当前位置:文档之家› 光通信热门研究领域

光通信热门研究领域

光通信热门研究领域
光通信热门研究领域

光通信热门研究领域:硅光子芯片互连应用指日可待

新电子 | 吴仲伦/程志贤/古凯宁/曾治国/李明昌/林恭如 | 2013-05-14 14:44:20

标签:光通信

[导读]由于近几年数字服务与数字内容等宽带数据传输市场逐渐成熟,利用光做为载波基础的各类新颖数字格式信号传输技术又开始被广泛探讨。

调制与侦测器技术突破,硅光子芯片互连应用指日可待。

高速光通信在过去30几年来的发展下,已经成为有线高速信息传输的标准。在2000

年受到美国经济泡沫化及网络市场对带宽需求不如预期的影响下,光通信产业与客户端的拓展曾经沉寂一段时间。过去除政府单位或具大型网络建置的企业外,一般终端使用者直接享受高比特率传输的机会并不高。虽然目前高速光通信应用的领域仍以远距离的骨干网络服务为主,但根据目前主流产学论坛的评估,个人客户端传输比特率将在2015年与2023年分别提升至1Gbit/s与10Gbit/s。

由于近几年数字服务与数字内容等宽带数据传输市场逐渐成熟,利用光做为载波基础的各类新颖数字格式信号传输技术又开始被广泛探讨。特别的是,许多研究重点已从远距的光纤网络转至点对点(又称光链接)中距离的光纤到户(FTTx)、数据中心(Data Center)服务器的数据传输,乃至近距离高速运算服务器内部模块的信号传输,甚至于进入消费型电子产品,包括计算机、高画质电视及三维(3D)图像处理等宽带产品,以及室内有线影音传输系统,亦为光通信技术的研究范畴。

比较著名的例子是在2011年由索尼(Sony)所开发的VAIO-Z高阶笔记本电脑,已经搭载英特尔(Intel)的Thunderbolt(原名Lightpeak)技术,其传输带宽最高可达10Gbit/s,而苹果(Apple)也已在开发相关的技术。另一方面,业界正致力结合硅基集成电路(IC)的成熟技术优势,从而开发硅基光电整合集成电路中之光互连传输。由于金属导线的传输带宽会受到本身组件特性而受限,利用光通信则能有效突破金属导线在高速传输时损耗导致的带宽距离乘积限制。为整合光通信与现有集成电路,以硅为基底的各式功能性光电组件成为目前方兴未艾的热门研究领域。然而,利用光连结做高速中短距离数据传输,成本仍是一项重要考虑。

降低三五族芯片/封装成本高速硅光电组件炙手可热

传统光通信模块是将三五族半导体芯片、高速电路硅芯片、被动光学组件及光纤封装而成,其中成本主要来自三五族半导体芯片及系统封装。虽然其传输速度可达40Gbit/s以上,但比起用电缆传输而言,价格却相对昂贵许多,因此近几年来,高速硅光电(Silicon

Photonic)组件变成一项相当热门的研究题材(图1),主要研究动机是想藉由芯片量产技术降低芯片生产成本、提升良率,另一方面,经由缩小硅光电、光学组件的尺寸,进一步和后端电路整合在一起,降低封装成本。

图1 硅光电组件发展图及未来传输发展图

现阶段硅光电技术应用于光连结大致可分为三大领域——主动式光缆(Active Optical Cable)、热插入光电传收模块(Plug-in Optical Transceiver Module)及芯片内链接

(On-chip Optical Interconnect)。

主动式光缆的研发以Luxtera为代表,其于数个光纤的两侧封装硅光电传收芯片,该组件内部结构可参考图2,首先在芯片上直接制作被动光纤耦合器、高速硅光学调制器、硅锗光侦器、驱动电路及转阻放大器,最后再将光纤及电射晶粒组装于芯片上。其双向传输速度为40Gbit/s、传输长度4,000公尺,并可将速度提升至112Gbit/s。由于光纤已和芯片封装在一起,可免去在使用上光学对准的问题,然而每条光缆的成本价格相对较高。

图2 硅光子主动式光缆

另一做法是将硅光电传收芯片直接组装至硬件电路板上,然后藉由一热插入装置和光纤光缆连接(图3)。此概念和英特尔发展的Lightpeak技术架构相同,也是目前英特尔硅光子研究团队未来可能的发展方向。基本上,该做法和主动式光缆唯一的差别在于,硅光电传收芯片整合在硬件信号传输端上而不在光缆上。

图3 硅光电传收芯片

此外,为倡议在芯片内部传输比特率的提升,IBM也提出光子芯片光互连系统,但由于硅元素本身材料特性,导致开发光源时会有较低的发光效率,虽然已有学术文章致力探讨硅奈米结构量子局限效应,而有四个数量级提升的发光效率,但目前而言,距离成为具商业化阶段的产品仍有相当的努力空间。因此,在硅光子领域的光源开发有一部分是利用三五族半导体激光二极管直接整合硅光电组件进而形成混成激光(Hybrid Laser)的技术。

混成激光技术剖析

此种技术早在2006年,英特尔和加州大学圣塔芭芭拉分校(UC Santa Barbara)就已开始研究。他们利用将砷化铝镓铟(AlGaInAs)做成量子井(Quantum Well),激光接合硅波导,形成发光波长在1,770奈米(nm)及发光功率在1.8毫瓦(mW)的混成激光,但是发光效率只有12.7%。因此,他们在2007年进一步设计将其结构设计成环形式激光(Racetrack Laser),将发光波长蓝移至1,590奈米、提升发光功率为29毫瓦,并将其发光效率增至17%。2008

年该团队将该技术做成锁模激光(Mode-locking Laser),分别将其重复频率及脉冲宽度提升为30GHz及7微微秒(ps)以及中心波长为1,588.75奈米。

另一方面,他们在来年开发微型环激光(Micro-ring Laser)做光信号传输,使其最大信号输出功率-50dBm,并且造成消光比(Extinction Ratio)及线宽分别超过40dB及0.045奈米。并且在2010年由英特尔宣布内建混成硅晶激光的实验性芯片之产品原型。经由硅积体光学多任务器及解多任务器,其传输带宽可达50Gbit/s,更高的传输带宽可藉由更多的波长通道(Wavelength Channel)达成。但英特尔仍持续进行光源开发,并于2011年成功开发回馈型混成激光(DFB Hybrid Laser),有效造成侧模抑制(Side Mode Suppression Ratio, SMSR)为40dB,并且产生发光波长在1,590奈米及发光功率在1.3毫瓦单频半导体激光(DFB 激光)。

2013年1月,英特尔和Facebook提出合作计划,将共同开发新一代数据中心架构,在此架构中,运算器、内存、数据储存媒体及传输接口皆可独立更新,并利用英特尔已开发的硅光电技术用于各个硬件之间的数据传输,信道速度达100Gbit/s。

多核CPU内联机应用

硅光电技术于光连结最高极致的应用是在多核心中央处理器(CPU)芯片的内联机系统。一般来说,如果单一信道数据传输量达到10Gbit/s以上,金属导线的信号传输质量就会严重下降,其主要的原因为高频信号随着传输距离急遽衰减、高频信号的电磁干扰以及信号的损耗使芯片的温度增高。

