当前位置:文档之家› 汽轮机导汽管设计

汽轮机导汽管设计

汽轮机导汽管设计
汽轮机导汽管设计

汽轮机各设备作用及内部结构图

汽轮机各设备的作用收藏 01.凝汽设备主要有凝汽器、循环水泵、抽汽器、凝结水泵等组成。 任务:⑴在汽轮机排汽口建立并保持高度真空。 ⑵把汽轮机排汽凝结成水,再由凝结泵送至回热加热器,成为供给锅炉的给水。此 外,还有一定的真空除氧作用。 02.凝汽器冷却水的作用:将排汽冷凝成水,吸收排汽凝结所释放的热量。 03.加热器疏水装置的作用:可靠的将加热器内的疏水排出,同时防止蒸汽随之漏出。 04.轴封加热器的作用:回收轴封漏汽,用以加热凝结水从而减少轴封漏汽及热量损失,并改善车间的环境条件。 05.低压加热器凝结水旁路的作用:当加热器发生故障或某一台加热器停用时,不致中断主凝结水。 06.加热器安装排空气门的作用:为了不使空气在铜管的表面形成空气膜,使热阻增大,严重地影响加热器的传热效果,从而降低换热效率,故安装排空气门。 07.高压加热器设置水侧保护装置的作用:当高压加热器发生故障或管子破裂时,能迅速切断加热器管束的给水,同时又能保证向锅炉供水。 08.除氧器的作用:用来除去锅炉给水中的氧气及其他气体,保证给水的品质。同时, 又能加热给水提高给水温度。 09.除氧器设置水封筒的目的:保证除氧器不发生满水倒流入其他设备的事故。防止除氧器超压。 10. 除氧器水箱的作用:储存给水,平衡给水泵向锅炉的供水量与凝结水泵送进除氧器水量的差额,从而满足锅炉给水量的需要。 11. 除氧器再沸腾管的作用:有利于机组启动前对水箱中给水加温及备用水箱维持水温。正常运行中对提咼除氧效果有益处。

12. 液压止回阀的作用:用于防止管道中的液体倒流。 13. 安全阀的作用:一种保证设备安全的阀门。 14. 管道支吊架的作用:固定管子,并承受管道本身及管道内流体的重量和保温材料重量。 15. 给水泵的作用:向锅炉连续供给具有足够压力,流量和相当温度的给水。 16. 循环水泵的作用:主要是用来向汽轮机的凝汽器提供冷却水,冷凝进入凝汽器内的汽轮机排汽,此外,还向冷油器、发电机冷却器等提供冷却水。 17. 凝结水泵空气管的作用:将泵内聚集的空气排出。 18. 减温减压器的作用:作为补偿热化供热调峰之用(本厂)。 19. 减温减压装置的作用:⑴对外供热系统中,用以补充汽轮机抽汽的不足,还可做备用汽源。⑵当机组启停机或发生故障时,可起调节和保护的作用。⑶可做厂用低压用汽的汽源。 ⑷用于回收锅炉点火的排汽。 20. 汽轮机的作用:一种以具有一定温度和压力的水蒸气为介质,将热能转变为机械能的回转式原动机。 21. 汽缸的作用:将汽轮机的通流部分与大气隔开,以形成蒸汽热能转换为机械能的封闭汽室。 22. 汽封的作用:减少汽缸内的蒸汽向外漏泄和防止外界空气漏入汽缸。 23. 排汽缸的作用:将汽轮机末级动叶排出的蒸汽倒入凝汽器。 24. 排汽缸喷水装置的作用:为了防止排汽温度过高而引起汽缸变形,破坏汽轮机动静部分中心线的一致性,引起机组振动或其他事故。 25. 低压缸上部排汽门的作用:在事故情况下,如果低压缸内压力超过大气压力,自动打开向空排汽,以防止低压缸、凝汽器、低压段转子等因超压而损坏。 26. 叶轮的作用:用来装置叶片,并将汽流力在叶栅上产生的扭矩传递给主轴。 27. 叶轮上平衡孔的作用:为了减小叶轮两侧蒸汽压差,减小转子产生过大的轴向力 28. 叶根的作用:紧固动叶,使其在经受汽流的推力和旋转离心力作用下,不至于从轮缘沟

汽轮机设计

《汽轮机原理》 课程设计 学号 姓名 指导教师 设计时间 一、课程设计目的 (1)通过课程设计,系统地总结、巩固、加深在《汽轮机原理》课程中已学知识,进

一步了解汽轮机的工作原理。 (2)在尽可能考虑制造、安装和运行的要求下,进行某一机组的变工况热力计算,掌握汽轮机热力计算的原理、方法和步骤。 (3)通过课程设计对电站汽轮机建立整体的、量化的概念,掌握查阅和使用各种设计资料、标准、手册等参考文献的技巧。 (4)培养综合应用书本知识、自主学习、独立工作的能力,培养与其他人相互协作的工作作风。 二、课程设计内容 以N300型号的汽轮机为对象,在已知结构参数和非设计工况新蒸汽参数和流量的条件下,进行通流部分热力校核计算,求出该工况下级的内功率、相对内效率等全部特征参数,并与设计工况作对比分析。主要工作如下: (1)设计工况及非设计工况下通流部分各级热力过程参数计算。 (2)轴端汽封漏汽量校核计算。 (3)与设计工况的性能和特征参数作比较分析。 三、整机计算步骤 本次课程设计计算方法是将该型汽轮机的通流部分划分为高、中压缸和低压缸2个计算模块,由2个学生组成一个计算小组,一人采用顺算法计算高、中压缸,另一人采用逆算法计算低压缸。2人协同工作,共同商定计算方案和迭代策略。 本人进行的是低压缸部分计算,计算工况为103%。为便于计算,作出如下约定: (1)各级回热抽汽量正比例于主汽流量; (2)门杆漏汽和调门开启重叠度不计; (3)余速利用系数的参考值为:调节级后的第一压力级、前面有抽汽口的压力级利用上一级余速的系数为0.4,其它压力级为0.8; (4)对径高比小于6的级,在最终计算结果中,用近似公式估算出叶根处的反动度; (5)第一次计算,用弗留格尔公式确定调节级后压力; (6)假定汽机排汽压力为设计工况下的值,用平移设计工况热力过程线方法初步确定排汽点。 四、汽轮机简介 本机组是按照美国西屋公司的技术制造的300MW亚临界、中间再热式、高中压合缸、双缸双排汽、单轴凝汽式汽轮机,如图4-2所示。它由高中压积木块BB0243与低压缸积木块BB074组合而成。为了进一步提高机组的经济性,对原引进技术作了改进设计,而且低压缸末级叶片采用905mm的长叶片。机组型号为N300-16.7/537/537,工厂产品号为D156。

