当前位置:文档之家› TC-JT 316-2014_动车组高压电流互感器暂行技术条件

TC-JT 316-2014_动车组高压电流互感器暂行技术条件

TC-JT 316-2014_动车组高压电流互感器暂行技术条件
TC-JT 316-2014_动车组高压电流互感器暂行技术条件

标准性技术文件编号

TJ/CL 316-2014

动车组高压电流互感器暂行技术条件

目 录

1 范围 (1)

2 规范性引用文件 (1)

3 术语和定义 (1)

4 通用条款 (1)

5 技术要求 (3)

6 检验方法 (5)

7 检验规则 (7)

8 标识、包装、运输与储存 (8)

附录 A(规范性附录) CRH1系列车型高压电流互感器技术要求 (9)

动车组高压电流互感器暂行技术条件

1 范围

本技术条件规定了CRH系列动车组用高压电流互感器的技术要求、检验方法、检验规则、寿命要求、标识、运输与储存要求等。用于指导CRH系列动车组用高压电流互感器的设计、制造、检验、试验和认证。

本技术条件不能涵盖的内容,应参见供需双方技术协议。

2 规范性引用文件

本技术条件引用下列文件。凡是注日期的引用文件,仅所注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。

GB 1208—2006 电流互感器(IEC60044—1:2003,MOD)

GB/T 2423.1 —2008 电工电子产品环境试验 第2部分:试验方法 试验A:低温(IEC 60068-2-1:2007IDT)

GB/T 2423.2 —2008 电工电子产品环境试验 第2部分:试验方法 试验B:高温(IEC 60068-2-2:2007,IDT)

GB/T 2423.17—2008 电工电子产品环境试验 第2部分:试验方法 试验 Ka 盐雾

GB/T 2423.22—2002 电工电子产品环境试验 第2部分:试验方法 试验N:温度变化(IEC 60068-2-14:1987,IDT)

GB/T 21413.1—2008 铁路应用 机车车辆电气设备 第1部分:一般使用条件和通用规则(IEC 60077-1:1999,IDT)

GB/T 21413.2—2008 铁路应用 机车车辆电气设备 第2部分:电工器件 通用规则(IEC 60077-2:1999,IDT)

IEC61373:2010 轨道交通 机车车辆设备 冲击和振动试验

IEC 60044-1:2003 互感器 第1部分:电流互感器

DIN 5510-2:2009 轨道车辆防火措施第二部分:材料和构件的燃烧特性并发现象-分类、要求和测试方法

3 术语和定义

GB1208—2006、GB/T 21413.1—2008、GB/T 21413.2—2008确立的术语和定义适用于本技术条件。

4 通用条款

4.1 总则

本技术条件规定通用使用条件,对于特殊用途和使用条件的高压电流互感器根据供需双方签订的技术文件执行。

4.2 环境条件

4.2.1 海拔

海拔不超过1500m。

4.2.2 环境温度

使用环境温度:-40℃~+40℃。

4.2.3 相对湿度

月平均最大相对湿度不大于95%(该月月平均最低温度为25℃)。

4.2.4 最大风速

通常情况下15m/s,偶有33m/s。

4.2.5 运行环境

有风、沙、雨、雪天气,偶有盐雾、酸雨、沙尘暴等现象。

特殊使用环境:长期持续盐雾现象。

4.3 线路条件

4.3.1 供电制式

单相交流AC25 kV

频率50 Hz

4.3.2 供电方式

AT 2×25 kV

直接1×25 kV

4.3.3 接触网电压

标称电压25 kV

长期电压27.5 kV

短时(不大于5min)最高电压29 kV

瞬时(不大于5s)最高电压31 kV

最低工作电压19 kV

瞬时(不大于1min)最低电压 17.5 kV

4.3.4 接触网结构

分相供电区长度23km~58 km

相分段上的中性段总长度≤200 m

或无电区长度≥220 m

4.3.5 轨道条件

轨距1435 mm

4.4 适用速度

适用速度根据供需双方签订的技术文件执行。

5 技术要求

5.1 分类

按照电流互感器的设计类型,分为户外电流互感器和户内电流互感器。

5.2 结构

电流互感器二次出线端子的螺纹直径不应小于6mm。二次出线端子及紧固件应由铜或铜合金制成,并应有可靠的防锈镀层。

二次出线端子板应具有良好的防潮性能。

5.3 材料

非金属采用阻燃材料,对重量超过300g 的非金属材料应进行防火阻燃测试。

5.4 功能

在本技术条件规定的最大、最小温度下,电流互感器应能良好地测量线路电流,且幅值及相位误差在GB1208—2006规定的范围内。

5.5 性能要求

5.5.1 技术要求

表1 技术要求

名称 电流互感器

额定一次电流 详见附录A

额定二次电流 5A/1A

额定频率 50Hz

准确级 0.5级/1级

额定输出 详见附录A

额定短时热电流 ≥16kA(1s)

