当前位置:文档之家› 不锈钢及其热处理知识

不锈钢及其热处理知识

不锈钢及其热处理知识
不锈钢及其热处理知识

不锈钢及其热处理知识

美国钢铁学会是用三位数字来标示各种标准级的可锻不锈钢的。其中:

①奥氏体型不锈钢用200和300系列的数字标示,

②铁素体和马氏体型不锈钢用400系列的数字表示。例如,某些较普通的奥氏体不锈钢是以201、 304、 316以及310为标记,

③铁素体不锈钢是以430和446为标记,马氏体不锈钢是以410、420以及440C为标记,双相(奥氏体-铁素体),

④不锈钢、沉淀硬化不锈钢以及含铁量低于50%的高合

大家知道固态金属及合金都是晶体,即在其内部原子是按一定规律排列的,排列的方式一般有三种即:体心立方晶格结构、面心立方晶格结构和密排六方晶格结构。金属是由多晶体组成的,它的多晶体结构是在金属结晶过程中形成的。组成铁碳合金的铁具有两种晶格结构:910℃以下为具有体心立方晶格结构的α——铁,910℃以上为具有面心立方晶格结构的Υ——铁。如果碳原子挤到铁的晶格中去,而又不破坏铁所具有的晶格结构,这样的物质称为固溶体。碳溶解到α——铁中形成的固溶体称铁素体,它的溶碳能力极低,最大溶解度不超过0.02%。而碳溶解到Υ——铁中形成的固溶体则称奥氏体,它的溶碳能力较高,最高可达2%。奥氏体是铁碳合金的高温相。

钢在高温时所形成的奥氏体,过冷到727℃以下时变成不稳定的过冷奥氏体。如以极大的冷却速度过冷到230℃以下,这时奥氏体中的碳原子已无扩散的可能,奥氏体将直接转变成一种含碳过饱和的α固溶体,称为马氏体。由于含碳量过饱和,引起马氏体强度和硬度提高、塑性降低,脆性增大。

不锈钢的耐蚀性主要来源于铬。实验证明,只有含铬量超过12%时钢的耐蚀性能才会大大提高,因此,不锈钢中的含铬量一般均不低于12%。由于含铬量的提高,对钢的组织也有很大影响,当铬含量高而碳含量很少时,铬会使铁碳平衡,图上的Υ相区缩小,甚至消失,这种不锈钢为铁素体组织结构,加热时不发生相变,称为铁素体型不锈钢。

当含铬量较低(但高于12%),碳含量较高,合金在从高温冷却时,极易形成马氏体,故称这类钢为马氏体型不锈钢。

镍可以扩展Υ相区,使钢材具有奥氏体组织。如果镍含量足够多,使钢在室温下也具有奥氏体组织结构,则称这种钢为奥氏体型不锈钢。

不锈钢有两种分类法:一种是按合金元素的特点,划分为铬不锈钢和铬镍不锈钢;另一种是按在正火状态下钢的组织状态,划分为M不锈钢、F不锈钢、A不锈钢和A一F双相不锈钢。

一、马氏体不锈钢典型的马氏体不锈钢钢号有1Cr13~4Cr13和9Cr18等 1Cr13钢加工工艺性能良好。可不经预热进行深冲、弯曲、卷边及焊接。2Crl3冷变形前不要求预热,但焊接前需预热,ICrl3、2Cr13主要用来制作耐蚀结构件如汽轮机叶片等,而3Cr13、4Cr13主要用来制作医疗器械外科手术刀及耐磨零件;9Cll8可做耐蚀轴承及刀具。二、铁素体不锈钢铁素作不锈钢的含Cr量一般为13%~30%合碳量低于0.25%。有时还加入其它合金元素。金相组织主要是台铁素体,加热及冷却过程中没有α<=>γ转变,不能用热处理进

行强化。抗氧化性强,加入合金元素比可在有机酸及含Cl-的介质中有较强的抗蚀。同时,它还具有良好的热加工性及一定的冷加工性。铁体不锈钢主要用来制作要求有较高的耐蚀性而强度要求较低的构件,广泛用于制造生产硝酸、氮肥等设备和化工使用的管道等。典型的铁案体不锈钢有Crl7型、Cr25型和Cr28型,其成分性能及热处理工艺如表所示三,奥氏体不锈钢奥氏作不锈钢是克服马氏作不锈钢耐蚀性不足和铁素体不锈钢脆性过大而发展起来的。基本成分为Crl8%、Ni8%简称18-8钢。其特点是合碳量低于0.1%,利用Cr、Ni配合获得单相奥氏体组织。奥氏作不锈钢一般用于制造生产硝酸、硫酸等化工设备构件、冷冻工业低温设备构件及经形变强化后可用作不锈钢弹簧和钟表发条等。奥氏体不锈钢具有良好的抗均匀腐蚀的性能,但在局部抗腐蚀方面,仍存在下列问题: 1.奥氏体不锈钢的晶间腐蚀奥氏作不锈钢在450~850℃保温或缓慢冷却时,会出现晶问腐蚀。合碳量越高,晶间蚀倾向性越大。此外,在焊接件的热影响区也会出现晶间腐蚀。这是由于在晶界上析出富Cr的Cr23C6。使其周围基体产生贫铬区,从而形成腐蚀原电池而造成的。这种晶间腐蚀现象在前面提到的铁素体不锈钢中也是存在的。工程上常采用以下几种方法防止晶间腐蚀:(1)降低钢中的碳量,使钢中合碳量低于平衡状态下在奥氏体内的饱和溶解度,即从根本上解决了铬的碳化物(Cr23C6)在晶界上析出的问题。通常钢中合碳量降至0.03%以下即可满足抗晶间腐蚀性能的要求。(2)加入Ti、Nb等能形成稳定碳化物(TiC或NbC)的元素,避免在晶界上析出Cr23C6,即可防上奥氏体不锈钢的晶间腐蚀。(3)通过调整钢中奥氏体形成元素与铁素体形成元素的比例,使其具有奥氏体+铁索体双相组织,其中铁素体占5%一12%。这种双相组织不易产生晶间腐蚀。(4)采用适当热处理工艺,可以防止晶间腐蚀,获得最佳的耐蚀性。 2.奥氏体不锈钢的应力腐蚀应力(主要是拉应力)与腐蚀的综合作用所引起的开裂称为应力腐蚀开裂,简称SCC(Stress Crack Corrosion)。奥氏体不锈钢容易在含氯离子的腐蚀介质中产生应力腐蚀。当合Ni量达到8%一10%时,奥氏体不锈钢应力腐蚀倾向性最大,继续增加含Ni量至45%~50%应力腐蚀倾向逐渐减小,直至消失。防止奥氏体不锈钢应力腐蚀的最主要途径是加入Si2%~4%并从冶炼上将N含量控制在0.04%以下。此外还应尽量减少P、Sb、Bi、As等杂质的含量。另外可选用A-F 双用钢,它在Cl-和OH-介质中对应力腐蚀不敏感。当初始的微细裂纹遇到铁素体相后不再继续扩展,体素体含量应在6%左右。 3.奥氏作不锈钢的形变强化单相的奥氏体不锈钢具有良好的冷变形性能,可以冷拔成很细的钢丝,冷轧成很薄的钢带或钢管。经过大量变形后,钢的强度大力提高,尤其是在零下温区轧制时效果更为显著。抗拉强度可达 2 000 MPa以上。这是因为除了冷作硬化效果外,还叠加了形变诱发M转变。奥氏作不锈钢经形变强化后可用来制造不锈弹簧、钟表发条、航空结构中的钢丝绳等。形变后若需焊接,则只能采用点焊工艺、形变使应力腐蚀倾向性增加。并因部分γ->M转变而产生铁磁性,在使用时(如仪表零件中)应予以考虑。再结晶温度随形变量而改变,当形变量为60%时,其再结晶温度降为650℃冷变形奥氏体不锈钢再结晶退火温度为850~1050℃,850℃则需保温3h,1050℃时透烧即可,然后水冷。 4.奥氏体不锈钢的热处理奥氏体不锈钢常用的热处理工艺有:固溶处理、稳定化处理和去应力处理等。(1)固溶处理。将钢加热到1050~1150℃