汽轮机设备及系统

汽机专业设备稳定运行安全技术措施 为了实现汽机设备长周期稳定运行,保证汽机专业各项工作有序进行,防止出现由于管理不到位和人员因素的责任造成事故,针对目前设备运行状况和迎峰度夏的,特制定如下安全技术措施。 一、具体目标 1.确保机组安全稳定运行,不发生人为责任的不安全事件。 2.设备巡检到位,缺陷处理及时,确保机组各控制系统安全稳定运行。 3.夜间值班人员工作到位,按照工作标准处理缺陷、及时消缺,不发生不安全现象。 4.加强节假日期间值班人员工作到位,按照公司规定值班期间的各项制度进行值班和交接班。 二、加强主机设备的巡检力度 1. 汽轮机瓦轴系异常 1.1 每日观察CRT各轴瓦油温数值和变化情况;每周一次测量润滑油回油温度。 1.2 关注CRT轴振显示值及曲线,根据峰值变化规律判定是否存在严重异常,必要时调整蒸汽参数或负荷。 1.3 观察CRT各轴瓦瓦振变化;每周不少于两次测量各轴系

瓦振; 1.4 监视观察主机润滑油排烟风机运行是否正常,如果负压变化大,需对风机入口管进行排污;检查各轴承座回油视窗法兰螺栓是否松动,避免引起负压变化。 2.及时观察调速系统是否异常 2.1 针对以往容易出现的渗漏点重点巡检,如:程序阀各油管连接口、冷油器各法兰、油动机各连接口等。 2.2 根据压差及使用情况及时更换油泵出口滤芯;根据在线装置各滤芯压差情况,及时更换在线滤芯,控制油质颗粒度合格。 2.3 每周一次检查液压系统管道各连接部位是否松动,支吊架是否完好。 2.4根据抗燃油酸值等主要指标情况,及时组织准备脱酸滤芯,连续进行再生脱酸处理;根据季节变化情况,加大对液压油水份的控制,及时投运真空滤油机。 3. 严密监视主机润滑油系统状态及油品的各项指标 3.1润滑油出口滤网压差大,及时更换出口滤芯,更换后试压确定是否回装完好。 3.2润滑油油质不合格,根据油质化验情况,可将在线净油机切换至主机润滑油过滤,降低水份等指标的升高。 3.3润滑油泄漏,每日巡检记录油位变化情况;冷油器定期查漏,避免冷油器泄漏;巡检中在油箱上部进行检查,避免

汽轮机设计系统

汽轮机设计系统是利用Pro/E二次开发工具Pro/Toolkit,在VC++.net2003开发平台上开发的。该系统实现了与Pro/E软件的无缝集成,用户可以利用该系统完成汽轮机产品的结构设计、通流设计、参数化变型设计、装配公差分析等工作。汽轮机设计系统菜单如图1所示。 图1 汽轮机设计菜单 参数化设计子菜单模块包括“结构参数化设计”、 “组件参数化设计”、 “尺寸参数化设计”、 “关系式操作”和“属性操作”。 “结构参数化设计”可以实现气封、转子等零部件的结构变型设计。“气封结构设计”人机交互界面如图2所示。“气封结构设计”可以实现气封齿形结构参数化和关键尺寸的参数化设计。 图2 气封结构设计对话框 “气封结构设计”实现气封结构变型设计的步骤如下: 1)调入气封源模型。源模型中定义了气封变型特征的拓扑结构和驱动参数,系统根 据这些特征和参数才能找到用户输入信息在模型中的对应信息。 2)选择齿形。在“选择齿形”和“选择末端齿形”组合框内点击相应单项按钮,定 制气封齿形。 3)选择备选特征。在“选择特征”组合框内,根据变型需求,点击复选按钮,选择 相应特征。 4)输入齿形基本参数。齿形结构确定之后,在“齿形基本参数”组合框内输入齿形

的驱动参数。值得注意的是,当在步骤2)中选择“一长一短分布”的齿形时,“齿 距W1”输入组合框为灰色不可用状态。 5)输入外形基本参数。在“外形基本参数”组合框内输入定义气封外形的参数,这 些参数驱动外围直径的大小。 6)生成模型。单击“生成模型”命令按钮,系统根据输入信息,重生源模型,从而 生成符合用户要求的新模型。 “转子结构设计”人机交互界面如图3所示。“转子结构设计”可以实现转子结构参数化和关键尺寸的参数化设计。 图3 转子结构参数化设计对话框 “转子结构设计”实现转子结构变型设计的步骤如下: 1)调入转子源模型。源模型中定义了转子变型特征的拓扑结构和驱动参数,系统根 据用户输入信息,在源模型的基础上重新生成新模型。 2)输入第一部分基本参数。在“第一部分”组合框内输入各参数值。第一部分包括 包括转子调节级和转子前端部分。 3)输入第二部分基本参数。在“第二部分”组合框内输入各参数值。第二部分为转 子低速级组,其中参数J1为低速级的级数。 4)输入第三部分基本参数。在“第三部分”组合框内输入各参数值。第三部分为转 子全航速级组,其中参数J2为全航速级的级数。 5)输入第四部分基本参数。在“第四部分”组合框内输入各参数值。第四部分为转 子后端部分。 6)输入放大部分基本参数。在“放大部分”组合框内输入各参数值。放大部分为转 子与气封的配合部分,其中参数J3与配合气封的齿组数相等。 7)生成模型。单击“生成模型”命令按钮,系统根据输入信息,重生源模型,从而 生成符合用户要求的新模型。 “尺寸参数化设计”模块采用基于特征的方法,通过定义零件各特征内的驱动尺寸的值来实现对零件的参数化设计。同时,该模块也可以实现对驱动尺寸公差值的定义。“尺寸参数化设计”人机交互界面如图4所示。