利用光连结取代电连结可有效解决高速芯片传输信息量的限制。随着积体光学技术的发展,光学组件的整合性已不输给电子组件。以硅线波导为例,其高度及宽度约在数百奈米大小左右,可弯曲半径也在10微米(μm)以内,再加上愈趋成熟的光信号处理技术(如分光、多任务及光切换等),许多原先必须仰赖芯片运算的功能也可由光积电路取代。

该领域的研究以IBM、惠普(HP)及甲骨文(Oracle)的投入最多。图4是IBM所提出的硅光子芯片光互连系统,其中光链接层可利用三维(3D)垂直整合技术加入至多核心运算层,形成一所谓“超级芯片”架构。IBM目前已开发标准90奈米制程的初步硅光连结层,该光链接层上有被动光纤耦合器、多任务器、解多任务器、高速硅光学调制器、硅锗光侦器、驱动电路及转阻放大器,藉由多波长分工概念,每个硅波导数据传输量可达25Gbit/s,但如何整合光源、降低组件消耗功率仍是一大挑战。

图4 硅光子芯片内联机系统

调制器带宽达40GHz 高速通讯/全光计算近了

此外,2004年,英特尔整合金属氧化半导体电容(Metal-oxide-semiconductor Capacitor)与硅基光波导结构,成功制作出硅基全光快速相位调制器(High-speed Optical Phase Modulator),并且将该相位调制器用于硅基马赫曾德调制器(Mach-Zehnder Interferometer)(图5),其3dB调制带宽可达1GHz,当时的研究成果发表于国际期刊《Nature》。当顺向偏压施加于组件时,这时在闸极的氧化层(Gate Oxide)会出现电荷累积的现象,由于硅材料拥有折射率随载子浓度变化的特性,这些在氧化层与硅基波导接口的电荷浓度会改变硅基光波导的折射率,进一步影响光相位特性。因此,透过该物理特性,将此用于马赫曾德调制器,适当的调整电压大小与波导长度,便可轻易的调整光场相位的变化,即控制输出光场建设性或破坏性的干涉,以达到光信号的调制。

图5 硅基马赫曾德调制器相位调制器与其传输结果

2005年英特尔延续之前硅基马赫曾德调制器的工作并且进行优化,不仅缩小组件尺寸,使光波导截面面积由原本的2.5微米×2.3微米,缩小至1.6微米×1.55微米,并且将原先P型多晶硅层改用单晶硅取代。此外,英特尔还将参杂浓度提升。缩小组件尺寸有利于光场的集中,因此光场在氧化层的强度较先前的组件来的强,故光场与累积在氧化层的电荷作用力也较强,进而使得相位调制效率获得约两倍的提升。改用单晶硅取代原先的多晶硅的制程,可使组件缺陷较少,让组件损耗降低,由原先的16dB/cm下降至10dB/cm。而高浓度的参杂,增强载子注入的能力,也降低阻抗,配合上组件尺度的缩小,经由实验量测得到的组件阻抗为6.5Ω,等效电容为2.4pF,经过计算后该组件的调制带宽约10GHz,可传送4?6Gbit/s 数字非归零格式信号(图6)。

图6 信号传输之眼图,(a)信号比特率4Gbit/s。(b)信号比特率6Gbit/s

由于金属氧化半导体电容结构其电容特性,大大影响硅基马赫曾德调制器的响应速度(RC Delay),2007年,英特尔使用PN接面取代金属氧化半导体电容结构来达到更高速调制速率(图7)。此外,配合行波式电极设计与电路之阻抗匹配,使得组件操作带宽可达40GHz,图7为行波式硅基马赫曾德调制器的频率响应图。最后,这样高速的调制组件为硅光子学领域内的一大突破,并且为实现高速通讯与全光计算之重大迈进。

图7 行波式电极之硅基光调制器组件结构图

从技术角度来看,硅光信号调制器及硅锗光侦器已发展得相当成熟,其操作速度皆可达25Gbit/s以上,唯一的考虑在于如何减少硅光信号调制器的尺寸大小、提高对温度的稳定性,及增加硅锗光侦器的灵敏度等。利用互补式金属氧化物半导体(CMOS)制程或准CMOS制程整合硅光电组件及电路于单芯片也大致验证可行。目前唯一尚未有定论的是如何整合光源及光纤封装方式。然而,此部分的做法与应用领域及产品定位有关,可以是将整个雷射晶粒封装,或是如英特尔所采用三五族半导体晶圆接合后制程方法,光纤封装则取决于通道数目及成本,但整体而言,硅光电组件商业应用已指日可待。

可见光通信 数字通信文献综述

数字通信文献综述: 可见光通信的关键技术 和应用 第1章可见光通信概述

一、背景和概念 光通信的发展最初是从可见光通信开始的,比如旗语以及古代军事上的烽火狼烟都可以看做是可见光通信的最原始形式,但是在现代通信中,由于缺乏实用的光源和高信道衰落,所以在光纤出现后,发展方向迅速转向光纤通信。 本世纪初,随着短路无线通信的兴起和基于固态新型照明的大功率LED的不断发展,人们提出了可见光通信(Visible Light Communication,VLC),VLC的理论基础在于通过让LED 通/断切换的足够快以至于人眼无法分辨从而来传输数据。 在足够先进的技术支持下。每种新的LED灯也能以有线方式接入网络,是室内任何设备实现无所不在的无线通信,并且不增加已经拥挤不堪的射频带宽负担,形成了新的短距光无线通信的应用。 白光LED具有功耗低、使用寿命长、尺寸小、绿色环保等优点,特别是其响应灵敏度非常高,因此可以用来进行超高速数据通信。利用这种技术做成的系统能够覆盖灯光达到的范围,接收设备不需要电线连接,与传统的射频通信和FSO相比,VLC具有发射功率高、无电磁干扰、节约能源等优点,在VLC系统中,白光LED具有通信与照明的双重作用,这是因为白光LED的亮度很高,且调制速率非常高,人的眼睛完全感觉不到光的闪烁,因而VLC技术具有极大的发展前景,已引起人们的广泛关注和研究。

二、主要发展过程 2000年,日本庆应大学的Tanaka等人和SONY计算机科学研究所的Haruyama提出利用LED灯作为通信基站进行信息无线传输的室内通信系统。 2002年,Tanaka和Komine等人对LED可见光通信系统展开了具体分析,并于同年正式提出了一套结合电力线载波通信和LED可见光通信的数据传输系统。 2008年,在东京国际电子展上,日本太阳诱电公司向全世界首次现场展出了白光LED的通信系统,当时,它的最大传输距离仅20cm。 2009年,牛津大学的Brien等人利用均衡技术实现了100 Mbit/s的通信速率,并与次年展出了室内可见光通信演示系统,利用16个白光LED通信,完成了4路高清视频实时广播。 2010年,德国 Fraunhofer Henrich Hertz Institute 实验室的科研人员将这一通信速率提高到513 Mbit/s,创造了当时可见光通信速率的世界纪录。当时的可见光通信还不叫LiFi,而是VLC(Visible Light Communication)。 2011年,爱丁堡大学哈拉尔德哈斯教授演示了带有信号处理技术的LED灯泡如何将高清视频传输到电脑上,并将可见光通信命名为LiFi(Light Fidelity)。 2013年,来自英国多所高校的研究者们将LiFi的通信速率刷新到高达10Gb/s。

