当前位置:文档之家› 具非线性边界条件的奇异扩散方程

具非线性边界条件的奇异扩散方程

具非线性边界条件的奇异扩散方程
具非线性边界条件的奇异扩散方程

非线性Volterra积分方程

一类第二种非线性Volterra 积分方程 积分数值解方法 1前言 微分方程和积分方程都是描述物理问题的重要数学工具,各有优点.相对于某种情况来说,对于某种物理数学问题,积分方程对于问题的解决比微分方程更加有优势,使对问题的研究更加趋于简单化,在数学上,利用积分形式讨论存在性、唯一性往往比较方便,结果也比较完美,所以研究积分方程便得越来越有用,日益受到重视. 积分方程的发展,始终是与数学物理问题的研究息息相关.一般认为,从积分发展的源头可以追溯到国外的数学家克莱茵的著作《古今数学思想》,该书是被认为第一个清醒的认为应用积分方程求解的是Abel.Abel 分别于1833年和1826年发表了两篇有关积分方程的文章,但其正式的名称却是由数学家du Bois-Raymond 首次提出的,把该问题的研究正式命名为积分方程。所以最早研究积分方程的是Abel,他在1823年从力学问题时首先引出了积分方程,并用两种方法求出了它的解,第一的积分方程便是以Abel 命名的方程.该方程的形式为:? =-b a a x f dt t x t )() () (?,该方程称为广义Abel 方程,式中a 的值在(0,1)之间.当 a=21 时,该式子便成为)()(x f dt t x x x a =-??.在此之前,Laplace 于1782年所提出的求Laplace 反变换问题,当时这个问题就要求解一个积分方程.但是Fourier 其实已经求出了一类积分方程的反变换,这就说明在早些时候积分方程就已经在专业性很针对的情况下得到了研究,实际上也说明了Fourier 在研究反变换问题是就相当于解出了一类积分方程.积分方程的形成基础是有两位数学家Fredholm 和V olterra 奠定的,积分方程主要是研究两类相关的方程,由于这两位数学家的突出贡献,所以这两个方程被命名为Fredholm 方程和V olterra 方程。后来又有德国数学家D.Hilbert 进行了重要的研究,并作出了突出的贡献,由于D.Hilbert 领头科学家的研究,所以掀起了一阵研究积分方程的热潮,并出现了很多重要的成果,后来该理论又推广到非线性部分。我国在60年代前,积分方程这部分的理论介绍和相关书本主要靠翻译苏联的相关书籍,那时研究的积分方程基本是一种模式,即用古典的方法来研究相关的积分方程问题,这样使得问题的研究变得繁琐、复杂,在内容方面比较单一、狭隘,甚至有些理论故意把积分方程的研究趋向于复杂化。随着数学研究的高速发展,特别是积分方程近年来的丰富发展,如此单一、刻板的解法已经不能跟上数学研究时代的步伐。在九十年代我国的数学专家路见可、钟寿国出版了《积分方程论》,该书选择2L 空间来讨论古典积分方程,并结合泛函分析的算子理论来分析积分方程的相关问题。最近出版的比较适合一般读者阅览的积分方程的书有李星出版的《积分方程》,该书从最简单的方

一类反应扩散方程解的长时间行为

I 一类反应扩散方程解的长时间行为 摘 要 本文主要在一个有界光滑区域中讨论了一类带有齐次Dirichlet 边值条件的反应扩散方程解的长时间行为,其方程的形式如下: 其中 偏微分算子是一致抛物的, ,满足一定条件。 对于以上方程,我们首先定义了该方程的弱解,之后我们在有限维空间中构造了一系列该方程的近似解,并证明了在维数趋于无穷时,存在子列收敛于该方程的弱解。最后,我们利用先验估计得到了该方程弱解的存在唯一性。 在获得方程弱解的存在唯一性后,我们便能定义伴随方程的解半群,并由此研究伴随方程解半群的全局吸引子。 为了证明解半群在 中存在全局吸引子,我们证明 了伴随方程的解半群在 与中有界吸收集的存在性,并利用Sobolev 紧嵌入定理得到了全局吸引子的存在性。 关 键 词:反应扩散方程;Galerkin 方法;全局吸引子;弱解