动力机器基础设计规范 GB 50040-96

动力机器基础设计规范 GB50040-96 主编部门:中华人民共和国机械工业部 批准部门:中华人民共和国建设部 施行日期:1997年1月1日 关于发布国家标准《动力机器基础设计规范》的通知 建标[1996]428号 根据国家计委计综(1987)2390号文的要求,由机械工业部会同有关部门共同修订的《动力机器基础设计规范》已经有关部门会审,现批准《动力机器基础设计规范》GB50040-96为强制性国家标准,自一九九七年一月一日起施行。原国家标准《动力机器基础设计规范》GBJ40-79同时废止。 本标准由机械工业部负责管理,具体解释等工作由机械工业部设计研究院负责,出版发行由建设部标准定额研究所负责组织。 中华人民共和国建设部 一九九六年七月二十二日 1 总则 1.0.1 为了在动力机器基础设计中贯彻执行国家的技术经济政策,确保工程质量,合理地选择有关动力参数和基础形式,做到技术先进、经济合理、安全适用,制订本规范。 1.0.2 本规范适用于下列各种动力机器的基础设计: (1)活塞式压缩机; (2)汽轮机组和电机; (3)透平压缩机; (4)破碎机和磨机; (5)冲击机器(锻锤、落锤); (6)热模锻压力机; (7)金属切削机床。

1.0.3 动力机器基础设计时,除采用本规范外,尚应符合国家现行有关标准、规范的规定。 2 术语、符号 2.1 术语 2.1.1 基组foundation set 动力机器基础和基础上的机器、附属设备、填土的总称。 2.1.2 当量荷载equivalent load 为便于分析而采用的与作用于原振动系统的动荷载相当的静荷载。 2.1.3 框架式基础frame type foundation 由顶层梁板、柱和底板连接而构成的基础。 2.1.4 墙式基础wall type foundation 由顶板、纵横墙和底板连接而构成的基础。 2.1.5 地基刚度stiffness of subsoil 地基抵抗变形的能力,其值为施加于地基上的力(力矩)与它引起的线变位(角变位)之比。 2.2 符号 2.2.1 作用和作用响应 Pz——机器的竖向扰力; Px——机器的水平扰力; p——基础底面平均静压力设计值; Mφ——机器的回转扰力矩; Mψ——机器的扭转扰力矩; Az——基组(包括基础和基础上的机器附属设备和土等)重心处的竖向振动线位移;Ax——基组重心处或基础构件的水平向振动线位移;

汽轮机课程设计说明书..

课程设计说明书 题目:12M W凝汽式汽轮机热力设计 2014年6月28 日

一、题目 12MW凝汽式汽轮机热力设计 二、目的与意义 汽轮机原理课程设计是培养学生综合运用所学的汽轮机知识,训练学生的实际应用能力、理论和实践相结合能力的一个重要环节。通过该课程设计的训练,学生应该能够全面掌握汽轮机的热力设计方法、汽轮机基本结构和零部件组成,系统地总结、巩固并应用《汽轮机原理》课程中已学过的理论知识,达到理论和实际相结合的目的。 重点掌握汽轮机热力设计的方法、步骤。 三、要求(包括原始数据、技术参数、设计要求、图纸量、工作量要求等) 主要技术参数: 额定功率:12MW ;设计功率:10.5MW ; ;新汽温度:435℃; 新汽压力:3.43MP a ;冷却水温:20℃; 排汽压力:0.0060MP a 给水温度:160℃;机组转速:3000r/min ; 主要内容: 1、确定汽轮机型式及配汽方式 2、拟定热力过程及原则性热力系统,进行汽耗量与热经济性的初步计算 3、确定调节级形式、比焓降、叶型及尺寸等 4、确定压力级级数,进行比焓降分配 5、各级详细热力计算,确定各级通流部分的几何尺寸、相对内效率、内功率与整机实 际热力过程曲线 6、整机校核,汇总计算表格 要求: 1、严格遵守作息时间,在规定地点认真完成设计;设计共计二周。 2、按照统一格式要求,完成设计说明书一份,要求过程完整,数据准确。 3、完成通流部分纵剖面图一张(一号图) 4、计算结果以表格汇总

四、工作内容、进度安排 1、通流部分热力设计计算(9天) (1)熟悉主要参数及设计内容、过程等 (2)熟悉机组型式,选择配汽方式 (3)蒸汽流量的估算 (4)原则性热力系统、整机热力过程拟定及热经济性的初步计算 (5)调节级选型及详细热力计算 (6)压力级级数的确定及焓降分配 (7)压力级的详细热力计算 (8)整机的效率、功率校核 2、结构设计(1天) 进行通流部分和进出口结构的设计 3、绘制汽轮机通流部分纵剖面图一张(一号图)(2天) 4、编写课程设计说明书(2天) 五、主要参考文献 《汽轮机课程设计参考资料》.冯慧雯 .水利电力出版社.1992 《汽轮机原理》(第一版).康松、杨建明编.中国电力出版社.2000.9 《汽轮机原理》(第一版).康松、申士一、庞立云、庄贺庆合编.水利电力出版社.1992.6 《300MW火力发电机组丛书——汽轮机设备及系统》(第一版).吴季兰主编.中国电力出版社.1998.8 指导教师下达时间 2014 年6月 15 日 指导教师签字:_______________ 审核意见 系(教研室)主任(签字)