光模块行业深度报告

光模块行业深度报告

目录 一、5G 电信与400G 数通市场共振,光模块行业站在新景气周期起点 (3) 1、5G 时代运营商资本开支回暖提升光模块产业景气 (3) 2、云计算巨头资本开支回暖叠加400G 产品升级换代,打开数通光模块增长新空间 (6) 3、光模块产业链格局呈橄榄球式分布,中游模块封装竞争激烈凸显高端产品价值 (8) 二、5G 建设进入密集落地期,光模块迎来规模爆发节点 (12) 1、5G 网络建设进入高景气,光模块有望获无线网承载网双驱动12 2、25G 光芯片产能提升,25G 光模块超频方案成本优势或降低14 3、5G 前传向光纤直驱+无源波分方案收敛,光模块市场有望聚焦25G 灰光模块和CWDM 彩光模块 (17) 三、5G 新应用带动需求侧景气高企,供给侧国内厂商蓄势待发,400G 光模块逐步成为数通市场主角 (24) 1、需求侧:超大规模数据中心建设进入400G 时代,引领技术发展趋势 (24)

2、需求侧:400G 交换生态圈已成熟,提振光模块需求空间,加速市场爆发。 (32) 3、供给侧:上游芯片+无源器件准备就绪,400G 光模块蓄势待发37 4、硅光模块,400G 光模块市场的搅局者还是赋能者? (42) 四、行业面临变革机遇,四个维度精选细分赛道龙头 (49) 1、从四个维度布局光模块优质企业 (49) 2、优中选优,五大龙头卡位核心赛道 (54) 3、光迅科技(002281.SZ):具备稀缺芯片自研能力的光器件一体化龙头 (56) 4、中际旭创(300308.SZ):全球高速光模块龙头 (61) 5、天孚通信(300394.SZ):国内稀缺的一站式光器件平台龙头64 6、新易盛(300502.SZ):高速光模块新龙头 (67) 7、剑桥科技(603083.SZ):高端光模块崛起新势力 (72) 五、投资建议 (76) 六、风险提示: (77)

高速可见光通信的前沿研究进展

高速可见光通信的前沿研究进展 摘要:可见光通信最大的优势是高速,目前已有的VLC实验可以实现每秒十几 吉比特的传输速率,这一优势使得可见光通信成为未来智能时代B5G/6G超高速 泛在光联网中一种不可或缺的无线通信方式。由于具有众多优势,可见光通信一 经问世便成为各国政府支持的重要科学主题。 关键词:可见光通信;机器学习;组网 1引言 随着物联网的兴起以及人工智能的迅猛发展,人类正迈向以“万物感知、万 物互联、万物智能”为特征的智能时代。在智能时代,移动数字终端和通讯媒介的范畴将会发生革命性变化,由此产生的海量数据对通信系统的高速率和低时延提 出了更高要求,这些将给传统通信接入网技术带来巨大的考验。可见光通信是一 种利用波长在380nm到790nm范围内的可见光进行数据通信的无线光传输技术。相比于传统无线通信日益匮乏的频谱资源,可见光的频谱资源丰富,频谱带宽约 为400THz,是人类有待研究的空白领域。可见光通信兼具照明、通信和控制定位 等功能,易与现有基础照明设施相融合,符合国家节能减排的战略思想。在电磁 敏感区域如核电站、矿井、加油站等和具有强电磁环境的特殊场所,如变电站、 现代军事战场等,可见光通信具有不受无线电干扰、无电磁辐射、高度保密性的 优势,是解决无法使用传统无线电通信时最有效的途径之一。本文立足于通信领 域近年来备受关注的研究热点——可见光通信,阐述了其研究背景和基础系统架构,围绕材料器件、高速系统、异构网络、水下可见光通信和机器学习等五个前 沿研究方向展开了对可见光通信研究进展的探讨,并概述了现阶段高速可见光通 信技术面临的若干挑战。最后展望了可见光通信的前景:在未来万物互联的智能 时代,可见光通信将以其高速传输的优势成为通信网络中不可缺少的一部分,与 其它通信方式合作互补共同造福人类生活。 2系统结构 可见光通信系统的基础结构一般由三个部分组成,包括可见光信号发射端、 可见光信号传输信道和可见光信号接收端,可见光信号发射端包括调制模块、驱 动电路、光发射器等。原始的二进制信号首先经过编码、调制和预均衡等变换, 得到的预处理信号经过模数转换后驱动光发射器如LED以控制其光照强度,从而 实现电信号到光信号的转换。此外,在光发射器后加上光学透镜和聚光杯可以进 一步提高接收端信号强度,从而增大传输距离。经过调制后的可见光信号在大气 或者水下等自由空间信道中传播,到达可见光信号接收端。可见光信号接收端包 括接收天线、光电检测器、解调模块等。一般使用光电二极管PIN、雪崩光电二 极管APD等光电检测器来检测光信号,实现光信号到电信号的转换。得到的电信 号经过后均衡、解调和解码等数字信号处理后,恢复出原始发射信号。 3沿研究方向 目前研究学者对可见光通信的研究主要集中于五个方面,分别是材料器件、 高速系统、异构组网、水下可见光通信以及机器学习在可见光通信中的应用。其中,材料器件主要包括新型光发射器件与光接收器件;高速系统介绍了可见光通 信传输速率的发展情况;异构组网围绕着可见光通信组网展开;水下可见光通信 和机器学习,是目前可见光通信领域发展较为迅速和热门的研究方向,也是本文 介绍的重点。 3.1机器学习

光通信中的重要技术及发展趋势

光通信中的重要技术及发展趋势 [摘要] 随着信息化社会的到来,通信技术也得到了日新月异的发展。在过去的几年中,人们对传输速率的要求越来越高,使用高速率数据传输的用户数量每年都在递增,而光通信技术在过去几年中也有了长足的发展,光纤通信凭借其传输高速率的数据,成为广域通信网的骨干网络,如今在广域通信网中绝大部分是通过光纤传输的。本文主要讨论在光通信中的主要技术以及未来光通信的几个发展趋势。 [关键词] 光通信光接入光交换全光网无线光通信 随着用户对接入带宽要求的日益增加以及三网融合后对数字高清信号的传送,对运营商接入侧及骨干核心传输有了更高的要求,而光通信在其中起了举足轻重的作用,光通信技术的发展决定了电信业的未来方向,近几年,不论在接入层以及核心层,光通信技术都有了长足的发展。 1.在接入层: 1.1无源光网络(PON) 无源光网络主要用于解决宽带最终用户接入终端局的问题,由于这种接入技术使得接入网的局端(OLT)与用户(ONU)之间只需光纤、光分路器等光无源器件,不需租用机房和配备电源,因此被称为无源光网络。无源光网络以其容量大、传输距离长、较低成本、全业务支持等优势成为热门技术。目前已经逐步商用化的无源光网络主要有TDM-PON(APON、EPON、GPON)和WDM-PON。 无论是核心网、传输网还是接入网,其发展的首要因素就是业务,是终端用户的需求。从业务发展现状来看,高带宽的消耗业务逐步涌现,带宽提速成为迫切需求,而PON以其容量大、传输距离长、较低成本、全业务支持等优势成为宽带接入的热点,它在提供业务组合的同时,实现了高可靠性和高性能,已经成为了下一代光接入网的发展方向。 1.2无线光通信技术 从光纤骨干网到用户之间的”最后一英里”,如果铺设光缆,不仅花费大而且耗时;许多无线通信技术可以解决”最后一英里”的问题,但是这些技术需要向无线电管理委员会申请频率执照,不仅要使用户支付大量的频率占用费,而且申请也要花费数月的时间。无线光通信因为无需频率申请,机型小方便架设,能够简单的解决最后一英里的问题,为宽带接入的快速部署提供一种灵活的解决方案。 无线光通信系统是以大气作为传输媒质来进行光信号的传送的。只要在收发两个端机之间存在无遮挡的视距路径和足够的光发射功率,就可以进行通信。一个无线光通信系统包括三个基本部分:发射机、信道和接收机。在点对点传输的