额定动稳定电流 ≥40kA

爬电距离(户外互感器) ≥1000mm

注:已定型动车组高压电流互感器性能参见附录A

5.5.2 端子标志

电流互感器的各端子极性和端子标志一致。

5.5.3 绝缘电阻要求

一次绕组对二次绕组及地的绝缘电阻不小于1000MΩ;

二次绕组对地的绝缘电阻不小于500MΩ。

5.5.4 绕组的额定绝缘水平

5.5.4.1 一次绕组的额定绝缘水平:

一次绕组绝缘的额定工频耐受电压75kV(方均根值)。

5.5.4.2 二次绕组的额定绝缘水平:

二次绕组绝缘的额定工频耐受电压应为3kV(方均根值)。

5.5.5 局部放电要求

局部放电允许水平不应超过GB1208—2006的相应规定值。

5.5.6 匝间绝缘要求

绕组匝间绝缘的额定耐受电压应为4.5kV(峰值)。

5.5.7 误差要求

电流互感器的误差限值不超过GB1208—2006的相应规定值。

5.5.8 额定短时热电流要求

电流互感器的额定短时热电流不应小于表1的值。

5.5.9 额定动稳定电流要求

电流互感器的额定动稳定电流不应小于表1的值。

5.5.10 温升限值

电流互感器在额定一次电流及额定负荷(COSф=1.0)下连续工作时,其各部位温升均不超过GB1208—2006的相应规定值。

5.5.11 额定雷电冲击电压

一次绕组应能承受标准雷电冲击电压170k V。

5.5.12 户外电流互感器湿试验

一次绕组的工频耐受电压75kV。

5.5.13 气候条件要求

5.5.13.1 高温贮藏

高温贮藏试验,应满足GB2423.2—2008的相应规定。

5.5.13.2 低温贮藏

低温贮藏试验,应满足GB2423.1—2008的相应规定。

5.5.13.3 高低温性能

高低温性能,应满足GB2423.22—2002的相应规定。

5.5.14 盐雾性能要求

若电流互感器在长期持续盐雾环境下使用,性能应满足GB/T 2423.17-2008的要求,严酷等级供需双方协商确定。

5.5.15 冲击和振动要求

电流互感器进行冲击和振动试验,试验结果应符合标准IEC61373:2010中的1类A级相关要求。

5.6 防火及环保要求

非金属材料应采用阻燃型材料。电线电缆应为低烟、无卤、阻燃型产品。

电子元器件宜采用环保器件,其装配工艺宜采用无铅焊接工艺。

5.7 使用寿命要求

在正常使用条件下,高压电流互感器的使用寿命不应低于30年。

5.8 其它

各车型高压电流互感器的补充技术要求见附录A。

6 检验方法

6.1 一般检查

6.1.1户外电流互感器过电压类别取OV4,污染等级取PD4,满足GB/T 21413.1—2008第8.2.6.3的规定。

6.1.2 一般要求检查可用常规量具和通过目测来检查。

6.2 端子标识检验

检查电流互感器的各端子极性和端子标识,需保持一致。

6.3 绝缘电阻测量

用2500V兆欧表进行测量:

一次绕组对二次绕组及地的绝缘电阻不小于1000MΩ;

二次绕组对地的绝缘电阻不小于500MΩ。

6.4 工频耐压试验

6.4.1 一次绕组工频耐压试验

按GB1208—2006执行,一次绕组工频耐受电压75kV,电流互感器应无击穿及闪络现象。

6.4.2 二次绕组工频耐压试验

按GB1208—2006执行,二次绕组工频耐受电压3kV,电流互感器应无击穿及闪络现象。

6.5 局部放电测量

按GB1208—2006执行,电流互感器局部放电允许水平不应超过其规定值。

6.6 匝间过电压试验

按GB1208—2006执行,二次绕组开路,对一次绕组施加频率为40Hz-60Hz的实际正弦波电流,其方均根值等于额定一次电流,持续时间60s。试验时,无击穿或闪络现象。

