当前位置:文档之家› 超微细燃烧高岭土产业化项目

超微细燃烧高岭土产业化项目

超微细燃烧高岭土产业化项目
超微细燃烧高岭土产业化项目

超微细燃烧高岭土产业化项目

项目名称:超微细煅烧高岭土项目单位;八道江区煤炭工业总公司项目负责人;郑德利

建设地点:八道江区炼铁厂旧址联系电话:0439 ——3226493

一、项目概况1 、意义:依据国家产业政策,为保持资源的永续利用,充分开发利用当地废弃煤矸石,提高资源的精深加工水平和综合利用水平,对填补国内外市场空白将起到积极的推动作用。2 、国内外现状:目前,世界煅烧高岭土发展迅速,尤其是美、英、法发达国家,而我国煤系高岭土加工厂已建的不少,但都生产中、低档产品(320 目一1250 目),达不到“双90” 国际标准。3 、技术发展趋势:该项目采用国家“八五”科技攻关成果,推进非金属矿资源深加工的产业化。通过国内首创的剥片技术生产超微细(12500 目)及低温煅烧,提高产品增白度及活性度,并在此基础上拓展产业化深度,进一步生产高纯氧化铝、陶瓷基片等高技术含量的产品。

二、产品的市场前景及产业化前景1 、产品市场前景:该产品主要用于造纸及涂料,并广泛应用于特种陶瓷、火箭喷嘴、飞机燃烧室、汽车火花塞、塑料、橡胶、油漆、石油化工等行业,同时在上述多种产品的基础上生产出更高精尖产品,如高纯氧化铝、陶瓷基片等。仅以造纸业为例:世界高岭土需求量每年以3—4%的速度递增,预计2000 年总需求量为3000 万吨,而我国预计新增高档高岭土需求量10 万吨以上,绝大部分依靠进口。2 、产业化前景:该项目实施后,可生产系列高附加值,高精尖产品。利用超微细粉通过酸碱综合法提取高纯氧化铝,制成陶瓷基片,代替现有的集成电路板,钢玉(金钢石)、干燥剂、吸附剂。陶瓷基片绝缘程度高、

耐高温,对石油裂解起分离、净化作用,并广泛应用于军工、航天工程等领域。由于该项目采用的技术先进,具有广阔的市场空间,在白山市建成超微细煅烧高岭石及深加工系列产品生产基地,也为全国类似煤系高岭石领域煅烧及深加工起到产业化示范推动作用。

三、项目的技术基础、技术工艺特点、创新性、知识产权情况,该重大关键技术的突破对行业技术进步的推动作用。该项目是采用国家非金属矿深加工工程技术研究中心的“八五”科学技术成果。工艺是根据白山煤系高岭土原矿性质和中试试验工艺流程,采用先研磨后煅烧,设备台数少,生产能力大,产品质量高,在煅烧工艺上采取先解聚、后煅烧、再解聚的工艺技术路线,该工艺使高岭土的粒度均匀、煅烧彻底、产品白度高、团聚结块少,最终产品粒度分布窄而均匀。该技术重大突破在于用国内首创的剥片技术替代原有的雷蒙磨、气流磨,使该产品由原最高1250 目上升到12500 目以上,实现了质的飞跃。在国内高岭土领域深加工向高、深、精发展起到推广示范作用,为下一步生产高纯氧化铝、陶瓷基片奠定了基础。

四、建设规模及内容1 、建设方案:本工程为新建项目,主要建设内容:建设原料、粗、中、碎、磨粉、超细磨剥、压滤干燥、煅烧、解聚、包装车间;辅助生产设施;生活福利设施等。2 、规模:年产2 万吨超微细煅烧高岭土。

五、项目承担单位所有制性质、在本行业中的所处位置、生产经营业绩、技术开发能力、银行资信等级、资产负债率、项目负责人情况及项目组织方式。项目由吉林省白山市八道江区煤炭工业总公司承担。该公司为全民所有制企业,企业银行信用等级AA,资产负债率41.6 %。项目负责人:郑得利;职务;总经理;技术职称:工程师。项目组织方式:采用现代企业管理方式,通过申请国家补助,银行贷款及职工入股等形式组建企业。

六、原材料供应及外部配套情况白山地区煤矸石“高岭土”远景储量大于700 万吨,仅砟子

矿区矸石山堆放量达100 多万吨。砟子矿区距该厂运输半径短,电力充足,水源丰富,具有良好的原材料

供应及外部配套环境。

七、投资估算项目估算总投资12126 万元,资金来源:申请国家补助1000 万元;商请银行贷

款6000 万元;企业自筹5126 万元,白山市建设银行原则同意贷款。

八、经济效益项目总投资12126万元,吨成本0.1887 万元,销售收入10618万元,利润6687.79 万元,税金1886.73 万元。2 、产业结构调整作用的初步分析:八道江区属全国100 个重点产煤县之一,煤炭产值占全区工业总产值的60%。目前,面临着煤炭资源枯竭,急需用高新技