中国光通信行业未来发展趋势研究报告

中国光通信行业未来发展趋势研究报告 随着光通信产业的发展,无论是谷歌光纤的搅局,还是百度光纤将大有所为,市场的痛并快乐着的局面总是在不断推进产业的兼并整合进程。未来,市场、技术和产业动态,都有相关研究机构进行剖析与预测。光通信未来的市场、技术、产业发展动态,将会有怎样的风云变幻呢? 一、光纤市场痛并快乐着兼并整合或将开始 光纤市场前景“痛并快乐着” 从现状来看,光纤光缆的价格维持在低位徘徊。预制棒已经成为国内光纤光缆厂商提升盈利能力获取更高竞争力的关键所在,预制棒的产能利用率已经成为国内企业考虑的重要因素。光纤光缆行业技术含量最高、壁垒最大的是上游预制棒环节,目前国内行业大厂均在光预制棒领域实现了自产,实现光预制棒-光纤-光缆的全产业链布局。 但是整个市场走向布局仍旧良好,中国光纤产销光纤活动连接器,为内地最大生产商,市占率高达20%。去年上半年集团营业额7.76亿元,升8.5%,股东应占溢利1.29亿元,升16.2%,去年第三季单季营业额4.75亿元,按年大升30.9%,而头三季合计营业额12.51亿元,增长16.1%,远胜上半年,全年业绩值得憧憬。以中国光纤全年盈利3亿元计,其现年PE低至7倍,有能力进一步攀升。 光纤产能过剩严重大规模兼并整合或将开始 近年来,受国家政策对宽带行业的支持,光纤线缆行业发展迅猛,伴随而来的是重重问题。此外,国内光纤厂商还将面临更多的严峻的挑战,国内运营商对光纤光缆的集体采购量持续下跌,而国内光纤企业众多,需求量变少,竞争将更

加激烈,最后导致恶性竞争。在环境如此“恶劣”的情形下,据说大规模兼并整合也即将开始,而此时一些小厂却在纷纷进入光纤行业,行业龙头也正布局并购整合,好让全国小厂乘凉“大树”下。 二、2018年中国光纤光缆市场收入或达1650亿 企业与市场网站发布“中国光纤光缆制造市场报告”指出,2013年中国光纤制造市场和光缆制造市场收入增长18.4%,达153亿美元(约合人民币948.6亿元)。到2013年的过去5年,行业收入年利率达17.2%。2008-2013年,高度的国内市场增长率每年达17.6%,这得益于大量信息技术和通信项目需要光缆市场的产品。 由于对网络和移动手机服务的强劲家用需求,信息技术和通信领域成为光纤光缆的主要市场。另外,发电企业是行业的另一大重要市场。 三、2020年全球固网宽带用户将达9.89亿 来自PointTopic的全球宽带用户预测显示,尽管增长速度看起来相对不变,但实际上没有以前的预测那么强劲。PointTopic预计到2020年底,全球固网宽带用户数将达到9.894亿。 世界各地的宽带用户增长速度差异取决于宽带市场的发展程度。该调研公司将全球宽带市场分为三部分:新兴市场、年轻市场和成熟市场。从下图中可以发现,不同类型市场的增长速度有非常明显的差异。 四、2018年全球光纤传感器市场将达43.3亿美元 作为物联网极其重要的组成部分之一,光纤传感器因其优势与应用一直备受瞩目。从全球市场来看,2013年全球光纤传感器市场规模为18.9亿美元。预计

光纤通信技术的发展与应用

光纤通信技术的发展与应用 一、光纤通信的应用背景 通信产业是伴随着人类社会的发展而发展的。追溯光通信的发展起源,早在三千多年前,我国就利用烽火台火光传递信息,这是一种视觉光通信。随后,在1880年贝尔发明了光电话,但是它们所传输的信息容量小,距离短,可靠性低,设备笨重,究其原因是由于采用太阳光等普通光源。之后伴随着激光的发现,1966年英籍华人高锟博士发表了一篇划时代性的论文,他提出利用带有包层材料的石英玻璃光学纤维,能作为通信媒质。从此,开创了光纤通信领域的研究工作。 二、光纤通信的技术原理 光纤即光导纤维,光纤通信是指利用光波作为载波,以光纤作为传输介质将要传输的信号从一处传至另一处的通信方式。其中,光纤由纤芯、包层和涂层组成。纤芯是一种玻璃材质,以微米为单位,一般几或几十微米,比发丝还细。由多根光纤组成组成的称之为光缆。中间层称为包层,根据纤芯和包层的折射率不同从而实现光信号传输过程中在纤芯内的全反射,实现信号的传输。涂层就是保护层,可以增加光纤的韧性以保护光纤。

光纤通信系统的基本组成部分有光发信机、光纤线路、光收信机、中继器及无源器件组成。光发信机的作用是将要传输的信号变成可以在光纤上传输的光信号,然后通过光纤线路实现信号的远距离传输,光纤线路在终端把信号耦合到收信端的光检测器上,通过光收信端把变化后的光信号再转换为电信号,并通过光放大器将这微弱的电信号放大到足够的电平,最终送达到接收端的电端完成信号的输送。中继器在这一过程中的作用是补偿光信号在光纤传输过程中受到的衰减,并对波形失真的脉冲进行校正。无源器件的作用则是完成光纤之间、光纤与光端机之间的连接及耦合。其原理图如图1所示: 通过信号的这一传输过程可以看出,信号在传输过程中其形式主要实现了两次转换,第一次即把电信号变成可在光纤中传输的光信号,第二次即把光信号在接收端还原成电信号。此外,在发信端还需首先把要传输的信号如语音信号变成可传输的电信号。 三、光纤通信的特点 1.抗干扰能力强。光纤的主要构成材料是石英,石英属绝缘材料的范畴,绝缘性好,有很强的抗腐蚀性。而且在实际应用过程中它受电流的影响非常小,因此抗电磁干扰的能力很强,可以不受外部环境的影响,也不受人为架设的电缆等的干扰。这一特性相比于普通无线

