当前位置:文档之家› 有限元方法及其工程应用

有限元方法及其工程应用

有限元方法及其工程应用
有限元方法及其工程应用

《有限元方法及其工程应用》读书报告

数值分析技术是在力学理论、计算数学和计算机技术相互结合和渗透的基础上发展起来的一门应用数学学科。它主要借助计算机和软件技术实现大规模的计算分析。根据构造数值计算公式的原理不同,目前工程上常用的数值分析方法主要有:有限差分法、有限单元法和边界单元法等。与其它方法比较,有限元法在计算公式构造、计算精度及效率、求解过程的稳定性和适用性等方面具有明显的优势。有限元法的基本思想是把一个复杂实际问题划分成有限个简单问题的组合进行求解,由于实际问题已被较简单的问题所代替,故只能获得近似解。如对结构受力分析问题,首先把结构的求解区域看成是由有限(数量)个小的在节点处相互联系的子域(单元)组成,先对每一个单元假定一个合适的近似解,然后推导结构的整体平衡方程,在满足边界条件情况下就可获得近似解。当划分的子域(单元)尺寸变的越来越小时,其近似解就越来越逼近精确解。

弹性力学是进行工程结构承载分析的基本理论。建立与未知量相等的方程是进行应力分析的首要条件,此外还需满足协调方程(位移和应变连续)和边界条件(弹性结构表面的给定位移和力的条件)。弹性力学假设物体是完全弹性、连续、均匀和各向同性的,并且变形和位移是微小的。弹性力学有外力、应力、应变和位移等基本概念。弹性平面问题主要有平面应力问题和平面应变问题。平面应力问题主要应用于厚度尺寸与长度和宽度相比很小的板状结构体,如板架、机体等。这类物体只在板边受平行于板平面的外力,且外力沿厚度方向不变,体力也平行于板面并且不沿厚度变化。平面应力问题只有σXX ,σYY ,τXY =τYX 三个应力分量不为零,是一种二维函数问题。平面应变问题适用于截面不变化但长度很长的柱形结构体,如长圆柱体、高压容器、管道等。这类物体只受到平行于截面、并且沿长度不变化的体力和面力。平面应变问题只有三个应变分量:εXX ,εYY ,γXY =γY X 不为零。

弹性力学的控制方程有:平衡微分方程、几何方程和物理方程。其中弹性平面的

平衡微分方程为: ???????=+??+??=+??+??00Y y

y X y x

yy

xy x y xx

σττσ

几何方程为应变和位移的关系: ?????????+??=??=??=y u x v

xy y v yy x

u

xx γεε,

物理方程为应力-应变关系(即三维条件下的广义虎克定律):

()[]zz yy xx xx v E σσσε+-=1 , xy xy G τγ1=

其它两个物理方程类似。

另外还有变形协调方程和边界条件。可见三维弹性问题总共有15个未知参数。

能量原理是力学的基本原理之一,弹性力学能量原理,就是利用能量的概念研究物体在外力的作用下应力、应变和位移参量之间的变化规律,以及外力作功与物体变形势能所涉及的能量转换过程。主要有泛函、变分的概念和虚位移原理和最小势能原理。在工程中除存在依赖与自变量变化的函数关系外,还存在另一类函数,其自变量也是一类函数,而不是有限个变量,这种函数的函数叫“泛函”。变分学就是研究这些“泛函”的极值性质,即在一组容许函数中选定一个函数,使给定的“泛函”获

得极值,而不是求解含有有限个变量的函数极值。在分析结构静力问题时,总认为其加载过程是缓慢的逐步加载过程,在该过程中结构始终处于静力平衡状态。当结构为线弹性体时,外力所作的功将全部转换为弹性体中的弹性势能,这一过程遵循能量守恒原理。由于外力作用,弹性体内部所储存的弹性变形势能成为应变势能。弹性体几何允许的微小位移,称为位移的变分,根据能量守恒原理,在虚位移过程中,外力所作的虚功等于弹性体内增加的虚应变能,这就是虚位移原理。对任何一个弹性结构,在外力作用下产生弹性变形,在这一变形过程中,外力对弹性体作功W而势能减小,弹性体由于变形而储存弹性应变势能U,那么当该弹性体处于稳定平衡状态时,其总的势能必取极小值,这就是最小势能原理。

利用有限元法进行结果分析时,首先要将物体或求解区域划分为有限个小区域(网格)的集合,这些小区域称“有限单元”,这些单元通过节点而相互连接,单元节点位于单元边界上,且相临单元通过节点连接。其次,假设节点处的物理参量(如位移、温度等)为未知参量,用这些参量可以表示单元内部物理量变化的近似函数。然后,利用结构的整体控制方程(平衡方程)将所有单元节点的未知量集合成一个线性代数方程组,代入边界条件,最后求解。有限元方法的一般步骤是:1)物体结构离散化;2)选择单元内部插值模式;3)推导单元刚度矩阵和单元节点载荷向量;4)集合单元方程得到总的平衡方程组;5)求解节点未知参量;6)计算单元应变和应力。其中,总的平衡方程组为:[K]{U}={F}

式中:[K]为整体结构的集合刚度矩阵;

{U}为整体结构节点位移向量;

{F}为节点载荷向量。

有限元方法的第一步是对求解区域划分网格,网格为具有一定几何形状的小区域,节点在这种小区域的角点或边界上,节点的“自由度”是指节点处独立的物理参量的个数。整个求解区域的自由度数则是全部节点自由度的总和,整个求解区域的自由度是有限的。这样求解区域的离散化相当与用一个具有有限自由度数目的系统去替换具有无限自由度数目的系统。在划分单元时应考虑单元的形状、尺寸、数量和分布。单元形状取决于物体的几何形状和描述物体结构所需的独立空间坐标数,如一维、二维、三维问题等。在选择单元类型时,应根据所研究问题本身的物理特性来选择。单元尺寸直接影响计算结果的精度,单元尺寸越小,其计算结果的误差就越小,但对同样区域,小尺寸单元意味着单元数目的增多,节点自由度的增加及线性方程组数目的增加,即计算工作量的增大。对同一结构,可以采用相同尺寸的单元划分网格,但对存在应力集中的结构,则应采用不同尺寸的单元划分网格,以便能有效反映局部应力急剧变化的特征。对于节点的设置,一般情况下,根据求解问题性质均匀或局部加密布置节点,对于特殊情况,单元的节点应布置在物体几何形状、材料性能和外载有突然变化的地方,材料性能不连续、出现间断等,则应将单元的节点设置在间断截面处。单元的数量取决于计算精度、单元尺寸及单元类型的自由度数目,一般采用更多的单元将获得更为精确的计算结果,但这会消耗大量内存,因此在客观条件允许下,并满足工程计算精度要求时,尽量减少单元数量以提高工作效率。针对具体问题应充分利用结构的对称性,简化有限元计算模型。有限元方法必须有效标识和管理单元和节点。有限元法的单元节点信息是指:节点编号和单元编号。

有限元法的基本思路是分段(分区域)逼近分析方法,因此最关键的步骤是对每一个单元选择一

个简单函数,用来表示求解变量在单元内部的变化情况,这种函数称为插值函数。在有限元中一般插值函数选择多项式形式。对结构分析而言,单元特征矩阵和节点特征向量就是建立单元节点的位移变量和节点载荷之间的关系,类似于单元的物理方程。通常的方法有:直接法、能量法和加权余量法。利用上述方法可推导出单元的特征矩阵或节点的特征向量。在获得单元的特征矩阵后,可以构造出结构的整体特征(刚度)矩阵。有限元方法最终获得一组包含节点未知参量的线性方程组,对于有限元方程组的求解,必须充分利用总体刚度矩阵的稀疏性、对称性特征。

弹性结构静力分析有限元法是用于计算工程结构或构件在稳态载荷(温度)作用下的弹性位移、应力、应变及边界载荷的变化规律。弹性平面问题包括平面应力和平面应变问题。在平面问题中,基本物理参量有位移分量u ,v ,应变分量ε

XX ,εYY ,εXY ,应力分量ζXX ,ζYY ,ζXY 。则可总结出公式: {ζ}=[D]{ε}

其中,[D]为对称矩阵:[D]=??