术产业改造传统工业,提高资源的综合利用率,通过本项目实施,可带动相关产业发展,使我区工业生产由粗放型向高科技含量,高附加值方向发展。

膨胀土膨胀特性的变化规律研究_谭罗荣

第25卷第10期 岩 土 力 学 V ol.25 No.10 2004年10月 Rock and Soil Mechanics Oct. 2004 收稿日期:2003-11-04 修改稿收到日期:2004-03-25 基金项目:国家自然科学基金项目(No. 19972068),国家重大基础研究前期研究专项项目(No.2003ccA02233)。 作者简介:谭罗荣,男,1938年生,研究员,从事岩土材科的基本特性与其工程力学性状关系的学研究。 文章编号:1000-7598-(2004)10-1555-05 膨胀土膨胀特性的变化规律研究 谭罗荣,孔令伟 (中国科学院武汉岩土力学研究所 岩土力学重点实验室,湖北 武汉 430071) 摘 要:研究了击实膨胀土的膨胀压力p 与50 kPa 下的膨胀率50δ随干密度、饱和度及含水量的变化规律。结果表明:p 和50δ与干密度d r 、含水量w 、饱和度r s 的关系及p -50δ间的关系皆可用幂指数函数描述;在不同条件下,w ,d r ,r s 中的某一个或两个因素可更好地描述p 和50δ的变化规律,一般在高含水量范围含水量因素与干密度因素等价;在低含水量范围含水量因素与饱和度因素等价;含水量一定时干密度因素与饱和度因素等价;存在一临界干密度,干密度大于临介干密度时,膨胀力随饱和度的增加而减小,反之则增加。 关 键 词:膨胀土;膨胀压力;膨胀率;干密度;饱和度;含水量 中图分类号:TU443 文献标识码:A Study on variation regularity of swelling behavior of expansive soil TAN Lou-rong ,KONG Ling-wei (Key Laboratory of Rock and Soil Mechanics ,Institute of Rock and Soil Mechanics ,Chinese Academy of Sciences, Wuhan 430071, China) Abstract :The variation regularity of swelling pressure p and expansion ratio 50δunder 50 kPa pressure with dry density d r ,degree of saturation r s and water content w were i nvestigated. The results show that:the relations between p ,50δand d r ,w ,d r ,r s ;and between p and 50δcan be illustrated in power exponent function ;the variation of p and 50δunder various conditions can be better described by one or two factors that are w ,d r ,r s ;in general ,w is epuivalent to d r while high w ;d r is equwalent to r s while lower w ;and d r is equivalent to r s while certain w ;there is a critical value of dry density ,p decreases as r s increase when d r more than the critical value ,otherwise the conclusion is opposite. Key words :expansive soil; swelling pressure; expansion ratio; dry density; saturation degree; water content 1 引 言 膨胀土的灾害主要是其失水收缩、吸水膨胀引起的。不均匀的膨胀和收缩使土体拉裂,破坏了土体的完整性;而吸水膨胀使土体密度降低,两者皆可使其强度降低,造成工程坡体失稳滑塌等工程灾害。另外,受限制的强烈胀、缩会造成建筑物拉、胀裂破坏等。 在对一些建筑在膨胀土地区的轻型建筑物破坏实例调查中发现,建筑物墙体、地梁和混凝土地坪,由于地基缩胀而断裂和破坏,其原因就是膨胀土基础在施工期间暴露于大气而失水,在上面覆盖一不透水覆盖层后,由于基础不断从周边,特别是雨后吸水而发生体胀后, 其膨胀力促使覆盖物破坏。当然,如覆盖层足够厚、强度足够高,亦可以 抑制膨胀力而不破坏。因此,膨胀力和胀缩变形的变化规律一直是膨胀土研究的重点研究内容,文献[1]曾研究过某些因素如干密度、饱和度、蒙脱石矿物等对膨胀土的膨胀压力的影响,得到了一些有益的结果。本文在此基础上详细地讨论膨胀土特性指标与其膨胀特性的定量关系。 2 干密度对膨胀特性的影响 研究用的荆门膨胀土取自207国道施工现场,原状样含水量较高、裂隙发育,且裂面光滑,裂面两侧土体联结较弱,易产生滑移。该土击实样的有关试验数据如表1所示,其中p 为膨胀压力,根据规范[2]中的作图法求得;50δ为膨胀测试时膨胀卸荷至50 kPa 时的变形量(线膨胀率),与直接在50 kPa 载荷下的膨胀率有差异,但变化规律应是一致的。

高岭土应用的工业进展及现状

收稿日期:2005-06-13作者简介:朱 华(1982-),男(满族),河北秦皇岛人,中国地质大学材料科学与化学工程学院。 高岭土应用的工业进展及现状 朱 华 (中国地质大学,湖北武汉430074) 摘要:高岭土是一种重要的非金属矿产资源,广泛用于造纸、橡胶和塑料等方面。本文主要介绍了高 岭土的工业发展动态及应用现状。 关键词:高岭土;工业进展;应用现状中图分类号:TD 87312 文献标识码:A 文章编号:1671-8550(2005)06-0025-02 0 引言 高岭土是一种白色的或具有各种色调的黏土类岩石,主要由-2μm 的微小片状或管状高岭石族矿物晶体组成,其主要是高岭石(A12O 3?SiO 2?2H 2O )。我国高岭土矿床可分5种:热液蚀变、风化残余、风化淋积、河湖海湾沉积和含煤建造沉积型[1]。 1 高岭土工业进展 111 现状 我国是世界上最早利用高岭土资源的国家,目前,全国共拥有县级以上的高岭土企业100多家,原矿生产能力超过3000kt ,选矿能力700kt ,主要的生产省份有江苏、福建、广东、广西、湖南、江西、浙江。我国高岭土公司的机选能力超过50kt ,而超过10kt 矿山企业也有30多家。并且自80年代以来,高岭土产品由初级加工向精加工、由单一产品向新科技产品也有了进一步的发展[2]。 随着科学技术的进一步发展,精选加工工艺技术设备的研制成功,万t 级煅烧超细高岭土生产企业已有20多家,年生产能力约150kt ,加上厂矿点直接出售的原矿可达300kt 左右。而且国内高岭土消费领域十分广阔,涉及到陶瓷、电子、造纸、橡胶、石油化工、光学玻璃、化纤、建筑材料、化肥及耐火材料等行业。 为了分离高岭土中的石英、长石、云母等非黏土矿物,生产出能满足各应用领域需求的产品,重选、浮选等选矿方法及改善高岭土质量的加工方法,都已应用。我国高岭土行业采用的漂白、剥片、煅烧和离心技术,使高岭土的白度和粒度指标已达到国际水平。 而当今非金属矿最重要的深加工技术之一的表面改性,其产品也在塑料、橡胶、胶粘剂等高分子材料、高聚合物基复合材料、功能材料以及造纸、涂料等工业添料中广泛使用。因此,对高岭土的进一步加工是深入研究的方向。112 深加工11211 精细提纯 高岭土在用作陶瓷、造纸和化工添料时,要求具有很高的白度和亮度,但是产出的天然矿物中,其自然白度往往因含有一些着色杂质而受到影响。采用常规的方法,往往因矿物粒度极细和矿物与杂质紧密共生而难以奏效,因 此,国内外普遍对矿石进行提纯处理: ———氧化还原漂白提纯。高岭土矿物中有害的着色杂质主要是有机质和含Fe 、Ti 、Mn 等矿物。由于有机质通过煅烧等方法容易除去,上述金属氧化物成为提高矿物白度的主要处理对象。采用强酸溶解的方法,有可能破坏高岭土等黏土类矿物的晶格结构,因此,氧化还原漂白法在黏土矿漂白提纯中占有重要的地位。目前常用的漂白法包括氧化法、还原法、氧化还原联合法等,其中还原法应用最广泛[3]。 ———高温煅烧[3~5]。高温煅烧提纯高岭土是由高岭土锻烧脱水和除去挥发性物质而获得。温度一般在500~1200℃,煅烧有机污染,提高其纯度和白度。高温煅烧后的高岭土产品性质稳定,具有高亮度、低磨耗度和不透明性。11212 微细加工[3] 在非金属矿的精细加工方面,许多国家都大力研究微粉碎和超粉碎技术设备,主要包括机械和气流冲击式粉碎机两大类: ———机械式超细粉碎。该设备是依靠高速旋转的各种粉碎体,因离心力而使高岭土分散到粉碎室内壁处成为粗矿粒,给这些矿粒以线速度,使颗粒之间发生冲击碰撞,而最终达到粉碎的目的。 ———气流式超细粉碎。该机是利用高压气流使物料互相受到冲击(碰撞)、摩擦及剪切作用而达到粉碎目的,是一种应用广泛、高效的超微粉碎方法。11213 改性[1,3,4] 黏土矿的改性是深加工的一种重要形式。由于原生高岭土表面呈酸性,因此和乙烯树脂等有机材料有较差的混溶性。利用高岭土表面的羟基和含氧基团易于和表面改性剂作用,形成表面包裹层的特点,用表面化学包裹法对高岭土进行表面吸附改性[1]。 高岭土表面改性,可提高在有机高分子材料中的分散性。用改性高岭土作原料不但提高产品的性能,而且因为高岭土的添加量大,可降低产品的成本及提高附加值。113 工艺进展11311 制高岭石有机插层材料 高岭土在结构上是具有特殊层状的含水铝硅酸黏土矿物,它的主要矿物组成呈8面体层状硅酸盐,层间以氢键结合,不含可交换阳离子;层与层之间具有较强的结合力,是较难与有机化合物发生插层反应的。但是一些强极性的有机小分子,可以直接插入到高岭石层间,其它有机分子利用有机小分子与高岭石也可形成夹层复合物作为前驱体, 5 2第3卷 第6期2005年12月 矿 业 工 程Mining E ngineering