可见光通信系统研究

可见光通信系统研究 摘要 目前室内无线通信能满足要求的最好选择就是白光LED。白光LED在提供室内照明的同时,被用作通信光源有望实现室内无线高速数据接入。目前,商品化的大功率白光LED功率已经达到5W,发光效率也已经达到90lm/W,其发光效率(流明效率)已经超过白炽灯,接近荧光灯。白光LED的光效超过100lm/W并达到200lm/W(可以完全取代现有的照明设备)在不久的将来即可实现。因而LED照明光通信技术具有极大的发展前景,已引起人们的广泛关注和研究。论文主要对基于白光LED的室内可见光通信系统进行了研究。 本文在对白光LED用作通信光源时的伏安特性、光谱特性和调制特性等物理特性做深入分析的基础上,重点研究了白光LED照明光源通信系统的组成结构和系统设计,并设计出了白光LED调制和发射电路。给出了一种求LED照明灯室内布局的方法,仿真结果表明,该方法可以较好地解决可见光通信系统的室内LED照明灯的最优布局问题。采用直射式链路形式和光强度调制一直接检测技术,可以实现对白光LED的高速调制,并设计出了用于接收可见光信号和信号解调的光接收电路,完成了白光LED的可见光通信收发实验并给出了实验结果。 绪论 VLC VLC是一种在白光LED技术上发展起来的新兴的无线光通信技术。白光LED具有功耗低、使用寿命长、尺寸小、绿色环保等优点,特别是其响应灵敏度非常高,因此可以用来进行超高速数据通信。与传统的射频通信和FSO相比,VLC具有发射功率高、无电磁干扰、节约能源等优点,在VLC系统中,白光LED具有通信与照明的双重作用,这是因为白光LED的亮度很高,且调制速率非常高,人的眼睛完全感觉不到光的闪烁,因而VLC技术具有极大的发展前景,已引起人们的广泛关注和研究。 与FSO和射频通信相比,VLC主要有一下几个优点: 1 可见光对人体相对安全,无伤害。Vlc系统主要使用室内LED照明灯来传送数据,对人体辐射小。 2 VLC无处不在。几乎生活中的每一处都有照明灯,因此用于通信的照明灯可以安装在任何地方,可以比较方便的传输无线数据。 3 发射功率较高。相比于红外通信,由于红外通信对人的眼睛损伤较大,发射功率需要压制到相当低,系统的性能因此将受到严重的限制。而对于射频通信,其射频信号对人体的损伤又比较大,也需要限制其

2013年宽带中国与光通信行业研究报告

2013年宽带中国与光通信行业研究报告 2012年3月

目录 一、“宽带中国”将宽带上升为国家战略,十二五通信投资将增长40% (4) 1、“宽带中国”将宽带战略上升为国家战略 (4) 2、十二五通信投资将增长40% (4) (1)预计十二五期间我国宽带总投资1.6万亿元,宽带占比上升为80% (5) (2)光纤宽带和无线宽带将得到大力发展 (5) ①城市推进“城市光网”,农村实现“宽带网络提升” (5) ②无线宽带规模商用LTE (6) 二、实施宽带战略、升级提速迫在眉睫 (6) 1、我国“低速”宽带的现状迫切需要升级提速 (6) 2、三网融合的实现需要高速率的光纤宽带 (7) (1)三网融合下高速宽带业务最高需要100Mbps (7) (2)只有FTTH才能满足三网融合每户100Mbps的长期发展要求 (9) (3)多样化的视频业务对各层次网络都提出了升级提速要求 (9) (4)IPTV业务的爆发式成长将倒逼宽带的发展 (11) ①我国IPTV业务将继续保持高速增长 (11) ②IPTV业务的高速成长将倒逼宽带的发展 (11) 3、3G用户及应用的发展导致移动网络流量剧增,回程网络亟待升级 (12) 4、光纤宽带成为固网宽带的终极发展方向 (13) 三、“宽带中国”战略下的光通信延续旺盛的投资需求 (14) 1、2013年前FTTx投资将超过1300亿元 (14) 2、三网融合2015年前拉动光网络投资1000亿元 (16) 四、在光通信产业链两端寻找投资标的:上游光器件、下游光纤光缆

及连接设备 (17) 1、我国已形成完整的光通信产业链 (18) 2、光器件投资成本占比不断上升,利好产业链上游厂商 (19) 3、打破“最后一公里”瓶颈,利好下游的光纤光缆和物理连接设备厂商 (21) 五、重点公司介绍 (22) 1、光迅科技(002281):有源无源整合将缔造我国最强光器件公司 (22) (1)受益于光通信的持续投资,公司将未来三年将实现稳定成长 (22) (2)优化产品结构,聚焦高端将提升整体盈利能力 (22) (3)整合有源器件与无源器件资产,协同效应影响深远 (22) 2、亨通光电(600487):线缆一体化优势将逐步显现 (23) (1)线缆力缆助力公司三位一体,做大做强 (23) (2)光纤光缆及光棒的持续扩产,将不断提升公司的盈利能力 (23) 3、日海通讯(002313):经营体系完善的接配设备龙头 (24) (1)公司作为国内最大通信网络接配设备商,研供产销体系完善 (24) (2)拥有完整、丰富的接配线产品线,光网接配行业内竞争优势明显 (24)