汽轮机设备及系统知识题库

汽轮机设备及系统知识题库 一、判断题 1)主蒸汽管道保温后,可以防止热传递过程的发生。(×) 2)热力除氧器、喷水减温器等是混合式换热器。(√) 3)在密闭容器内不准同时进行电焊及气焊工作。(√) 4)采用再热器可降低汽轮机末级叶片的蒸汽湿度,并提高循环热效率。(√) 5)多级汽机的各级叶轮轮面上一般都有5-7个平衡孔,用来平衡两侧压差,以减少轴向推力。(×) 6)发电机护环的组织是马氏体。(×) 7)" 8) 9)汽轮机找中心的目的就是为使汽轮机机组各转子的中心线连成一条线。(×) 10)蒸汽在汽轮机内做功的原理分为冲动作用原理和反动作用原理。(√) 11)蒸汽在汽轮机内做功的原理分为冲动作用原理和反动作用原理。(√) 12)汽缸冷却过快比加热过快更危险。(√) 13)盘车装置的主要作用是减少冲转子时的启动力矩。(×) 14)安装叶片时,对叶片组的轴向偏差要求较高,而对径向偏差可不作要求。(×)15)引起叶片振动的激振力主要是由于汽轮机工作过程中汽流的不均匀造成的。(√) 16): 17)转子叶轮松动的原因之一是汽轮机发生超速,也有可能是原有过盈不够或运行时间过长产生材料疲劳。(√)

18) 19)对于汽轮机叶片应选用振动衰减率低的材料。(×) 20)大螺栓热紧法的顺序和冷紧时相反。(×) 21)末级叶片的高度是限制汽轮机提高单机功率的主要因素。(√) 22)猫爪横销的作用仅是承载缸体重量的。(×) 23)轴向振动是汽轮机叶片振动中最容易发生,同时也是最危险的一种振动。(×)24)发电机转子热不稳定性会造成转子的弹性弯曲,形状改变,这将影响转子的质量平衡,从而也造成机组轴承振动的不稳定变化。(√) 25); 26)蒸汽对动叶片的作用力分解为轴向力和圆周力,这两者都推动叶轮旋转做功。(×)27)为提高动叶片的抗冲蚀能力,可在检修时将因冲蚀而形成的粗糙面打磨光滑。(×) 28) 29)除氧器的水压试验在全部检修工作结束,保温装复后进行。(√) 30)造成火力发电厂效率低的主要原因是汽轮机机械损失。(×) 31)发电机护环发生应力腐蚀开裂一般是从护环外壁开始。(×) 32)每次大修都应当对发电机风冷叶片进行表面检验。(√) 二、选择题 1): 2)火电机组启动有滑参启动和定参数两种方式,对高参数、大容量机组而言,主要是(a)方式。 3) a. 滑参数; b. 定参数; c. 任意; d. 定温。 4)在允许范围内,尽可能保持较高的蒸汽温度和压力,则使(c)。

汽轮机设计

《汽轮机原理》课程设计 学号 姓名 指导教师 设计时间

一、课程设计目的 (1)通过课程设计,系统地总结、巩固、加深在《汽轮机原理》课程中已学知识,进一步了解汽轮机的工作原理。 (2)在尽可能考虑制造、安装和运行的要求下,进行某一机组的变工况热力计算,掌握汽轮机热力计算的原理、方法和步骤。 (3)通过课程设计对电站汽轮机建立整体的、量化的概念,掌握查阅和使用各种设计资料、标准、手册等参考文献的技巧。 (4)培养综合应用书本知识、自主学习、独立工作的能力,培养与其他人相互协作的工作作风。 二、课程设计内容 以N300型号的汽轮机为对象,在已知结构参数和非设计工况新蒸汽参数和流量的条件下,进行通流部分热力校核计算,求出该工况下级的内功率、相对内效率等全部特征参数,并与设计工况作对比分析。主要工作如下: (1)设计工况及非设计工况下通流部分各级热力过程参数计算。 (2)轴端汽封漏汽量校核计算。 (3)与设计工况的性能和特征参数作比较分析。 三、整机计算步骤 本次课程设计计算方法是将该型汽轮机的通流部分划分为高、中压缸和低压缸2个计算模块,由2个学生组成一个计算小组,一人采用顺算法计算高、中压缸,另一人采用逆算法计算低压缸。2人协同工作,共同商定计算方案和迭代策略。 本人进行的是低压缸部分计算,计算工况为103%。为便于计算,作出如下约定: (1)各级回热抽汽量正比例于主汽流量; (2)门杆漏汽和调门开启重叠度不计; (3)余速利用系数的参考值为:调节级后的第一压力级、前面有抽汽口的压力级利用上一级余速的系数为0.4,其它压力级为0.8; (4)对径高比小于6的级,在最终计算结果中,用近似公式估算出叶根处的反动度; (5)第一次计算,用弗留格尔公式确定调节级后压力; (6)假定汽机排汽压力为设计工况下的值,用平移设计工况热力过程线方法初步确定排汽点。 四、汽轮机简介 本机组是按照美国西屋公司的技术制造的300MW亚临界、中间再热式、高中压合缸、