如果在达到其额定一次电流(或额定扩大一次电流)之前,试验电压已经达到4.5kV(峰值),则应限制施加的电流。

6.7 误差测定

按GB1208—2006执行,电流互感器误差限值不应超过其规定值。

6.8 额定短时热电流试验

按GB1208—2006执行,二次绕组端子短接,一次输入短时热电流,试验后的互感器在冷却到环境温度后,应符合标准要求。

6.9 额定动稳定电流试验

按GB1208—2006执行,动稳定试验应在二次绕组短路的情况下进行,施加的一次电流峰值至少有一个不小于额定动稳定电流值。试验后的互感器在冷却到环境温度后,应符合标准要求。

6.10 绕组温升试验

按GB1208—2006执行,电流互感器其各部位温升应不应超过其规定值。

6.11 额定雷电冲击试验

按GB1208—2006执行,试验后的电流互感器应满足其规定要求。

6.12 户外式电流互感器的湿试验

按GB1208—2006执行,试验后的电流互感器应满足其规定要求。

6.13 气候试验

6.13.1 高温贮藏试验

按GB2423.2—2008执行。

6.13.2 低温贮藏试验

按GB2423.1—2008执行。

6.13.3 高低温性能试验

按GB2423.22—2002执行。

完成6.13试验后,应满足电流互感器例行试验要求。

6.14 盐雾性能试验

按GB/T 2423.17—2008的规定进行。

6.15 冲击和振动试验

按照IEC61373:2010 进行冲击和振动试验,试验结果应符合标准中的1类A级相关要求。

7 检验规则

7.1 检验分类

应对电流互感器进行检验,检验分为例行试验和型式试验。

7.2 例行检验

每台电流互感器应进行例行检验,经质量检验部门检验合格并出具合格证后方可出厂。

7.3 型式试验

7.3.1 型式试验条件

电流互感器有下列情况之一时,应进行型式检验:

a)新产品定型;

b)当产品性能、结构、生产工艺或材料有重大改变;

c)产品或同类型产品停产两年以上恢复生产,以及连续生产四年以上,不能证明产品

性能、质量一致性的;

d)法律法规要求的。

7.3.2 试验原则

产品应经出厂检验合格后再进行型式试验。

型式试验时可任意抽取一台产品进行试验。

注:供需双方对型式试验样品数量有特殊约定的,供需双方协商确定。

7.4 检验项目

检验项目见表2。

表2 检验项目

序号 检验项目 检验方法 型式试验 例行试验

1 外观检查 6.1 √ √

2 端子标识检查 6.2 √ √

3 绝缘电阻测量 6.3 √ √

4 工频耐压试验 6.4 √ √

5 局部放电测量 6.5 √ √

6 匝间过电压试验 6.6 √ √

7 误差测定 6.7 √ √

8 额定短时热电流试验 6.8 √ -

-

9 额定动稳定电流试验 6.9 √

10 温升试验 6.10 √ -

-

11 额定雷电冲击试验 6.11 √

12 户外电流互感器的湿试验 6.12 √ -

-

13 气候试验 6.13 √

14 盐雾试验 6.14 √ -

-

15 冲击和振动试验 6.15 √

注1:标有“√”号的为强制性试验, 标有“○”号的供需双方协商确定。

8 标识、包装、运输与储存

8.1 标识

电流互感器铭牌等标识应安装在易于观察的位置,安装应牢固可靠。

铭牌内容至少包括:

a)产品名称;

b)产品型号;

c)产品序列号;

d)额定一次电流;

e)额定二次电流

f)准确级;

g)额定输出

h)生产日期;

i)供货商工厂名称(或商标代号)。

8.2 包装

电流互感器宜装入衬有防水材料的干燥、结实的专用包装箱内。

包装箱应标明“小心轻放”、“防潮”等标记。

包装箱内应附有检验员签章的产品合格证及产品说明书。

8.3 运输

电流互感器在运输过程中应注意按箱外的指示运输并防水,搬运时应轻拿轻放。

8.4 储存

电流互感器应放在通风且无有害气体的库房内,并保持清洁、干燥。

附 录 A

(规范性附录)

CRH1系列车型高压电流互感器技术要求

(包括CRH1A\CRH1B\CRH1E等动车组)