膨胀土的判别与分类

膨胀土的判别与分类 路基土工 2008-05-03 20:02 阅读19 评论0 字号:大中小 膨胀土的判别与分类 --摘自西部项目《膨胀土地区公路勘察设计技术研究》研究成果 膨胀土在我国大部分地区均有分布。膨胀土的胀缩性直接影响着建筑物的安全性,它不仅造成房屋成群开裂,公路、铁路塌方,而且可导致膨胀土边坡产生表层浅滑现象,造成农田水利设施的破坏,影响人们的生活环境。因此,在工程地质勘察中,必须正确地识别膨胀土与非膨胀土,准确地判定膨胀土的胀缩性等级,这有助于合理进行拟建建筑物的设计与地基处理,对保障建筑物安全与人们的生活环境具有非常重要的意义。一、膨胀土的定义 1996年《公路路基设计规范》(JTJ013-95)的膨胀土定义是:“膨胀土系指土中含有较多的粘粒及其亲水性较强的蒙脱石或伊利石等粘土矿物成分,它具有遇水膨胀,失水收缩,是一种特殊膨胀结构的粘性土。”从这个定义上来看,膨胀土的主要特性是膨胀和收缩。但膨胀和收缩是一个十分复杂的问题,不仅仅是遇水膨胀和失水收缩这么简单。在增加溶液电解质浓度的情况下,即使是遇水,膨胀土也会产生收缩现象。因此,膨胀土的膨胀和收缩是在水和电解质共同作用下的结果。另外,定义中指出土中含有较多的亲水性较强的蒙脱石或伊利石等粘土矿物成分的说法也不确切。如果膨胀土中仅含伊利石显示不出膨胀土具有较强的膨胀与收缩特性,伊利石的亲水性仅为蒙脱石的十分之一。膨胀土的胀缩特性主要是由亲水性粘土矿物蒙脱石决定的。因此,《膨胀土地区建筑技术规范》(GBJ112-87)给出的膨胀土的定义更为恰当:“膨胀土应是土中粘粒成分主要由亲水矿物组成,同时具有显著的吸水膨胀和失水收缩两种变形特性的粘性土。” 二、膨胀土判别指标 要鉴别某种土是否属于膨胀土,应根据本身的固有属性来进行区分,只有内在的主要固有属性才是控制膨胀土工程特性的决定性因素;至于在膨胀土地区各种建筑物的稳定程度,只能用作辅助的判别。所以对膨胀土的判别原则,首先应从工程地质观点出发,分析土体的裂隙特征,概括出能反映膨胀土工程性质的实际情况,能代表膨胀土规律的主要指标。 能否充当膨胀土的判别指标,主要看它能否满足以下三个条件: 能反映膨胀土的本质; 指标的测定简单便捷; 指标数据可靠,重现性好。 可能用来判别膨胀土的指标分述如下: (1)界限含水量反映土粒与水相互作用的灵敏指标之一,在一定程度上反映了土的亲水性能。它与土的颗粒组成,粘土矿物成分,阳离子交换性能,土粒的分散度和比表面积,以及孔隙水溶液的性质等有着十分密切的关系。通常有液限、塑限、缩限三个定量指标。 (2)胀缩总率反映膨胀土粘土矿物成分和结构特征。 (3)粒度成分反映膨胀土物质组成的特性指标。

高岭土生产工艺标准技术

1.1.1.产品规模 一级高岭土:12万吨/年;二级高岭土:8万吨/年 建筑用砂:5万吨/年;黄铁矿:1万吨/年。 工艺技术方案目前国内高岭土湿法深加工技术比起传统技术有所提高,但在关键技术和关键工艺方面仍然落后国外,特别在自动化程度、成套技术、生产效率和工艺稳定性等方面与欧美、日本还有较大差距。随着石化、造纸、陶瓷、耐火材料等行业的发展,这些行业对高档高岭土的需求在不断地上升,市场不断扩大。高档高岭土行业的发展瓶颈已经显现,需要更加先进的技术、工艺、装备,更加稳定的产品性能、高产能、高效率。 本项目采用自主研发的新技术、新工艺、新装备,淘汰落后的技术、工艺、装备和产能。本项目开发的新型捣浆机用于原料制浆过程中矿物的分散,比原来的制浆时间短,矿物与杂质分离的更完全,有助于后道工序的分选作业。新的分选装备小口径高压旋流器的开发,提高了更细粒级矿物的分级。高档高岭土生产线将采用新的干燥技术比原干燥节约用地70%,干燥效率提高了50%。整条生产线自动化程度提高了,降低了生产和管理成本,同时提高了生产流程的稳定性。项目使用自主开发专利技术 依据流程先后矿浆自流原则,依次布置。原料预处理车间布置在最高处,然后依次为制浆车间、分选车间、超细磨车间、超导磁选车间、压滤车间、干燥车间、轧粒包装车间、中尾矿处理车间。具体详见总平面布置图。