2019年教育行业深度研究报告

2019年教育行业深度研究报告

前言 关于整个国家对于教育的投入,大多数人都有较强的感性认知,知道体量是巨大的,但是没有量化的概念——总体量到底有多大?其中有多少来源于财政投入,有多少来源于其他渠道投入(社会资本等)?国家对于不同教育阶段的投入有何差异?不同省份对于教育的投入有何差异?本篇报告将从数据的维度对这些问题进行一一解析。 本篇报告的三个核心结论是—— ①总量角度:教育经费多渠道筹集需求凸显,社会投入占比有望提升。 整个社会对于教育的投入持续增长,自2012年以来,我国教育经费总 投入占GDP比重均在5%以上,2018年达4.6万亿元。国家财政性教 育经费占GDP比重均在4%以上,2018年达3.7万亿元,预计短期内 该比重会相对稳定。我国教育经费中80%以上来源于国家财政性教育 经费,国家财政性教育经费中地方财政性教育经费占比超90%,地方 财政教育支出是整个社会对于教育投入的主力来源。地方公共财政教 育支出在2012年对于地方财政的压力达到高点(占地方财政收入/支 出比重分别为33.0%/18.8%),且目前该现状未有明显缓解,我们认为 这可能是2012年之后相关政策出台的重要引发原因之一(2013年上 海和温州两地开始营利性学校试点),加大民办教育力量投入需求突出, 非财政的教育经费占比有望提升。 ②分阶段角度:义务教育阶段的财政支出占比近半,职业教育、幼儿 园和高中占比略有提升,高等教育占比有所下降,预计结构性优化仍 会继续进行。2016年幼儿园/义务教育/高中/高等占比分别为 3.8%/46.6%/9.6%/10.8%,幼儿园的财政投入远低于其他阶段,与其 17%的总人数占比不匹配,未来幼儿园公办化、普惠化是大趋势,而 高等教育占比略有下降,伴随未来财政更多向低龄阶段倾斜,占比可 能会有所调整,而这一趋势为民办高校的发展带来机会。2017年民办 幼儿园/小学/初中/普高/中职/高等渗透率分别为 56%/8%/13%/13%/14%/24%,相较2004年分别增加 28/5/8/5/6/19pct,幼儿园民办渗透率极高,民办高等教育渗透率提升 较快。“生均公共财政预算教育事业费”这一指标可以更加直观体现不 同阶段的生均财政投入之间差距。根据最新数据,除幼儿园仍然低于 3000元/人以外,其他阶段均超过10000元/人,普通高等更是超过了 20000元/人。1997-2017二十年间我国经历了优先发展小学,之后是 初中的过程,目前是处于加强稳固对于义务教育的投入,并加速发展 学前、高中及高等教育的时期。 ③分地区角度:建议关注地方公共财政教育支出压力较大,教育资源 相对不足的地区。结合6个指标的排名和赋值,我们对于各省市进行 了综合排名,我们把得分大于等于3分的称为优势地区(18个),小 于3分的称为非优势地区(13个)。我们认为该评分从财政角度出发, 对民办学校的地理位置选择上有一定参考价值,得分越高,排名越靠 前的省市,我们认为更需要民办学校的投入,对于民办学校的态度也 更加欢迎,也有更大的概率在政策上给予高于平均的优惠力度,以此 对于民办学校的投资地域给出一些建议。细分来看:5分的为一类优 势地区(5个),包括广东、山东、河北、浙江、湖北;4分的为二类 优势地区(8个),包括河南,广西,云南,江西,江苏,湖南,福建, 上海;3分的为三类优势地区(5个),包括四川,安徽,贵州,山西, 北京。 在进行具体分析之前,我们先介绍在本文中会使用到的几个容易混淆的概念,:“教育经费”可以理解为“整个社会对于教育的投入总额”(最大口径),“国家财政性教育经费”可以理解为“国家财政对于教育的支出总额” (第二大口径),“财政性教育经费占教育经费的比重”可以理解为“整个社会对于教育的投入中财政的贡献程度”。“公共财政教育支出”可以理解为“一般公共财政对于教育的支出总额”(第三大口径)。

国内光通信产业发展现状分析

国内光通信产业发展现状分析 一、光电线缆及光器件发展成就 中投顾问在《2017-2021 年光通信行业深度调研及投资前景预测报告》中指出,2011-2015 年,我国光电线缆及光器件行业企业紧跟国家发展战略部署,围绕创新驱动、转型发展作出了艰苦努力,取得令人鼓舞的成绩。截止十二五末,行业企业完成工业产值同比增加26%。对国家的税收贡献达900.07 亿。行业31 家上市公司的总销售规模达到2205.78 亿人民币。占整个产业比例41.3%。产业资本边界清晰,以民营+上市为主的格局基本形成。产业结构不断优化,光纤预制棒、光纤光缆、光器件、战略新兴产业和传统的同轴电缆、数据电缆、铁路信号电缆、高频电子线缆组件等五大产业格局市场竞争能力不断提高。 我国光纤预制棒、光纤、光缆产品,光纤预制棒十二五末打破国外垄断国产化率由不到30%提高至约80%,预制棒技术实现了群体突破,国内总的预制棒产能超过5000 吨。已成功开发出了自主知识产权的光纤预制棒制造设备。总规模已达935 亿人民币。光纤、光缆产能充足,供应全球市场份额的一半以上。光纤、光缆的产能分别是2.4 亿公里和2.8 亿芯公里。企业总数达150 家以上,其中规模较大的光缆企业在40 家左右,能同时生产光纤、光缆的企业在20 家左右,光纤预制棒、光纤及光缆一体化的企业有10 家左右。已经成为全球光纤光缆第一产能大国,同时一些领军企业已经进入了国际领先行列。实现了光纤拉丝成套设备国产化,而且部分光纤拉丝成套设备开始销售到海外。生产OPGW、OPPC 和海光缆等光单元用的焊管生产线基本实现国产化。该产业集群十二五未共完成销售收入1330.63 亿人民币,占

2020年光通信行业深度研究报告

2020年光通信行业深度研究报告 筱宇轩2020.5.4 本文系统性地从架构的变化衍生出对设备、光芯片、光模块、连接器件以及PCB 材料演进路径的分析。 1. 5G 时代光通信的再思考——流量爆发下的数据密度革命 我们一直在思考一个问题:5G 流量再爆发中,光模块的产业演进路径如何?结合此前日韩5G 研究、光博会草根调研,我们本文系统性地从架构的变化衍生出对设备、光芯片、光模块、连接器件以及PCB 材料演进路径的分析。站在当前时点,市场担心光通信同质化竞争严重,会影响产品毛利率进而拖累业绩增长,但我们看到,5G 对数通设备、400G、MPO 连接器、高频高速材料等提出新的要求,流量爆发下的数据密度革命即将到来,新产品、新市场的出现将极大提振盈利能力,优秀企业在产品能力、渠道能力、成本管控等方面的竞争优势将进一步体现,从而拉开业绩差距。因此,不必过分担心同质化竞争而忽略了5G 的大机遇,在全球5G 放量的前夕,光通信仍是最确定的方向。 1.1 流量驱动下的东西向"叶脊架构"需求增长 5G 与400G 数据中心是双生式同步发展。当前,全球主要国家正在积极参与5G 的商用化。运营商正在全速部署下一代网络设备,为2020 年及以后的5G 服务做好准备。4K/8K 高清视频、直播、视频会议、VR/AR 等大带宽的持续发酵酝酿,NB-IoT 等技术引发物联网产业新一轮增长,海量

移动设备的接入,应用端的发展正指向着流量的大爆发。在当下5G 应用尚未大规模兴起的情况下,依靠高清视频、AR/VR 等既有业务,韩国在5G 推出半年的时间点,实现了流量近3 倍增长(DOU 从约8G 到25G),结合近期不断涌现的新型应用(如一夜爆红的AI 视频换脸ZAO),我们预计在5G 时代随着高宽带应用的逐步落地,流量的爆发将会是数十倍的量级。 云成为大趋势,大型数据中心规模继续增长。根据Synergy Research 数据显示,2018 年年底全球超大规模数据中心数量已经达到430 个,美国占据其中40%。超大规模数据中心的增长势头不减,公司收入每年平均增长24%,而资本支出增长则超过40%——其中大部分用于建设和装备数据中心。据思科预测,2021 年全球数据中心流量将增长到每年20.5ZB,且95%的数据中心流量将是云流量。在即将到来的5G 时代,流量的爆发将汇聚成数字海啸。过去几年,海外云厂商经历了从需求爆发到去库存的周期轮回,但随着5G 到来,我们认为,数据中心的需求增长仍是确定性的。近期市场担心四季度海外能否起量也仅是短期维度的压制因素,随着2020 年5G 整体起量,大型数据中心是不可或缺的基础设施。 大型数据中心叶脊架构已成主流架构,新的交换模式可以带来更低的延时,传统三层架构退出历史舞台。首先大型云厂商在即将到来的5G 时代,以及云进程的进一步深入加速,大型云厂商数据规模越来越大,数据中心内部东西向流量已然占据主导地位,更适于数据中心内部数据交互的扁平胖宽的叶脊架构已成为数据中心的首选。叶脊架构使得数据中心规模变得更