II ABSTRACT In this thesis, we mainly consider the long-time behavior of solutions for the following reaction-diffusion equation with homogeneous Dirichlet boundary condition in a bounded smooth domain : where The partial differential operator is uniformly parabolic, and satisfies some additional assumptions. First of all, we give the definition of weak solutions, and then, we construct a sequence of approximate solution in a n dimension subspace and show that there exists a subsequence will convergent to a weak solution of this problem when n goes to infinite. Finally, we establish the existence and uniqueness of weak solution by some aprior estimates. With the help of the existence and the uniqueness of weak solutions, we define the solution semigroup associate with the problem and investigate the existence of a global attractor for the semigroup. To prove the existence of a global attractor, we show that there exist bounded absorbing sets in and and obtain existence of a global attractor in by using the Sobolev compactness embedding theorem. KEY WORDS: Reaction-diffusion equation; Galerkin’s method ; Global attractor; Weak solution

1. 积分方程一般概念与弗雷德霍姆方程

第十五章 积分方程 积分方程论是泛函分析的一个重要分支,它是研究数学其他学科(例如偏微分方程边值问题)和各种物理问题的一个重要数学工具。本章叙述线性积分方程,重点介绍弗雷德霍姆积分方程的性质和解法;并简略地介绍了沃尔泰拉积分方程以及一些奇异积分方程;此外,还扼要地叙述积分方程的逐次逼近法和预解核,并举例说明近似解法;最后考察了一个非线性积分方程。 §1 积分方程一般概念与弗雷德霍姆方程 一. 积分方程一般概念 1. 积分方程的定义与分类 [线形积分方程] 在积分号下包含未知函数y (x )的方程 ()()()()(),d b a x y x F x K x y αλξξξ=+? (1) 称为积分方程。式中α(x ),F (x )和K (x,ξ)是已知函数,λ,a,b 是常数,变量x 和ξ可取区间(a,b ) 内的一切值;K (x,ξ)称为积分方程的核,F (x )称为自由项,λ称为方程的参数。如果K (x,ξ)关于x,ξ是对称函数,就称方程(1)是具有对称核的积分方程;如果方程中的未知函数是一次的,就称为线性积分方程,方程(1)就是线性积分方程的一般形式;如果F (x )≡0 ,就称方程(1)为齐次积分方程,否则称为非齐次积分方程。 [一维弗雷德霍姆积分方程(Fr 方程)] 第一类Fr 方程 ()()(),d b a K x y F x ξξξ=? 第二类Fr 方程 ()()()(),d b a y x F x K x y λξξξ=+? 第三类Fr 方程 ()()()()(),d b a x y x F x K x y αλξξξ=+? [n 维弗雷德霍姆积分方程] 111()()()()(),d D P y P F P K P P y P P α=+? 称为n 维弗雷德霍姆积分方程,式中D 是n 维空间中的区域,P ,P 1∈D ,它们的坐标分别是 (x 1,x 2, ,x n )和),,,(21 n x x x ''' ,α(P )=α(x 1,x 2, ,x n ),F (P )=F (x 1,x 2, x n )和K (P ,P 1)=K (x 1,x 2, ,x n , ),,,21 n x x x ''' 是已知函数,f (P )是未知函数。 关于Fr 方程的解法,一维和n (>1)维的情况完全类似,因此在以后的讨论中仅着重考虑一维Fr 方程。 [沃尔泰拉积分方程] 如果积分上限b 改成变动上限,上面三类Fr 方程分别称为第一、第二、第三类沃尔泰拉积分方程。 由于第三类Fr 方程当α(x )在(a ,b )内是正函数时,可以化成