后水淬,主要目的是使碳化物溶于奥氏体中,并将此状态保留到室温,这样钢的耐蚀性会有很大改善。如上所述,为了防止晶问腐蚀,通常采用固溶化处理,使Cr23C6溶于奥氏体中,然后快速冷却。对于薄壁件可采用空冷,一般情况采用水冷。(2)稳定化处理。一般是在固溶处理后进行,常用于含Ti、Nb的18-8钢,固处理后,将钢加热到850~880℃保温后空冷,此时Cr的碳化物完全溶解,脱而钛的碳化物不完全溶解,且在冷却过程中充分析出,使碳不可能再形成格的碳化物,因而有效地消除了晶间腐蚀。(3)去应力处理。去应力处理是消除钢在冷加工或焊接后的残余应力的热处理工艺一般加热到300~350℃回火。对于不含稳定化元素Ti、Nb的钢,加热温度不超过450t,以免析出铬的碳化物而引起晶间腐蚀。对于超低碳和合Ti、Nb不锈钢的冷加工件和焊接件,需在500~950℃,加热,然后缓冷,消除应力(消除焊接应力取上限温度),可以减轻晶间腐蚀倾向并提高钢的应力腐蚀抗力。四、奥氏体-铁素体双相不锈钢在奥氏作不锈钢的基础上,适当增加Cr含量并减少Ni含量,并与回溶化处理相配合,可获得具有奥氏体和铁素体的双相组织(含40~60%δ-铁素体)的不锈钢,典型钢号有0Cr21Ni5Ti、1Cr21Ni5Ti、OCr21Ni6Mo2Ti等。双相不锈钢与里氏体不锈钢相比有较好的焊接性,焊后不需热处理,而且其晶间腐蚀、应力腐蚀倾向性也较小。但由于含Cr量高,易形成σ相,使用时应加以注意。

不锈钢的合金化原理

提高钢耐蚀性的方法很多,如表面镇一层耐蚀金属、涂敷非金属层、电化学保护和改变腐蚀环境介质等。但是利用合金化方法,提高材料本身的耐蚀性是最有效的防止腐蚀破坏的措施之一,其方法如下;

(1)加入合金元素,提高钢基体的电极电位,从而提高钢的抗电化学腐蚀能力。一般住钢中加入Cr、Ni、Si多元素均能提高其电极电位。由于Ni较缺,Si的大量加入会使钢变脆,因此,只有Cr才是显著提高钢基体电极电位常用的元素。

Cr 能提高钢的电极电位,但不是呈线性关系。实验证明钢的电极电位随合金元素的增加,存在着一个量变到质变的关系,遵循1/8规律。当Cr含量达到一定值时即1/8原子(l /8、2/8、3/8……)时,电极电位将有一个突变。因此,几乎所有的不锈钢中,Cr含量均在12.%5(原子)以上,即11.7%(质量)以上。

(2)加入合金元素使钢的表面形成一层稳定的、完整的与钢的基体结合牢固的纯化膜。从而提高钢的耐化学腐蚀能力。如在钢中加入 Cr,Si.Al等合金元素,使钢的表层形成致密的Cr2O3,SiO2,Al2O3等氧化膜,就可提高钢的耐蚀性。

(3)加入合金元素使钢在常温时能以单相状态存在,减少微电池数目从而提高钢的耐蚀性。如加入足够数量的Cr或Cr-Ni,使钢在室温下获得单相铁素体或单相奥氏体。

(4)加入Mo、Cu等元素,提高钢抗非氧化性酸腐蚀的能力。

(5)加入Ti,Nb等元素,消除Cr的晶间偏析,从而减轻了晶问腐蚀倾向。

(6)加入Mn、N等元素,代替部分Ni获得单相奥氏体组织,同时能大大提高铬不锈钢在有机酸中的耐蚀性。

不锈钢、特殊合金牌号与美国、日本、欧洲对照表

类别中国美国日本欧洲

马氏体

不锈钢 Cr13型 410 SUS410 SAF2301

1Cr17Ni2 431 SUS431 SAF2321

9Cr18 440C SUS440c

0Cr17Ni4Cu4Nb 17-4PH SUH630

1Cr12Ni3MoWV XM32 DIN1.4313

2Cr12MoVNbN SUH600

2Cr12NiMoWV SUH616

双相钢 00Cr18Ni5Mo3Si2 S31500 3RE60

00Cr22Ni5Mo3N S31803 329J3L1 SAF2205 00Cr25Ni6Mo2N 329J1L1R-4

00Cr25Ni7Mo3N S31260 329J4L SAF2507 00Cr25Ni6Mo3CuN S32550

特种合金 ZG40Cr25Ni20 HK

ZG45Ni35Cr27N6 KP

ZG50N148Cr28W5

ZGN136Cr26Co15W5

ZG10Ni32Cr20Nb

ZG45Ni48Cr28W5Co5

铁素体 0Cr13 410S SUS410S

00Cr17Ti

00Cr18Mo2Ti

奥氏体

不锈钢 0Cr18Ni9Ti 321 SUS321 SAF2337 00Cr19Ni10 304L SUS304L

0Cr17Ni12Mo2 316 SUS316 SAF2343 0Cr17Ni14Mo2 316L SUS312L

00Cr19Ni13Mo3 317L SUS317L

ZG00Cr19Ni10 CF3 SCS19A

ZG00Cr17Ni14Mo2 CF3M SCS16A

0Cr25Ni20 310S SUS310S

00Cr20Ni18Mo6CuN S31254 254SMO 00Cr20Ni25Mo4.5Cu 904L 2RK65

00Cr25Ni22MoN S31050 2RE69

合金钢各种优质合金钢,工模具钢、低温钢、压力容器用钢、ASME规范材料,线材、板材、TIG焊丝及覆皮焊条。

不锈钢的热处理

合金元素对不锈钢组织和性能的影响 1铬 决定不锈钢耐蚀性的主要元素是铬。这是由于钢中含有足够量的铬时,钢在氧化性介质中就可形成以Cr2O3为基体的稳定的表面防护膜;同时,铬能够有效地提高固溶体(铁素体、马氏体或奥氏体)的电极电位,从而使钢不受腐蚀。铬对提高钢的电极电位是遵循n/8规律的。即当铬良达到n/8原子(1/8、2/8、3/8…或12.5%、25%、37.5%…)时,电极电位有一个跃增,见下图铬的原子浓度占1/8(即12.5%),若以质量计,为11.7%,所以铬不锈钢的含铬量都在12%以上。 2碳 碳的影响主要表现在两方面,一方面它是稳定奥氏体的元素,并且作用很大,相当于镍的30倍;另一方面,由于碳和铬的亲和力很强,它与铬可形成一系列的复杂碳化物,其成分随钢中含铬量的不同而异,含铬量少于10%