1.1. 2.主流程工艺流程主流程工艺详见附图2“主流程数质量流程图”,进料总量24.22万吨,生产 一级高岭土系列产品10.4万吨,二级高岭土系列产品8万吨,一级品三氧化二铝含量大于35%,铁含量小于0.5%,-2um以下88%,二级品三氧化二铝含量大于30%,铁含量小于0.8%,-2um以下75%。 1.1. 2.1.原料预处理系统运送至原料仓库的原料需要进行破碎至5cm以下。破碎后的原料再通过振动 筛给到皮带输送机,由皮带输送机输送至原料储存料仓。 1.1. 2.2.高浓度制浆系统原料储存料仓中的原料通过板式给料机按一定的给料量加入至捣浆池中,同时 加入水和能使矿浆分散的分散药剂,配制矿浆浓度30%左右,进行高速搅拌打散。 超细磨剥系统浓缩后的精矿矿浆加入混合分散剂,使矿浆完全分散,具有良好的流动性,控制矿浆浓度在45%左右,由变频螺杆泵输送至超细磨剥机进行研磨剥片。 1.1. 2. 3.分选、分级系统高速分散后的矿浆首先进入粗选作业,经过水力旋流器?200、?150,粗选后的 溢流矿浆再进入精选作业,分别经过?75、?25,最后经过超细分级高压旋流器?10。 1.1. 2.4.压滤系统经过分选后的精矿矿浆由柱塞泵输送至大型自动压滤机进行压滤脱水,把浓度为8% 的矿浆压滤成含水30%的半成品。 1.1. 2.5.干燥系统 经过压滤脱水后的半成品送至干燥架进行自然干燥,干燥后成品含水为15%左右。 1.1. 2.6.轧粒、包装系统干燥后的成品运送至轧粒、包装车间,经过破碎机把干燥后的高岭土泥饼破碎 机至3cm~5cm粒径大小的粒状,再经过提升机提升至成品缓冲料仓,然后通过自动卸料方式进入自动包装机进行包装。 1.1. 2.7.中尾矿处理系统经分选系统中粗选作业处理后得到的尾矿以及由?25水利旋流器分选后的尾 矿再经过堆放、风化、解离后加水、分散剂进行二次三次选别,浓缩、压滤、干燥、轧粒包装。 最终产生的粗尾矿再次经过摇床等粗选设备进行粗尾矿的选别作业,分选出石英砂、黄铁矿、高岭土。 1.1. 2.8.选矿废水净化系统主流程和中尾矿系统中压滤机排出的含酸性比较强的废水、浓缩过程中排出 的废水、清洗压滤布产生的废水均排到废水处理系统,通过加入混合药剂,中和掉多余的硫酸根离子等,净化水质,净化后的水进入到循环水池再利用。在制浆过程中需要加入碱性分散剂,而处理后的水偏碱性,这样可以节约大量的药剂。 1.1. 2.9.超细改性系统为开拓占领高端市场,项目设计充分利用公司取得的超细改性工艺技术,建设一 条利用本项目生产的一级高岭土为原料,通过超细改性工艺的2000吨/年的改性高岭土生产线。 1.1. 2.10.破碎系统、原料储存系统原料从公司厂矿或车站码头用自卸车、集装箱货车或农用货车等 运至原料仓库储存。原料棚建在主流程原料棚的北侧山坡上,面积约350m2。根据需要对原料进行

高岭土和膨胀土特性

高岭土与膨胀土特性 一、高岭土: 质纯的高岭土具有白度高、质软、易分散悬浮于水中、良好的可塑性和高的粘结性、优良的电绝缘性能;具有良好的抗酸溶性、很低的阳离子交换量、较好的耐火性等理化性质。因此高岭土已成为造纸、陶瓷、橡胶、化工、涂料、医药和国防等几十个行业所必需的矿物原料。高岭土在造纸工业的应用十分广泛。主要有两个领域,一个是在造纸(或称抄纸)过程中使用的填料,另一个是在表面涂布过程中使用的颜料。 1. 化学式 Al2O3-2SiO2-2H2O 2.粒度分布 粒度分布是指天然高岭土中的颗粒,在给定的连续的不同粒级(以毫米或微米筛孔的网目表示)范围内所占的比例(以百分含量表示)。高岭土的粒度分布特征对矿石的可选性及工艺应用具有重要意义,其颗粒大小,对其可塑性、泥浆粘度、离子交换量、成型性能、干燥性能、烧成性能均有很大影响。高岭土矿都需要进行技术加工处理,是否易于加工到工艺所要求的细度,已成为评价矿石质量的标准之一。各工业部门对不同用途的高岭土都有具体的粒度和细度要求。如美国对用作涂料的高岭土要求小于2μm的含量占90—95%,造纸填料小于2μm的占78—80%。 3.可塑性 高岭土与水结合形成的泥料,在外力作用下能够变形,外力除去后,仍能保持这种形变的性质即为可塑性。可塑性是高岭土在陶瓷坯体中成型工艺的基础,也是主要的工艺技术指标。通常用可塑性指数和可塑性指标来表示可塑性的大小。可塑性指数是指高岭土泥料的液限含水率减去塑限含水率,以百分数表示,即W塑性指数=100(W液性限度-W塑性限度)。可塑性指标代表高岭土泥料的成型性能,用可塑仪直接测定泥球受压破碎时的荷重及变形大小可得,以kg·cm表示,往往可塑性指标越高,其成型性能越好。高岭土的可塑性可分为四级。 可塑性强度可塑性指数可塑性指标 强可塑性>153.6 中可塑性7—152.5—3.6 弱可塑性1—7<2.5 非可塑性<1 4.结合性 结合性指高岭土与非塑性原料相结合形成可塑性泥团并具有一定干燥强度的性能。结合能力的测定,是在高岭土中加入标准石英砂(其质量组成0.25—0.15粒级占70%,0.15—0.09mm粒级占30%)。以其仍能保持可塑泥团时的最高含砂量及干燥后的抗折强度来判断其高低,掺入的砂越多,则说明这种高岭土结合能力就越强。通常凡可塑性强的高岭土结合能力也强。 5.粘性和触变性 粘性是指流体内部由于内摩擦作用而阻碍其相对流动的一种特征,以粘度来表示其大小(作用于1单位面积的内摩擦力),单位是Pa·s。粘度的测定,一般采用旋转粘度计,以在含70%固含量的高岭土泥浆中的转速来衡量。在生产工艺中,粘度具有重要意义,它不仅是陶瓷工业的重要参数,对造纸工业影响也很大。据资料表明,国外用高岭土作涂料,在低速涂布时要求粘度约0.5Pa·s,高速涂布时要求小于1.5Pa·s。