积分方程

积分方程理论的发展,始终与数学物理问题的研究紧密相联,它在工程、力学等方面有着极其广泛的应用。通常认为,最早自觉应用积分方程并求出解的是阿贝尔(Abel),他在1823年研究质点力学问题时引出阿贝尔方程。此前,拉普拉斯(Laplace)於1782年在数学物理中研究拉普拉斯变换的逆变换以及傅里叶(Fourier)於1811年研究傅里叶变换的反演问题实际上都是解第一类积分方程。随着计算技术的发展,作为工程计算的重要基础之一,积分方程进一步得到了广泛而有效地应用。如今,“物理问题变得越来越复杂,积分方程变得越来越有用”。 积分方程与数学的其他分支,例如,微分方程、泛函分析、复分析、计算数学、位势理论和随机分析等都有着紧密而重要地联系。甚至它的形成和发展是很多重要数学思想和概念的最初来源和模型。例如,对泛函分析中平方可积函数、平均收敛、算子等的形成,对一般线性算子理论的创立,以至於对整个泛函分析的形成都起着重要的推动作用。积分方程论中许多思想和方法,例如,关於第二种弗雷德霍姆(Fredholm)积分方程的弗雷德霍姆理论和奇异积分方程的诺特(Noether)理论以及逐次逼近方法,本身就是数学中经典而优美的理论和方法之一。 编辑本段起源 积分号下含有未知函数的方程。其中未知函数以线性形式出现的,称为线性积分方程;否则称为非线性积分方程。积分方程起源于物理问题。牛顿第二运动定律的出现,促进了微分方程理论的迅速发展,然而对积分方程理论发展的影响却非如此。1823年,N.H.阿贝尔在研究地球引力场中的一个质点下落轨迹问题时提出的一个方程,后人称之为阿贝尔方程,是历史上出现最早的积分方程,但是在较长的时期未引起人们的注意。“积分方程”一词是 P.du B.雷蒙德于1888年首先提出的。19世纪的最后两年,瑞典数学家(E.)I.弗雷德霍姆和意大利数学家V.沃尔泰拉开创了研究线性积分方程理论的先河。从此,积分方程理论逐渐发展成为数学的一个分支。 1899年,弗雷德霍姆在给他的老师(M.)G.米塔-列夫勒的信中,提出如下的方程 公式 , (1) 式中φ(x)是未知函数;λ是参数,K(x,y)是在区域0 ≤x,y≤1上连续的已知函数;ψ(x)是在区间0≤x≤1上连续的已知函数。并认为方程(1)的解可表为关于λ的两个整函数之商。1900年,弗雷德霍姆在

非线性发展方程及其应用

非线性发展方程及其应用 成果简介 本项目是非线性科学中的一个重要的研究方向,共研究的对象是来源于化学反应、微电子学、生物学等领域中用非线性偏微方程描述的动力学模型。因此,它具有交叉学科的特征。所获得的成果不仅为有关学科提供了定量分析的理论依据,而且也能为研究非线性偏微分方程带来新的研究思路和新的研究课题。 1.首次借助于构造适当的上、下控制函数、利用有界边值问题逼近方法,解决了Belensov-Zhabotinskii化学反应模型波前解的存在性,并给出子最小波速的值;同时还给出了一种求解显示行波解的方法。 2.利用摄动初值问题逼近、相空间的打靶法与变分思想,解决了退化的反应扩散方程行波解的存在性,并给出了最小波速的变分刻划和估计; 3.对带有非线性非局部项和非线性边界条件的抛物型方程和方程组的研究,主要利用上、下解方法。但是,上、下解的构造却有很大的灵活性和很高的技巧。我们首次借助于研究非负矩阵的性质,得到了方程组整体解存在的充分必要条件;首次通过构造在有限时刻爆破的精细上解和解的逐次延拓方法研究了解的整体存在性。同时,我们发表在美国数学会会刊上的一篇论文,还否定了Wolainskii于93年发表在SIAM J. Math. Anal.上的一个工作。发表在JMAA上的两篇论文,成功地解决了在边界上带有非线性强迫外力的非线性对流扩散问题。 4.反应扩散方程研究领域的一个基本问题是:扩散是否会引起爆破?多数人认为扩散不会引起爆破且是一个显而易见的问题,不须证明。但是数学结果