汽轮机基础结构设计要点

框架式汽轮机基础设计要点 一、顶板设计 (1)顶板应有足够的质量和刚度,应加大扰力作用点下构件的质量,以减小基础的振动。 (2)顶板各横梁的静挠度宜接近,以保持轴系的平直,改善基础的动力性能。 (3)顶板的外形和受力应简单,尽量采用外形规则的矩形或T形截面,并宜避免偏心荷载。 (4)顶板的挑台应做成实腹式,其悬出长度不宜大于 1.5m,悬臂支座处的截面高度,不应小 于悬出长度0.75倍。 (5)励磁机处宜增大顶板构件的断面,以防局部振动过大。 (6)顶板四周应留有变形缝与其他结构隔开。 (7)汽机底座边缘至顶板边缘的距离不宜小于100mm。在汽机底座下应预留二次灌浆层,其厚度不宜小于25mm。二次灌浆层应在设备安装就位并初调后,用微膨胀混凝土填充密实, 且与混凝土基础面结合。 (8)基础顶面的二次灌浆层厚度大于50mm时,可在基础顶面预留直径$ 8~10mm、间距200~300mm的插筋,以保证基础砼与二次灌浆层结合牢固。 (9)基础顶面四周边缘及沟道边,一般可设置50~75mm的角钢保护,以防止边缘损坏。 二、框架柱设计 (1)柱子一般采用矩形截面,在满足强度和稳定性要求的前提下宜适当减小柱的刚度,但其长细比(L o/b)不宜大于14。(柱刚度小可降低基础的基本频率,改善基础的动力特性。) L0――柱计算长度,按《GB 50010 -2010》表6.2.20-2中的现浇楼盖底层柱确定 b――矩形截面的短边尺寸 ⑵柱子截面刚度EA宜与其上荷载成相同比例值。 (3)柱主筋在底板内的锚固:当底板厚度w 1.2m时,柱主筋均应伸至底板底部钢筋网上,;当底板厚度〉1.2m时,柱主筋可只将一半的柱主筋伸至底板底部钢筋网上,另一半在底板内 达到直线锚固长度即可。 (4)柱主筋在顶板内的锚固:直线锚入顶板内,钢筋伸至顶板顶。 (5)可设2~3道施工缝,各设在柱顶、柱脚及零米附近。施工缝处理:预留$ 8@200的钢筋,长600mm,插入300mm;浇灌前应凿毛混凝土表面,湿润清扫干净后,坐一层掺有胶结剂的水泥净浆。 (6)中间柱子与横梁可不在同一平面,适当移动柱子的位置有时可明显改善基础的动力特性。 三、平板式基础底板设计 (1)底板应有一定的刚度,可嵌固柱子,并将荷载均匀传递给地基,底板的刚度对调整不均匀沉降起一定的作用。 (2)底板厚度对其动力特性影响不大,不宜过厚;底板的厚度,对中转速机组( 1000 v n w 3000r/min )可取基础底板长度的1/15~1/20,对高转速机组(3000r/min v n)可取基础底板 长度的1/10~1/15,底板厚度不应小于柱截面的边长,也不应小于800mm。 ⑶当底板厚度hw 1.2m时,底板双层双向配筋;当1.2mv hw 2m时,底板中部设一层构造钢筋网($ 16~20@600~900 );当2m v hw 3m时,设两层;当3mv hw 4m时,设三层。 (4)汽机基础应独立布置,底板四周应留有变形缝与其他结构隔开。中间平台宜与基础主体结构脱开,当不能脱开时,在两者连接处宜采取隔振措施。必要时,汽机底板上允许设置加热器平台和地下室楼板的柱子。

汽轮机开题报告

南华大学本科生毕业设计(论文)开题报告 设计(论文)题目 12MW机组抽汽汽轮机总体设计 设计(论文)题目来源 自选课题 设计(论文)题目类型 工程设计类 起止时间 20150112~20150530 设计(论文)依据及研究意义: 本设计研究的依据: 1883年瑞典工程师拉法尔创造出第一台轴流式汽轮机,它是一台3.7kw的单级冲动式汽轮机,转速高达26000r/min,相应的轮轴速度为475m/s。1884到1894年,英国工程师巴森斯相机创造出了现在复速级单级汽轮机。为了满足其他工业部门对蒸汽的需要,在1903到1907年间,出现了热能、电能联合生产的汽轮机,即背压式及调节抽汽式汽轮机。1920年左右,出现了给水回热式汽轮机。到1925年,出现了第一台中间再热式汽轮机。上个世纪40年代以后,汽轮机发展特别迅速。自70年代以来,工业发达国家汽轮机的制造水平普遍进入百万级。最大单机功率达到1300MW。1980年苏联制造的1200WM单轴汽轮机投入运行。 我国自1955年制造第一台中压6MW汽轮机以来,在之后的30几年时间里,已经走完了从中压机组到亚临界600WM机组的全部过程。目前我国超高压、亚临界参数125MW以上到60MW功率等级范围内汽轮机产品的制造质量、运行性能、可靠信等综合指标已达到国际同类机组的水平。我国已具有了与国际跨国公司相当的亚临界、常规超临界参数大功率汽轮机的设计制造能力。 对于小功率汽轮机具有如下特点: 1)初参数低。小功率汽轮机一般为中低压机组,初参数在3.4MPa/435℃以下。但是也有个别次高压(4.9~5.9MPa/435~450℃)或高压(8.9MPa/500℃)机组。 2)热力系统简单。小功率汽轮机一般为1~3级回热系统,无中间过热循环,热力系统简单。 3)结构简单。小功率汽轮机通常是单缸、单轴、定转速(3000rpm或1500rpm)汽轮机,个别机组为双缸及高转速(附加变速装置)。 现在火电厂基本都是高参数大容量机组,抽汽汽轮机主要是用于发电和供暖,能源利用率高,与普通凝汽式汽轮机相比也更为节能。因此设计12MW机组抽汽汽轮机有一定研究意义。

汽轮机基础知识(教材)

汽轮机基本概念、工作原理介绍 一、汽轮机运行基础知识 1、流体力学基础知识 一、流体的物理性质 1、流动性 流体的流动性是流体的基本特征,它是在流体自身重力或外力作用下产生的。这也是流体容易通过管道输送的原因 2、可压缩性 流体的体积大小会随它所受压力的变化而变化,作用在流体上的压力增加,流体的体积将缩小,这称为流体的可压缩性。 3、膨胀性 流体的体积还会随温度的变化而变化,温度升高,则体积膨胀,这称为流体的膨胀性。 4、粘滞性 粘滞性标志着流体流动时内摩擦阻力的大小,它用粘度来表示。粘度越大,阻力越大,流动性越差。 气体的粘度随温度的升高而升高,液体的粘度随温度的升高而降低。 二、液体静力学知识 1、液体静压力及其基本特性 液体静压力是指作用在液体内部距液面某一深度的点的压力。

液体静压力有两个基本特性: ①液体静压力的方向和其作用面相垂直,并指向作用面。 ②液体内任一点的各个方向的静压力均相等。 2、液体静力学基本方程 P=Pa+ρgh 式中Pa----大气压力ρ-----液体密度 上式说明:液体静压力的大小是随深度按线性变化的。 3、绝对压力、表压力和真空 ①绝对压力:是以绝对真空为零算起的。用Pj表示。 ②表压力(或称相对压力):以大气压力Pa为零算起的。用Pb 表示。 ③真空:绝对压力小于大气压力,即表压Pb为负值。 绝对压力、表压力、真空之间的关系为: Pj=Pa+Pb 三、液体动力学知识 1、基本概念 ①液体的运动要素: 液体流动时,液体中每一点的压力和流速,反映了流体各点的运动情况。因此,压力和流速是流体运动的基本要素。 ②流量和平均流速: 假定流体在流过断面时,其各点都具有相同的流速,在这个流速下所流过的流量与同一断面各点以实际流速流动时所流过的流量

