斜面体C置于水平地面上,小物体B置于斜面体C上,通过细绳跨过光滑的轻质定滑轮与物体A相连接,连接物体B的一段细绳与斜面平行,已知A、B、C均处于静止状态,定滑轮通过细杆固定在天花板上,则下列说法中正确的是( )

A.物体B可能不受静摩擦力作用 B.斜面体C与地面之间可能不存在静摩擦力作用 C.细杆对定滑轮的作用力沿杆竖直向上 D.将细绳剪断,若物体B仍静止在斜面体C上,则此时斜面体C与地面之间一定不存在静摩擦力作用 高频考点二物体的动态平衡问题 【例1】如图所示,一小球放置在木板与竖直墙面之间.设墙面对球的压力大小为N1,球对木板的压力大小为N2.以木板与墙连接点所形成的水平直线为轴,将木板从图示位置开始缓慢地转到水平位置.不计摩擦,在此过程中( ) A.N1始终减小,N2始终增大 B.N1始终减小,N2始终减小 C.N1先增大后减小,N2始终减小 D.N1先增大后减小,N2先减小后增大

最新高考物理动能与动能定理练习题及答案

最新高考物理动能与动能定理练习题及答案 一、高中物理精讲专题测试动能与动能定理 1.如图所示,质量m =3kg 的小物块以初速度秽v 0=4m/s 水平向右抛出,恰好从A 点沿着圆弧的切线方向进入圆弧轨道。圆弧轨道的半径为R = 3.75m ,B 点是圆弧轨道的最低点,圆弧轨道与水平轨道BD 平滑连接,A 与圆心D 的连线与竖直方向成37?角,MN 是一段粗糙的水平轨道,小物块与MN 间的动摩擦因数μ=0.1,轨道其他部分光滑。最右侧是一个半径为r =0.4m 的半圆弧轨道,C 点是圆弧轨道的最高点,半圆弧轨道与水平轨道BD 在D 点平滑连接。已知重力加速度g =10m/s 2,sin37°=0.6,cos37°=0.8。 (1)求小物块经过B 点时对轨道的压力大小; (2)若MN 的长度为L 0=6m ,求小物块通过C 点时对轨道的压力大小; (3)若小物块恰好能通过C 点,求MN 的长度L 。 【答案】(1)62N (2)60N (3)10m 【解析】 【详解】 (1)物块做平抛运动到A 点时,根据平抛运动的规律有:0cos37A v v ==? 解得:04 m /5m /cos370.8 A v v s s = ==? 小物块经过A 点运动到B 点,根据机械能守恒定律有: ()2211cos3722 A B mv mg R R mv +-?= 小物块经过B 点时,有:2 B NB v F mg m R -= 解得:()232cos3762N B NB v F mg m R =-?+= 根据牛顿第三定律,小物块对轨道的压力大小是62N (2)小物块由B 点运动到C 点,根据动能定理有: 22011222 C B mgL mg r mv mv μ--?= - 在C 点,由牛顿第二定律得:2 C NC v F mg m r += 代入数据解得:60N NC F = 根据牛顿第三定律,小物块通过C 点时对轨道的压力大小是60N

2019年高考物理专题复习:力学题专题

力学题的深入研究 最近辅导学生的过程中,发现几道力学题虽然不是特别难,但容易错,并且辅导书对这几道题或语焉不详,或似是而非,或浅尝辄止,本文对其深入研究,以飨读者。 【题1】(1)某同学利用图甲所示的实验装置,探究物块在水平桌面上的运动规律。物块在重物的牵引下开始运动,重物落地后,物块再运动一段距离停在桌面上(尚未到达滑轮处)。从纸带上便于测量的点开始,每5个点取1个计数点,相邻计数点间的距离如图1所示。打点计时器电源的频率为50Hz 。 ○ 1通过分析纸带数据,可判断物块在相邻计数点 和 之间某时刻开始减速。 ○ 2计数点5对应的速度大小为 m/s ,计数点6对应的速度大小为 m/s 。(保留三位有效数字)。 ○3物块减速运动过程中加速度的大小为a = m/s 2,若用a g 来计算物块与桌面间的动摩擦因数(g 为重力加速度),则计算结果比动摩擦因数的真实值 (填“偏大”或“偏小”)。 【原解析】一般的辅导书是这样解的: ①和②一起研究:根据T s s v n n n 21++=,其中s T 1.050 15=?=,得