时,主要是渗碳体型碳化物(Fe,Cr)3C;在高铬钢中则形成复杂的碳化物(Cr,Fe)7C3或(Cr,Fe)23C6。因此,钢中含碳两越高,其抗腐蚀性就越低。对于不锈钢来说,要求耐蚀性是主要目底,故不锈钢的含碳量一般都较低,大多数仅为0.1~0.2%,一般不超过0.4%。只有在少数情况下,例如用作滚动轴承、弹簧和刃具时,由于要求高的硬度和耐磨性,才将含碳量提高至0.85%~0.95%(如9Cr18钢)。但为了保持一定的耐蚀性,这;类钢的含铬量也相应地要高些。 3镍 镍是形成奥氏体的合金元素,但镍的作用只有与铬配合时才会充分发挥出来,若单独使用镍而不使用铬,低碳镍钢要获得纯奥氏体的单相组织,含镍量需高达24%,事实上含镍量达到27%时才能提高钢的耐蚀性,故在不锈钢中没有单独以镍作为合金元素的。当镍和铬配合时,镍提高钢的耐蚀作用就显著地表现出来。 向铁素体不锈钢中加入少量的镍,即可使金相组织由单相铁素体转变为铁素体和奥氏体两相状态,这样就可通过热处理来改善和提高其机械性能。例如,单相铁素体的Cr17钢是不能通过热处理提高机械强度的,其抗拉强度只有400MN/m2左右,但加入2%镍的Cr17Ni2钢,经10000C油冷淬火和3000C回火后,抗拉强度可达1100MN/m2。这是由于镍的加入,组织具有γ→α的转变的缘故。

不锈钢和耐热钢热处理》热处理方法选择

《JB/T 9197-2005不锈钢和耐热钢热处理》热处理方法选择 《JB/T 9197-2005不锈钢和耐热钢热处理》是机械行业于2008年6月4日发布,11月1日实施的行业标准,其中规定了不锈钢和耐热钢热处理的方法及所用的设备、工艺、工艺材料、质量检验和安全技术。其中热处理方法的选择有: 一、热处理不可强化的不锈钢和耐热钢 1.要求提高抗腐蚀性能和抗塑性、消除冷作硬化的工件,应进行固溶处理。 2.对于形状复杂不宜固溶处理的工件,可边井于去应力退火。 3.含钦或妮的不锈钢,为了获得稳定的抗腐蚀性能,可进行稳定化退火。 二、热处理可强化的不锈钢和耐热钢 1.要求提高强度、硬度和抗腐蚀性能的工件,应进行淬火加低温回火处理。 2.要求较高的强度和弹性极限、而对抗腐蚀性要求不高的工件,应进行淬火加中温回火处理。 3.要求得到良好的力学性能和一定的抗腐蚀性能的工件,应进行淬火加高温回火处理。 4.要求消除加工应力、降低硬度和提高塑性的工件,可进行退火处理。 5.要求改善原始组织的工件,可进行正火加高温回火的预备热处理。 6.要求得到良好的力学性能和抗腐蚀性能的沉淀硬化型不锈钢工件,可进行固溶加时效,固溶加深冷处理或冷变形加时效等调整处理。 三焊接组合件 1.由热处理可强化的不锈钢和耐热钢构成的焊接组合件,根据工件图样的要求,可进行淬火加回火或去应力退火。 2.由热处理不可强化的不锈钢和耐热钢构成的焊接组合件,要求改善焊缝区域组织和抗腐蚀性能以及较充分地消除应力时,可进行固溶处理。对于形状复杂不宜进行固溶处理的焊接组合件,可采用去应力退火。 3.由热处理可强化与不可强化的不锈钢和耐热钢构成的焊接组合件,当要求以抗腐蚀性能为

各种热处理工艺介绍

第4章热处理工艺 热处理工艺种类很多,大体上可分为普通热处理(或叫整体热处理),表面热处理,化学热处理,特殊热处理等。 4.1钢的普通热处理 4.1.1退火 将金属或合金加热到适当温度,保温一定时间,然后缓慢冷却(一般为随炉冷却),的热处理工艺叫做退火。 退火的实质是将钢加热到奥氏体化后进行珠光体转变,退火后的组织是接近平衡后的组织。 退火的目的: z降低钢的硬度,提高塑性,便于机加工和冷变形加工; z均匀钢的化学成分及组织,细化晶粒,改善钢的性能或为淬火作组织准备; z消除内应力和加工硬化,以防变形和开裂。 退火和正火主要用于预备热处理,对于受力不大、性能要求不高的零件,退火和正火也可作为最终热处理。 一、退火方法的分类 常用的退火方法,按加热温度分为: 临界温度(Ac1或Ac3)以上的相变重结晶退火:完全退火、扩散退火、不完全退火、球化退火 临界温度(Ac1或Ac3)以下的退火:再结晶退火、去应力退火 碳钢各种退火和正火工艺规范示意图: 1、完全退火 工艺:将钢加热到Ac3以上20~30 ℃℃,保温一段时间后缓慢冷却(随炉)以获得接近平衡组织的热处理工艺(完全A化)。 完全退火主要用于亚共析钢(w c=0.3~0.6%),一般是中碳钢及低、中碳合金钢铸件、锻件及热轧型材,有时也用于它们的焊接件。低碳钢完全退火后硬度偏 低,不利于切削加工;过共析钢加热至Ac cm以上A状态缓慢冷却退火时,Fe3C Ⅱ

会以网状沿A晶界析出,使钢的强度、硬度、塑性和韧性显著降低,给最终热处理留下隐患。 目的:细化晶粒、均匀组织、消除内应力、降低硬度和改善钢的切削加工性。 亚共析钢完全退火后的组织为F+P。 实际生产中,为提高生产率,退火冷却至500℃左右即出炉空冷。 2、等温退火 完全退火需要的时间长,尤其是过冷A比较稳定的合金钢。如将A化后的钢较快地冷至稍低于Ar1温度等温,是A转变为P,再空冷至室温,可大大缩短退火时间,这种退火方法叫等温退火。 工艺:将钢加热到高于Ac3(或Ac1)的温度,保温适当时间后,较快冷却到珠光体区的某一温度,并等温保持,使A?P然后空冷至室温的热处理工艺。 目的:与完全退火相同,转变较易控制。 适用于A较稳定的钢:高碳钢(w(c)>0.6%)、合金工具钢、高合金钢(合金元素的总量>10%)。等温退火还有利于获得均匀的组织和性能。但不适用于大截面钢件和大批量炉料,因为等温退火不易使工件内部或批量工件都达到等温温度。 3、不完全退火 工艺:将钢加热到Ac1~Ac3(亚共析钢)或Ac1~Ac cm(过共析钢)经保温后缓慢冷却以获得近于平衡组织的热处理工艺。 主要用于过共析钢获得球状珠光体组织,以消除内应力,降低硬度,改善切削加工性。球化退火是不完全退火的一种 4、球化退火 使钢中碳化物球状化,获得粒状珠光体的一种热处理工艺。 ℃℃温度,保温时间不宜太长,一般以2~4h 工艺:加热至Ac1以上20~30 为宜,冷却方式通常采用炉冷,或在Ar1以下20℃左右进行较长时间等温。 主要用于共析钢和过共析钢,如碳素工具钢、合金工具钢、轴承钢等。过共析钢经轧制、锻造后空冷的组织是片层状的珠光体与网状渗碳体,这种组织硬而脆,不仅难以切削加工,在以后的淬火过程中也容易变形和开裂。球化退火得到球状珠光体,在球状珠光体中,渗碳体呈球状的细小颗粒,弥散分布在铁素体基体上。球状珠光体与片状珠光体相比,不但硬度低,便于切削加工,而且在淬火加热时,奥氏体晶粒不易粗大,冷却时变形和开裂倾向小。如果过共析钢有网状渗碳体存在时,必须在球化退火前采用正火工艺消除,才能保证球化退火正常进行。 目的:降低硬度、均匀组织、改善切削加工性为淬火作组织准备。 球化退火工艺方法很多,主要有: a)一次球化退火工艺:将钢加热到Ac1以上20~30 ℃℃,保温适当时间,然后随炉缓慢冷却。要求退火前原始组织为细片状珠光体,不允许有渗碳体网存在。