汽轮机各设备作用及内部结构图

汽轮机各设备作用及内 部结构图 集团公司文件内部编码:(TTT-UUTT-MMYB-URTTY-ITTLTY-

汽轮机各设备的作用收藏 01.凝汽设备主要有凝汽器、循环水泵、抽汽器、凝结水泵等组成。 任务:⑴在汽轮机排汽口建立并保持高度真空。 ⑵把汽轮机排汽凝结成水,再由凝结泵送至回热加热器,成为供给锅炉的给水。此外,还有一定的真空除氧作用。 02.凝汽器冷却水的作用:将排汽冷凝成水,吸收排汽凝结所释放的热量。 03.加热器疏水装置的作用:可靠的将加热器内的疏水排出,同时防止蒸汽随之漏出。 04.轴封加热器的作用:回收轴封漏汽,用以加热凝结水从而减少轴封漏汽及热量损失,并改善车间的环境条件。 05.低压加热器凝结水旁路的作用:当加热器发生故障或某一台加热器停用时,不致中断主凝结水。 06.加热器安装排空气门的作用:为了不使空气在铜管的表面形成空气膜,使热阻增大,严重地影响加热器的传热效果,从而降低换热效率,故安装排空气门。 07.高压加热器设置水侧保护装置的作用:当高压加热器发生故障或管子破裂时,能迅速切断加热器管束的给水,同时又能保证向锅炉供水。 08.除氧器的作用:用来除去锅炉给水中的氧气及其他气体,保证给水的品质。同时,又能加热给水提高给水温度。 09.除氧器设置水封筒的目的:保证除氧器不发生满水倒流入其他设备的事故。防止除氧器超压。 10.除氧器水箱的作用:储存给水,平衡给水泵向锅炉的供水量与凝结水泵送进除氧器水量的差额,从而满足锅炉给水量的需要。

11.除氧器再沸腾管的作用:有利于机组启动前对水箱中给水加温及备用水箱维持水温。正常运行中对提高除氧效果有益处。 12.液压止回阀的作用:用于防止管道中的液体倒流。 13.安全阀的作用:一种保证设备安全的阀门。 14.管道支吊架的作用:固定管子,并承受管道本身及管道内流体的重量和保温材料重量。 15.给水泵的作用:向锅炉连续供给具有足够压力,流量和相当温度的给水。 16.循环水泵的作用:主要是用来向汽轮机的凝汽器提供冷却水,冷凝进入凝汽器内的汽轮机排汽,此外,还向冷油器、发电机冷却器等提供冷却水。 17.凝结水泵空气管的作用:将泵内聚集的空气排出。 18.减温减压器的作用:作为补偿热化供热调峰之用(本厂)。 19.减温减压装置的作用:⑴对外供热系统中,用以补充汽轮机抽汽的不足,还可做备用汽源。⑵当机组启停机或发生故障时,可起调节和保护的作用。⑶可做厂用低压用汽的汽源。⑷用于回收锅炉点火的排汽。 20.汽轮机的作用:一种以具有一定温度和压力的水蒸气为介质,将热能转变为机械能的回转式原动机。 21.汽缸的作用:将汽轮机的通流部分与大气隔开,以形成蒸汽热能转换为机械能的封闭汽室。 22.汽封的作用:减少汽缸内的蒸汽向外漏泄和防止外界空气漏入汽缸。 23.排汽缸的作用:将汽轮机末级动叶排出的蒸汽倒入凝汽器。 24.排汽缸喷水装置的作用:为了防止排汽温度过高而引起汽缸变形,破坏汽轮机动静部分中心线的一致性,引起机组振动或其他事故。

《汽轮机课程设计》说明

前言 一、课程设计目的 (1)通过课程设计,系统地总结、巩固并加深在《汽轮机原理》课程中已学知识,进一步了解汽轮机的工作原理。在尽可能考虑制造、安装和运行的要求下,进行某一机组的变工况热力计算,掌握汽轮机热力计算的原理、方法和步骤。 (2)在尽可能考虑制造、安装和运行的要求下,进行某一机组的变工况热力计算,掌握汽轮机热力计算的原理、方法和步骤。 (3)通过课程设计对电站汽轮机建立整体的、量化的概念,掌握查阅和使用各种设计资料、标准、手册等参考文献的技巧。 (4)培养综合应用书本知识、自主学习、独立工作的能力,以及与其他人相互协作的工作作风。 二、课程设计内容 以某种型号的汽轮机为对象,在已知结构参数和非设计工况新蒸汽参数和流量的条件下,、进行通流部分热力校核计算,求出该工况下级的内功率、相对内功率等全部特征参数,并与设计工况作对比分析。主要计算工作如下: (1)设计工况下通流部分各级热力过程参数计算。对径高比小于6的级,在最终计算结果中,用近似公式估算出叶根处的反动度。 (2)轴端汽封漏汽量校核计算。 (3)与设计工况的性能和特征参数作比较计算。 三、整机计算步骤 将该型汽轮机的通流部分划为高、中压缸和低压缸2个计算模块,我们2人为一组,一人采用顺算法计算高、中压缸,另一人采用逆算法计算低压缸。2人协同工作,共同商定计算方案和迭代策略。 本人进行的是高、中压缸的顺算计算。 为了便于计算,作出如下约定: (1)各级回热抽汽量正比于主蒸汽流量; (2)门杆漏气和调门开启重叠度不计; (3)余速利用系数参考值为:调节级后的第一压力级、前面有抽汽口的压力级利用上一级余速的系数为0.4,其它压力级为0.8; (4)对径高比小于6的级,在最终计算结果中,用近似公式估算出叶根处的反动度; (5)第一次计算,用弗留各尔公式确定调节级后压力; (6)对径高比小于6的级,在最终计算结果中,用近似公式估算出叶根处的反动度。