??????

??

??--2100010112

v v v v E , 平面应变问题,应将式[D]中的v 换成v/(1-v )、E 应换成E/(1-v 2)即可。

对平面问题,最简单的离散单元是三角形单元。每个单元包含三个节点,以每个节点的位移分量u,v 作为基本未知量,这样三个节点有六个自由度。为了能用节点位移表示单元内部的位移变化,位移模式中应包含六个任意参数。考虑任一单元利用能量法中虚位移原理,推导单元刚度矩阵,同时建立节点载荷与节点位移的关系,最后可得单元刚度矩阵。有限元法是以节点处的“力平衡条件”建立求解方程的,因此当单元内部存在体力或边界上存在面力时,必须采用“静力等效原则”进行等效节点载荷计算。所谓“静力等效原则”是指,对任意虚位移,原来载荷与转换后的节点载荷在同一虚位移上的虚功相等。这样就可以得到单元内位移、应力、应变及节点载荷与单元节点位移的关系,利用这些关系可以建立结构的整体刚度矩阵。对结构分析建立整体刚度矩阵的方法,是利用单元“节点的平衡方程”,根据节点处平衡条件,可以推导出整个结构的线性代数方程组。在建立了结构总刚度矩阵后,就可以建立节点位移所满足的线性方程组:[K]{Δ}={R};式中,{Δ}为全部节点位移列阵,{R}为全部节点载荷列阵,[K]是总刚度矩阵。为了使方程组有确定的解,必须按实际情况代入边界条件,因此对结构分析,要使有限元模型能够求解,必须保证至少有一个节点是完全固定的几何约束,即整个结构不能存在刚性运动。总刚度矩阵具有对称性、稀疏性和带状分布的特点。并且必须保证有限元解的收敛性。

工程结构在温度作用下的热应力分析问题十分普遍。利用有限元法计算由于温度变化所引起的热应力的思路为:1)如果结构温度分布已知。则可将温度作为体载荷直接加在离散模型的节点上进行计算:2)间接法,用有限元法首先进行温度计算,然后将求得节点温度作为体载荷加在结构应力分析中,温度和应力分开计算:3)直接法,将温度和应力耦合在一起进行计算,同时得到温度和应力分布。直接法或耦合法最符合实际情况,对大多数热应力分析都采用间接法。对于平面热应力问题,温度T 仅是坐标x,y 的函数T=T (x,y ),温度产生的体积膨胀或收缩只影响弹性体的正应变,此时材料的应力-应变关系变为:

?????????+=+-=+-=

xy xy xx yy yy

yy xx xx E v T v E T v E τγασσεασσε)1(2)(1)(1

,并可在此基础上计算单元的热应力。 在工程实际中最简单的单元是具有四个角点的四面体单元。这种单元有12个自由度(位移分量),每个节点有三个位移分量。可用建立位移模式方程、应力-应变方程,建立单元刚度矩阵,代入等效节点载荷的方法进行求解。

对许多工程结构,由于结构形式和承载的复杂性及应力集中的作用等,都会产生塑性变形,在这种情况下,应采用弹塑性力学方法进行研究。在弹塑性情况下,材料的应力-应变关系是非线性的,对金属材料而言,这种非线性是由塑性变形引起的。在小位移假设下,弹性力学的平衡方程和集合方程在塑性力学中有效,但物理方程变化。用有限元法分析弹塑性问题,其有限元公式推导过程与弹性分析基本类似,所不同的是在求解单元刚度矩阵时,必须采用弹塑性应力-应变关系。对弹塑性问题,应变分量的总增量d{ε}由弹性应变增量d{ε}e 和塑性应变分量d{ε}p 两部分组成。弹塑性材料的增量形式应力-应变关系为:}{][}{εσd D d ep = ,其中[D]ep 称为弹塑性矩阵,是对称的、正定矩阵。

根据增量应力应变关系,可得到单元节点位移增量和载荷增量的关系为:[]{}{}R k ep ?=?δ ,由它

可集成整个结构的整体平衡方程组。弹塑性有限元方程只能采用迭代法求解。弹塑性结构有限元分析或其它非线性问题最终归结为非线性微分方程的变值问题,多数很难求得精确解。对这类问题,离散后所得到的非线性有限元方程组,可表示为: [K (δ)]{δ}={R} , 式中{δ}为节点位移列阵,{R}为节点载荷列阵。[K (δ)]为包含有待求未知参量——节点位移的整体刚度矩阵。此平衡方程组是一个非线性方程组。其求解方法有:迭代法、增量法和混合法。迭代法在每次迭代中都施加全部载荷,但逐步修改位移和应变,使其满足非线性应力-应变关系,通过多次迭代计算获得最终的解。增量法的含义是用一段线性问题去近似非线性问题,实际上就是用分段线性的折线去代替非线性曲线。混合法则同时采用了增量法和迭代法,即对载荷也划分载荷增量,但增量的个数较少,计算中对每一个载荷增量步,都进行迭代求解。

现代有限元分析系统主要包括三个部分:

具体过程包括数据前处理,即创建有限元模型;执行有限元分析程序,进行计算;对计算结果进行后处理,即整理、分析输出计算结果,检验计算结果的合理性等。

以上就是《有限元方法及其工程应用》课程的读书报告。

有限元理论方法

关于有限元分析法及其应用举例 摘要:本文主要介绍有限元分析法,作为现代设计理论与方法的一种,已经在 众多领域普遍使用。介绍了它的起源和国内外发展现状。阐述了有限元法的基 本思想和设计方法。并从实际出发,例举了有限元法的一个简单应用———啤 酒瓶的应力分析和优化,表明了利用有限元分析法的众多优点。随着计算机的 发展,基于有限元分析方法的软件开发越来越多。本文也在其软件开发方面进 行阐述,并简单介绍了一下主流软件的发展情况和使用范围。并就这一领域的 未来发展趋势进行阐述。 关键词:有限元分析法软件啤酒瓶 Abstract:This thesis mainly introduces the finite element analysis, as a modern design theory and methods used widely in in most respects. And this paper introduces its origins and development in world. It also expounds the basic thinking and approach of FEM..Proceed from the actual situation,this text holds the a simple application of finite-element method———the analysis and optimized of an beer bottle and indicate the the numerous benefits of finite element analysis .As computers mature and based on the finite element analysis of the software development is growing. This article introduces its application in the software development aspects as well, and briefly states the development and scope of the mainstream software. And it’s also prospect future development tendency in this area . Key: Finite Element Analysis Software Beer bottle 0 绪论 有限元法(Finite Element Method,FEM),是计算力学中的一种重要的方法,它是20世纪50年代末60年代初兴起的应用数学、现代力学及计算机科学相互渗透、综合利用的边缘科学。有限元法最初应用在工程科学技术中,用于模拟并且解决工程力学、热学、电磁学等物理问题。对于过去用解析方法无法求解的问题和边界条件及结构形状都不规则的复杂问题,有限元法则是一种有效的分析方法。有限元法的基本思想是先将研究对象的连续求解区域离散为一组有限个且按一定方式相互联结在一起的单元组合体。由于单元能按不同的联结方式进行组合,且单元本身又可以有不同形状,因此可以模拟成不同几何形状的求解小区域;