A.1 电流互感器安装尺寸

尺寸检验以产品来样附带的图纸为准。

图A.1 电流互感器的安装尺寸

A.2电流互感器技术要求

额定一次电流:800A

额定二次电流:5A

额定频率:50Hz

准确级:0.5级

额定输出:15V A

试验要求: IEC60044—1:2003 电流互感器

冲击和振动要求:IEC 61373:1999 振动冲击试验,1类A级防火要求:DIN5510—2 铁路车辆防火措施

速度要求:时速200-250公里动车组

零序电流互感器的原理及应用

零序电流互感器的原理及应用 在三相四线电路中,三相电流的相量和等于零,即Ia+Ib+IC=0 如果在三相四线中接入一个电流互感器,这时感应电流为零。当电路中发生触电或漏电故障时,回路中有漏电电流流过,这时穿过互感器的三相电流相量和不等零,其相量和为:Ia+Ib+Ic=I(漏电电流)这样互感器二次线圈中就有一个感应电压,此电压加于检测部分的电子放大电路,与保护区装置预定动作电流值相比较,如大于动作电流,即使灵敏继电器动作,作用于执行元件掉闸。这里所接的互感器称为零序电流互感器,三相电流的相量和不等于零,所产生的电流即为零序电流。 三相电路不对称时,电流均可分解正序、负序和零序电流。正序指正常相序的三相交流电(即A、B、C三相空间差120度,相序为正常相序),负序指三相相序与正常相序相反(三相仍差120度,仍平衡),零序指(A、B、C电流分解出来三个大小相同、相位相同的相量。零序电流互感器套在三芯电缆上,三相不平衡时在外部就表现出零序电流(因为相量相同加强) 零序电流互感器 零序电流互感器为一种线路故障监测器,一般儿只有一个铁芯与二次绕组,使用时,将一次三芯电缆穿过互感器的铁芯窗孔,二次通过引线接至专用的继电器,再由继电器的输出端接到信号装置或报警系统。在正常情况下,一次回路中三相电流基本平衡,其所产生合成磁通也近于零。在互感器的二次绕组中不感生电流,当一次线路中发生单相接地等故障时,一次回路中产生不平衡电流(意即零序电流),在二次绕组中感生微小的电流使继电器动作,发生信号。这个使继电器动作的电流很小(mA级),称作二次电流或零序电流互感器的灵敏度(也可用一次最小动作电流表示),为主要动作指标。 零序电流互感器保护的基本原理是基于基尔霍夫电流定律:流入电路中任一节点的复电

电流互感器和电压互感器

1.电流互感器 1.1 5A还是1A? 电流互感器的作用是将一次设备的大电流转换成二次设备使用的小电流,其工作原理相当于一个阻抗很小的变压器。其一次绕组与一次主电路串联,二次绕组接负荷。电流互感器的变比一般为X:5A(X不小于该设备可能出现的最大长期负荷电流),如此即可保证电流互感器二次侧电流不大于5A。 在超高压电厂和变电站中,如果高压配电装置远离控制室,为了增加电流互感器的二次允许负荷,减小连接电缆的导线界面及提高精确等级,多选用二次额定电流为1A的电流互感器。相应的,微机保护装置也应选用交流电流输入为1A的产品。 根据目前新建110kV变电站的规模及布局,绝大多数都是选用二次侧电流为5A的电流互感器。 1.2 10P10、0.5还是0.2S?在变电站中,电流互感器用于三种回路:微机保护、测量和计量,而这三种回路对电流互感器的准确级要求是不同的。根据准确级的不同可将电流互感器的绕组划分为10P10(保护)、0.5(测量)和0.2S(计量)。用于测量和计量的绕组着重于精度,用于保护的绕组着重于容量,以避免铁芯饱和影响实际变比。 1.3 星形还是三角形? 电流互感器二次绕组的接线常用的有三种,完全星形接线、不完全星形接线和三角形接线,如图2-1所示。 图2-1 完全星形接线:可以反映单相接地故障、相间短路及三相短路故障。目前,110kV线路、变压器、10kV电容器等设备配置的电流互感器均采用此接线方式。 不完全星形接线:反映相间短路及A、C相接地故障。目前,35kV及10kV架空线路在不考虑“小电流接地选线”功能(以后简称“选线”)的情况下多采用此接线方式,以节省一组电流互感器;否则,必须配置三组电流互感器,以获得零序电流实现“选线”功能。电缆出线时,配置了专用的零序电流互感器实现“选线”功能,也按此方式配置。 三角形接线:以往,这种接线用于采用Y,d11接线的变压器的差动保护,使变压器星形侧二次电流超前一次电流30°,从而和变压器三角形侧(电流互感器接成完全星形)二次电流相位相同。目前,主变微机差动保护本身可以实现因主变组别造成的相位角差的校正,主变星形侧和三角形侧电流互感器均采用完全星形接线。