XXXX年光通信技术发展趋势和预测

我们对2011年光通信技术发展趋势和预测如下: ·光通讯行业更加精简,但是仍然期待着更完善的供应链 那些在经济低迷前期和中期合并的网络设备制造商将在2011年发挥明显的优势,因为届时越来越少的大型企业能够独自赢得网络业务的大单。预计2011年,阿尔卡特-朗讯和华为将角逐第一的位置,而Ciena凭借对北电网络光纤业务的收购将加速缩小与前者之间的差距,紧随其后。 预计2011年,网络设备制造商将控制其外包光元件供应商的数量,采取精简供应链的战略。因此,除非那些规模较小的元件供应商能提供独一无二且切合需求的产品,否则2011年对他们来说,将是比较困难的一年。 此外,光产品供应商在2011年将继续面对供应链中需求波动的挑战。所有供应商都将逐步认识到缩短回收时间、提高预测的精确度和落实库存保有战略需求的重要性。因此,即使面对持续大幅度的增长需求,供应链的改善将使大部分主要产品的交付时间缩短至一到两周的时间。 ·感知型网络即将登场 2011年将研发出能促进网络传输层向前演进的组件和系统。研发这些新型光产品的最终目的是为了创建感知型的网络,它们拥有

灵活的光子层,能够有意识、完全无缝地应对不断变化的流量情况、新型应用或者突发的带宽波动。 目前行业里最热门的三大关键词——任何波长(colorless)、任何方向(directionless)和任何竞争(contentionless)——都是感知型网络的重要组成部分,它们所具备的特征赋予了任意类型的网络波长在任何方向都能达到任意目的地的能力。 目前,业界正在研发复杂的光学转换器件,来构建网络和节点架构,进而实现自动端到端波长、转发器和路由的灵活转换。这些新组件和体系架构将建立在波长选择开关(WSS)的基础上并完善WSS,成为灵活光网络的核心结构单元。 此外,我们认为,功能集成式光电路板的受关注度将越来越高,因为它可以将更多的光功能和硬件集成到体积更小的产品中,而这一优势亦将促使网络设备生产商加速将其应用于各自的开发流程中。这种线路卡已被证明能通过子模块层面的集成提供显著的成本和密度优势。 我们预计,有望在2013—2014年间,实现现有网络向包含以上光元件的感知型网络演进。 ·传输更快速、更灵活

可见光通信

兰州交通大学本科生课程设计 中文题目:可见光通信技术的应用 英文题目: The Application of The VLC Technology 课程:现代传输技术 学院:电信学院 专业:通信工程 班级:通信1302班 组长:XXX 组员:XXX XXXXXX 指导教师:高丽 完成日期: 2016年7月 7 日 成绩:

目录 目录 摘要 (1) Abstract (1) 1 可见光(VLC)通信技术概述 (2) 1.1 VLC的研究背景 (2) 1.2 VLC的简介 (2) 1.3 VLC的发展现状 (2) 1.4 VLC的特点 (4) 2.传输原理 (5) 2.1概述 (5) 2.2组成 (5) 2.3 信号调制 (5) 2.4 信号解调 (6) 2.5关键技术研究 (7) 2.5.1光源 (7) 2.5.2光源布局 (7) 2.6最佳LED灯个数 (7) 2.7接收机FOV的选择 (8) 2.8不同光路径引起的ISI (8) 3可见光通信应用 (9) 3.1创新应用 (9) 3.2存在问题 (9) 3.3 VCL的基本应用 (10) 3.3.1室内(Indoor)应用 (10) 3.3.2室外(Outdoor)应用 (11) 3.4可见光的应用延伸 (12) 3.4.1实现室内定位导航 (12) 3.4.2 灯光无线 (14) 3.4.3结束乘飞机无通信时代 (14) 结束语 (15) 参考文献 (16)

摘要 用室内照明的白光LED光源作为通信基站进行信息无线传输的技术是当前国外光无线通信领域的研究热点之一,是一项有发展前景的新兴技术。这也将可见光通信技术带到了众人的面前。可见光通信技术是一种新兴的无线光通信技术,随着白光LED的发明及应用,可见光通信技术得到了良好的发展。白光LED不仅可以提供室内照明,而且可以应用到无线光通信系统中满足室内个人网络需求。在照明方面,白光LED的节能、环保等特点被认为终将取代荧光灯、白炽灯等传统照明光源,成为下一代固体照明光源。与此同时,白光LED又具有响应时间短,加之其具有高速调制特性,可以设计出基于白光LED的室内可见光无线通信系统。由此设计出的基于白光LED的室内可见光无线通信系统,与传统的红外和无线电通信相比,具有发射功率高、无电磁干扰和无需申请频谱资源等优点。文章详细介绍了可见光通信技术在国内外的研究现状,分析了其关键技术,阐述了其巨大的优点以及应用领域上的发展趋势。 关键词:可见光通信、技术优势、发展历史、关键技术、应用展望 Abstract It is one of hot spots of optical wireless communication research field in abroad that using whiteLED light source as base station to transmit information through wireless mode currentl y, which is an promisingnew technology. This trend brings the visible light communication int o our attention. Visible light communication technology is an emerging wireless optical communication technology. The visible light communication technology has a good development with the invention and application of LED white light. White LED can not only provide indoor lighting, but also can be applied to wireless optical communication system network to meet the individual needs of the indoor. In the lighting, white LED has energy-saving, environmental protection and other features, that fluorescent, incandescent,In this paper I introduce the current situation of visible light communication by white LEDs at home and abroad in detail, analyze the key techniques and clarify the advantag es and development trend of thesystem. Key Words:visible light communication, advantages, key technologies, developing history, dev elopments

教育行业深度研究报告超长精华版

教育行业深度报告 教育从古以来就是中国人特别重视的一件事。古代时有“孟母三迁”的故事,仅仅为了孩子能接受更好的教育。 而今天,这样活生生的例子成出不穷。笔者就曾经见到许多家长为了孩子接受更好的教育,举家搬迁。也有一些家长暑期带着孩子去异地拜见最好的老师。 大量的教育机构也在寒暑期推出带有住宿的集训班课程。这种我们习以为常的现象在美国几乎无法想象。中国人自古以来就有非常强烈的“付出”精神。 大量家长在自己身上花钱并不多,但是在孩子教育上的投入巨大,这导致教育行业在中国有比较强的定价权,甚至可以不断提价。长期看,中国教育行业的定价权未来可能比茅台酒都来的强。 可以说,是具有强烈的“中国国情”。在勒庞的巨作《乌合之众》中,他曾经说过每一个民族都带有自己特有的基因,最终造就了这个民族的一些特性。在中国人几千年的历史基因中,就对教育非常重视。. 同时随着中产阶级不断崛起,生育率的下降等,家长在单个孩子上投入的资源会大大增加,也让教育成为一个中长期能维持高景气的行业。今天,笔者就和大家交流一下对教育行业粗浅的研究以及商业模式上的思考。