现代设计方法

考试科目:《现代设计方法》 (总分100分) 时间:90分钟 __________学习中心(教学点) 批次: 层次: 专业: 学号: 身份证号: 姓名: 得分: 一、单项选择题(每小题1.5分,共27分) 1.试判别矩阵1111???? ? ?,它是( ) A 、单位矩阵 B 、正定矩阵 C 、负定矩阵 D 、不定矩阵 2.约束极值点的库恩——塔克条件为:-?=?=∑F X g X i i q i ()()* * λ1 ,当约束函数是g i (X)≤0和 λi >0时,则q 应为( ) A 、等式约束数目 B 、不等式约束数目 C 、起作用的等式约束数目 D 、起作用的不等式约束数目 3.在图示极小化的约束优化问题中,最优点为( ) A 、A B 、B C 、C D 、D 4.下列优化方法中,不需计算迭代点一阶导数和二阶导数的是( ) A 、可行方向法 B 、复合形法 C 、DFP 法 D 、BFGS 法 5.内点罚函数Φ(X,r (k) )=F(X)-r (k) 1 01g X g X u u u m () ,(())≤=∑,在其无约束极值点X ·(r (k))逼近原 目标函数的约束最优点时,惩罚项中( ) A 、r (k) 趋向零, 11 g X u u m ()=∑ 不趋向零 B 、r (k) 趋向零,11g X u u m ()=∑ 趋向零 C 、r (k) 不趋向零, 11 g X u u m ()=∑ 趋向零 D 、④r (k) 不趋向零,11g X u u m ()=∑ 不趋向零 6.0.618法在迭代运算的过程中,区间的缩短率是( )

A 、不变的 B 、任意变化的 C 、逐渐变大 D 、逐渐变小 7.对于目标函数F(X)受约束于g u (X)≥0(u=1,2,…,m)的最优化设计问题,外点法惩罚函数的表 达式是( ) A 、Φ(X,M (k) )=F(X)+M (k) {max[(),]},() g X M u u m k 012=∑为递增正数序列 B 、Φ(X,M (k))=F(X)+M (k){max[(),]},() g X M u u m k 012 =∑为递减正数序列 C 、Φ(X,M (k))=F(X)+M (k){min[(),]},()g x M u u m k 01 2 =∑为递增正数序列 D 、Φ(X,M (k))=F(X)+M (k){min[(),]},() g x M u u m k 01 2 =∑为递减正数序列 8.标准正态分布的均值和标准离差为( ) A 、μ=1,σ=0 B 、μ=1,σ=1 C 、μ=0,σ=0 D 、μ=0,σ=1 9.在约束优化方法中,容易处理含等式约束条件的优化设计方法是( ) A 、可行方向法 B 、复合形法 C 、内点罚函数法 D 、外点罚函数法 10.若组成系统的诸零件的失效相互独立,但只有某一个零件处于工作状态,当它出现故障后, 其它处于待命状态的零件立即转入工作状态。这种系统称为( ) A 、串联系统 B 、工作冗余系统 C 、非工作冗余系统 D 、r/n 表决系统 11.对于二次函数F(X)=1 2 X T AX+b T X+c,若X *为其驻点,则▽F(X *)为( ) A 、零 B 、无穷大 C 、正值 D 、负值 12.平面应力问题中(Z 轴与该平面垂直),所有非零应力分量均位于( ) A 、XY 平面内 B 、XZ 平面内 C 、YZ 平面内 D 、XYZ 空间内 13当选线长度l ,弹性模量E 及密度ρ为三个基本量时,用量纲分析法求出包含振幅A 在内的 相似判据为(E 的量纲为( )[ML -1T -2 ] A 、A=l E 1 1212- ρ B 、A=l E -- 1 121 2 ρ C 、A=l E 100ρ D 、A l E =-11 12ρ 14.平面三角形单元内任意点的位移可表示为三个节点位移的( ) A 、算术平均值 B 、代数和车员 C 、矢量和 D 、线性组合 15.已知F(X)=(x 1-2)2+x 22,则在点X (0)=00???? ??处的梯度为( ) A 、?=?????? F X ()()000 B 、?=-?????? F X ()() 020

有限元法的基本思想及计算 步骤

有限元法的基本思想及计算步骤 有限元法是把要分析的连续体假想地分割成有限个单元所组成的组合体,简称离散化。这些单元仅在顶角处相互联接,称这些联接点为结点。离散化的组合体与真实弹性体的区别在于:组合体中单元与单元之间的联接除了结点之外再无任何关联。但是这种联接要满足变形协调条件,即不能出现裂缝,也不允许发生重叠。显然,单元之间只能通过结点来传递内力。通过结点来传递的内力称为结点力,作用在结点上的荷载称为结点荷载。当连续体受到外力作用发生变形时,组成它的各个单元也将发生变形,因而各个结点要产生不同程度的位移,这种位移称为结点位移。在有限元中,常以结点位移作为基本未知量。并对每个单元根据分块近似的思想,假设一个简单的函数近似地表示单元内位移的分布规律,再利用力学理论中的变分原理或其他方法,建立结点力与位移之间的力学特性关系,得到一组以结点位移为未知量的代数方程,从而求解结点的位移分量。然后利用插值函数确定单元集合体上的场函数。显然,如果单元满足问题的收敛性要求,那么随着缩小单元的尺寸,增加求解区域内单元的数目,解的近似程度将不断改进,近似解最终将收敛于精确解。 用有限元法求解问题的计算步骤比较繁多,其中最主要的计算步骤为: 1)连续体离散化。首先,应根据连续体的形状选择最能完满地描述连续体形状的单元。常见的单元有:杆单元,梁单元,三角形单元,矩形单元,四边形单元,曲边四边形单元,四面体单元,六面体单元以及曲面六面体单元等等。其次,进行单元划分,单元划分完毕后,要将全部单元和结点按一定顺序编号,每个单元所受的荷载均按静力等效原理移植到结点上,并在位移受约束的结点上根据实际情况设置约束条件。 2)单元分析。所谓单元分析,就是建立各个单元的结点位移和结点力之间的关系式。现以三角形单元为例说明单元分析的过程。如图1所示,三角形有三个结点i,j,m。在平面问题中每个结点有两个位移分量u,v和两个结点力分量F x,F y。三个结点共六个结点位移分量可用列