1.0210)01.1100.9(25??+=-v =s m /00.1,1 .0210)28.1201.11(2 6??+=-v =s m /16.1, 1 .0210)06.1028.12(2 7??+=-v =s m /14.1,因为56v v >,67v v <,所以可判断物块在两相邻计数点6和7之间某时刻开始减速。 这样解是有错误的。其中5v 是正确的,6v 、7v 是错误的。因为公式T s s v n n n 21++=是匀变速运动的公式,而在6、7之间不是匀变速运动了。 第一问应该这样解析: ①物块在两相邻计数点6和7之间某时刻开始减速。 根据1到6之间的cm 00.2s =?,如果继续做匀加速运动的话,则6、7之间的距离应该为01.1300.201.11s 5667=+=?+=s s ,但图中cm s 28.1267=,所以是在6和7之间开始减速。 第二问应该这样解析: ②根据1到6之间的cm 00.2s =?,加速度s m s m T s a /00.2/1 .01000.222 2=?=?=- 所以s m aT v v /20.11.000.200.156=?+=+=。 因为s m T s s v /964.01 .0210)61.866.10(22 988=??+=+=- aT v v -=87=s m /16.11.0)2(964.0=?--。 ③ 首先求相邻两个相等时间间隔的位移差,从第7点开始依次为,cm s 99.161.860.101=-=?,cm s 01.260.661.82=-=?, cm s 00.260.460.63=-=?,求平均值cm s s s s 00.2)(3 1321=?+?+?=?,所以加速度222 2/.1 .01000.2s m T s a -?=?==2/00.2s m 根据ma =mg μ,得g a μ=这是加速度的理论值,实际上'ma f mg =+μ(此式中f 为纸带与打点计时器的摩擦力),得m f g a + =μ',这是加速度的理论值。因为a a >'所以g a =μ的测量值偏大。

高中物理 动能 动能定理资料

动能动能定理 动能定理是高中教学重点内容,也是高考每年必考内容,由此在高中物理教学中应提起高度重视。 一、教学目标 1.理解动能的概念: (1)知道什么是动能。 制中动能的单位是焦耳(J);动能是标量,是状态量。 (3)正确理解和运用动能公式分析、解答有关问题。 2.掌握动能定理: (1)掌握外力对物体所做的总功的计算,理解“代数和”的含义。 (2)理解和运用动能定理。 二、重点、难点分析 1.本节重点是对动能公式和动能定理的理解与应用。 2.动能定理中总功的分析与计算在初学时比较困难,应通过例题逐步提高学生解决该问题的能力。 3.通过动能定理进一步加深功与能的关系的理解,让学生对功、能关系有更全面、深刻的认识,这是本节的较高要求,也是难点。 三、主要教学过程 (一)引入新课 初中我们曾对动能这一概念有简单、定性的了解,在学习了功的概念及功和能的关系之后,我们再进一步对动能进行研究,定量、深入地理解这一概念及其与功的关系。 (二)教学过程设计 1.什么是动能?它与哪些因素有关?这主要是初中知识回顾,可请学生举例回答,然后总结作如下板书: 物体由于运动而具有的能叫动能,它与物体的质量和速度有关。 下面通过举例表明:运动物体可对外做功,质量和速度越大,动能越大,物体对外做功的能力也越强。所以说动能是表征运动物体做功的一种能力。 2.动能公式 动能与质量和速度的定量关系如何呢?我们知道,功与能密切相关。因此我们可以通过做功来研究能量。外力对物体做功使物体运动而具有动能。下面我们就通过这个途径研究一个运动物体的动能是多少。 列出问题,引导学生回答: 光滑水平面上一物体原来静止,质量为m,此时动能是多少?(因为物体没有运动,所以没有动能)。在恒定外力F作用下,物体发生一段位移s,得到速度v (如图1),这个过程中外力做功多少?物体获得了多少动能?

2020届高考大二轮专题复习冲刺物理(经典版)文档:选择题专练(二) Word版含解析

选择题专练(二) 共8小题,每小题6分,共48分。在每小题给出的四个选项中,第1~4题只有一项符合题目要求,第5~8题有多项符合题目要求。全部选对的得6分,选对但不全的得3分,有选错的得0分。 1.(2019·广东汕头高三一模)中国自主研发的世界首座具有第四代核电特征的核电站—华能石岛湾高温气冷堆核电站,位于山东省威海市荣成石岛湾。目前核 U+x→144 56Ba 电站使用的核燃料基本都是浓缩铀,有一种典型的铀核裂变方程是235 92 +8936Kr+3x。下列关于x的说法正确的是() A.x是α粒子,具有很强的电离本领 B.x是α粒子,穿透能力比较弱 C.x是中子,中子是卢瑟福通过实验最先发现的 D.x是中子,中子是查德威克通过实验最先发现的 答案 D 解析根据该反应的特点可知,该核反应属于重核裂变,根据核反应方程的质量数守恒和电荷数守恒可知,x为中子,故A、B错误;根据物理学史可知,卢瑟福发现了质子,预言了中子的存在,中子是查德威克通过实验最先发现的,C 错误,D正确。 2.(2019·安徽省“江南十校”高三三月综合质检)如图所示,游乐场中有一半球形的碗状装置固定在水平地面上,装置的内半径为R,在其内表面有一个小孩(可视为质点)从底部向上爬行,小孩与内表面之间的动摩擦因数为0.75,设小孩所受的最大静摩擦力等于滑动摩擦力,则小孩沿该装置缓慢向上爬行的最大高度是() A.0.2R B.0.25R C.0.75R D.0.8R 答案 A