17_4PH不锈钢热处理工艺

第37卷第9期2012年 9 月 HEAT TREATMENT OF METALS Vol.37No.9 September 2012 17-4PH 不锈钢热处理工艺 张 敏,褚巧玲 (西安理工大学材料科学与工程学院,陕西西安710048) 摘要:介绍了不同的热处理工艺对17-4PH 马氏体沉淀硬化不锈钢力学性能及组织的影响,对其沉淀硬化机理进行了总结和探讨。17-4PH 不锈钢兼有强度高、耐蚀性好的优点。传统的工艺为固溶+时效处理,普遍采用的固溶温度为1040?,随着时效温度的提高和时效时间的延长,其强度和硬度升高,塑韧性降低。在传统工艺的基础上,增加调整处理,可以细化马氏体基体组织,提高材料的韧性及耐蚀性。对于17-4PH 钢的强化机理,普遍认为与ε-Cu 的析出有关,但对于其形貌的分析不尽相同。关键词:17-4PH 不锈钢;固溶处理;时效处理;调整处理中图分类号:TG142.71 文献标志码:A 文章编号:0254-6051(2012)09-0008-04 Heat treatment of 17-4PH stainless steel ZHANG Min ,CHU Qiaoling (College of Materials Science and Engineering ,Xi ’an University of Technology ,Xi ’an Shaanxi 710048,China ) Abstract :Effect of heat treatment on mechanical properties and microstructure of 17-4PH martensite stainless steel is introduced ,the mechanism of precipitation hardening of the steel is summarized and discussed.It was widely used owing to its high strength and excellent corrosion resistance.The traditional heat treatment of the steel is solution and aging.Generally ,solution temperature is 1040?.The strength and hardness increase gradually with aging temperature and time increasing ,while the impact property decreases.With the intermediate treatment among the solid solution and aging ,the impact property and the corrosion resistance are obviously increased due to the refined martensite lath.It is widely believed that the mechanism of precipitation hardening of 17-4PH martensite stainless steel is due to the precipitation of ε-Cu ,but the analysis about morphology of ε-Cu is various. Key words :17-4PH stainless steel ;solution treatment ;aging treatment ;intermediate treatment 收稿日期:2012-06-01 基金项目:陕西省自然科学基金(2012JM6003);西安市科技计划项目(CX1250②)作者简介:张 敏(1967—),男,陕西西安人,教授,博士,主要从事焊接 成形过程的力学行为及其结构质量控制、焊接凝固过程的组织演变行为及其先进焊接材料的研究,发表论文80余篇。联系电话:029-********,E-mail :zhmmn@xaut.edu.cn 17-4PH 不锈钢(ASTM )为马氏体沉淀硬化型不锈钢,相当于国标05Cr17Ni4Cu4Nb 。该类型的不锈钢含碳量较低,含Ni 、Cr 量高,焊接性好且具有较好的耐腐蚀性。同时该钢中Cu 和Nb 等合金元素含量也较高,这些合金元素在热处理过程中可析出时效硬化相ε-Cu 、NbC 、M 23C 6等,使材料具有较高的强度和硬度。基于以上优点,17-4PH 马氏体沉淀硬化不锈钢广泛应用于航空、航天、化学和核工业等领域。沉淀硬化不锈钢的力学性能与热处理状态有较大关系。17-4PH 马氏体沉淀硬化不锈钢的常规热处理工艺为固溶+时效处理,通过调整组织和控制析出相来提高强度、硬度和耐蚀性。目前对于17-4PH 不锈钢的热处理工艺研究已经相当成熟 [1-11] ,本文对其不同热处理工艺下的性能及机理进行总结,并加以简述。117-4PH 不锈钢的热处理 17-4PH 不锈钢的马氏体开始转变点在室温以上, 经固溶处理后基体组织基本上是马氏体组织,其强度 已经很高。在固溶处理的基础上进行不同的时效处理,可提高材料的强度,满足各种生产实际的需要。 17-4PH 不锈钢的化学成分(质量分数,%)为:≤0.07C ,≤1.00Mn ,≤1.00Si ,≤0.023P ,≤0.03S ,15.50 17.50Cr ,3.00 5.00Ni ,3.00 5.00Cu ,0.15 0.45Nb ,其主要沉淀硬化元素是铜、铌,有的为铝、钛等,利用这些元素的溶解度来实现强化过程。17-4PH 不锈钢加热到奥氏体温度时,由于这些强化元素在奥氏体中的溶解度较大,而在马氏体中的溶解度较小,当冷却到马氏体温度后,即得到过饱和铜、铌的马氏体组织,马氏体本身具有高强韧性,从而得到一定程度的强化;再经时效处理后,溶解在基体组织中的过饱和铜、铌等元素析出,使材料得到进一步强化。因此可通过不同的热处理工艺来满足各种性能要求。1.1固溶处理 固溶处理是17-4PH 钢不可或缺的一道热处理工艺。固溶时,加热温度应保证钢中的碳和合金元素充分溶于奥氏体中,但也不宜过高。17-4PH 钢的Ac 1约

不锈钢热处理知识

敏化处理:18-8钢系列的奥氏体不锈钢在450℃~850℃(此区间常称为敏化温度)短时间加热,使其具有晶间腐蚀倾向。这是因为碳在奥氏体不锈钢中的溶解度与温度有很大影响。奥氏体不锈钢在经400℃~850℃的温度范围内(敏化温度区域)时,会有高铬碳化物(Cr23C6)析出,当铬含量降至耐腐蚀性界限之下,此时存在晶界贫铬,会产生晶间腐蚀,严重时材料能变成粉末。该方法一般只在不锈钢晶间腐蚀试验时采用。 (2)固溶热处理:将奥氏体不锈钢加热到1100℃左右,使碳化物相全部或基本溶解,碳固溶于奥氏体中,然后快速冷却至室温,使碳达到过饱和状态(碳已经稳定了,没有能力和机会与铬形成高铬碳化物)。 不同的不锈钢固溶化的温度烧有不同, 304,316等奥氏体不锈钢一般是1050℃,奥氏体-铁素体双相不锈钢要高一点,可到1150℃. 固溶热处理:将奥氏体不锈钢加热到1100℃左右,使碳化物相全部或基本溶解,碳固溶于奥氏体中,然后快速冷却至室温,使碳达到过饱和状态(碳已经稳定了,没有能力和机会与铬形成高铬碳化物)。这种热处理方法为固溶热处理。 固溶热处理中的快速冷却似乎象普通钢的淬火,但此时的‘淬火’与普通钢的淬火是不同的,前者是软化处理,后者是淬硬(形成马氏体)。后者为获得不同的硬度所采取的加热温度也不一样,但没到1100℃。我是搞火电的,回答可能不太全面,谁知道的可以继续补充。 在电厂中,奥氏体不锈钢管进行冷弯加工,容易产生形变诱发马氏体相变(很拗口,其实就是产生了马氏体),容易引起耐蚀性的下降。ASME标准规定,当加工量超过一定量时就必须进行固溶处理 (3)稳定化处理:为避免碳与铬形成高铬碳化物,在奥氏体钢中加入稳定化元素(如Ti和Nb),在加热到875℃以上温度时,能形成稳定的碳化物。这是因为Ti(或Nb)

不锈钢管焊接工艺及热处理模板

不锈钢管焊接工艺及热处 理模板 1

不锈钢管焊接工艺及热处理 [我的钢铁] -02-03 15:10:20 不锈钢管热处理 不锈钢管热处理国外普遍采用带保护气体的无氧化连续热处 理炉, 进行生产过程中的中间热处理和最终的成品热处理, 由于能够获得无氧化的光亮表面, 从而取消了传统的酸洗工序。这一热处理工艺的采用, 既改进了钢管的质量, 又克服了酸洗对环境的污染。 根据当前世界发展的趋势, 光亮连续炉基本分为三种类型: ( 1) 辊底式光亮热处理炉。这种炉型适用于大规格、大批量钢管热处理, 小时产量为1.0吨以上。可使用的保护气体为高纯度氢气、分解氨及其它保护气体。能够配备有对流冷却系统, 以便较快地冷却钢管。 ( 2) 网带式光亮热处理炉。这种炉型适合于小直径薄壁精密钢管, 小时产量约为0.3-1.0吨, 处理钢管长度可达40米, 也能够处理成卷的毛细管。 2