有限元法及其在工程中的应用

机械与汽车学院 曹国强 主要内容: 1、有限元法的基本思想。 2、结构力学模型的简化和结构离散化。 3、有限元法的实施过程。 一、有限元法的基本思想 有限元法是随着计算机的发展而发展起来的一种有效的数值方法。其基本思想是:将连续的结构分割成数目有限的小单元体(称为单元),这些小单元体彼此之间只在数目有限的指定点(称为节点)上相互连接。用这些小单元体组成的集合体来代替原来的连续结构。再把每个小单元体上实际作用的外载荷按弹性力学中的虚功等效原理分配到单元的节点上,构成等效节点力,并按结构实际约束情况决定受约束节点的约束。这一过程称为结构的离散化。其次,对每个小单元体选择一个简单的函数来近似地表示其位移分量的分布规律,并按弹性力学中的变分原理建立起单元节点力和节点位移之间的关系(单元刚度方程),最后,把全部单元的节点力和节点位移之间的关系组集起来,就得到了一组以结构节点位移为未知量的代数方程组(总体刚度方程),同时考虑结构的约束情况,消去那些结构节点位移为零的方程,再由最后的代数方程组就可求得结构上有限个离散节点的各位移分量。求得了结构上各节点的位移分量之后,即可按单元的几何方程和物理方程求得各单元的应变和应力分量。 有限元法的实质就是把具有无限个自由度的连续体,理想化为有限个自由度的单元的集合体,使问题简化为适合于数值解法的结构型问题。 经典解法(解析法)与有限元法的区别 解析法 { } 建立一个描述连续体性质的偏微分方程组 有限元解法 连续体 数目增加到∞ 大小趋于0 微元 有限元 离散化 (单元分析)集合 总体分析 求得近似解

二、结构力学模型的简化和结构离散化 (一)结构力学模型的简化 用有限元法研究实际工程结构问题时,首先要从工程实际问题中抽象出力学模型,即要对实际问题的边界条件、约束条件和外载荷进行简化,这种简化应尽可能地反映实际情况,不至于使简化后的解答与实际差别过大,但也不要带来计算上的过分复杂,在力学模型的简化过程中,必须判断实际结构的问题类型,是二维问题还是三维问题。如果是平面问题,是平面应力问题,还是平面应变问题。同时还要搞清楚结构是否对称,外载荷大小和作用位置,结构的几何尺寸和力学参数(弹性模量E、波松比μ等)。 (二)结构的离散化 将已经简化好的结构力学模型划分成只在一些节点连续的有限个单元,把每个单元看成是一个连续的小单元体,各单元之间只在一些点上互相联结,这些点称作节点,每个单元体称为一个单元。用只在节点处连接的单元的集合体代替原来的连续结构,把外载荷按虚功等效原理移置到有关受载的节点上,构成节点载荷,把连续结构进行这样分割的过程称为结构的离散化。现举例说明。 设一平面薄板,中间有一个园孔,其左端固定,右端受面力载荷q,试对其进行有限元分割和力学模型简化。

电磁仿真算中的有限元法

1电磁仿真算法中的有限元法 1.1常规的电磁计算方法简介 从上世纪50年代以来,伴随着计算机技术的进步,电磁仿真算法也蓬勃发展起来,这其中主要包括:单矩法、矩量法和有限元法等属于频域技术的算法; 传输线矩阵法、时域积分方程法以及时域有限差分法等属于时域技术的算法。除了这些以外, 还有属于高频技术的集合衍射理论等。本文根据国内外计算电磁学的发展状况,对日常生活中比较常用的电磁计算方法做了介绍,并对有限元法做了重点说明。 ⑴矩量法 矩量法属于电磁场的数值计算方法中频域技术的一种, 它的基本原理是利用把待解的微积分方程转化成的算子方程, 然后将由一组线性组合表示的待求函数代入第一步中的算子方程, 然后将算子方程转化成矩阵方程, 最后再通过计算机进行大量的数值计算从而得到数值结果。该方法在求解非均勻和不规则形状对象时,面很广,但会生成病态矩阵,所以会在一定程度上受到限制。矩量法的特点就是适用于求解微积分方程, 并且求解方法统一简单。但缺点就是会占用大量计算机内存,影响计算速度。 (2)单矩法 单矩法是一种解析方法和数值方法相结合的混合数值算法法,该方法的关键在于,如何合理的选择一个球面最小的半径,使得能够将分析对象的结构全部包含在内,以便将内外场进行隔离。外边的散射场单独使用其他函数表示,而包围的内部区域使用有限元法亥姆赫兹(Helmholtz)方程。此方法对于计算复杂形体乃至复杂埋入体内的电磁散射是种极为有效的手段。 (3)时域有限差分法 时域有限差分法(FDTD)近几年来越来越受到各方的重视, 因为一方面它处理庞大的电磁福射系统方面和复杂结构的散射体时很突出,另外一方面则在于它不是传统的频域算法, 它是种时域算法, 直接依靠时间变量求解麦克斯韦方程组,可以在有限的时间和体积内对场进行数据抽样, 这样同时也能够保证介质边界

现代设计方法-有限元分析报告

中国地质大学研究生课程论文封面 课程名称现代设计方法 教师姓名 研究生姓名 研究生学号 研究生专业机械工程 所在院系机电学院 日期: 2013 年 1 月 8 日

评语 注:1、无评阅人签名成绩无效; 2、必须用钢笔或圆珠笔批阅,用铅笔阅卷无效; 3、如有平时成绩,必须在上面评分表中标出,并计算入总成绩。

有限元分析简介 摘要: ANSYS 软件具有建模简单、快速、方便的特点, 因而成为大型通用有限元程序的代表。对有限元作了一个总体的介绍, 并着重介绍了ANSYS 软件, 简要地叙述了ANSYS 软件的主要技术特点和各部分构成以及其主要的分析功能,从其构成及功能中可以看到,ANSYS 软件的确是工程应用分析的有效工具。 1、有限元分析的基本概念和计算步骤 1.1、有限元分析的基本概念 有人将CAE技术称为当今“科学与技术的完美结合”。这句话说得比较夸张,但不可否认,CAE技术的确是现代产品研发的重要基础技术,其理论性和需要的学科知识厚重而宽广。有限元软件是目前CAE的主流分析软件之一,在全球拥有最大的用户群。有限元分析(FEA,Finite Element Analysis)利用数学近似的方法对真实物理系统(几何和载荷工况)进行模拟。还利用简单而又相互作用的元素,即单元,就可以用有限数量的未知量去逼近无限未知量的真实系统。 有限元分析的基本概念是用较简单的问题代替复杂问题后再求解。它将求解域看成是由许多称为有限元的小的互连子域组成,对每一单元假定一个合适的(较简单的)近似解,然后推导求解这个域总的满足条件(如结构的平衡条件),从而得到问题的解。这个解不是准确解,而是近似解,因为实际问题被较简单的问题所代替。由于大多数实际问题难以得到准确解,而有限元不仅计算精度高,而且能适应各种复杂形状,因而成为行之有效的工程分析手段。 有限元是那些集合在一起能够表示实际连续域的离散单元。有限元的概念早在几个世纪前就已产生并得到了应用,例如用多边形(有限个直线单元)逼近圆来求得圆的周长,但作为一种方法而被提出,则是最近的事。有限元法最初被称为矩阵近似方法,应用于航空器的结构强度计算,并由于其方便性、实用性和有效性而引起从事力学研究的科学家的浓厚兴趣。经过短短数十年的努力,随着计算机技术的快速发展和普及,有限元方法迅速从结构工程强度分析计算扩展到几乎所有的科学技术领域,成为一种丰富多彩、应用广泛并且实用高效的数值分析方法。