驷马山分洪道膨胀土特性及其滑坡治理

驷马山分洪道膨胀土特性及其滑坡治理 吴彩虹 (安徽省水利水电勘测设计院,安徽蚌埠 233000) 摘要:本文以安徽省滁河驷马山分洪道膨胀土为研究对象,对分洪道不同河段的膨胀土边坡进行取样,开展了膨胀土在不同工况条件下的物理力学试验。通过室内试验和现场监测,获得了膨胀土膨缩变形与土体抗剪强度变化等特征参数。经过对分洪道边坡滑动形成机理和变化规律的调查和分析,提出了膨胀土边坡稳定计算中强度取值的建议和边坡滑动的治理措施,为分洪道扩大工程及其同类工程设计提供了地质依据。 关键词:膨胀土;胀缩变形;边坡稳定;浅层滑动 中图分类号: P64213+ 9;TU443 文献标识码: B Properties of the expansi ve soil along Si m ashan fl ood -diversion channel and the landsli de correction W u Ca i h ong (A nhui Survey and D es i gn Instit u te of W a ter Conservancy &H ydrop o w er,Bengbu 233000,Ch i na) Abstract :The m echan ica l pr operties of t h e expansive so il sa m pled fro m d ifferent slopes along Si m ashan fl o od-diversion channe l of Chu R i v er are studied under differentw orking cond itions .Based on the results o f t h e i n door experi m en ts and the field m on itori n g ,the corresponding para m eters for the s w elli n g and shrinking defor m ation and the shear strength of the so il are obtained.The m echanis m for slope sliding is discussed and t h e correspond i n g m easures to con tro l the landsli d e are a lso suggested ,w hich pr ov i d e the geo l o g ica lbasis for t h e project and o ther si m ilar projects .Key w ords :expansi v e so i;l s w elli n g and shrinking defor m ati o n ;slope stab ility ;sha ll o w sli d i n g 收稿日期: 2009-03-20;修订日期: 2009-07-29 作者简介:吴彩虹(1975-),男(汉族),安徽巢湖人, 大学本科,高级工程师. 1 工程概况 驷马山分洪道是一条跨苏、皖两省的人工开挖河道,位于滁河南岸,上起滁河干流右岸和县的金银浆,向东南穿过驷马山切岭,经石桥镇、乌江镇,至驻马河口汇入长江,河道全长2714km 。分洪道于1969年底开工建设,1971年竣工通水,是当地农业灌溉、滁河分洪和航运的一条重要水道。 分洪道自1974年至2008年间先后发生大的滑坡8次,小的滑坡30多次,上述滑坡并不都发生在边坡较陡的切岭段,有一些是在1B 5或更平缓边坡上出现。2008年汛期滁河发生大洪水,给沿河两岸造成巨大的经济损失,严重威胁了南京市的防洪安全。分洪道右岸扩挖,将分洪道分洪流量由目前的500m 3 /s 扩大到1000m 3 /s 的设计方案已获国家发改委的批准,工程即将进入实施阶段。如何解决膨胀土地区边坡稳定问题成为该工程的重要课题。 2 膨胀土的矿物成分与化学成分 膨胀土是一种含有大量亲水性矿物,湿度变化时有较大体积变化,变形受约束时产生较大内应力的特殊土。为了解本地区膨胀土的矿物成分,我们对这一地区进行分区取样,对试样进行X 射线衍射与电镜扫描试验。 试验结果表明:测区内土样的矿物成分差别不大,主要由碎屑矿物和粘土矿物组成。碎屑矿物中石英占18%~28%,钠长石占8%~10%,钾长石占2%~6%;粘土矿物中蒙脱石占31%~36%,伊利石占18%~28%,高岭土占6%~13%,各类 矿物成分统计情况见图1。 测区土样的主要化学成分是S i O 2、A l 2O 3和

我国高岭土市场现状及展望

我国高岭土市场现状及展望 我国高岭土市场现状及展望 (粘土矿物专委会,苏州215151) 摘要:我国高岭土的消费市场包括建筑卫生陶瓷,造纸,高分子材料,涂料,电瓷等 工业领域.到2005年,上述各行业对高岭土的需求量分别为125万t,65万t,5万t,10万t,1.8~2万t,其中造纸用高岭土尚需进口20万t. 关键词:高岭土;市场;现状;展望 高岭土矿床分为五种,即热液蚀变型,风化残余型,风化淋积型,河湖海湾沉积型和含 煤建造沉积型.自然产出的非煤系高岭土,按其质量,可塑性和砂质的含量,可划分为硬质, 软质和砂性高岭土三种工业类型.这些类型在我国均有分布. 1 资源 1.1 非煤建造高岭土 我国非煤建造高岭土,资源储量居世界第五位.截止2000年底,对21个省市219处产地统计,已探明储量14.68亿t,其中A+B+C 3.41亿t,占世界储量7%,2001年新增基础储量0.03亿t.矿点主要集中分布在广东,陕西,福建,江西,湖南和江苏,六省储量为12.41亿t,占全 国总储量的84.55%;大型矿山26处,占总探明储量的80%以上(表1). 表1 我国非煤建造高岭土主要产出省储量统计 省份广东陕西福建江西湖南江苏 矿区/处17 6 36 31 24 10 储量/亿t 4.40 3.83 1.6 1.09 0.91 0.58 全国总量占有率/% 30 26.09 10.89 7.4 6.21 3.96 1.2 含煤建造高岭土(煤系高岭土) 含煤建造沉积型的煤系高岭土是我国独具特色的资源,储量占世界首位,探明远景储量 及推算储量180.5亿t,主要分布在东北,西北和石炭-二叠纪煤系中,以煤层中夹矸,顶底板 或单独形成矿层独立存在,如山西大同,怀仁,朔州,内蒙古准格尔,乌达,安徽淮北,陕 西韩城等地.对48处矿区统计,探明储量为14.42亿t,其中以内蒙古准格尔煤田的资源最多, 达8.1亿t(表2). 表2 我国含煤建造高岭土主要产出省区储量统计 省份内蒙古山西河南陕西安微 矿区/处4 7 2 2 3 储量/亿t 8.27 3.40 2.03 1.16 0.50 2 生产 2.1 国际 世界高岭土主要集中产地为美国,英国,巴西,捷克等国,近年来产量稳定在4000万t左 右,2000年产量为3900万t.其中(万t):美国,887;英国,年干粉242;巴西,170;伊朗(陶 瓷级),90;捷克,原矿518,精矿105;韩国,67;德国,70;墨西哥,45;西班牙,40;土 耳其,40;世界总量,3900. 2.2 中国 中国高岭土生产企业有700多家,年原矿生产能力超过550万t,选矿能力180万t.现有苏 州中国高岭土公司(以水洗深加工土为主,综合生产煅烧,超细多品种精制高岭土),龙岩高 岭土有限公司(以生产精制陶瓷土为主)以及茂名高岭科技有限公司(以生产造纸涂料级高岭土为主)的三大生产基地,另有内蒙古蒙西高岭粉体股份有限公司,山西金洋,安徽金岩三个