( 3) 马弗式光亮热处理炉。钢管装在连续的把架上, 在马弗管 内运行加热, 能以较低的成本处理优质小直径薄壁钢管, 小时产量 约在0.3吨以上。 不锈钢焊管工艺技术——氩弧焊 不锈钢焊管要求熔深焊透, 不含氧化物夹杂, 热影响区尽可能小, 钨极惰性气体保护的氩弧焊具有较好的适应性, 焊接质量高、 焊透性能好, 其产品在化工、核工业和食品等工业中得到广泛应用。 焊接速度不高是氩弧焊的不足之处, 为提高焊接速度, 国外研 究开发了多种方法。其中由单电极单焊炬发展采用多电极多焊炬 的焊接方法在生产中应用。70年代德国首先采用多焊炬沿焊缝方向直线排列, 形成长形热流分布, 明显提高焊速。一般采用三电极 焊炬的氩弧焊, 焊接钢管壁厚S≥2mm, 焊接速度比单焊炬提高3-4倍, 焊接质量也得以改进。氩弧焊与等离子焊组合能够焊接更大壁厚的钢管, 另外, 在氩气中5-10%的氢气, 再采用高频脉冲焊接电源, 也可提高焊接速度。 多焊炬氩弧焊适用于奥氏体和铁素体不锈钢管的焊接。 不锈钢焊管工艺技术——高频焊 3

不锈钢热处理知识

敏化处理:18-8钢系列的奥氏体不锈钢在450C?850 C (此区间常称为敏化温度)短时间加热,使其具有晶间腐蚀倾向。这是因为碳在奥氏体不锈钢中的溶解度与温度有很大影响。奥氏体不锈钢在经400C?850C的温度范围内(敏化温度区域)时,会有高铭碳化物 (Cr23C6)析出,当铭含量降至耐腐蚀性界限之下,此时存在晶界贫铭,会产生晶间腐蚀,严重时材料能变成粉末。该方法一般只在不锈钢晶间腐蚀试验时采用。 (2)固溶热处理:将奥氏体不锈钢加热到1100C左右,使碳化物相全部或基本溶解,碳固溶于奥氏体中,然后快速冷却至室温,使碳达到过饱和状态(碳已经稳定了,没有能力和机会与铭形成高铭碳化物)。 不同的不锈钢固溶化的温度烧有不同,304,316等奥氏体不锈钢一般是1050 C,奥氏体-铁素体双相不锈钢要高一点,可到1150 C . 固溶热处理:将奥氏体不锈钢加热到1100 C左右,使碳化物相全部或基本溶解,碳固溶于奥氏体中,然后快速冷却至室温,使碳达到过饱和状态(碳已经稳定了,没有能力和机会与铭形成高铭碳化物)。这种热处理方法为固溶热处理。 固溶热处理中的快速冷却似乎象普通钢的淬火,但此时的淬火'与普通钢的淬火是不同的,前者是软化处理,后者是淬硬(形成马氏体)。后者为获得不同的硬度所采取的加热温度也不一样,但没到1100 C。 我是搞火电的,回答可能不太全面,谁知道的可以继续补充

在电厂中,奥氏体不锈钢管进行冷弯加工,容易产生形变诱发马氏体相变(很拗口,其实就是产生了马氏体),容易引起耐蚀性的下降。ASME标准规定,当加工量超过一定量时就必须进行固溶处理 (3)稳定化处理:为避免碳与铭形成高铭碳化物,在奥氏体钢中加入稳定化元素(如Ti和Nb),在加热到875C以上温度时,能形成稳定的碳化物。这是因为Ti (或Nb)能优先与碳结合,形成TiC (或NbC),从而大大降低了奥氏体中固溶碳的浓度(含量),起到了牺牲Ti (或Nb)保护Cr的目的。含Ti (或Nb)的奥氏体不锈钢(如:1Cr18Ni9Ti , 1Cr18Ni9Nb)经稳定化处理后比进行固溶热处理更具有良好的综合机械性能。 稳定化处理:为避免碳与铭形成高铭碳化物,在奥氏体钢中加入稳定化元素(如Ti和Nb),在加热到875 C以上温度时,能形成稳定的碳化物(由于Ti和Nb能优先与碳结合,形成TiC或NbC),大大降低了奥氏体中固溶碳的浓度(含量),从而起到了牺Ti和Nb保Cr 的目的。 经稳定化处理比进行固溶热处理的奥氏体不锈钢,具有更好的综合机 械性能。 (4)所以,有晶间腐蚀倾向的奥氏体不锈钢应进行固溶热处理或稳 定化处理

热处理工艺的特点

热处理工艺的特点 金属热处理是机械制造中的重要工艺之一,与其他加工工艺相比,热处理一般不改变工件的形状和整体的化学成分,而是通过改变工件内部的显微组织,或改变工件表面的化学成分,赋予或改善工件的使用性能。其特点是改善工件的内在质量,而这一般不是肉眼所能看到的。 为使金属工件具有所需要的力学性能、物理性能和化学性能,除合理选用材料和各种成形工艺外,热处理工艺往往是必不可少的。钢铁是机械工业中应用最广的材料,钢铁显微组织复杂,可以通过热处理予以控制,所以钢铁的热处理是金属热处理的主要内容。另外,铝、铜、镁、钛等及其合金也都可以通过热处理改变其力学、物理和化学性能,以获得不同的使用性能。 热处理的发展史 在从石器时代进展到铜器时代和铁器时代的过程中,热处理的作用逐渐为人们所认识。早在公元前770至前222年,中国人在生产实践中就已发现,铜铁的性能会因温度和加压变形的影响而变化。白口铸铁的柔化处理就是制造农具的重要工艺。 公元前六世纪,钢铁兵器逐渐被采用,为了提高钢的硬度,淬火工艺遂得到迅速发展。中国河北省易县燕下都出土的两把剑和一把戟,其显微组织中都有马氏体存在,说明是经过淬火的。 随着淬火技术的发展,人们逐渐发现淬冷剂对淬火质量的影响。三国蜀人蒲元曾在今陕西斜谷为诸葛亮打制3000把刀,相传是派人到成都取水淬火的。这说明中国在古代就注意到不同水质的冷却能力了,同时也注意了油和尿的冷却能力。中国出土的西汉(公元前206~公元24)中山靖王墓中的宝剑,心部含碳量为0.15~0.4%,而表面含碳量却达0.6%以上,说明已应用了渗碳工艺。但当时作为个人“手艺”的秘密,不肯外传,因而发展很慢。 1863年,英国金相学家和地质学家展示了钢铁在显微镜下的六种不同的金相组织,证明了钢在加热和冷却时,内部会发生组织改变,钢中高温时的相在急冷时转变为一种较硬的相。法国人奥斯蒙德确立的铁的同素异构理论,以及英国人奥斯汀最早制定的铁碳相图,为现代热处理工艺初步奠定了理论基础。与此同时,人们还研究了在金属热处理的加热过程中对金属的保护方法,以避免加热过程中金属的氧化和脱碳等。 1850~1880年,对于应用各种气体(诸如氢气、煤气、一氧化碳等)进行保护加热曾有一系列专利。1889~1890年英国人莱克获得多种金属光亮热处理的专利。 二十世纪以来,金属物理的发展和其他新技术的移植应用,使金属热处理工艺得到更大发展。一个显著的进展是1901~1925年,在工业生产中应用转筒炉进行气体渗碳;30年代出现露点电位差计,使炉内气氛的碳势达到可控,以后又研究出用二氧化碳红外仪、氧探头等进一步控制炉内气氛碳势的方法;60年代,热处理技术运用了等离子场的作用,发展了离子渗氮、渗碳工艺;激光、电子束技术的应用,又使金属获得了新的表面热处理和化学热处理方法。