汽轮机设备及系统

8 汽轮机设备及系统 8.1 汽轮机设备 8.1.1 发电厂的机组容量的选择,应符合下列要求: 8.1.1.1区域性凝汽式发电厂的机组容量,应根据地区电力系统规划容量、电力负荷增长的需要和电网结构等因素,优先选择较高参数和较大容量的机组。 8.1.1.2 孤立凝汽式发电厂的机组容量,当停用1台机组时,其余机组应能满足基本电力负荷的需要。 8.1.1.3 供热式发电厂,应根据热负荷的大小,合理确定发电厂的规模和机组容量。条件许可时,应优先选择较高参数、较大容量和经济效益更高的供热式机组。 8.1.2 供热式汽轮机机型的最佳配置方案,应在调查核实热负荷的基础上,根据设计的热负荷曲线特性,经技术经济比较后确定。 8.1.3供热式汽轮机的选型,应按下列原则确定: 8.1.3.1具有常年持续稳定的热负荷的热电厂,应按全年基本热负荷选用背压式汽轮机。 8.1.3.2 具有持续部分稳定热负荷的热电厂,可选用背压式汽轮机或抽汽背压式汽轮机承担基本稳定的热负荷,另设置抽凝式汽轮机带变化波动的热负荷。 区域性的热电厂的第一台机组,不宜设置背压式汽轮机。 8.1.3.3 昼夜热负荷变化幅度较大,或近期热负荷总量较小,且无持续稳定的热负荷的热电厂,宜选用抽凝式汽轮机。 8.1.4 热电厂的热化系数,可按下列原则选取: 8.1.4.1 热电厂的热化系数应小于1。 8.1.4.2 热化系数必须因地制宜、综合各种影响因素经技术经济比较后确定,并宜符合下列要求: (1) 热化系数宜取0.5~0.8; (2) 对以供常年工业用汽热负荷为主的热电厂,其热化系数宜取0.7~0.8; (3) 对以供季节采暖为主的热电厂,其热化系数宜取0.5~0.6; (4) 在选取热化系数时,应对热负荷的性质进行分析。年利用小时数高、日负荷稳定的,取高值;年利用小时数低、日负荷波动大的,取低值。 8.1.5 对季节性热负荷差别较大或昼夜热负荷波动较大的地区,为满足尖峰热负荷,可采用下列方式供热: 8.1.5.1利用热电厂的锅炉裕量,经减温减压装置补充供热。 8.1.5.2 采用供热式汽轮机与兴建尖峰锅炉房协调供热。 8.1.5.3 选留热用户中容量较大、使用时间较短、热效率较高的燃煤锅炉补充供热。 8.1.6 采暖尖峰锅炉房与热电厂采用并联供热系统或串联供热系统,应经技术经济比较后确定,并宜符合下列要求: 8.1.6.1当采用并联供热时,采暖锅炉房,宜建在热电厂或热电厂附近。 8.1.6.2 当采用串联供热时,采暖锅炉房,宜建在热负荷中心或热网的远端。 8.2主蒸汽及供热蒸汽系统 8.2.1 主蒸汽管道,宜采用切换母管制系统。 8.2.2热电厂厂内应设供热集汽联箱。向厂外同一方向输送的供热蒸汽管道,宜采用单管制系统。当符合下列情况时,可采用双管或多管制系统。 8.2.2.1当同一方向的各用户所需蒸汽参数相差较大,或季节性热负荷占总热负荷比例较大,经技

汽轮机课程设计

第一章 23MW凝汽式汽轮机设计任务书 1.1 设计题目: 23MW凝汽式汽轮机热力设计 1.2 设计任务及内容 根据给定条件完成汽轮机各级尺寸的确定及级效率和内功率的计算。在保证运行安全的基础上,力求达到结构紧凑、系统简单、布置合理、使用经济性高。 汽轮机设计的主要内容: 1.确定汽轮机型式及配汽方式; 2.拟定热力过程及原则性热力系统,进行汽耗量于热经济性的初步计算; 3.确定调节级型式、比焓降、叶型及尺寸等; 4.确定压力级级数,进行比焓降分配; 5.各级详细热力计算,确定各级通流部分的几何尺寸、相对内效率、内功率与 整机实际热力过程曲线; 6.整机校核,汇总计算表格。 1.3 设计原始资料 额定功率:23MW 设计功率:18.4MW 新汽压力:3.43MP a 新汽温度:435℃ 排汽压力:0.005MP a 冷却水温:22℃ 机组转速:3000r/min 回热抽汽级数:5 给水温度:168℃ 1.4 设计要求 1.严格遵守作息时间,在规定地点认真完成设计,设计共计两周; 2.完成设计说明书一份,要求过程完整,数据准确; 3.完成通流部分纵剖面图一张(A0图) 4.计算结果以表格汇总。

第二章多极汽轮机热力计算 2.1 近似热力过程曲线的拟定 一、进排汽机构及连接管道的各项损失 蒸汽流过个阀门及连接管道时,会产生节流损失和压力损失。表2-1列出了这些损失通常选取范围。 表2-1 汽轮机各阀门及连接管道中节流损失和压力估取范围 图2-1 进排汽机构损失的热力过程曲线

二、汽轮机近似热力过程曲线的拟定 根据经验,对一般非中间再热凝汽式汽轮机可近似地按图2-2所示方法拟定近似 热力过程曲线。 由已知的新汽参数p 0、t 0,可得汽轮机进汽状态点0,并查得初比焓h 0=3304.2kj/kg 。由前所得,设进汽机构的节流损失ΔP 0=0.04 P 0=0.1372 MPa 得到调节级前压力P 0'= P 0 - ΔP 0=3.2928MPa ,并确定调节级前蒸汽状态点1。过1点作等比熵线向下交于P x 线于2点,查得h 2t =2152.1kj/kg ,整机的理想比焓降 ()'0 23304.221201184.2 mac t t h h h ?=-=-=3304.2-2128=1176 kj/kg 。由上估计进汽量后得到的相对内效率 ηri =83.1%,有效比焓降Δht mac =(Δht mac )' ηri =1176×0.831=977.3kj/kg ,排汽比 焓03304.2986.3282317.872mac z t h h h =-?=-=3304.2-977.3=2326.9 kj/kg ,在h-s 图上得排汽点Z 。用直线连接1、Z 两点,在中间'3点处沿等压线下移21~25 kj/kg 得3点,用光滑连接1、3、Z 点,得该机设计工况下的近似热力过程曲线,如图2-2所示。 图2-2 12MW 凝汽式汽轮机近似热力过程曲线