高岭土的高温改性

高岭土的高温改性 1.文献综述 质纯的高岭土具有白度高、质软、易分散悬浮于水中、良好的可塑性和高的粘结性、优良的电绝缘性能;具有良好的抗酸溶性、很低的阳离子交换量、较好的耐火性等理化性质。因此高岭土已成为造纸、陶瓷、橡胶、化工、涂料、医药和国防等几十个行业所必需的矿物原料。高岭土在造纸工业的应用十分广泛。主要有两个领域,一个是在造纸(或称抄纸)过程中使用的填料,另一个是在表面涂布过程中使用的颜料。 原子反应堆、航天飞机和宇宙飞船的耐高温瓷器部件,也用高岭土制成。目前,全球高岭土总产量约为4000万吨(该数据属于简单的国与国产量的相加,其中没有统 计原矿的贸易量,包含较多的重复计算),其中精制土约为2350万吨。造纸工业是精 制高岭土最大的消费部门,约占高岭土总消费量的60%。据加拿大Temanex咨询公司 提供的数据,2000年全球纸和纸板总产量约为31900万吨,全球造纸涂料用高岭土总 用量为约1360万吨。对于一般文化纸,填料量占纸重量的10-20%。对于涂布纸和板( 主要包括轻量涂布纸、铜版纸和涂布纸板),除了需要填料外,还需要颜料,填、颜 料用的高岭土所占比重为纸重的20-35%。高岭土应用于造纸,能够给予纸张良好的覆 盖性能和良好的涂布光泽性能,还能增加纸张的白度、不透明度,光滑度及印刷适性,极大改善纸张的质量。 高岭土与水结合形成的泥料,在外力作用下能够变形,外力除去后,仍能保持这 种形变的性质即为可塑性。可塑性是高岭土在陶瓷坯体中成型工艺的基础,也是主要 的工艺技术指标。通常用可塑性指数和可塑性指标来表示可塑性的大小。可塑性指数 是指高岭土泥料的液限含水率减去塑限含水率,以百分数表示,即W塑性指数=100(W 液性限度-W塑性限度)。可塑性指标代表高岭土泥料的成型性能,用可塑仪直接测定 泥球受压破碎时的荷重及变形大小可得,以kg·cm表示,往往可塑性指标越高,其 成型性能越好。高岭土的可塑性可分为四级。 可塑性强度可塑性指数可塑性指标 强可塑性>153.6 中可塑性7—152.5—3.6 弱可塑性1—7<2.5 非可塑性<1 结合性指高岭土与非塑性原料相结合形成可塑性泥团并具有一定干燥强度的性

膨胀土处理

摘要:对膨胀土的工程地质特性分析,结合多年对膨胀土地基有效处理的实践经验,提出对膨胀土地基处理的要点,供大家参考。 关键词:膨胀土;地基特性;处理 膨胀土是一种粘性土,其粘粒中含多量的亲水矿物,又具有大量的利于水楔的微裂隙结构,在环境湿度变化的影响下,土体将产生强烈的胀缩变形,粘土均具有吸水膨胀、失水收缩的性能,只有当其膨胀压力或收缩裂缝反复作用,达到危害砖石结构建筑物的稳定和安全时,才称此粘土为膨胀土。膨胀土对建筑物的危害性的研究越来越得到重视。 1 膨胀土在我国的分布及判别 1.1 膨胀土在我国的分布 我国是世界上膨胀土分布面积最广的国家之一,每年我国由于膨胀土地基致害的建筑面积达1000×104平方米左右。在北京、河北、西安、成都一线东南的广大区域内,膨胀土的分布最普遍,也最集中,在晋、冀、鲁、豫、陕、川、云、贵、桂、粤、湘、甘、苏、鄂等省区均有分布。 1.2 膨胀土的判别 土的试验指标中粘粒含量>35%,塑限≤13%,液限≥38%,胀缩总率≥5%,达到以上临界值时的土可判定为膨胀土。膨胀土的膨胀性可用自由膨胀率指标来反映。自由膨胀率即为烘干土在水中增加的体积与原体积的比。自由膨胀率<40%时为非膨胀土;40%≤自由膨胀率<65%时为弱膨胀性土;65%≤自由膨胀率<90%时为中膨胀性土;90%≤自由膨胀率时为强膨胀性土。另外,不同类型的膨胀土具有不同的结构特征。灰白色粘土,网状裂隙很发育,土体呈碎块状结构,水对其影响特别显著,为强膨胀土;棕黄色粘土,裂隙发育充填有薄层连续白色粘土,呈层状结构,水对其影响显著,一般为中膨胀土;棕黄或红色粘土夹姜石,裂隙较发育,部分为灰白色粘土充填,呈厚层状或块状结构,一般为胀土(也为中等膨胀土,但其膨胀性稍差一些);灰褐或褐黄色粘土,裂隙不发育,随机分布,呈块状结构,一般为弱膨胀土。 2 膨胀土地基特性及其在建筑物的破坏特征 2.1膨胀土地基特性 膨胀土具有吸水膨胀、失水收缩性能和强度衰减性,并且有再吸水再膨胀、再失水再收缩的特性。地基膨胀土浸水膨胀,建筑物则上升隆起;地基膨胀土失水收缩,建筑物则产生下沉或开裂,膨胀土的胀缩变形量直接影响到建筑物变形破坏的程度。膨胀土在一般性自然条件下,表现为强度较高、压缩性较低、含水量小、呈硬塑状态,很容易被误认为是原状土,因此对建筑物具有相当大的潜在破坏性。膨胀土的胀缩性和裂隙性是它的两个重要属性,而压力和含水量又是影响膨胀土性能的两个主要的外界因素。土的膨胀率在不同的压力下是不同的,基底压力越大,土膨胀率越低;相反,基底压力越小,则土的膨胀率越高,膨胀度越大,越容易发生破坏,而含水量的变化则表现得更为突出。例如,在膨胀土地区的建筑物的变形与破坏,在雨季,含水量大,而产生隆胀破坏;在旱季,含水量降低,则出现收缩裂隙现象严重。 2.2 膨胀土地区建筑物破坏特征