总是要证明的,有一部分人就致力于证明,给出了该结论成立的各式各样的充分条件。我们于96年发表在JMAA上的一篇论文给出了一个反例,说明扩散会引起爆破,彻底澄清了这个问题。 5.当反应扩散方程中反应项较扩散项占优时,利用经典有限元、有限差分或有限箱法离散时,解会出现数值振荡,常用的抑制振荡的方法有:S-G方法,SUPG方法等,但都存在局限性。我们从变分原理出发要求振荡最小,建立了新的离散数值理论; 6.半导体器件的漂移扩散模型是一个特殊形式,由非线性抛物型与椭圆型方程耦合起来的,反应扩散方程组,带有混合形式边界条件,特别是载流子又有不同的产生一复合过程,再加上热效应和磁场影响,难度大。我们建立了基于紧致性原理的正则化的统一框架。 该成果获江苏省科技进步二等奖。 非线性统计模型与非线性诊断方法 成果简介 本系统地研究了近代非线性回归模型的几何理论和渐近推断理论,把微分几何方法应用于非线性回归分析;系统地研究了具有广泛应用价值的指数族非线性模型,建立了该模型的几何结构,在此基础上,研究了这些模型基于统计曲率的渐近推断理论以及统计诊断的非线性方法;这些研究填补了国内空白,在国内外都有一定影响。近10年来共获得 3 项国家自然科学基金,1项 95 重点基金,2 项江苏省自然科学基金;出版专著2本,发表论文50多篇,其中国外14 篇,

奇异积分与奇异积分方程的高精度算法

奇异积分与奇异积分方程的高精度算法 奇异积分与奇异积分方程广泛地出现于数学物理、流体力学、断裂力学、电磁力学、化学、生物工程和石油工程等诸多学科和工程的数学模型中.由于这些数学模型大多是由实际问题转化而来的,要想 达到对实际问题估算的目的,计算奇异积分以及求解奇异积分方程就 成为研究数学模型的重要内容.本文主要介绍奇异积分以及奇异积分 方程的数值算法.本文主要研究了以下几个方面的内容:1.简要介绍 了边界元方法及其优点、奇异积分与奇异积分方程的研究背景和意义以及含Volterra型算子的积分方程的研究背景和意义三方面的内 容.2.研究了计算超奇异积分的数值方法.在积分算子的奇异点为被 积区间内任意一点的情况下,推导了该类超奇异积分的误差渐近展式(Euler-Maclaurin展式)以及求积公式.根据该误差渐近展式以及 求积公式的特点,推导了相应求积公式的外推公式,并给出了相应公 式的误差估计式.3.研究了混合奇异积分的数值算法.该类混合奇异 积分是指包含超奇异性和对数奇异性两种奇异类型的积分.依据超奇 异积分的Euler-Maclaurin展式关于参数的解析性质,推得该类混合 奇异积分的Euler-Maclaurin展式,还得到了对数奇异积分的误差渐 近展式.4.提出了平面定常Stokes方程的数值解方法.通过应用单层 位势理论和Stokes方程基本解的方法,将平面定常Stokes方程转化 为第一类的边界积分方程.该类积分方程是具有对数奇异性的奇异积 分方程,该类积分方程求解的数值方法分以下两种情况讨论:一种情 况是积分边界为光滑闭曲线Γ时,给出了奇异积分方程的机械求积法、