对有限元方法的认识

我对有限元方法的认识 1有限元法概念 有限元方法(The Finite Element Method, FEM)是计算机问世以后迅速发展起来的一种分析方法。每一种自然现象的背后都有相应的物理规律,对物理规律的描述可以借助相关的定理或定律表现为各种形式的方程(代数、微分、或积分)。这些方程通常称为控制方程(Governing equation)。 针对实际的工程问题推导这些方程并不十分困难,然而,要获得问题的解析的数学解却很困难。人们多采用数值方法给出近似的满足工程精度要求的解答。 有限元方法就是一种应用十分广泛的数值分析方法。 有限元方法是处理连续介质问题的一种普遍方法,离散化是有限元方法的基础。 这种思想自古有之:古代人们在计算圆的周长或面积时就采用了离散化的逼近方法:即采用内接多边形和外切多边形从两个不同的方向近似描述圆的周长或面积,当多边形的边数逐步增加时近似值将从这两个方向逼近真解。 近年来随着计算机技术的普及和计算速度的不断提高,有限元分析在工程设计和分析中得到了越来越广泛的重视,已经成为解决复杂的工程分析计算问题的有效途径,现在从汽车到航天飞机几乎所有的设计制造都已离不开有限元分析计算,其在机械制造、材料加工、航空航天、汽车、土木建筑、电子电器、国防军工、船舶、铁道、石化、能源、科学研究等各个领域的广泛使用已使设计水平发生了质的飞跃。 国际上早在 60 年代初就开始投入大量的人力和物力开发有限元分析程序。“有限单元”是由Clough R W于1960年首次提出的。但真正的有限元分析软件是诞生于 70 年代初期,随着计算机运算速度的提高,内、外存容量的扩大和图形设备的发展,以及软件技术的进步,发展成为有限元分析与设计软件,但初期其前后处理的能力还是比较弱的,特别是后处理能力更弱。

有限元法分析过程

有限元法分析过程 有限元法分析过程大体可分为:前处理、分析、后处理三大步骤。 对实际的连续体经过离散化后就建立了有限元分析模型,这一过程是有限元的前处理过程。在这一阶段,要构造计算对象的几何模型,要划分有限元网格,要生成有限元分析的输入数据,这一步是有限元分析的关键。 有限元分析过程主要包括:单元分析、整体分析、载荷移置、引入约束、求解约束方程等过程。这一过程是有限元分析的核心部分,有限元理论主要体现在这一过程中。 有限元法包括三类:有限元位移法、有限元力法、有限元混合法。 在有限元位移法中,选节点位移作为基本未知量; 在有限元力法中,选节点力作为未知量; 在有限元混合法中,选一部分基本未知量为节点位移,另一部分基本未知量为节点力。 有限元位移法计算过程的系统性、规律性强,特别适宜于编程求解。一般除板壳问题的有限元应用一定量的混合法外,其余全部采用有限元位移法。因此,一般不做特别声明,有限元法指的是有限元位移法。 有限元分析的后处理主要包括对计算结果的加工处理、编辑组织和图形表示三个方面。它可以把有限元分析得到的数据,进一步转换为设计人员直接需要的信息,如应力分布状态、结构变形状态等,并且绘成直观的图形,从而帮助设计人员迅速的评价和校核设计方案。 附:FELAC 2.0软件简介 FELAC 2.0采用自定义的有限元语言作为脚本代码语言,它可以使用户以一种类似于数学公式书写和推导的方式,非常自然和简单的表达待解问题的微分方程表达式和算法表达式,并由生成器解释产生完整的并行有限元计算C程序。 FELAC 2.0的目标是通过输入微分方程表达式和算法之后,就可以得到所有有限元计算的程序代码,包含串行程序和并行程序。该系统采用一种语言(有限元语言)和四种技术(对象技术、组件技术、公式库技术生成器技术)开发而成。并且基于FELAC 1.0的用户界面,新版本扩充了工作目录中右键编译功能、命令终端输入功能,并且丰

有限元分析方法

百度文库- 让每个人平等地提升自我 第1章有限元分析方法及NX Nastran的由来 有限元分析方法介绍 计算机软硬件技术的迅猛发展,给工程分析、科学研究以至人类社会带来急剧的革命性变化,数值模拟即为这一技术革命在工程分析、设计和科学研究中的具体表现。数值模拟技术通过汲取当今计算数学、力学、计算机图形学和计算机硬件发展的最新成果,根据不同行业的需求,不断扩充、更新和完善。 有限单元法的形成 近三十年来,计算机计算能力的飞速提高和数值计算技术的长足进步,诞生了商业化的有限元数值分析软件,并发展成为一门专门的学科——计算机辅助工程CAE(Computer Aided Engineering)。这些商品化的CAE软件具有越来越人性化的操作界面和易用性,使得这一工具的使用者由学校或研究所的专业人员逐步扩展到企业的产品设计人员或分析人员,CAE在各个工业领域的应用也得到不断普及并逐步向纵深发展,CAE工程仿真在工业设计中的作用变得日益重要。许多行业中已经将CAE分析方法和计算要求设置在产品研发流程中,作为产品上市前必不可少的环节。CAE仿真在产品开发、研制与设计及科学研究中已显示出明显的优越性: ?CAE仿真可有效缩短新产品的开发研究周期。 ?虚拟样机的引入减少了实物样机的试验次数。 ?大幅度地降低产品研发成本。 ?在精确的分析结果指导下制造出高质量的产品。 ?能够快速对设计变更作出反应。 ?能充分和CAD模型相结合并对不同类型的问题进行分析。 ?能够精确预测出产品的性能。 ?增加产品和工程的可靠性。 ?采用优化设计,降低材料的消耗或成本。 ?在产品制造或工程施工前预先发现潜在的问题。 ?模拟各种试验方案,减少试验时间和经费。 ?进行机械事故分析,查找事故原因。 当前流行的商业化CAE软件有很多种,国际上早在20世纪50年代末、60年代初就投入大量的人力和物力开发具有强大功能的有限元分析程序。其中最为著名的是由美国国1