解析 设小孩爬到最高处时,小孩与圆心的连线与竖直方向的夹角为θ,对小孩受力分析,由平衡条件得,mg sin θ=μmg cos θ,解得θ=37°,又由几何关系得,最大高度h =R -R cos θ=0.2R 。故A 正确。 3.(2019·河南省郑州市一模)甲、乙两个同学打乒乓球,某次动作中,甲同学持拍的拍面与水平方向成45°角,乙同学持拍的拍面与水平方向成30°角,如图所示。设乒乓球击打拍面时速度方向与拍面垂直,且乒乓球每次击打球拍前、后的速度大小相等,不计空气阻力,则乒乓球击打甲的球拍的速度v 1与乒乓球击打乙的球拍的速度v 2之比为( ) A.63 B. 2 C.22 D.33 答案 C 解析 由题可知,乒乓球在甲、乙的拍面之间做斜抛运动,根据斜抛运动的特点可知,乒乓球在水平方向的分速度大小保持不变,竖直方向的分速度是不断变化的。由于乒乓球击打拍面时速度与拍面垂直,则在甲处:v x =v 1sin45°,在乙 处:v x =v 2sin30°,所以v 1v 2=v x sin45°v x sin30°=22,故C 正确。 4.(2019·东北三校高三第一次联合模拟)生活中可以通过霍尔元件来测量转动物体的转速。在一个转动的圆盘边缘处沿半径方向均匀地放置四个小磁铁,其中两个N 极向外,两个S 极向外,如图甲所示分布。在圆盘边缘附近放置一个霍尔元件,如图乙所示。当电路接通后,会在a 、b 两端产生电势差,经电路放大后得到脉冲信号。已知脉冲信号的周期为T ,若忽略感应电动势的影响,则( )

备战2021新高考物理重点专题:受力分析与平衡练习(二)

备战2021新高考物理-重点专题-受力分析与平衡练习(二) 一、单选题 1.一条形磁体静止在斜面上,固定在磁体中心的竖直上方的水平导线中通有垂直纸面向里的恒定电流,如图所示.若将磁体的N极位置与S极位置对调后,仍放在斜面上原来的位置,则磁体对斜面的压力F N和摩擦力F f的变化情况分别是() A.F N增大,F f减小 B.F N减小,F f增大 C.F N与F f都增大 D.F N与F f都减小 2.如图所示,有8个完全相同的长方体木板叠放在一起,每个木板的质量为100 g,某人用手在这叠木板的两侧加一水平压力F,使木板水平静止.若手与木板之间的动摩擦因数为0.5,木板与木板之间的动摩擦因数为0.2,最大静摩擦力等于滑动摩擦力,g取10 m/s2.则水平压力F至少为() A.8 N B.16N C.15 N D.30 N 3.如图所示,在竖直平面内一根不可伸长的柔软轻绳通过光滑的轻质滑轮悬挂一重物。轻绳一端固定在墙壁上的A点,另一端从墙壁上的B点先沿着墙壁缓慢移到C点,后由C点缓慢移到D点,不计一切摩擦,且墙壁BC段竖直,CD段水平,在此过程中关于轻绳的拉力F 的变化情况,下列说法正确的是() A.F一直减小 B.F一直增小 C.F先增大后减小 D.F先不变后增大 4.如图所示,倾角为的粗糙斜劈放在粗糙水平面上,物体a放在斜劈上,轻质细线一端固定在物体a上,另一端绕过光滑的滑轮固定在c点,滑轮2下悬挂物体b,系统处于静止状态若将固定点c向左移动少许,而a与斜劈始终静止,则()

A.斜劈对物体a的摩擦力减小 B.斜劈对地面的压力减小 C.细线对物体a的拉力增大 D.地面对斜劈的摩擦力减小 5.如图所示,体操运动员在保持该姿势的过程中,以下说法中错误的是() A.环对人的作用力保持不变 B.当运动员双臂的夹角变小时,运动员会相对轻松一些 C.环对运动员的作用力与运动员受到的重力是一对平衡力 D.运动员所受重力的反作用力是环对运动员的支持力 6.如图所示,用一水平力将木块压在粗糙的竖直墙面上,现增加外力,则关于木块所受的静摩擦力和最大静摩擦力,说法正确的是() A.都变大 B.都不变 C.静摩擦力不变,最大静摩擦力变大 D.静摩擦力增大,最大静摩擦力不变 7.如图所示,A、B两物体靠在一起静止放在粗糙水平面上,质量分别为kg, kg,A、B与水平面间的滑动摩擦因数均为0.6,g取10m/s2,若用水平力F A=8N推A物体。则下列有关说法不正确的是() A.A对B的水平推力为8N B.B物体受4个力作用 C.A物体受到水平面向左的摩擦力,大小为6N D.若F A变为40N,则A对B的推力为32N 8.如图所示,一只可视为质点的蚂蚁在半球形碗内缓慢从底部经过a点爬到最高点b点,之后开始沿碗下滑并再次经过a点滑到底部,蚂蚁与碗内各处的动摩擦因数均相同且小于1,若最大静摩擦力等于滑动摩擦力,下列说法正确的是()

2020高考物理冲刺复习-专题11 近代物理初步(讲)

2020物理高考冲刺 复习必备 专题十一 近代物理初步 高考对本部分内容考查的重点和热点有以下几个方向: ①原子的能级跃迁;②原子核的衰变规律;③核反应方程的书写;④质量亏损和核能的计算;⑤原子物理部分的物理学史和α、β、γ三种射线的特点及应用等. 选修命题会涉及有关原子、原子核或量子理论、动量问题,且动量问题一般以计算题的形式,其它问题则以填空或选择性填空形式出现. 知识点一、原子结构模型 特别提醒:(1)原子的跃过条件:h ν=E 初-E 终只适用于光子和原子作用而使原子在各定态之间跃迁的情况. (2)至于实物粒子和原子碰撞情况,由于实物粒子的动能可全部或部分地被原子吸收,所以只要入射粒子