膨胀土知识

膨胀土知识简介 1膨胀土的研究意义 膨胀土是粘粒成分主要由亲水矿物(主要是蒙脱石、伊利石、高岭石等)组成,液限大于40%,同时具有显著的吸水膨胀和失水收缩两种变形特征的粘性土。在自然条件下,一般多呈硬塑或坚硬状态,具黄、红、灰白等色,裂隙较发育,常见光滑面和擦痕。膨胀土分布广泛,在世界六大洲的40多个国家都有分布。自1938年美国开垦局在俄勒冈州的一例基础工程中首次认识了膨胀土问题,膨胀土开始引起人们的关注。由于它具有显著的胀缩性,存在较多裂隙软弱面,常常给膨胀土地区的工程建设造成严重的破坏,给人民的财产造成巨大的损失。膨胀土给工程建筑带来的危害,既表现在地表建筑物上,也反映在地下工程中。它不仅包括铁路、公路、渠道的所有边坡、路面和基床也包括房屋地基;甚至还包括这些工程中所采取的稳定性措施如护坡、挡土墙和桩等。以至从某种意义上讲,膨胀土对工程建筑的危害是无所不包的[1]。这种危害往往是长期的、渐进的、潜在的,有时是难以处理的,美国工程界称之为“隐藏的灾害”。据统计,美国由于膨胀土造成的损失平均每年高达20亿美元以上,已超过洪水、飓风、地震和龙卷风所造成的损失的总和,全世界每年造成的损失达50亿美元以上。 我国是膨胀土分布广、面积大的国家之一,先后己有20多个省市发现有膨胀土,其中主要分布在河南、湖北、广西、云南等省(见图1-1),在内蒙、东北等地也有发现。早在五六十年代,就因其工程问题引起人们对它的重视。我国由于膨胀土地基致害的建筑面积达1000万m2左右,铁路、公路及建筑物受到的危害也很严重。南水北调中线工程将穿过三百余公里的膨胀土地区,膨胀土渠坡的稳定问题对工程的正常运行至关重要。研究解决膨胀土边坡稳定问题具有实际意义。 我国膨胀土主要分布中西部地区,见表1-1。长江流域的长江、干支流水系等地区是我国膨胀土分布比较广泛和集中的地域之一(见图1-1)。从第三纪(N2)至第四纪下更新统(Q1 )、中

高岭土的应用与研究现状

武汉工程大学 Wuhan Institute of Technology 《非金属矿物材料》课程论文 高岭土的应用与研究现状 院系:环境与城市建设学院 班级:矿物加工01班 学生:乐坤李春阳李鹏辉 李雪强刘连坤刘念 指导教师:张翼 2012年5月27日

摘要 高岭土是指以高岭石族矿物为基本组成的岩石或工业矿物类型。高岭土是一 种重要的非金属资源。高岭土通过加热煅烧变成偏高岭石,广泛应用于涂料、造纸、塑料、橡胶、高级耐火材料等领域。阐述了高岭土发展状况与最新的应用范围,以及目前高岭土应用前景与展望。 Abstract The kaolin is kaolinite group minerals as the basic composition of the rock or the type of industrial minerals. Kaolin is an important non-metallic resource. Kaolin be heated and calcined into metakaolinite , and widely used in paint, paper, plastics, rubber, high-grade refractory and other fields .The article expound the kaolin’s development with the latest range of applications, and the current kaolin application prospects and prospect. 关键词:高岭土应用研究现状展望 Key words: kaolin Application Research present situation Prospect 1 高岭土的介绍 1.1高岭土矿物简介 高岭土是指以高岭石族矿物为基本的岩石或工业矿物类型。是质地纯净的细 粒粘土,原矿呈白色或浅灰色,含杂质时呈黄色或灰色;致密块状或是疏松土状,质软,有滑腻感,指甲可刻画。高岭石族矿物共有高岭石、迪开石、珍珠石、0.7nm 埃洛石、1.0nm埃洛石等五种,高岭石矿物的化学成分相似,仅以单位构造层的 堆叠方式和层间水的含量略有不同。它们的理论结构式为Al4(Si4O10)(OH)8。 高岭土是以高岭石亚族矿物为主要成分的软质粘土,主要由高岭石矿物组成。自然界中组成高岭土的矿物有粘土矿物和非粘土矿物。粘土矿物主要是高岭 石族矿物,其次是绿泥石、蒙脱石和水云母。非粘土矿物主要为石英、长石、和 云母以及铝的氧化物和氢氧化物、铁矿物、铁的氧化物、有机物等 自然产出的高岭土矿石,根据其成因、质量、可塑性和砂质的含量,可划分

膨胀土路基施工有关研究

《铁道工程学报》2004年04期 浅谈膨胀土路基施工 孙继伟,王军 膨胀土具有吸水膨胀软化,失水收缩开裂及反复变化的特点,易形成路基病害。路堤在降雨后沉降、变形较大和边坡坍肩、路肩开裂以及造成发生路堑堑坡冲蚀、剥蚀、溜坍及滑坡等现象。结合西安~南京铁路施工实践,本文从确定施工 参数入手,着重阐述了控制膨胀土路基病害的施工方法。 【作者单位】:华铁工程咨询公司北京100037 (孙继伟);华铁工程咨询公司北京100037(王军) 【关键词】:膨胀土;施工参数;控制病害;施工方法 【分类号】:U213.1 隧道建设>> 2006年26卷2期>> 摘要 膨胀土路基施工技术 堤(堑),膨胀土浸水路堤、水塘路堤(堑)、软土路堤等。主要介绍该标段膨胀土水塘路堤、 软土路堤基底处理技术和膨胀土路堤(堑)的施工及边坡、基床防护技术。(共4页) 膨胀土路基施工工艺 王佃军 膨胀土是一种除具有一般粘性土所共有的物理、化学性质外,主要是由亲水性粘土矿物成份 —蒙脱石、伊利石和高岭土所组成,同时具有吸水显著膨胀软化和失水收缩硬裂的变形特征。 根据膨胀土的物理、化学特性,膨胀土分强膨胀土、中等膨胀土和弱膨胀土三类。 类别工程地质特征粘土矿物成分粘粒含量% 液限WL% 塑限WP% 自由膨胀率% 胀缩 总率% 强膨胀土灰白色,灰绿色,粘土细腻、滑感特强,网状裂隙发育,有蜡面,易风化,呈细