有限元法与有限差分法的主要区别

有限元法与有限差分法的主要区别 有限差分方法(FDM)是计算机数值模拟最早采用的方法,至今仍被广泛运用。该方法将求解域划分为差分网格,用有限个网格节点代替连续的求解域。有限差分法以Taylor级数展开等方法,把控制方程中的导数用网格节点上的函数值的差商代替进行离散,从而建立以网格节点上的值为未知数的代数方程组。该方法是一种直接将微分问题变为代数问题的近似数值解法,数学概念直观,表达简单,是发展较早且比较成熟的数值方法。对于有限差分格式,从格式的精度来划分,有一阶格式、二阶格式和高阶格式。从差分的空间形式来考虑,可分为中心格式和逆风格式。考虑时间因子的影响,差分格式还可以分为显格式、隐格式、显隐交替格式等。目前常见的差分格式,主要是上述几种形式的组合,不同的组合构成不同的差分格式。差分方法主要适用于有结构网格,网格的步长一般根据实际地形的情况和柯朗稳定条件来决定。构造差分的方法有多种形式,目前主要采用的是泰勒级数展开方法。其基本的差分表达式主要有三种形式:一阶向前差分、一阶向后差分、一阶中心差分和二阶中心差分等,其中前两种格式为一阶计算精度,后两种格式为二阶计算精度。通过对时间和空间这几种不同差分格式的组合,可以组合成不同的差分计算格式。有限元方法的基础是变分原理和加权余量法,其基本求解思想是把计算域划分为有限个互不重叠的单元,在每个单元内,选择一些合适的节点作为求解函数的插值点,将微分方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式,借助于变分原理或加权余量法,将微分方程离散求解。采用不同的权函数和插值函数形式,便构成不同的有限元方法。有限元方法最早应用于结构力学,后来随着计算机的发展慢慢用于流体力学的数值模拟。在有限元方法中,把计算域离散剖分为有限个互不重叠且相互连接的单元,在每个单元内选择基函数,用单元基函数的线形组合来逼近单元中的真解,整个计算域上总体的基函数可以看为由每个单元基函数组成的,则整个计算域内的解可以看作是由所有单元上的近似解构成。在河道数值模拟中,常见的有限元计算方法是由变分法和加权余量法发展而来的里兹法和伽辽金法、最小二乘法等。根据所采用的权函数和插值函数的不同,有限元方法也分为多种计算格式。从权函数的选择来说,有配置法、矩量法、最小二乘法和伽辽金法,从计算单元网格的形状来划分,有三角形网格、四边形网格和多边形网格,从插值函数的精度来划分,又分为线性插值函数和高次插值函数等。不同的组合同样构成不同的有限元计算格式。对于权函数,伽辽金(Galerkin)法是将权函数取为逼近函数中的基函数;最小二乘法是令权函数等于余量本身,而内积的极小值则为对代求系数的平方误差最小;在配置法中,先在计算域内选取N个配置点。令近似解在选定的N个配置点上严格满足微分方程,即在配置点上令方程余量为0。插值函数一般由不同次幂的多项式组成,但也有采用三角函数或指数函数组成的乘积表示,但最常用的多项式插值函数。有限元插值函数分为两大类,一类只要求插值多项式本身在插值点取已知值,称为拉格朗日(Lagrange)多项式插值;另一种不仅要求插值多项式本身,还要求它的导数值在插值点取已知值,称为哈密特(Hermite)多项式插值。单元坐标有笛卡尔直角坐标系和无因次自然坐标,有对称和不对称等。常采用的无因次坐标是一种局部坐标系,它的定义取决于单元的几何形状,一维看作长度比,二维看作面积比,三维看作体积比。在二维有限元中,三角形单元应用的最早,近来四边形等参元的应用也越来越广。对于二维三角形和四边形电源单元,常采用的插值函数为有La grange插值直角坐标系中的线性插值函数及二阶或更高阶插值函数、面积坐标系中的线性插值函数、二阶或更高阶插值函数等。对于有限元方法,其基本思路和解题步骤可归纳为(1)建立积分方程,根据变分原理或方程余量与权函数正交化原理,建立与微分方程初边值问题等价的积分表达式,这是有限元法的出发点。(2)区域单元剖分,根据求解区域的形状及实际问题的物理特点,将区域剖分为若干相互连接、不重叠的单元。区域单元划分是采用有限元方法的前期准备工作,这部分工作量比较大,除了给计算单元和节点进行编号和确定相互之间的关系之外,还要表示节点的位置坐标,同时还需要列出自然边界和本质边界的节点序号和相应的边界值。(3)确定单元基函数,根据单元中节点数目及对近似解精度的要求,选择满足一定插

有限元方法理论及其应用

1 课程论文:弹性力学有限元位移法原理(30分) 撰写一篇论文,对有限元位移法的原理作一般性概括和论述。要求论文论及但不限于下列内容:1)弹性力学有限元位移法的基本思想和数学、力学基础;2)有限元法求解的原理和过程,推导计算列式;对基本概念和矩阵符号进行解释和讨论;3)等参单元的概念、原理和应用。 1.1 对一维杆单元有限元形式的理解 我对此提出了几点疑问: 1)为什么边界条件u1=0,就要划去刚度矩阵[K]中对应的行列再解方程? 2)为什么刚度矩阵[K]会奇异? 3)为什么平衡方程本身是矛盾的,而加上边界条件u1=0之后就能解出一 个唯一的近似解? 4)为什么刚度矩阵[K]是对称的? 下面我谈谈自己的理解:节点平衡方程是在u1不定的前提下,假设单元内位移都是线性变化推导出来的,由此u1相当于一个不确定的定值约束,再加上中间两个节点的连续性要求,系统实际上只有三个独立的自由度(广义坐标)。 对于第一个问题,其实刚度矩阵[K]中的元素不是一成不变的,相反它是伴随边界条件动态变化的。当u1=0时由刚度矩阵的推导过程可以知道,刚度矩阵的第一行和第一列都会变为0,所以此时第一行和第一列对于求解方程是没有作用的。 对于第二个问题,由于系统自由度(广义坐标)只有三个,而我们的方程却列出

了四个,显然

这四个方程不可能线性无关,所以刚度矩阵奇异。 对于第三个问题,首先我们应该明确方程区别于等式,虽然左右两边都是用“=”连接,但是方程只在特殊条件下取得定解。由于平衡方程是在没有约束的条件下推导出来的,显然它不可能满足等式要求。宏观上看,系统在没有外部约束,而又施加有外力,显然系统会产生加速度而绝不会平衡。所以平衡方程本身是矛盾的。而加上边界条件之后,不但满足了平衡的前提,还改变了矩阵的结构和性质,所以有解。但是,由于我们提前假设了位移线性变化,相当于人为对单元施加了额外约束,让位移按照我们假设的规律变化,所以得到的解是过刚的近似解。但对于方程本身而言是精确解。 对于第四个问题,其力学的作用机理类似于作用力与反作用力,由于刚度矩阵不表征方向,所以其大小是相等的。 1.2 有限元法的思想 有限元法是求解连续介质力学问题的数值方法,更一般意义是一种分析结构问题和连续场数学物理问题的数值方法。 有限元法的基本思想是离散化和分片插值。 即把连续的几何机构离散成有限个单元,并在每一个单元中设定有限个节点,从而将连续体看作仅在节点处相连接的一组单元的集合体,同时选定场函数的节点值作为基本未知量并在每一单元中假设一个近似插值函数以表示单元中场函数的分布规律,再建立用于求解节点未知量的有限元方程组,从而将一个连续域中的无限自由度问题转化为离散域中的有限自由度问题。 求解得到节点值后就可以通过设定的插值函数确定单元上以至个集合体上的场函数。对每个单元,选取适当的插值函数,使得该函数在子域内部、在子域分界面上以及子域与外界面上都满足一定的条件。单元组合体在已知外载荷作用下处于平衡状态时,列出一系列以节点、位移为未知量的线性方程组,利用计算机解出节点位移后,再用弹性力学的有关公式,计算出各单元的应力、应变,当各单元小到一定程度,那么它就代表连续体各处的真实情况。