的动能大于或等于原子某两定态能量之差,也可以使原子受激发而向较高能级跃迁. 知识点二、原子核的变化 1.几种变化方式的比较 2.各种放射线性质的比较 3.三种射线在电磁场中的偏转情况比较

图13-1 如图13-1所示,在匀强磁场和匀强电场中都是β比α的偏转大,γ不偏转;区别是:在磁场中偏转轨迹是圆弧,在电场中偏转轨迹是抛物线.如图13-1丙图中γ肯定打在O点;如果α也打在O点,则β必打在O点下方;如果β也打在O点,则α必打在O点下方. 知识点三、核力与质能方程的理解 1.核力的特点 (1)核力是强相互作用的一种表现,在它的作用范围内,核力远大于库仑力. (2)核力是短程力,作用范围在1.5×10-15 m之内. (3)每个核子只跟相邻的核子发生核力作用,这种性质称为核力的饱和性. 2.质能方程E=mc2的理解 (1)质量数与质量是两个不同的概念.核反应中质量数、电荷数都守恒,但核反应中依然有质量亏损. (2)核反应中的质量亏损,并不是这部分质量消失或质量转化为能量,质量亏损也不是核子个数的减少,核反应中核子的个数是不变的. (3)质量亏损不是否定了质量守恒定律,生成的γ射线虽然静质量为零,但动质量不为零,且亏损的质量以能量的形式辐射出去. 特别提醒:在核反应中,电荷数守恒,质量数守恒,质量不守恒,核反应中核能的大小取决于质量亏损的多少,即ΔE=Δmc2. 高频考点一原子结构氢原子光谱 例1.图示为氢原子能级图以及从n=3、4、5、6能级跃迁到n=2能级时辐射的四条光谱线,已知从n=3跃迁到n=2的能级时辐射光的波长为656 nm,下列叙述正确的有()

高考物理动能与动能定理试题经典及解析

高考物理动能与动能定理试题经典及解析 一、高中物理精讲专题测试动能与动能定理 1.如图所示,半径R =0.5 m 的光滑圆弧轨道的左端A 与圆心O 等高,B 为圆弧轨道的最低点,圆弧轨道的右端C 与一倾角θ=37°的粗糙斜面相切。一质量m =1kg 的小滑块从A 点正上方h =1 m 处的P 点由静止自由下落。已知滑块与粗糙斜面间的动摩擦因数μ=0.5,sin37°=0.6,cos37°=0.8,重力加速度g =10 m/s 2。 (1)求滑块第一次运动到B 点时对轨道的压力。 (2)求滑块在粗糙斜面上向上滑行的最大距离。 (3)通过计算判断滑块从斜面上返回后能否滑出A 点。 【答案】(1)70N ; (2)1.2m ; (3)能滑出A 【解析】 【分析】 【详解】 (1)滑块从P 到B 的运动过程只有重力做功,故机械能守恒,则有 ()21 2 B mg h R mv += 那么,对滑块在B 点应用牛顿第二定律可得,轨道对滑块的支持力竖直向上,且 ()2 N 270N B mg h R mv F mg mg R R +=+=+= 故由牛顿第三定律可得:滑块第一次运动到B 点时对轨道的压力为70N ,方向竖直向下。 (2)设滑块在粗糙斜面上向上滑行的最大距离为L ,滑块运动过程只有重力、摩擦力做功,故由动能定理可得 cos37sin37cos370mg h R R L mgL μ+-?-?-?=() 所以 1.2m L = (3)对滑块从P 到第二次经过B 点的运动过程应用动能定理可得 ()21 2cos370.542 B mv mg h R mgL mg mgR μ'=+-?=> 所以,由滑块在光滑圆弧上运动机械能守恒可知:滑块从斜面上返回后能滑出A 点。 【点睛】 经典力学问题一般先对物体进行受力分析,求得合外力及运动过程做功情况,然后根据牛顿定律、动能定理及几何关系求解。