状。蒙脱石为主>50 >48 >25 >90 >4 中等膨胀土以棕、红、灰色为主,粘土中含少量粉砂,滑感较强,裂隙较发育,易风化,呈碎粒状,含钙质结核。蒙脱石伊利石35-50 40-48 18-25 65-90 2-4 弱膨胀土黄褐色为主,粘土中含较多粉砂,有滑感,裂隙发育,易风化,呈碎粒状,含较多钙质或铁锰结核伊利石 高岭石 蒙脱石<35 <40 <8 40-65 0.7-2.0 很显然,强膨胀土的土质特性最差,中等膨胀土次之,弱膨胀土较好一点。 我国是一个强膨胀土区域分布较广的一个国家,随着我国国民经济的高速发展,我国的公路建设进入了以高速公路为标志的快速发展阶段,为减少资源的浪费和人为地破坏生态环境,在我国高速公路的施工建设中根据施工环境采用就地取土的原则。根据膨胀土的特性及高速公路建设的需要,强膨胀土不能够作为路基填料,中、弱膨胀土必须经改性后方可作为路基填料使用,现结合本工程路基中、弱膨胀土改性施工工艺以供探讨和商榷。 一、原材料要求 石灰:必须具有三级及三级以上要求,并做好每批次的等级抽查工作及施工现场堆放工作。土料:在取土坑应清除表层有机土层,对有机质含量超过5%的土和强膨胀土不能作为路基填料。 二、施工工艺 1、根据膨胀土的本身特性,在进行膨胀土路基施工时应尽可能地避开雨季施工,对因工期要求不可能避免时必须采取有效措施。 2、根据地形特点做好路基施工前的清表,碾压和原地翻松处理工作,挖排截水沟,增大路基表面横坡。 3、根据土场料源做好取土坑击实,试验绘制石灰剂量标准曲线,因料源不同土的最佳含水量和最大干密度存在较大差异。不同的取土坑对应不同的击实标准。因膨胀土的特殊性宁淮高速公路施工时结合现场碾压情况,在膨胀土改性路基施工中在90区、93区采用“干法”标

高岭土指标及应用

高岭土指标及应用 高龄土的用途质纯的高岭土具有白度高、质软、易分散悬浮于水中、良好的可塑性和高的粘结性、优良的电绝缘性能;具有良好的抗酸溶性、很低的阳离子交换量、较好的耐火性等理化性质。因此高岭土已成为造纸、陶瓷、橡胶、化工、涂料、医药和国防等几十个行业所必需的矿物原料。有报道称,日本还有将高岭土用于代替钢铁制造切削刀具、车床钻头和内燃机外壳等方面应用。特别是最近几年,现代科学技术飞速发展,使得高岭土的应用领域更加广泛,一些高新技术领域开始大量运用高岭土作为新材料,甚至原子反应堆、航天飞机和宇宙飞船的耐高温瓷器部件,也用高岭土制成。 目前,全球高岭土总产量约为4000万吨(该数据属于简单的国与国产量的相加,其中没有统计原矿的贸易量,包含较多的重复计算),其中精制土约为2350万吨。造纸工业是精制高岭土最大的消费部门,约占高岭土总消费量的60%。据加拿大Temanex咨询公司提供的数据,2000年全球纸和纸板总产量约为31900万吨,全球造纸涂料用高岭土总用量为约1360万吨。 高岭土在造纸工业的应用十分广泛。主要有两个领域,一个是在造纸(或称抄纸)过程中使用的填料,另一个是在表面涂布过程中使用的颜料。对于一般文化纸,填料量占纸重量的10-20%。对于涂布纸和纸板(主要包括轻量涂布纸、铜版纸和涂布纸板),除了需要填料外,还需要颜料,填、颜料用的高岭土所占比重为纸重的20-35%。高岭土应用于造纸,能够给予纸张良好的覆盖性能和良好的涂布光泽性能,还能增加纸张的白度、不透明度,光滑度及印刷适性,极大改善纸张的质量。

高龄土的工艺特性 1.白度和亮度 白度是高岭土工艺性能的主要参数之一,纯度高的高岭土为白色。高岭土白度分自然白度和煅烧后的白度。对陶瓷原料来说,煅烧后的白度更为重要,煅烧白度越高则质量越好。陶瓷工艺规定烘干105℃为自然白度的分级标准,煅烧1300℃为煅烧白度的分级标准。白度可用白度计测定。白度计是测量对3800—7000 ?波长光的反射率的装置。在白度计中,将待测样与标准样(如BaSO4、MgO等)的反射率进行对比,即白度值(如白度90即表示相当于标准样反射率的90%)。 亮度是与白度类似的工艺性质,相当于4570 ?波长光照射下的白度。 高岭土的颜色主要与其所含的金属氧化物或有机质有关。一般含Fe2O3呈玫瑰红、褐黄色;含Fe2+呈淡蓝、淡绿色;含MnO2呈淡褐色;含有机质则呈淡黄、灰、青、黑等色。这些杂质存在,降低了高岭土的自然白度,其中铁、钛矿物还会影响煅烧白度,使瓷器出现色斑或熔疤。 2.粒度分布 粒度分布是指天然高岭土中的颗粒,在给定的连续的不同粒级(以毫米或微米筛孔的网目表示)范围内所占的比例(以百分含量表示)。高岭土的粒度分布特征对矿石的可选性及工艺应用具有重要意义,其颗粒大小,对其可塑性、泥浆粘度、离子交换量、成型性能、干燥性能、烧成性能均有很大影响。高岭土矿都需要进行技术加工处理,是否易于加工到工艺所要求的细度,已成为评价矿石质量的标准之一。各工业部门对不同用途的高岭土都有具体的粒度和细度要求。如美国对

相关主题
文本预览
相关文档 最新文档