应用新展式法求非线性发展方程的精确解

https://www.doczj.com/doc/5d1275481.html, The exp(??(ξ))-expansion Method applied to Nonlinear Evolution Equations Mei-mei Zhao??,Chao-Li School of Mathematics and Statistics,Lanzhou University Lanzhou,Gansu730000,P.R.of China Abstract By using exp(??(ξ))-expansion method,we have obtained more travelling wave solu-tions to the mKdV equation,the Drinefel’d-Sokolov-Wilson equations,the Variant Boussinesq equations and the Coupled Schr¨o dinger-KdV system.The proposed method also can be used for many other nonlinear evolution equations. Keywords exp(??(ξ))-expansion method,Homogeneous balance,Travelling wave solu-tions,Solitary wave solutions,MKdV equation,Drinefel’d-Sokolov-Wilson equations,Variant Boussinesq equations,Coupled Schr¨o dinger-KdV system. 1Introduction It is well known that nonlinear evolution equations are involved in many?elds from physics to biology,chemistry,mechanics,etc.As mathematical models of the phenomena,the inves-tigation of exact solutions to nonlinear evolution equations reveals to be very important for the understanding of these physical problems.Understanding this importance,during the past four decades or so,many mathematicians and physicists have being paid special attention to the development of sophisticated methods for constructing exact solutions to nonlinear evo-lution equations.Thus,a number of powerful methods has been presented such as the inverse scattering transform[1],the B¨a cklund and the Darboux transform[2-5],the Hirota[6],the trun-cated painleve expansion[7],the tanh-founction expansion and its various extension[8-10],the Jacobi elliptic function expansion[11,12],the F-expansion[13-16],the sub-ODE method[17-20],the homogeneous balance method[21-23],the sine-cosine method[24,25],the rank anal-ysis method[26],the ansatz method[27-29],the exp-function expansion method[30],Algebro-geometric constructions method[31]and so on. In the present paper,we shall proposed a new method which is called exp(??(ξ))-expansion method to seek travelling wave solutions of nonliear evolution equations.the ?Corresponding Author. ?E-mail address:yunyun1886358@https://www.doczj.com/doc/5d1275481.html,(M.Zhao). 1

2. 奇异积分方程

§2 奇异积分方程 一、奇异积分方程的定义与例子 1° 如果积分方程的积分是积分区间为无限(或核K (x,ξ)为无界函数)的广义积分,那末称该方程为奇异积分方程,例如 ?∞= 0d )(s i n 2)(ξξξπy x x F (1) ?∞-=0d )()(ξξξy e x F x (2) 和 ? ∞-=0d )()(ξξξx y x F (3) 都是奇异积分方程。 2° 方程(1)的右边所定义的函数可以看作y(x)的傅立叶正弦变换。若当x>0时,F(x)逐段可微且?∞0)(dx x F 存在,则方程(1)有唯一的反演公式: ?∞= 0d )(sin 2)(ξξξπF x x y (x >0) 考虑齐次积分方程 ?∞=0 d )(s i n )(ξξξλy x x y (4) 从已知的公式 ?∞--+±±=+±02 222d 2sin 22][ξαπξπαπαξαx x e x x x e x (x>0,α>0) 可知πλ2±=确实是特征值。当π λ2=时,对任意正常数α,函数 2212)(x x e x y x ++= -απα (x >0) 满足方程(4);而当πλ2 -=时,对任意正常数α,函数 2222)(x x e x y x +-=-απ α (x >0) 也满足方程(4)。于是这两个λ值是无穷重的特征值,即每个值对应无穷多个特征函数。这个事实与Fr 方程的任一特征值只对应有限个独立特征函数是大不相同的。 3° 由方程(2)右边所定义的函数F (x )是函数y (x )的拉普拉斯变换。因为不是一切函数都能作拉普拉斯变换,两个不同函数不能有同一个拉普拉斯变换。所以对一个给定函数F(x),若(2)存在一个解,则解是唯一的。 考虑齐次积分方程 ?∞ -=0d )()(ξξλξy e x y x (x >0) (5) 根据伽马函数的定义有

相关主题
文本预览
相关文档 最新文档