不锈钢的热处理

不锈钢的热处理 304是奥氏体型不锈钢,想通过热处理来改变切削加工性能是不现实的。其他钢种可以通过退火或正火来改变组织,从而改变切削加工性能,是因为其他钢在加热和冷却过程中发生组织转变,因为组织决定了性能,因此改变了切削加工性能,而奥氏体不锈钢,室温是奥氏体,加热到高温也是奥氏体,不发生组织转变,所以热处理不能够改变其切削加工性能的,奥氏体不锈钢的热处理通常只有固溶处理、再结晶退火和去应力退火之类的,固溶处理是改变耐蚀性的,再结晶退火是消除加工硬化恢复塑性的,去应力退火是消除加工过程中产生的应力的,所以,期望通过热处理改变奥氏体不锈钢的切削加工性是不现实的。每种材料有各自的特点,热处理工艺也不一定通用,玉米面包饺子肯定不行,虽然也是面粉。奥氏体不锈钢的切削加工,只能够通过改变刀具、切削加工工艺参数来解决。 铸钢件铸造成型后,通常都是要进行热处理的。因为热处理前铸件晶粒较粗大、组织方向性明显、力学性能较低,根据铸件的不同要求制定热处理工艺。 普通要求铸钢件,采用退火处理,软化易于加工;要求强度的要正火处理,要求硬度的要淬火处理;固溶处理,提高耐腐蚀性能。 铸造不锈钢一般为奥氏体.在加热时无相变,因此不能通过热处理强化。只能以提高钢的耐腐蚀性能进行热处理: 固溶处理:其目的是使碳化物充分溶解并在常温下保留在奥氏体中,从而在常温下获单相奥氏体组织,使钢具有最高的耐腐蚀性能。 固溶处理的加热温度一般均较高,在1050-1100℃之间,并按含碳量的高低作适当调整。由于18-8不锈钢导热性很差,不仅要通过预热后再进行淬火加热,而且在固溶处理(淬火加热)时的保温时间要长。固溶处理时,要特别注意防止增碳。因为增碳将会增加18-8钢的晶间腐蚀倾向。冷却介质,一般采用清水。固溶处理后的组织一般是单相奥氏体,但对含有钛、铌、钼的不锈钢,尤其当是铸件时,还含有少量的铁素体。固溶处理后的硬度一般在135HBS左右 回火又称配火。金属热处理工艺的一种。将经过淬火的工件重新加热到低于下临界温度的适当温度,保温一段时间后在空气或水、油等介质中冷却的金属热处理。或将淬火后的合金工件加热到适当温度,保温若干时间,然后缓慢或快速冷却。一般用以减低或消除淬火钢件中的内应力,或降低其硬度和强度,以提高其延性或韧性。根据不同的要求可采用低温回火、中温回火或高温回火。通常随着回火温度的升高,硬度和强度降低,延性或韧性逐渐增高。钢铁工件在淬火后具有以下特点:①得到了马氏体、贝氏体、残余奥氏体等不平衡(即不稳定)组织。②存在较大内应力。③力学性能不能满足要求。因此,钢铁工件淬火后一般都要经过回火。 回火的作用在于:①提高组织稳定性,使工件在使用过程中不再发生组织转变,从而使工件几何尺寸和性能保持稳定。②消除内应力,以便改善工件的使用性能并稳定工件几何尺寸。③调整钢铁的力学性能以满足使用要求。 调质即淬火和高温回火的综合热处理工艺。不锈钢做不了调质热处理,因为达不到硬度。 高碳铬不锈钢中的铬含量很高,导热性差,锻后应及时退火,以免发生裂纹。 比如95cr18钢球化退火工艺

不锈钢热处理

抗大气、酸、碱、盐等介质腐蚀作用的不锈耐酸钢总称。要达到不锈耐蚀作用,含铬(Cr)量不少于13%;此外可加入镍(Ni)或钼(Mo)等来增加效果。由于合金种类及含量不同,种类繁多。 不锈钢特点:耐蚀好,光亮度好,强度高;有一定弹性;昂贵。 不锈钢材料特性: 1、铁素体型不锈钢:其含Cr量高,具有良好耐蚀性及高温抗氧化性能。 2、奥氏体不锈钢:典型牌号如1Cr18Ni9,1Cr18Ni9T1无磁性,耐蚀性能良好,温强度及高温抗氧化性能好,塑性好,冲击韧性好,且无缺口效应,焊接性能优良,因而广泛使用。这种钢一般强度不高,屈服强度低,且不能通过热处理强化,但冷压,加工后,可使抗拉强度高,且改善其弹性,但其在高温下冷拉获得的强度易化。不宜用于承受高载荷。 3、马氏体不锈钢:典型如2Cr13,GX-8,具磁性,消震性优良,导热性好,具高强度和屈服极限,热处理强化后具良好综合机械性能。加含碳量多,焊后需回为处理以消除应力、高温冷却易形成8氏体,因此锻后要缓冷,并应立即进行回火。主要用于承载部件。 例: SUS 301 弹性不锈钢 SUS 304 不锈钢 10Cr18Ni9 它是一种奥氏体不锈钢,淬火不能强化,只能消除冷作硬化和获得良好的抗蚀,淬火冷却必须在水是进行,以保证得到最好的抗蚀性;在900℃以下有稳定的抗氧化性。适于各种方法焊接;有晶间腐蚀倾向,零件长期在腐蚀介质、水中及蒸汽介质中工作时可能遭受晶界腐蚀破坏;钢淬火后冷变形塑性高,延伸性能良好,但切削加工性较差。 1Cr18Ni9 它是标准的18-8型奥氏体不锈钢,淬火后能强化,但此时具有良好的耐蚀性和冷塑性变形性能;因塑性和韧性很高,切削性较差;适于各种方法焊接;由于含碳量较0Cr18ni9高,对晶界腐蚀敏感性较焊接后需热处理,一般不适宜用作耐腐蚀的焊接件;在850℃以下空气介质、以及750℃以下航空燃料燃烧产物的气氛中肯有较稳定的抗氧化性。 Cr13Ni4Mn9 它属奥氏体不锈耐热钢,淬火不能强化,钢在淬火状态下塑性很高,可时行深压延及其它类型的冷冲压;钢的切削加工性较差;用点焊和滚焊焊接的效果良好,经过焊