电流互感器的选型

电流互感器的选型 在电压互感器选型的时候需要依据一次接线方式(包括Y型连接和V 型连接)、一次电压的用电等级、二次线路对容量的要求以及对变换精度的要求来作出选择选择。 电流互感器主要装配于不同的开关设备当中,电流互感器的型号不同,电流互感器在结构上往往也产生较大差异(包括铜排搭接形式、铁心、外形等及动热稳定的耐受能力)。例如中置式手车柜配备的电流互感器多为LZZBJ9或AS12等型号,然而配备固定柜的型号会有很多。 同一型号与规格的电压互感器不相同之处也会有很多。一般主要由于变比不同、二次线圈的容量、保护线圈以及计量线圈精度的不同会出现多种组合。在选择电流互感器的变比时,应该首先得到实际负载额定电流,这种电流最好处于电流互感器测量范围的65%-85%处。例如:额定电流为70A,就应该选择100/5变比的电压互感器。 电流互感器变比100/5(100/5的意思是一次电流100A时,产生的二次输出电流为5A,这个数值描述的是变比数值、额定测量数值和额定输出值。电流互感器和电流表的变比是必须选用的。)表示在100*120%的电流范围内,测量的精度可以满足电流互感器铭牌上所标识的测量精度,例如:0.2级(测量精度误差为0.2%),0.5级(测

量精度误差为0.5%)。如果超过该电流的测量结果就可能与实际电流产生较大误差。如果过高的电流进入铁心的饱和区,测量的数据就没有意义了。 1)电流互感器的接线应遵守串联原则:即一次绕阻应与被测电路串联,而二次绕阻则与所有仪表负载串联; 2)按被测电流大小,选择合适的变化,否则误差将增大。同时,二次侧一端必须接地,以防绝缘一旦损坏时,一次侧高压窜入二次低压侧,造成人身和设备事故; 3)二次侧绝对不允许开路 4)为了满足测量仪表、继电保护、断路器失灵判断和故障录波等装置的需要,在发电机、变压器、出线、母线分段断路器、母联断路器、旁路断路器等回路中均设具有2~8个二次绕阻的电流互感器。对于大电流接地系统,一般按三相配置;对于小电流接地系统,依具体要求按二相或三相配置。

高压配电柜中电流互感器工作原理及接线方法简介

高压配电柜中电流互感器工作原理及接线方法简介 -标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

高压配电柜中电流互感器工作原理及接线方法简介 1、只有AB两相是的电流互感器接线原理 比如电流互感器只接AB两相,如果三相平衡就很好理解只要知道一相,其他两相都一样,如不平衡A相10A ,B相20A这A相的10A回到原点还是要通过BC相回来的B相这20A也还是要通过AC 相回来的,某一相电流的上升必然会影响到其他两相,这样就可以间接地测量出另一相的电流了,在有中线N的情况下这样得出的结果就不是另一相的电流了。 2、电流互感器的接线方式 1、一般情况下,电流互感器是LI流进,L2流出;二次侧接U2流出,U1接星行公共端(即负极性)。 2、你一次侧L2流进,LI流出,就是我们常说的一次“极性反了”,虽然二次接法正确,但电流方向正好是反方向了。 3、三相接成星形或者接成两相,测量的是ABC各相的相电流接成三角测的是三相的不平衡电流 3、零序电流互感器的接线方式 1、原理:零序电流保护的基本原理是基于基尔霍夫电流定律:流入电路中任一节点的复电流的代数和等于零。在线路与电气设备正常的情况下,各相电流的矢量和等于零,因此,零序电流互感器的二次侧绕组无信号输出,执行元件不动作。当发生接地故障时的各相电流的矢量和不为零,故障电流使零序电流互感器的环形铁芯中产生磁通,零序电流互感器的二次侧感应电压使执行元件动作,带动脱扣装置,切换供电网络,达到接地故障保护的目的。 2、作用:当电路中发生触电或漏电故障时,保护动作,切断电源。 3、使用:可在三相线路上各装一个电流互感器,或让三相导线一起穿过一零序电流互感器,也可在中性线N上安装一个零序电流互感器,利用其来检测三相的电流矢量和。 2