高考物理专题物理学史知识点全集汇编

高考物理专题物理学史知识点全集汇编 一、选择题 1.在物理学发展过程中,许多科学家做出了贡献,下列说法正确的是() A.伽利略利用“理想斜面”得出“力是维持物体运动的原因”的观点 B.牛顿提出了行星运动的三大定律 C.英国物理学家卡文迪许利用扭秤实验装置比较准确地测出了万有引力常量 D.开普勒从理论和实验两个角度,证明了轻、重物体下落一样快,从而推翻了古希腊学者亚里士多德的“小球质量越大下落越快”的错误观点 2.伽利略是实验物理学的奠基人,下列关于伽利略在实验方法及实验成果的说法中不正确的是 A.开创了运用逻辑推理和实验相结合进行科学研究的方法 B.通过实验发现斜面倾角一定时,不同质量的小球从不同高度开始滚动,加速度相同C.通过实验和理想实验,提出了惯性的概念,从而奠定了牛顿力学的基础 D.为了说明力是维持物体运动的原因用了理想实验法 3.下列选项不符合历史事实的是() A.富兰克林命名了正、负电荷 B.库仑在前人工作的基础上通过库仑扭秤实验确定库仑定律 C.麦克斯韦提出电荷周围存在一种特殊的物质--电场 D.法拉第为了简洁形象描述电场,提出电场线这一辅助手段 4.2014年,我国在实验中发现量子反常霍尔效应,取得世界级成果。实验在物理学的研究中有着非常重要的作用,下列关于实验的说法中正确的是() A.在探究求合力的方法的实验中运用了控制变量法 B.密立根利用油滴实验发现电荷量都是某个最小值的整数倍 C.牛顿运用理想斜面实验归纳得出了牛顿第一定律 D.库仑做库仑扭秤实验时采用了归纳的方法 5.发明白炽灯的科学家是() A.伏打 B.法拉第 C.爱迪生 D.西门子 6.了解物理规律的发现过程,学会像科学家那样观察和思考,往往比掌握知识本身更重要。以下符合史实的是( ) A.焦耳发现了电流的磁效应 B.法拉第发现了电磁感应现象,并总结出了电磁感应定律 C.惠更斯总结出了折射定律 D.英国物理学家托马斯杨利用双缝干涉实验首先发现了光的干涉现象 7.下列描述中符合物理学史的是() A.开普勒发现了行星运动三定律,从而提出了日心说 B.牛顿发现了万有引力定律并测定出引力常量G C.法拉第在实验中观察到,在通有恒定电流的静止导线附近的固定导线圈中,会出现感应电流 D.楞次在分析了许多实验事实后提出,感应电流应具有这样的方向,即感应电流的磁场

2020年高考物理考前二十天必考热点冲刺训练专题01 物理学史、物理方法(包含答案)

2020年高考物理考前二十天必考热点冲刺训练 专题01 物理学史、物理方法 1.下列论述中正确的是( ) A .开普勒根据万有引力定律得出行星运动规律 B .爱因斯坦的狭义相对论,全面否定了牛顿的经典力学规律 C .普朗克把能量子引入物理学,正确地破除了“能量连续变化”的传统观念 D .玻尔提出的原子结构假说,成功地解释了各种原子光谱的不连续性 【答案】C 2.(2019年江西新余质检)在物理学的重大发现中科学家创造出了许多物理学研究方法,如理想实验法,控制变量法、极限思想法、类比法、科学假设法、建立理想模型法、微元法等,以下叙述不正确的是( ) A .根据速度定义式v =Δx Δt ,当Δt 非常小时,Δx Δt 就可以表示物体在t 时刻的瞬时速度,该定义应用了极限思想方法 B .用Δv Δt 来描述速度变化快慢,采用了比值定义法 C .在探究加速度、力和质量三者之间的关系时,先保持质量不变研究加速度与力的关系,再保持力不变研究加速度与质量的关系,该实验应用了控制变量法 D .在不需要考虑物体本身的大小和形状时,用质点来代替物体的方法运用了假设法 【答案】D 3.(2019年陕西长安一中质检)在物理学的发展中,有许多科学家做出了重大贡献,下列说法中正确的有( ) A .库仑通过扭秤实验测量出万有引力常量 B .胡克总结出弹簧弹力与形变量间的关系 C .伽利略利用斜面实验观察到了小球合力为零时做匀速直线运动

D.牛顿通过观察发现了行星运动的规律 【答案】B 4.在物理学理论建立的过程中,有许多伟大的科学家做出了贡献.关于科学家和他们的贡献,下列说法中不正确的是() A.牛顿最早提出力不是维持物体运动的原因 B.卡文迪许首先通过实验测出万有引力常量 C.安培提出了分子电流假说 D.法拉第首先发现了电磁感应现象 【答案】A 5.(2019年甘肃三模)下列说法正确的是() A.光电效应和康普顿效应揭示了光具有波粒二象性 B.牛顿第一定律是利用逻辑推理对实验事实进行分析的产物,能够用实验直接验证 C.英国物理学家汤姆生发现了电子,否定了“原子不可再分”的观点 D.爱因斯坦首先把能量子的概念引入物理学,否定了“能极连续变化”的观点 【答案】C 6.(多选)伽利略根据小球在斜面上运动的实验和理想实验,提出了惯性的概念,从而奠定了牛顿力学的基础.早期物理学家关于惯性有下列说法,其中正确的是() A.物体抵抗运动状态变化的性质是惯性 B.没有力的作用,物体只能处于静止状态 C.行星在圆周轨道上保持匀速率运动的性质是惯性 D.运动物体如果没有受到力的作用,将继续以同一速度沿同一直线运动 【答案】AD

高中物理动能与动能定理题20套(带答案)