奥氏体不锈钢的热处理工艺

奥氏体不锈钢的热处理工艺 依据化学成分、热处理目的的不同,奥氏体不锈钢常采用的热处理方式有固溶化处理、稳定化退火处理、消除应力处理以及敏化处理等。 1 固溶化处理 奥氏体不锈钢固溶化处理就是将钢加热到过剩相充分溶解到固溶体中的某一温度,保持一定时间之后快速冷却的工艺方法。奥氏体不锈钢固溶化热处理的目的是要把在以前各加工工序中产生或析出的合金碳化物,如(FeCr)23C6等以及σ相重新溶解到奥氏体中,获取单一的奥氏体组织(有的可能存在少量的δ铁素体),以保证材料有良好的机械性能和耐腐蚀性能,充分地消除应力和冷作硬化现象。固溶化处理适合任何成分和牌号的奥氏体不锈钢。 2 稳定化退火 稳定化退火是对含稳定化元素钛或铌的奥氏体不锈钢采用的热处理方法。采用这种方法的目的是利用钛、铌与碳的强结合特性,稳定碳,使其尽量不与铬结合,最终达到稳定铬的目的,提高铬在奥氏体中的稳定性,避免从晶界析出,确保材料的耐腐蚀性。 奥氏体不锈钢稳定化处理的冷却方式和冷却速度对稳定化效果没有多大影响,所以,为了防止形状复杂工件的变形或为保证工件的应力最小,可采用较小的冷却速度,如空冷或炉冷。 3 消除应力处理 确定奥氏体不锈钢消除应力处理工艺方法,应根据材质类型、使用环境、消除应力目的及工件形状尺寸等情况,注意掌握一些原则。 去除加工过程中产生的应力或去除加工后的残留应力。可采用固溶化处理加热温度并快冷,I类、II类奥氏体不锈钢可采用较缓慢的冷却入式。为保证工件最终尺寸的稳定性。可采用低的加热温度和缓慢的冷却速度。为消除很大的残留应力。消除在工作环境中可能产生新应力的工件的残余应力或为消除大截面焊接件的焊接应力,应采用因溶化加热温度,III 类奥氏体不锈钢必须快冷。这种情况最好选用I类或II类奥氏体不锈钢,加热后缓慢冷却,消除应力的效果更好。为消除只能采用局部加热方式工件的残留应力。应采取低温度加热并缓慢冷却的方式。 4 敏化处理 敏化处理实际上不属于奥氏体不锈钢或其制品在生产制造过程中应该采用的热处理方法。而是作为在检验奥氏体不锈钢抗晶间腐蚀能力进行试验时所采用的一个程序。 敏化处理实质上是使奥氏体不锈钢对晶间腐蚀更敏感化的处理。对—些特殊使用场合,为更严格地考核材料的抗晶间腐蚀能力,在某些标准中,对奥氏体尽锈钠的敏化制度规定得更为苛刻,依据工件将来使用的温度及材料的含碳里以及是否含钳元素等因素而采用不同的敏化制度。有的还对敏化处理的升、降温速度加以控制。所以,在判定奥氏体不锈钢晶间腐蚀倾向性大小时,应注意采用的敏化制度。 5 奥氏体不锈钢的冷加工强化及去应力处理 奥氏体不锈钢不能用热处理方法强化,但可以通过冷加工变形得以强化(冷作硬化、形变强化),会使强度提高、塑性下降。奥氏体不锈钢或制品(弹簧,螺栓等)经冷加工变形强化后,存在较大的加工应力,这种应力的存在导致在应力腐蚀环境中使用时,增加了应力腐蚀的敏

轴承钢热处理工艺

轴承钢热处理工艺EE轴承钢gcr15介绍 轴承钢GCr15,经调质和表面高频淬火后,表面硬度可达50~58HRC,并具有较高的耐疲劳性能和较好的耐磨性能。。GCr15(滚铬15,轴承钢),在临沂市场比45号钢还便宜,硬度、耐磨性、热处理工艺性都好。 有些特殊用钢,则用专门的表示方法,如滚动轴承钢,其牌号以G表示,不标含碳量,铬的平均含量用千分之几表示。如GCr15,表示含铬量为1.5%的滚动轴承钢。 GCr15钢是一种合金含量较少、具有良好性能、应用最广泛的高碳铬轴承钢。经过淬火加回火后具有高而均匀的硬度、良好的耐磨性、高的接触疲劳性能。该钢冷加工塑性中等,切削性能一般,焊接性能差,对形成白点敏感性能大,有回火脆性。 化学成分/元素含量(%)C:0.95-1.05 Mn:0.20-0.40 Si:0.15-0.35 S:<;=0.020 P:<;=0.027 Cr:1.30-1.65 其热处理制度为:钢棒退火,钢丝退火或830-840度油淬。热处理工艺参数: 1.普通退火:790-810度加热,炉冷至650度后,空冷—HB170-207 2.等温退火:790-810度加热,710-720度等温,空冷—HB207-229 3.正火:900-920度加热,空冷—HB270-390 4.高温回火:650-700度加热,空冷—HB229-285 5.淬火:860度加热,油淬—HRC62-66 6.低温回火:150-170度回火,空冷—HRC61-66 7.碳氮共渗:820-830度共渗1.5-3小时,油淬,-60度至-70度深冷处理+150度至+160回火,空冷—HRC&asymp;67 GCr15是滚动轴承轴. W(Cr) = 1.5%; 与不锈钢的区别: a.含碳量: 滚动轴承轴0.95%-1.15%;不锈钢0.1%-0.2%; b.含铬量: 滚动轴承轴0.4%-1.65%;不锈钢12.7%以上<;优点所在>;; —提示:含碳量和含铬量是防锈的关键—- 可以对比发现,滚动轴承轴的防锈能力远不及不锈钢. 轴承钢GCR15是否导磁:有磁性。 1CR17都有磁性。

热处理工艺之四把火

热处理工艺之四把火 热处理是机械零件和工模具制造过程中的重要工序之一。大体来说,它可以保证和提高工件的各种性能,如耐磨、耐腐蚀等。还可以改善毛坯的组织和应力状态,以利于进行各种冷、热加工。 一、热处理工艺的分类 热处理是将金属材料放在一定的介质内加热、保温、冷却,通过改变材料表面或内部的晶相组织结构,来改变其性能的一种金属热加工工艺。 热处理工艺大体分为整体热处理、表面热处理和化学热处理三大类。根据加热介质、加热温度和冷却方法的不同,每一大类又可区分为若干不同的热处理工艺。 整体热处理分为正火,退火,淬火,回火,调质,稳定化处理,固溶处理,水韧处理,失效处理。其中正火、退火、淬火、回火称为热处理中的“四把火”。表面热处理的主要方法有火焰淬火和感应加热热处理。化学热处理主要分为渗碳,渗氮,碳氮共渗等。 以下主要介绍整体热处理“四把火”及常见的调质热处理工艺的目的及应用范围。 二、整体热处理中“四把火“及调质热处理工艺的目的及应用范围 (1)正火 1)正火定义:正火又称为常化,是将工件加热至Ac3(Ac是指加热时自由铁素体全部转变为奥氏体的终了温度,一般是从727℃到912℃之间)或Acm(Acm 是实际加热中过共析钢完全奥氏体化的临界温度线 )以上30~50℃,保温一段时间后,从炉中取出在空气中或喷水、喷雾或吹风冷却的金属热处理工艺。 2)正火的目的:①去除材料的内应力;②增加材料的硬度。 3)正火的主要应用范围有:①用于低碳钢;②用于中碳钢;③用于工具钢、轴承钢、渗碳钢等;④用于铸钢件;⑤用于大型锻件;⑥用于球墨铸铁。 (2)退火 1)退火定义:指的是将金属缓慢加热到一定温度,保持足够时间,然后以适宜速度冷却(通常是缓慢冷却,有时是控制冷却)。 2)退火的目的:①降低硬度,改善切削加工性;②消除残余应力,稳定尺寸,减少变形与裂纹倾向;③细化晶粒,调整组织,消除组织缺陷;④均匀材料组织和成分,改善材料性能或为以后热处理做组织准备。 3)退火的主要应用范围:①完全退火主要用于亚共析钢的铸件、锻轧件、焊件,以消除组织缺陷,使组织变细和变均匀,以提高钢件的塑性和韧性;②不完全退火主要用于中碳和高碳钢及低合金结构钢的锻轧件,使晶粒变细,同时也降低硬度,消除内应力,改善被切削性;③球化退火只应用于钢的中退火方法,其中中碳钢和高碳钢硬度低、被切削性好、冷形变能力大;④去应力退火主要适用于毛坯件及经过切削加工的零件,目的是为了消除毛坯和零件中的残余应力,稳定工件尺寸及形状,减少零件在切削加工和使用过程中的形变和裂纹倾向。(3)淬火