《特高压电流互感器》word版

1 概述 750kV电压等级的输变电示范工程官厅—兰州东线路,于2005年开始投运, 目前已运行三周年,电流互感器一直没有校准。现在,又相继建成设了官厅—西宁、兰州东—银川等10余条750kV的输变电线路。特高压变电站GIS主回路中 电流互感器的现场检定试验引起西北网公司的重视。 750kV特高压变电站设备主要采用气体绝缘封闭式组合电器GIS或HGIS。在进行GIS主回路中电流互感器的现场检定试验时,试验回路较长,所用调压器和升流器的容量很多。大电流升流问题成为电流互感器现场校准难题。此前国际上一直没有成功地完成过此项现场全电流试验工作的报道。 用串联补偿的方法减小升流器的容量,在390m的回路上电流成功地升至4600A,完成兰州东750kV变电站电流互感器的首次全电流计量检定工作。 2 依据标准 GB50150-2006《电气装置安装工程电气设备交接试验标准》 SD109《电能计量装置检验规程》 JJG1021—2007《电力互感器》 《电能计量装置现场检验作业指导书》 3 主要参数 电流互感器参数 电流互感器的额定电流比为4000/1、2000/1(抽头),准确度等级为0.2S 级/0.5级,额定负荷为20VA/30VA,额定电压为800kV,绝缘水平为830kV(1min 工频耐受电压)、1550kV(操作冲击)和2100kV(雷电冲击),额定短时耐受电流为50kA(2秒),SF6气体额定压力为0.5MPa。被检电流互感器的安装位置及编号如表1-1所示。 回路参数 兰州东750kV变电站内需要进行现场校验的电流互感器位于750kV侧兰州东—官亭线的第一串,变电站内的750kV侧均采用GIS管道的形式 主接线采用3/2接线方式。电流互感器分布位置见图1。

如何正确选择及使用电流互感器,民熔

如何正确选择及使用电流互感器,民熔 1.前言近几年来,随着我国电力工业中城网及农网的改造,以及供电系统的自动化程度不断提高,电流互感器作为电力系统的一种重要电气设备,已被广泛地应用于继电保护、系统监测和电力系统分析之中。 电流互感器作为一次系统和二次系统间联络元件,起着将一次系统的大电流变换成二次系统的小电流,用以分别向测量仪表、继电器的电流线圈供电,正确反映电气设备的正常运行参数和故障情况,使测量仪表和继电器等二次侧的设备与一次侧高压设备在电气方面隔离,以保证工作人员的安全。同时,使二次侧设备实现标准化、小型化,结构轻巧,价格便宜,便于屏内安装,便于采用低压小截面控制电缆,实现远距离测量和控制。当一次系统发生短路故障时,能够保护测量仪表和继电器等二次设备免受大电流的损害。下面就有关电流互感器的选择和使用作一浅薄探讨,以策各位读者朋友。 2电流互感器的原理互感器,一般W14W2,可见电流互流感器为一“变流”器,基本原理与变压器相同,工作状况接近于变压器短路状态,原边符号为L1、L2,副边符号为K1、K2。互感器的原边串接入主线路,被测电流为I1,原边匝数为W1,副边接内阻很小的电流表或功率表的电流线圈,副边电流为I2,副边匝数为W2。 原副边电磁量及规定正方向由电工学规定。 由原理可知,当副边开路时,原边电流I1中只有用来建立主磁通m的磁化电流I0,当副边电流不等于零时,则产生一个去磁磁化力I2W1,它力图改变m,但U1一定时,m是基本不变的,即保持IOW1 不变,因为I2的出现,必使原边电流I1增加,以抵消I2W2的去磁作用,从而保证IOW1不变,故有:IW=IW+(-IW)(1) 即IO=I1+WI/W(2)在理想情况下,即忽略线圈的电阻,铁心损耗及漏磁通可得:IW=-I2W2 有:T1/T2=-W2/W1 3电流互感器的选择3.1电流互感器选择与检验的原则1)电流互感器额定电压不小于装设点线路额定电压;2)根据一次负荷计算电流IC选择电流互感器变化;3)根据二次回路的要求选择电流互感器的准确度并校验准确度;4)校验动稳定度和热稳定度。 3.2电流互感器变流比选择电流互感器一次额定电流I1n和二次额定电流I2n之比,称为电流互感器的额定变流比,Ki=Iln/I2n ~N2/N1。 式中,N1和N2为电流互感器一次绕组和二次绕组的匝数。 电流互感器一次侧额定电流标准比(如20、30、40、50、75、100、150(A)、2Xa/C)等多种规格,二次侧额定电流通常为1A或5A。其中2Xa/C表示同一台产品有两种电流比,通过改变产品顶部储油柜外的连接片接线方式实现,当串联时,电流比为a/c,并联时电流比为2Xa/C。一般情况下,计量用电流互感器变流比的选择应使其一次额定电流I1n不小于线路中的负荷电流(即计算IC)。如线路中负荷计算电流为350A,则电流互感器的变流比应选择400/5。保护用的电流互感器为保证其准确度要求,可以将变比选得大一些。 表1电流互感器准确级和误差限值3.3电流互感器准确度选择及校验所谓准确度是指在规定的二次负荷范围内,一次电流为额定值时的最大误差。我国电流互感器的准确度和误差限值如表1所示,对于不同的测量仪表,应选用不同准确度的电流互感器。 准确度选择的原则:计费计量用的电流互感器其准度为0.2~0.5级;用于监视各进出线回路中负荷电流大小的电流表应选用1.0-3.0级电流互感器。为了保证准确度误差不超过规定值,一般还校验电流互感器二次负荷(伏安),互感器二次负荷S2不大于额定负荷S2n,所选准确度才能得到保证。准确度校验公式:52≤s2n。 二次回路的负荷1:。取决于二次回路的阻抗Z2的值,则:S2=In'|z.|~In-(Z|zil+R+Rc) 或SV~Si+Ian'(R,+Rx)式中,Si、Zi为二次回路中的仪表、继电器线圈的额定负荷和阻抗,RXC为二次回路中所有接头、触点的接触电阻,一般取0.12,L为二次回路导线电阻,计算公式化为:Rm=L/(r×s)。