汽轮机各设备作用及内部结构图

汽轮机各设备的作用收藏 01. 凝汽设备主要有凝汽器、循环水泵、抽汽器、凝结水泵等组成。 任务:⑴在汽轮机排汽口建立并保持高度真空。 ⑵把汽轮机排汽凝结成水,再由凝结泵送至回热加热器,成为供给锅炉的给水。此外,还有一定的真空除氧作用。 02. 凝汽器冷却水的作用:将排汽冷凝成水,吸收排汽凝结所释放的热量。 03. 加热器疏水装置的作用:可靠的将加热器内的疏水排出,同时防止蒸汽随之漏出。 04. 轴封加热器的作用:回收轴封漏汽,用以加热凝结水从而减少轴封漏汽及热量损失,并改善车间的环境条件。 05. 低压加热器凝结水旁路的作用:当加热器发生故障或某一台加热器停用时,不致中断主凝结水。 06. 加热器安装排空气门的作用:为了不使空气在铜管的表面形成空气膜,使热阻增大,严重地影响加热器的传热效果,从而降低换热效率,故安装排空气门。 07.高压加热器设置水侧保护装置的作用:当高压加热器发生故障或管子破裂时,能迅速切断加热器管束的给水,同时又能保证向锅炉供水。 08.除氧器的作用:用来除去锅炉给水中的氧气及其他气体,保证给水的品质。同时,又能加热给水提高给水温度。 09.除氧器设置水封筒的目的:保证除氧器不发生满水倒流入其他设备的事故。防止除氧器超压。 10.除氧器水箱的作用:储存给水,平衡给水泵向锅炉的供水量与凝结水泵送进除氧器水量的差额,从而满足锅炉给水量的需要。 11.除氧器再沸腾管的作用:有利于机组启动前对水箱中给水加温及备用水箱维持水温。正常运行中对提高除氧效果有益处。 12.液压止回阀的作用:用于防止管道中的液体倒流。 13.安全阀的作用:一种保证设备安全的阀门。 14.管道支吊架的作用:固定管子,并承受管道本身及管道内流体的重量和保温材料重量。 15.给水泵的作用:向锅炉连续供给具有足够压力,流量和相当温度的给水。 16.循环水泵的作用:主要是用来向汽轮机的凝汽器提供冷却水,冷凝进入凝汽器内的汽轮机排汽,此外,还向冷油器、发电机冷却器等提供冷却水。 17.凝结水泵空气管的作用:将泵内聚集的空气排出。 18.减温减压器的作用:作为补偿热化供热调峰之用(本厂)。 19.减温减压装置的作用:⑴对外供热系统中,用以补充汽轮机抽汽的不足,还可做备用汽源。⑵当机组启停机或发生故障时,可起调节和保护的作用。⑶可做厂用低压用汽的汽源。 ⑷用于回收锅炉点火的排汽。 20.汽轮机的作用:一种以具有一定温度和压力的水蒸气为介质,将热能转变为机械能的回转式原动机。 21.汽缸的作用:将汽轮机的通流部分与大气隔开,以形成蒸汽热能转换为机械能的封闭汽室。 22.汽封的作用:减少汽缸内的蒸汽向外漏泄和防止外界空气漏入汽缸。 23.排汽缸的作用:将汽轮机末级动叶排出的蒸汽倒入凝汽器。 24.排汽缸喷水装置的作用:为了防止排汽温度过高而引起汽缸变形,破坏汽轮机动静部分中心线的一致性,引起机组振动或其他事故。 25.低压缸上部排汽门的作用:在事故情况下,如果低压缸内压力超过大气压力,自动打开

汽轮机详细设计参数

I Power station电站 1. power station电站 2. power plant电站,发电设备 3. utility电力部门 4.independent power producer (IPP)独立发电项目,独立发电站 5.nuclear power station核电站 6. thermal power station火电站 7. fossil (fired) power plant化石燃料电站,常规火电站 8. combined heat power (CHP) plant热电联供机组 9. steam power plant蒸汽电站,蒸汽发电设备 10. cogeneration power station热电联供电站 11. coal fired power plant燃煤电站 12. oil fired power plant燃油电站 13. gas filed power plant燃气电站 14. LNG power plant (liquefied natural gas)燃液化天然气电站 15. BoP (balance of plant)电站辅机 16. I&C (instrumentation and control)仪表和控制系统 II Turbine透平,涡轮 17. Turbine透平,涡轮 18. steam turbine汽轮机 19. gas turbine燃气轮机

20. nuclear turbine核电汽轮机 21. fossil turbine火电汽轮机 22. industrial turbine工业透平 23. cogeneration turbine热电联供透平 24. condensing turbine凝汽式汽轮机 25. back pressure turbine背压式汽轮机 26. extraction turbine抽汽式汽轮机 27. extraction condensing turbine抽汽凝汽式汽轮机 28. single-extraction turbine单抽汽轮机 29. double-extraction turbine双抽汽轮机 30. mechanical drive turbine机械驱动汽轮机 31. HP (IP, LP) turbine高(中、低)压缸 32. sub-critical pressure turbine亚临界汽轮机 33. super-critical pressure (SC) turbine 超临界汽轮机 34. ultra-super critical (USC) pressure turbine超朝临界汽轮机 35. BFPT (boiler feed pump turbine)给水泵汽轮机 36. steam turbine with air-cooled condenser(air cooled steam turbine)空冷汽轮机 37. reheat turbine再热汽轮机 38. double-reheat turbine二次再热汽轮机 39. wet steam turbine湿蒸汽汽轮机 40. saturated steam turbine饱和蒸汽汽轮机

相关主题
文本预览
相关文档 最新文档