高中物理动能与动能定理题20套(带答案) 一、高中物理精讲专题测试动能与动能定理 1.如图所示,圆弧轨道AB是在竖直平面内的1 4 圆周,B点离地面的高度h=0.8m,该处切 线是水平的,一质量为m=200g的小球(可视为质点)自A点由静止开始沿轨道下滑(不计小球与轨道间的摩擦及空气阻力),小球从B点水平飞出,最后落到水平地面上的D 点.已知小物块落地点D到C点的距离为x=4m,重力加速度为g=10m/s2.求: (1)圆弧轨道的半径 (2)小球滑到B点时对轨道的压力. 【答案】(1)圆弧轨道的半径是5m. (2)小球滑到B点时对轨道的压力为6N,方向竖直向下. 【解析】 (1)小球由B到D做平抛运动,有:h=1 2 gt2 x=v B t 解得: 10 410/ 220.8 B g v x m s h ==?= ? A到B过程,由动能定理得:mgR=1 2 mv B2-0 解得轨道半径R=5m (2)在B点,由向心力公式得: 2 B v N mg m R -= 解得:N=6N 根据牛顿第三定律,小球对轨道的压力N=N=6N,方向竖直向下 点睛:解决本题的关键要分析小球的运动过程,把握每个过程和状态的物理规律,掌握圆周运动靠径向的合力提供向心力,运用运动的分解法进行研究平抛运动. 2.某校兴趣小组制作了一个游戏装置,其简化模型如图所示,在A点用一弹射装置可将静止的小滑块以v0水平速度弹射出去,沿水平直线轨道运动到B点后,进入半径R=0.3m 的光滑竖直圆形轨道,运行一周后自 B点向C点运动,C点右侧有一陷阱,C、D两点的竖直高度差h=0.2m,水平距离s=0.6m,水平轨道AB长为L1=1m,BC长为 L2 =2.6m,

高考物理动能与动能定理解题技巧及练习题(含答案)

高考物理动能与动能定理解题技巧及练习题(含答案) 一、高中物理精讲专题测试动能与动能定理 1.如图所示,在水平轨道右侧固定半径为R的竖直圆槽形光滑轨道,水平轨道的PQ段长度为,上面铺设特殊材料,小物块与其动摩擦因数为,轨道其它部分摩擦不计。水平轨道左侧有一轻质弹簧左端固定,弹簧处于原长状态。可视为质点的质量的小物块从轨道右侧A点以初速度冲上轨道,通过圆形轨道,水平轨道后压缩弹簧,并被弹簧以原速率弹回,取,求: (1)弹簧获得的最大弹性势能; (2)小物块被弹簧第一次弹回经过圆轨道最低点时的动能; (3)当R满足什么条件时,小物块被弹簧第一次弹回圆轨道时能沿轨道运动而不会脱离轨道。 【答案】(1)10.5J(2)3J(3)0.3m≤R≤0.42m或0≤R≤0.12m 【解析】 【详解】 (1)当弹簧被压缩到最短时,其弹性势能最大。从A到压缩弹簧至最短的过程中,由动 能定理得:?μmgl+W弹=0?m v02 由功能关系:W弹=-△E p=-E p 解得 E p=10.5J; (2)小物块从开始运动到第一次被弹回圆形轨道最低点的过程中,由动能定理得 ?2μmgl=E k?m v02 解得 E k=3J; (3)小物块第一次返回后进入圆形轨道的运动,有以下两种情况: ①小球能够绕圆轨道做完整的圆周运动,此时设小球最高点速度为v2,由动能定理得 ?2mgR=m v22?E k 小物块能够经过最高点的条件m≥mg,解得R≤0.12m ②小物块不能够绕圆轨道做圆周运动,为了不让其脱离轨道,小物块至多只能到达与圆心 等高的位置,即m v12≤mgR,解得R≥0.3m; 设第一次自A点经过圆形轨道最高点时,速度为v1,由动能定理得:

高中物理动能与动能定理解析版汇编

高中物理动能与动能定理解析版汇编 一、高中物理精讲专题测试动能与动能定理 1.某校兴趣小组制作了一个游戏装置,其简化模型如图所示,在 A 点用一弹射装置可 将静止的小滑块以 v 0水平速度弹射出去,沿水平直线轨道运动到 B 点后,进入半径 R =0.3m 的光滑竖直圆形轨道,运行一周后自 B 点向 C 点运动,C 点右侧有一陷阱,C 、D 两点的竖 直高度差 h =0.2m ,水平距离 s =0.6m ,水平轨道 AB 长为 L 1=1m ,BC 长为 L 2 =2.6m ,小滑块与 水平轨道间的动摩擦因数 μ=0.5,重力加速度 g =10m/s 2. (1)若小滑块恰能通过圆形轨道的最高点,求小滑块在 A 点弹射出的速度大小; (2)若游戏规则为小滑块沿着圆形轨道运行一周离开圆形轨道后只要不掉进陷阱即为胜出,求小滑块在 A 点弹射出的速度大小的范围. 【答案】(1)(2)5m/s≤v A ≤6m/s 和v A ≥ 【解析】 【分析】 【详解】 (1)小滑块恰能通过圆轨道最高点的速度为v ,由牛顿第二定律及机械能守恒定律 由B 到最高点2211 222 B mv mgR mv =+ 由A 到B : 解得A 点的速度为 (2)若小滑块刚好停在C 处,则: 解得A 点的速度为 若小滑块停在BC 段,应满足3/4/A m s v m s ≤≤ 若小滑块能通过C 点并恰好越过壕沟,则有2 12 h gt = c s v t = 解得