电流互感器工作原理

电流互感器 1、原理 一次电流I 1流过一次绕组,建立一次磁动势 (N 1I 1),亦被称为一次安匝,其中N 1为一次绕组的匝数;一次磁动势分为两部分,其中小一部分用于励磁,在铁心中产生磁通,另一部分用来平衡二次磁动势(N 2I 2),亦被称为二次安匝,其中N 2为二次绕组的匝数。励磁电流设为I 0,励磁磁动势(N 1I 0),亦被称为励磁安匝。平衡二次磁动势的这部分一次磁动势,其大小与二次磁动势相等,但方向相反。磁势平衡方程式如下: 120121I N I N I N ? ? ? += 在理想情况下,励磁电流为零,即互感器不消耗能量,则有 12120I N I N ? ? += 若用额定值表示,则 1212 N N I N I N ? ? =- 其中1N I ? ,2N I ? 为一次、二次绕组额定电流。

额定一次、二次电流之比为电流互感器额定电流比,12N N N I K I = P 1 1I ? P 2 2 I ? Z B 电流互感器工作原理 E 2 11I N ? 22I N ? 22I N ? - 01I N ?

电流互感器的等值电路如下图所示: Z 1 Z 2 1 I ? 2I ? ? Z M 2U ? Z B ' 1 E ? 2E ? 根据电工原理,励磁电流在铁心中建立主磁通,它穿过一次、二次绕组的全部线匝。由于互感器铁心有磁滞和涡流损耗,励磁电流的一部分供给这些损耗,称为有功部分,另一部分用于励磁,称为无功部分。所以励磁电流与主磁通相差角,这个角称为铁损角。主磁通在二次绕组中感应出电动势2E ? ,相位相差90(滞后);则: 222()B E I Z Z ? ? =+ 式中 Z 2---二次绕组的内阻抗, Z 2= R 2 +jX2