现代设计方法(关于有限元)作业

《现代设计方法》作业关于有限元法的研究 学院:机械工程学院 专业:机械制造及其自动化

0.有限元法 有限元法分析起源于50年代初杆系结构矩阵的分析。随后,Clough于1960年第一次提出了“有限元法”的概念。其基本思想是利用结构离散化的概念,将连续介质体或复杂结构体划分成许多有限大小的子区域的集合体,每一个子区域称为单元(或元素),单元的集合称为网格,实际的连续介质体(或结构体)可以看成是这些单元在它们的节点上相互连接而组成的等效集合体;通过对每个单元力学特性的分析,再将各个单元的特性矩阵组集成可以建立整体结构的力学方程式,即力学计算模型;按照所选用计算程序的要求,输入所需的数据和信息,运用计算机进行求解。 当前,有限元方法/理论已经发展的相当成熟和完善,而计算机技术的不断革新,又在很大程度上推进了有限元法分析在工程技术领域的应用。然而,如此快速地推广和应用使得人们很容易忽视一个前提,即有限元分析软件提供的计算结果是否可靠、满足使用精度的前提,是合理地使用软件和专业的工程分析。有限元法分析一般包括四个步骤:物理模型的简化、数学模型的程序化、计算模型的数值化和计算结果的分析。每一个步骤在操作过程中都或多或少地引入了误差,这些误差的累积最终可能会对计算结果造成灾难性的影响,进而蒙蔽我们的认识和判断。 1.受内压空心圆筒的轴对称有限元分析 例图1.1所示为一无限长的受内压的轴对称圆筒,该圆筒置于内径为120mm的刚性圆孔中,试求圆筒内径处的位移。结构的材料参数

为:200 =,0.3 E GPa μ=。 图1 结构图 对该问题进行有限元分析的过程如下。 (1)结构的离散化与编号 由于该圆筒为无限长,取出中间一段(20mm高),采用两个三角形轴对称单元,如图1.2所示。对该系统进行离散,单元编号及结点编号如图1.3所示,有关结点和单元的信息见表1.1。 图1.2 有限元模型

有限元法理论及应用参考答案分析

有限元法理论及应用大作业 1、试简要阐述有限元理论分析的基本步骤主要有哪些? 答:有限元分析的主要步骤主要有: (1)结构的离散化,即单元的划分; (2)单元分析,包括选择位移模式、根据几何方程建立应变与位移的关系、根据虚功原理建立节点力与节点位移的关系,最后得到单元刚度方程; (3)等效节点载荷计算; (4)整体分析,建立整体刚度方程; (5)引入约束,求解整体平衡方程。 2、有限元网格划分的基本原则是什么?指出图示网格划分中不合理的地方。 题2图 答:一般选用三角形或四边形单元,在满足一定精度情况,尽可能少一些单元。 有限元划分网格的基本原则: 1.拓扑正确性原则。即单元间是靠单元顶点、或单元边、或单元面连接 2.几何保持原则。即网络划分后,单元的集合为原结构近似 3.特性一致原则。即材料相同,厚度相同 4.单元形状优良原则。单元边、角相差尽可能小 5.密度可控原则。即在保证一定精度的前提下,网格尽可能的稀疏一些。(a)(b)中节点没有有效的连接,且(b)中单元边差相差很大。 (c)中没有考虑对称性,单元边差很大。 3、分别指出图示平面结构划分为什么单元?有多少个节点?多少个自由度?

题3图 答:(a )划分为杆单元, 8个节点,12个自由度。 (b )划分为平面梁单元,8个节点,15个自由度。 (c )平面四节点四边形单元,8个节点,13个自由度。 (d )平面三角形单元,29个节点,38个自由度。 4、什么是等参数单元?。 答:如果坐标变换和位移插值采用相同的节点,并且单元的形状变换函数与位移插值的形函数一样,则称这种变换为等参变换,这样的单元称为等参单元。 5、在平面三节点三角形单元中,能否选取如下的位移模式,为什么? (1). ?????++=++=2 65432 21),(),(y x y x v y x y x u αααααα (2). ?????++=++=2 65242 3221),(),(y xy x y x v y xy x y x u αααααα 答:(1)不能,因为位移函数要满足几何各向同性,即单元的位移分布不应与人为选取的 坐标方位有关,即位移函数中的坐标x,y 应该是能够互换的。所以位移多项式应按巴斯卡三角形来选择。 (2)不能,位移函数应该包括常数项和一次项。

现代设计方法基础 有限元法

现代设计方法基础 题目:有限元法的简介 系部:机电系 专业:机械设计制造及其自动化 班级: 姓名: 学号: 2010年5月20日 1.有限元法的概述 1.1 什么是有限元

有限元分析,定义为:将一个连续系统(物体)分隔成有限个单元,对每一个单元给出一个近似解,再将所有单元按照一定的方式进行组合,来模拟或者逼近原来的系统或物体,从而将一个连续的无限自由度问题简化成一个离散的有限自由度问题分析求解的一种数值分析方法。 1.2有限元法的基本思想 许多工程分析问题,如固体力学中位移场和应力场分析、振动特性分析、传热学中的温度场分析、流动力学中的流场分析等都可归结为在给定边界条件下求解其控制方程的问题。 有限元分析的基本概念是用较简单的问题代替复杂问题后再求解。它将求解域看成是由许多称为有限元的小的互连子域组成,对每一单元假定一个合适的(较简单的)近似解,然后推导求解这个域总的满足条件(如结构的平衡条件),从而得到问题的解。这个解不是准确解,而是近似解,因为实际问题被较简单的问题所代替。由于大多数实际问题难以得到准确解,而有限元不仅计算精度高,而且能适应各种复杂形状,因而成为行之有效的工程分析手段。 有限元是那些集合在一起能够表示实际连续域的离散单元。有限元的概念早在几个世纪前就已产生并得到了应用,例如用多边形逼近圆来求得圆的周长,但作为一种方法而被提出,则是最近的事。有限元法最初被称为矩阵近似方法,应用于航空器的结构强度计算,并由于其方便性、实用性和有效性而引起从事力学研究的科学家的浓厚兴趣。经过短短数十年的努力,随着计算机技术的快速发展和普及,有限元方法迅速从结构工程强度分析计算扩展到几乎所有的科学技术领域,成为一种丰富多彩、应用广泛并且实用高效的数值分析方法。有限元方法与其他求解边值问题近似方法的根本区别在于它的近似性仅限于相对小的子域中。 目前工程中使用的偏微分方程的数值解法主要有三种:有限差分法、有限元法和边界元法。 有限差分法的出发点是用结点量的差商代表控制方程中的导数。以矩形域二维无源稳定传热问题为例,起控制方程为拉普拉斯方程,即无源场中各点的散度为零: (5-1) 边界条件为 (5-2) 式中,()y ,x u 为区域Ω内任意点()y ,x 的温度;n 为区域Ω边界Γ上任意点的外向法线; u 代表在1Γ上给定的温度(例如左边界C 200。,右边界为C 20。);n u ??代表边界2Γ上 给定的热流密度。 则式中的二阶偏导数可用结点温度的二阶差商近似表达为 ()()()Ω∈=??+??y ,x 0y y ,x u x y ,x u 2222()()?????=??=q n y ,x u u y ,x u ()()21y ,x y x,ΓΓ∈∈