所以初速度的范围为3/4/A m s v m s ≤≤和5/A v m s ≥ 2.如图所示,光滑水平平台AB 与竖直光滑半圆轨道AC 平滑连接,C 点切线水平,长为L =4m 的粗糙水平传送带BD 与平台无缝对接。质量分别为m 1=0.3kg 和m 2=1kg 两个小物体中间有一被压缩的轻质弹簧,用细绳将它们连接。已知传送带以v 0=1.5m/s 的速度向左匀速运动,小物体与传送带间动摩擦因数为μ=0.15.某时剪断细绳,小物体m 1向左运动,m 2向右运动速度大小为v 2=3m/s ,g 取10m/s 2.求: (1)剪断细绳前弹簧的弹性势能E p (2)从小物体m 2滑上传送带到第一次滑离传送带的过程中,为了维持传送带匀速运动,电动机需对传送带多提供的电能E (3)为了让小物体m 1从C 点水平飞出后落至AB 平面的水平位移最大,竖直光滑半圆轨道AC 的半径R 和小物体m 1平抛的最大水平位移x 的大小。 【答案】(1)19.5J(2)6.75J(3)R =1.25m 时水平位移最大为x =5m 【解析】 【详解】 (1)对m 1和m 2弹开过程,取向左为正方向,由动量守恒定律有: 0=m 1v 1-m 2v 2 解得 v 1=10m/s 剪断细绳前弹簧的弹性势能为: 22112211 22 p E m v m v = + 解得 E p =19.5J (2)设m 2向右减速运动的最大距离为x ,由动能定理得: -μm 2gx =0-1 2 m 2v 22 解得 x =3m <L =4m 则m 2先向右减速至速度为零,向左加速至速度为v 0=1.5m/s ,然后向左匀速运动,直至离开传送带。 设小物体m 2滑上传送带到第一次滑离传送带的所用时间为t 。取向左为正方向。 根据动量定理得: μm 2gt =m 2v 0-(-m 2v 2)

高考物理重点专题突破 (50)

第1节光的干涉 1.杨氏双缝干涉实验证明光是一种波。 2.要使两列光波相遇时产生干涉现象,两光源必须具有相同的频率和振动方向。 3.在双缝干涉实验中,相邻两条亮纹或暗纹间的距离Δy=l d λ,可利用λ= d l Δy测定 光的波长。 4.由薄膜两个面反射的光波相遇而产生的干涉现象叫薄膜干涉。 [自读教材·抓基础] 1.实验现象 在屏上出现明暗相间的条纹。相邻两条亮纹或暗纹间的距离Δy=l dλ,式中的d表示两缝间距,l表示两缝到光屏的距离,λ为光波的波长。 2.实验结论 证明光是一种波。 3.光的相干条件 相同的频率和振动方向。 [跟随名师·解疑难] 1.杨氏双缝干涉实验原理透析 (1)双缝干涉的装置示意图:实验装置如图所示,有光源、单缝、双缝和光屏。

(2)单缝的作用:获得一个线光源,使光源有唯一的频率和振动情况,如果用激光直接照射双缝,可省去单缝,杨氏那时没有激光,因此他用强光照亮一条狭缝,通过这条狭缝的光再通过双缝发生干涉。 (3)双缝的作用:平行光照射到单缝S 上,又照到双缝S 1、S 2上,这样一束光被分成两束频率相同和振动情况完全一致的相干光。 2.光屏上某处出现亮、暗条纹的条件 频率相同的两列波在同一点引起的振动发生叠加,如亮条纹处某点同时参与的两个振动步调总是一致,即振动方向总是相同,总是同时过最高点、最低点、平衡位置;暗条纹处振动步调总相反,具体产生亮、暗条纹的条件为: (1)亮条纹的条件:光屏上某点P 到两缝S 1和S 2的路程差正好是波长的整数倍或半波长的偶数倍。 即|PS 1-PS 2|=kλ=2k ·λ2 (k =0,1,2,3,…) (2)暗条纹的条件:光屏上某点P 到两缝S 1和S 2的路程差正好是半波长的奇数倍。 即|PS 1-PS 2|=(2k +1)λ2 (k =0,1,2,3,…) 3.双缝干涉图样的特点 (1)单色光的干涉图样:若用单色光作光源,则干涉条纹是明暗相间的 条纹,且条纹间距相等。如图所示中央为亮条纹,两相邻亮纹(或暗纹)间 距离与光的波长有关,波长越大,条纹间距越大。 (2)白光的干涉图样:若用白光作光源,则干涉条纹是彩色条纹,且中 央条纹是白色的,这是因为: ①从双缝射出的两列光波中,各种色光都能形成明暗相间的条纹,各种色光都在中央条纹处形成亮条纹,从而复合成白色条纹。 ②两相邻亮(或暗)条纹间距与各色光的波长成正比,即红光的亮条纹间距宽度最大,紫光的亮条纹间距宽度最小,即除中央条纹以外的其他条纹不能完全重合,这样便形成了彩色干涉条纹。 [特别提醒] (1)双缝干涉实验的双缝必须很窄,且双缝间的距离必须很小。 (2)双缝干涉中,双缝的作用主要就是用双缝获得相干光源。 [学后自检]┄┄┄┄┄┄┄┄┄┄┄┄┄┄(小试身手)