行业特征: 把中国教育行业进行分类,主要有K12,高等教育和职业教育三种。这三种有着完全不同的属性: 1)K12,是传统教育向在线的延伸。客户不是学生本人,而是家长。学生本人参与的积极性不是最高,很多来自于家长。很大一部分需求来自于应付考试。 2)高等教育,核心代表是网易公开课(MOOC的典型)和成人补习班。客户是成年人为主,以学习知识为主。参与的积极性很高。 3)职业教育,核心代表是达内科技。客户为成年人学习技能为主,竞争力来自于能否找到更好的工作。 显而易见,K12是教育细分子行业中空间最大的。相比高等教育和职业教育,K12有两个不同点。 第一就是很高的留存度。家长送孩子去补习班,只要体验和结果都不错,往往会放好多年。从一年级开始,一路到四五年级。很高的留存率会导致有口碑的K12教育培训机构获得持续不断的用户数增长,优秀的企业会迅速越来越大。

光纤通信技术的特点和发展前景综述

光纤通信技术的特点和发展前景综述一,光纤通信技术 光纤通信是利用光作为信息载体、以光纤作为传输的通信方式。在光纤通信系统中,作为载波的光波频率比电波的频率高得多,而作为传输介质的光纤又比同轴电缆或导波管的损耗低得多,所以说光纤通信的容量要比微波通信大几十倍。光纤是用玻璃材料构造的,它是电气绝缘体,因而不需要担心接地回路,光纤之间的串绕非常小;光波在光纤中传输,不会因为光信号泄漏而担心传输的信息被人窃听;光纤的芯很细,由多芯组成光缆的直径也很小,所以用光缆作为传输信道,使传输系统所占空间小,解决了地下管道拥挤的问题。 光纤通信在技术功能构成上主要分为:(1)信号的发射;(2)信号的合波;(3)信号的传输和放大;(4)信号的分离;(5)信号的接收。 二,光纤通信的特点 (1) 频带极宽,通信容量大。光纤比铜线或电缆有大得多的传输带宽,光纤通信系统的于光源的调制特性、调制方式和光纤的色散特性。对于单波长光纤通信系统,由于终端设备的电子瓶颈效应而不能发挥光纤带宽大的优势。通常采用各种复杂技术来增加传输的容量,特别是现在的密集波分复用技术极大地增加了光纤的传

输容量。目前,单波长光纤通信系统的传输速率一般在2.5Gbps到1OGbps。 (2) 损耗低,中继距离长。目前,商品石英光纤损耗可低于0,20dB/km,这样的传输损耗比其它任何传输介质的损耗都低;若将来采用非石英系统极低损耗光纤,其理论分析损耗可下降的更低。这意味着通过光纤通信系统可以跨越更大的无中继距离;对于一个长途传输线路,由于中继站数目的减少,系统成本和复杂性可大大降低。 (3) 抗电磁干扰能力强。光纤原材料是由石英制成的绝缘体材料,不易被腐蚀,而且绝缘性好。与之相联系的一个重要特性是光波导对电磁干扰的免疫力,它不受自然界的雷电干扰、电离层的变化和太阳黑子活动的干扰,也不受人为释放的电磁干扰,还可用它与高压输电线平行架设或与电力导体复合构成复合光缆。这一点对于强电领域(如电力传输线路和电气化铁道)的通信系统特别有利。由于能免除电磁脉冲效应,光纤传输系还特别适合于军事应用。 (4)无串音干扰,保密性好。在电波传输的过程中,电磁波的泄漏会造成各传输通道的串扰,而容易被窃听,保密性差。光波在光纤中传输,因为光信号被完善地限制在光波导结构中,而任何泄漏的射线都被环绕光纤的不透明包皮所吸收,即使在转弯处,漏出的光波也十分微弱,即使光缆内光纤总数很多,相邻信道也不会出现串音干扰,同时在光缆外面,也无法窃听到光纤中传输的信息。 除以上特点之外,还有光纤径细、重量轻、柔软、易于铺设;光纤的原材料资源丰富,成本低;温度稳定性好、寿命长。由于光纤通信具有以上的独特优点,其不仅可以应用在通信的主干线路中,还可以应用在电力通信控制系统中,进行工业监测、控制,而且在军事领域的用途也越来越为广泛。 三,光纤通信技术发展的以及前景 1,光纤通信的发展

可见光通信研究现状

可见光通信技术研究现状介绍 作为一种新兴的通信技术,LED可见光通信提出的历史不算久远,早在2000年以前,就有研究人员提出利用LED发出的光来进行通信的设想,并付诸实验,实现了一些简单的通信系统[1-6]。在这些设想中,最具代表性的是香港大学的Grantham Pang于1999年提出的实现方案,他们的实验小组搭建并演示了基于可见光LED的音频信号传输系统[3]。这些设想方案提出时,LED照明技术还没有受到重视,对LED可见光通信的关键技术也没有进行深入研究,其影响力有限。 2000年,日本Keio大学M. Nakagawa教授领导的研究团队提出了一种利用白光LED实现室内可见光接入的方案,并针对室内可见光通信信道进行建模仿真和分析计算,实现了10Mbps的室内可见光通信接入方案[8],正是这一成果被视为可见光通信领域具有影响力的开创性研究,之后,可见光通信技术开始受到世界各地研究人员的重视。 1 国外研究现状 1.1 日本方面 日本方面,在庆应义塾大学(KeioUniversity)的M. Nakagawa研究团队提出LED可见光通信的接入方案后,这种技术在日本国内非常受重视。先后有名古屋大学(Nagoya Univesity)、东京理科大学(Tokyo University of Science)、长冈技术科学大学(Nagaoka University of Technology)、日本电信电话(NTT Cooperation)的科研团队参与研究。在可见光通信的各类应用方面,日本的研究人员做了大量的工作,从局域网高速互连、LED显示器数据下载、智能交通系统、智能灯塔到测量等种类繁多。 2001年,庆应义塾大学的研究人员首先研究了利用交通灯进行可见光通信,并对系统的调制方式、所需的信噪比以及通信速率等特性[9]进行了分析。同年,他们研究了OOK调制技术和OFDM技术在室内可见光通信的应用。研究结果表明:OOK调制方式在较低速率下(如100Mbps以下)非常有效,而在高速率情况下,选择OFDM调制方式性能更佳[10]。之后,他们又进一步提出在道路照明系统中加入可见光通信功能,以减少交通事故的发生,通过用符合照明要求的LED进行实验获得成功[11]。2004年,M. Nakagawa研究团队对LED室内可见光通信系统的可行性进一步分析,对光源进行建模,仿真了在多盏灯照射下室内光照分布、信道冲激响应,并对有无反射情况下的室内信噪比分布、符号间干扰等参数进行了研究。在此基础上,他们还研究了接收端FOV(Field of View)视场角大小对系统速率的影响,并得到结论:当接收端视场角足够小时,可见光通信的

相关主题
文本预览
相关文档 最新文档