不锈钢及其热处理知识

不锈钢及其热处理知识 美国钢铁学会是用三位数字来标示各种标准级的可锻不锈钢的。其中: ①奥氏体型不锈钢用200和300系列的数字标示, ②铁素体和马氏体型不锈钢用400系列的数字表示。例如,某些较普通的奥氏体不锈钢是以201、 304、 316以及310为标记, ③铁素体不锈钢是以430和446为标记,马氏体不锈钢是以410、420以及440C为标记,双相(奥氏体-铁素体), ④不锈钢、沉淀硬化不锈钢以及含铁量低于50%的高合 大家知道固态金属及合金都是晶体,即在其内部原子是按一定规律排列的,排列的方式一般有三种即:体心立方晶格结构、面心立方晶格结构和密排六方晶格结构。金属是由多晶体组成的,它的多晶体结构是在金属结晶过程中形成的。组成铁碳合金的铁具有两种晶格结构:910℃以下为具有体心立方晶格结构的α——铁,910℃以上为具有面心立方晶格结构的Υ——铁。如果碳原子挤到铁的晶格中去,而又不破坏铁所具有的晶格结构,这样的物质称为固溶体。碳溶解到α——铁中形成的固溶体称铁素体,它的溶碳能力极低,最大溶解度不超过0.02%。而碳溶解到Υ——铁中形成的固溶体则称奥氏体,它的溶碳能力较高,最高可达2%。奥氏体是铁碳合金的高温相。 钢在高温时所形成的奥氏体,过冷到727℃以下时变成不稳定的过冷奥氏体。如以极大的冷却速度过冷到230℃以下,这时奥氏体中的碳原子已无扩散的可能,奥氏体将直接转变成一种含碳过饱和的α固溶体,称为马氏体。由于含碳量过饱和,引起马氏体强度和硬度提高、塑性降低,脆性增大。 不锈钢的耐蚀性主要来源于铬。实验证明,只有含铬量超过12%时钢的耐蚀性能才会大大提高,因此,不锈钢中的含铬量一般均不低于12%。由于含铬量的提高,对钢的组织也有很大影响,当铬含量高而碳含量很少时,铬会使铁碳平衡,图上的Υ相区缩小,甚至消失,这种不锈钢为铁素体组织结构,加热时不发生相变,称为铁素体型不锈钢。 当含铬量较低(但高于12%),碳含量较高,合金在从高温冷却时,极易形成马氏体,故称这类钢为马氏体型不锈钢。 镍可以扩展Υ相区,使钢材具有奥氏体组织。如果镍含量足够多,使钢在室温下也具有奥氏体组织结构,则称这种钢为奥氏体型不锈钢。 不锈钢有两种分类法:一种是按合金元素的特点,划分为铬不锈钢和铬镍不锈钢;另一种是按在正火状态下钢的组织状态,划分为M不锈钢、F不锈钢、A不锈钢和A一F双相不锈钢。 一、马氏体不锈钢典型的马氏体不锈钢钢号有1Cr13~4Cr13和9Cr18等 1Cr13钢加工工艺性能良好。可不经预热进行深冲、弯曲、卷边及焊接。2Crl3冷变形前不要求预热,但焊接前需预热,ICrl3、2Cr13主要用来制作耐蚀结构件如汽轮机叶片等,而3Cr13、4Cr13主要用来制作医疗器械外科手术刀及耐磨零件;9Cll8可做耐蚀轴承及刀具。二、铁素体不锈钢铁素作不锈钢的含Cr量一般为13%~30%合碳量低于0.25%。有时还加入其它合金元素。金相组织主要是台铁素体,加热及冷却过程中没有α<=>γ转变,不能用热处理进

(完整word版)热处理试题

1.何谓钢的球化退火,其目的是什么? 主要适用于哪些钢材? 是使钢中碳化物球状化而进行的退火 目的:降低硬度、改善切削加工性,为以后淬火做准备,减小工件淬火畸变和开裂;主要用于共析钢、过共析钢的锻轧件及结构钢的冷挤压件等。 2.简述淬火冷却方法(至少说出五种)。 1)水冷:用于形状简单的碳钢工件,主要是调质件;2)油冷:合金钢、合金工具钢工件。3)延时淬火:工件在浸入冷却剂之前先在空气中降温以减少热应力;4)双介质淬火:工件一般先浸入水中冷却,待冷到马氏体开始转变点附近,然后立即转入油中缓冷;5)马氏体分级淬火:钢材或工件加热奥氏体化,随之浸入稍高或稍低于钢的上马氏体点的液态介质(盐浴或碱浴)中,保持适当时间,待钢件的内、外层都达到介质温度后取出空冷,以获得马氏体组织的淬火工艺。用于合金工具钢及小截面碳素工具钢,可减少变形与开裂;6)热浴淬火:工件只浸入150-180℃的硝烟或碱浴中冷却,停留时间等于总加热时间的1/3-1/2,最后取出在空气中冷却;7)贝氏体等温淬火:钢材或工件加热奥氏体化,随之快冷到贝氏体转变温度区域(260-400℃)等温保持,使奥氏体转变为贝氏体的淬火工艺。用于要求变形小、韧性高的合金钢工件 3.简述淬透性概念及其影响因素。 钢在淬火时能够获得马氏体的能力即钢被淬透的深度大小称为淬透性。其影响因素有:1. 亚共析钢含碳量↑,C曲线右移,过共析钢含碳量↑,C曲线左移;2.合金元素(除Co外)使C 曲线右移;3.奥氏体化温度越高、保温时间越长,碳化物溶解越完全,奥氏体晶粒越粗大,使C 曲线右移;4.原始组织越细,使C曲线右移,Ms点下降;5.拉应力加速奥氏体的转变,塑性变形也加速奥氏体的转变。 4.钢的回火分哪几类?说出低温回火的适用性(目的)。 (1)低温:150-250℃,用于工模具、轴承、齿轮等。(2)中温:250-500℃,用于中等硬度的零件、弹簧等。(3)高温:500-700℃,用于各种轴累、连杆、螺栓等。 低温回火的适用性(目的):消除淬火应力、稳定尺寸、减少变形和开裂,一定程度上减少残余奥氏体量。 5.什么是碳氮共渗中的黑色组织?它的危害性是什么?防止措施是什么 黑色组织是指碳氮共渗表层中出现的黑点、黑带和黑网。它会使工件弯曲疲劳强度、接触疲劳强度降低,耐磨性下降。为防止黑色组织的出现,渗层中氮含量不宜过高,也不宜过低。通过提高淬火温度或增强冷却能力抑制屈氏体网的出现。 6.简述零件感应加热淬火的基本原理。 是利用通入交流电的加热感应器在工件中产生一定频率的感应电流,感应电流的集肤效应使工件表面层被快速加热到奥氏体区后,立即喷水冷却,工件表层获得一定深度的淬硬层。 7.什么叫喷丸强化?对材料表面形貌与性能有什么影响? 利用高速喷射的细小弹丸在室温下撞击受喷工件的表面,使受层材料在再结晶温度下产生弹、塑性变形,并呈现较大的残余压应力,从而提高工件表面强度、疲劳强度和抗应力腐蚀能力的表面工程技术。8.为什么亚共析钢经正火后,可获得比退火高的强度与硬度? 由于正火的冷却速度比退火的冷却速度快,因而可以抑制铁素体的析出,增加珠光体量,且得到的珠光体组织更细小,所以可获得比退火高的强度与硬度。 9.高速钢刀具深冷处理为什么能提高刀具使用寿命? 高速钢刀具深冷处理后获得4%左右(体积分数)稳定残留奥氏体,稳定残留奥氏体中存在大量内部位错缠结而使其自身强化;深冷处理过程中转变的片状不完全孪晶马氏体,含碳及合金元素量较高,于是强化了α固溶体;深冷处理并回火后能析出比常规热处理尺寸小而多的片状MC型碳化物,使高速钢抗回火性、塑韧性和耐磨性提高。 10.简述激光热处理的原理,与感应加热淬火相比优点是什么?

相关主题
文本预览
相关文档 最新文档