最新高考物理动能与动能定理常见题型及答题技巧及练习题(含答案)

最新高考物理动能与动能定理常见题型及答题技巧及练习题(含答案) 一、高中物理精讲专题测试动能与动能定理 1.如图所示,在水平轨道右侧固定半径为R的竖直圆槽形光滑轨道,水平轨道的PQ段长度为,上面铺设特殊材料,小物块与其动摩擦因数为,轨道其它部分摩擦不计。水平轨道左侧有一轻质弹簧左端固定,弹簧处于原长状态。可视为质点的质量的小物块从轨道右侧A点以初速度冲上轨道,通过圆形轨道,水平轨道后压缩弹簧,并被弹簧以原速率弹回,取,求: (1)弹簧获得的最大弹性势能; (2)小物块被弹簧第一次弹回经过圆轨道最低点时的动能; (3)当R满足什么条件时,小物块被弹簧第一次弹回圆轨道时能沿轨道运动而不会脱离轨道。 【答案】(1)10.5J(2)3J(3)0.3m≤R≤0.42m或0≤R≤0.12m 【解析】 【详解】 (1)当弹簧被压缩到最短时,其弹性势能最大。从A到压缩弹簧至最短的过程中,由动 能定理得:?μmgl+W弹=0?m v02 由功能关系:W弹=-△E p=-E p 解得 E p=10.5J; (2)小物块从开始运动到第一次被弹回圆形轨道最低点的过程中,由动能定理得 ?2μmgl=E k?m v02 解得 E k=3J; (3)小物块第一次返回后进入圆形轨道的运动,有以下两种情况: ①小球能够绕圆轨道做完整的圆周运动,此时设小球最高点速度为v2,由动能定理得 ?2mgR=m v22?E k 小物块能够经过最高点的条件m≥mg,解得R≤0.12m ②小物块不能够绕圆轨道做圆周运动,为了不让其脱离轨道,小物块至多只能到达与圆心 等高的位置,即m v12≤mgR,解得R≥0.3m; 设第一次自A点经过圆形轨道最高点时,速度为v1,由动能定理得:

最新高考物理复习专题冲刺练习卷

最新高考物理复习专题冲刺练习卷1.如图3所示,人站在自动扶梯上相对扶梯静止不动,随扶梯向上匀速运动,下列说法中正确的是( ) A.重力对人做负功 B.摩擦力对人做正功 C.支持力对人做正功 D.合力对人做功为零 2. 一物体静止在粗糙水平地面上。现用一大小为F1的水平拉力拉动物体,经过一段时间后其速度变为v。若将水平拉力的大小改为F2,物体从静止开始经过同样的时间后速度变为2v。对于上述两个过程,用W F1、W F2分别表示拉力F1、F2所做的功,W f1、W f2分别表示前后两次克服摩擦力所做的功,则( ) A.W F2>4W F1,W f2>2W f1 B.W F2>4W F1,W f2=2W f1 C.W F2<4W F1,W f2=2W f1 D.W F2<4W F1,W f2<2W f1 3.如图4所示,四个相同的小球A、B、C、D,其中小球A、B、C位于同一高度h处,A 小球做自由落体运动,B小球沿光滑斜面由静止滑下,C小球做平抛运动,D小球从地面开始做斜抛运动,其运动的最大高度也为h。在每个小球落地的瞬间,其重力的功率分别为P A、P B、P C、P D。下列关系式正确的是( ) 图4

A.P A =P B =P C =P D B.P A =P C >P B =P D C.P A =P C =P D >P B D.P A >P C =P D >P B 4.(多选)质量为m 的物体从距地面高h 处自由下落,经历时间t ,则下列说法中正确的是( ) A.t 秒内重力对物体做功为mg 2t 212 B.t 秒钟内重力做功的平均功率为mg 2t C.前秒末重力做功的瞬时功率与后秒末重力做功的瞬时功率之比为1∶2t 2t 2 D.前秒内重力做功的平均功率与后秒内重力做功的平均功率之比为1∶3t 2t 2 5.(多选)太阳能汽车是靠太阳能来驱动的汽车。当太阳光照射到汽车上方的光电板时,光电板中产生的电流经电动机带动汽车前进。设汽车在平直的公路上由静止开始匀加速行驶,经过时间t ,速度为v 时功率达到额定功率,并保持不变。之后汽车又继续前进了距离s ,达到最大速度v max 。设汽车质量为m ,运动过程中所受阻力恒为f ,则下列说法正确的是( ) A.汽车的额定功率为f v max B.汽车匀加速运动过程中,克服阻力做功为fvt C.汽车从静止开始到速度达到最大值的过程中,牵引力所做的功为mv -mv 2122max 12 D.汽车从静止开始到速度达到最大值的过程中,合力所做的功为mv 12 2max 6.一汽车在平直公路上以速度v 0匀速行驶。从某时刻开始计时,发动机的功率P 随时间t 的变化关系如图7所示。假定汽车所受阻力的大小f 恒定不变。下列描述该汽车的速度v 随时间t 变化的图象中,可能正确的是( )

相关主题
文本预览
相关文档 最新文档