有限元方法的发展及应用

有限元方法的发展及应用 摘要:有限元法是一种高效能、常用的计算方法。有限元法在早期是以变分原理为基础发展起来的,所以它广泛地应用于以拉普拉斯方程和泊松方程所描 述的各类物理场中。自从1969年以来,某些学者在流体力学中应用加权余数法中的迦辽金法或最小二乘法等同样获得了有限元方程,因而有限元法可应用于 以任何微分方程所描述的各类物理场中,而不再要求这类物理场和泛函的极值 问题有所联系。基本思想:由解给定的泊松方程化为求解泛函的极值问题。 1有限元法介绍 1.1有限元法定义 有限元法(FEA,Finite Element Analysis)的基本概念是用较简单的问题代替复杂问题后再求解。它是起源于20世纪50年代末60年代初兴起的应用数学、现代力学及计算机科学相互渗透、综合利用的边缘科学。 有限元法的基本思想是将求解域看成是由许多称为有限元的小的互连子域 组成,对每一单元假定一个合适的(较简单的)近似解,然后推导求解这个域总 的满足条件(如结构的平衡条件),从而得到问题的解。这个解不是准确解,而 是近似解,因为实际问题被较简单的问题所代替。由于大多数实际问题难以得 到准确解,而有限元不仅计算精度高,而且能适应各种复杂形状,因而成为行 之有效的工程分析手段。有限元法最初应用在工程科学技术中,用于模拟并且解 决工程力学、热学、电磁学等物理问题。 1.2有限元法优缺点 有限元方法是目前解决科学和工程问题最有效的数值方法,与其它数值方 法相比,它具有适用于任意几何形状和边界条件、材料和几何非线性问题、容 易编程、成熟的大型商用软件较多等优点。 (1)概念浅显,容易掌握,可以在不同理论层面上建立起对有限元法的理解,既可以通过非常直观的物理解释来理解,也可以建立基于严格的数学理论 分析。 (2)有很强的适用性,应用范围极其广泛。它不仅能成功地处理线性弹性

有限元分析中的一些问题

有限元分析的一些基本考虑-----单元形状对于计算精度的影响 笔者发现,在分析复杂问题时,我们所可能出现的错误,竟然是一些很根本的错误,这些根本错误是由于对有限元的基本理论理解不清晰而造成的。 鉴于这个原因,笔者决定对一些基本问题(例如单元形状问题,单元大小问题,应力集中问题等)展开调查,从而形成了一系列文章,本篇文章是这些系列文章中的第一篇。 本篇文章先考虑有限元分析中的第一个基本问题:单元形状问题。 我们知道,单元形状对于有限元分析的结果精度有着重要影响,而对单元形状的衡量又有着诸多指标,为便于探讨,这里首先只讨论第一个最基本的指标:长宽比(四边形单元的最长尺度与最短尺度之比),而且仅考虑平面单元的长宽比对于计算精度的影响。 为此,我们给出一个成熟的算例。该算例是一根悬臂梁,在其端面施加竖直向下的抛物线分布载荷,我们现在考察用不同尺度的单元划分该梁时,对于A点位移的影响。 这五种不同的划分方式,都使用矩形单元,只不过各单元的长宽比不同。 例如第一种(1)AR=1.1,就是长宽比接近1; 第二种(2)AR=1.5,就是长宽比是1.5.其它类推。 第五种(5)AR=24,此时单元的长度是宽度的24倍。 现在我们看看按照这五种单元划分方式对于A点位移的影响,顺便我们也算出了B点的位移,结果见下表。

我们现在仔细查看一下上表,并分析其含义。 我们先考虑第一行,它是第一种单元划分情况,此时每个单元的长宽比是1.1,由此我们计算出A点,B点的垂直位移,可以看到,A点的竖直位移是-1.093英寸,而B点的竖直位移是-0.346英寸。而这两点我们都是可以用弹性力学的方式得到精确解的,其精确解分别是-1.152以及-0.360.这样,我们可以得到此时A点位移误差的百分比是 [(-1.093)-(-1.152)]/1.152 = 5.2%. 对于其它情况,也采用类似的方式得到A点位移误差的百分比。 从上表可以看出来,随着长宽比的增加,位移误差越来越大,竟然大到56%。因此,如果我们是用长宽比为24的单元进行划分的话,那么我们的结果可以说是完全错误的。 下面按照上表绘制出一张图,该图从形象的角度表达了上表的含义。 由此可见,长宽比越接近于1,那么结算结果越精确,越远离1,则误差越大。

有限元方法

有限元方法 求解微分方程,特别是椭圆型边值问题的一种离散化方法,其基础是变分原理和剖分逼近。有限元方法是传统的里茨-加廖金方法的发展,并融会了差分法的优点,处理上统一,适应能力强,已广泛应用于科学与工程中庞大复杂的计算问题。 作为有限元方法出发点的变分原理,是表达物理基本定律的一种普遍形式。其表述可概括如下:给出一个依赖物理状态v的变量J(v)(v是函数,J(v)在数学上称为泛函),同时给出J(v)的容许函数集V,即一切可能的物理状态,则真实的状态是V中使J(v)达到极小值的函数。剖分逼近是有限元离散化的手段,把问题的整体(即求解域)剖分为有限个基本块,称为"单元",然后通过单元上的插值逼近,得到一个结构简单的函数集,称为"有限元空间",它一般是容许函数集V的子集或有某种联系。有限元方法就是在这个有限元空间中寻找J(v)的极小解作为近似解。 典型问题为具体说明有限元方法,讨论二维有界域Ω上的椭圆型方程 , (1) 变系数β表示介质不均匀。物理学中许多平衡态或定常态问题都可归结为这个典型方程。与方程(1)相配的有如下三类边界条件: 第一类:; 第二类:; 第三类:。这里的φ、g及α均为定义在边界дΩ上的已知函数,表示外法向导数,第二类边界条件是第三类当α=0时的特例。 为说明有限元方法能统一处理复杂的情况,假定讨论的问题是混合边值,并且介质有间断,即дΩ分成Г0和Г1两部分,分别有边界条件 , (2)

,(3) β(x,y)有间断线,把Ω分为Ω-,Ω+两部分,在间断线上微分方程(1)无定义,而代之以接触条件 , (4) 及表示间断线上分别指向Ω+及Ω-的法向导数。 变分原理与微分方程(1)及附加条件(2)、(3)、(4)的边值问题相对应的是物理学中的极小能量原理。构造"能量积分" 并取J(v)的容许函数集V为一切满足边界条件(2)且一阶偏导数平方可积的函数,则使J(v)达到极小值的u,即 ,(6) 也必满足方程(1)及(2)、(3)、(4)。事实上,极小能量原理之类的变分原理是物理问题的原始形式,微分方程是数学推导的结果。在变分问题中,只有边界条件(2)是强加到容许函数集上的,边界条件(3)及间断介质的接触条件(4)都是极小解u自然满足的,这种情况有利于离散化的统一处理。 剖分逼近几何剖分的基本单元可取为三角形、矩形、四边形、曲边形等等,其 中三角形最基本常用。 假定问题的求解区域为多边形,介质间断线 为折线,作三角剖分如图所示。在剖分中需注意 介质间断线与某些三角形的边重合,不同类边界 条件的交点与某些三角形的顶点重合。单元的顶 点称为网格结点,在дΩ上称边界结点,在Ω内 称内结点。 几何剖分之后考虑插值逼近。对三角形单元 最简单的是线性插值,即利用每个单元Δk三顶

相关主题
文本预览
相关文档 最新文档