零序电流互感器原理、作用及如何使用

一零序电流互感器原理、作用及如何使用 答:原理:零序电流保护的基本原理是基于基尔霍夫电流定律:流入电路中任一节点的复电流的代数和等于零。在线路与电气设备正常的情况下,各相电流的矢量和等于零,因此,零序电流互感器的二次侧绕组无信号输出,执行元件不动作。当发生接地故障时的各相电流的矢量和不为零,故障电流使零序电流互感器的环形铁芯中产生磁通,零序电流互感器的二次侧感应电压使执行元件动作,带动脱扣装置,切换供电网络,达到接地故障保护的目的。 作用:当电路中发生触电或漏电故障时,保护动作,切断电源。 使用:可在三相线路上各装一个电流互感器,或让三相导线一起穿过一零序电流互感器,也可在中性线N上安装一个零序电流互感器,利用其来检测三相的电流矢量和. 二零序电流互感器它的零序的涵义是什么?它主要的功能与作用是什么? 答:如果在三相四线中接入一个电流互感器,这时感应电流为零。当电路中发生触电或漏电故障时,回路中有漏电电流流过,这时穿过互感器的三相电流相量和不等零,其相量和为:Ia+Ib+Ic=I(漏电电流) 这样互感器二次线圈中就有一个感应电压,此电压加于检测部分的电子放大电路,与保护区装置预定动作电流值相比较,如大于动作电流,即使灵敏继电器动作,作用于执行元件掉闸。这里所接的互感器称为零序电流互感器,三相电流的相量和不等于零,所产生的电流即为零序电流。 产生零序电流的两个条件: 1、无论是纵向故障、还是横向故障、还是正常时和异常时的不对称,只要有零序电压的产生; 2、零序电流有通路。 以上两个条件缺一不可。因为缺少第一个,就无源泉;缺少第二个,就是我们通常讨论的“有电压是否一定有电流的问题。 零序公式:3U0=UA+UB+UC,3I0=IA+IB+IC 三:在矿用开关里的馈电开关中,零序电流互感器与三相电抗器的作用分别是什么?零序电流与零序电压的区别是什么?选择性漏电是怎么实现的? 答:零序电流互感器的作用是使电流实现方向保护,真正实现选择性漏电保护,三相电抗器的作用是能在电路中起到阻抗的作用的。零序电流是三相电流不平衡所产生的,如漏电、三相电压不平衡时所产生。选择性漏电是通过电流的方向实现的,在总开关时,电流是从电源到负荷端流入进行检测,在分开关时,电流是从负荷端到电源端流入进行检测,零序电流互感器一般都用在检测零序电流从负荷端流入时实现选择性漏电的。

特高压直流输电

特高压直流输电的技术 随着国民经济的持续、高速增长,电力需求日益旺盛,电力工业的发展速度加快。2004年新增发电装机容量50 5GW,全国发电总装机容量达到440GW;2005年新增发电装机容量约70GW,全国发电总装机容量突破500GW;预计到2010年、2020年,全国发电总装机容量将分别达到700GW和1200GW。 新增电力装机有很大数量在西部大水电基地和北部的火电基地。这些集中的大电站群装机容量大,距离负荷中心远。如金沙江的溪洛渡、向家坝水电厂,总装机容量达到18.6GW,计划送电到距电厂1000~2000km的华中、华东地区;云南的水电有约20GW容量要送到1500km外的广东;筹划中的陕西、山西、宁夏、内蒙古的大火电基地将送电到华北、华中和华东的负荷中心,距离近的约1000km,远的超过2000km。 在这种背景下,要求输电工程具有更高的输电能力和输电效率,实现安全可靠、经济合理的大容量、远距离送电。特高压直流输电是满足这种要求的关键技术之一。 1 特高压直流输电的技术特点 特高压直流输电的电压等级概念与交流输电不一样。对于交流输电来说,一般将220kV 及以下的电压等级称为高压,330~750kV的称为超高压,1000kV及以上的称为特高压。直流输电则稍有不同,±100kV以上的统称为高压;±500kV和±600kV仍称为高压,一般不称为超高压;而超过±600kV的则称为特高压。 对于单项直流输电工程而言,通常根据其送电容量、送电距离等因素进行技术、经济方面的综合比较,对工程进行个性化设计而确定相应的直流电压等级。我国对特高压直流输电的电压等级进行研究和论证时,考虑到我国对直流输电技术的研发水平和直流设备的研制能力,认为确定一个特高压直流电压水平是必要的,并把±800kV确定为我国特高压直流输电的标称电压。这有利于我国特高压直流输电技术和设备制造的标准化、规范化、系列化开发,有利于进行我国特高压直流输电工程的规划、设计、实施和管理。 特高压直流输电技术不仅具有高压直流输电技术的所有特点,而且能将直流输电技术的优点更加充分发挥。直流输电的优点和特点主要有[1]:①输送容量大。现在世界上已建成多项送电3GW的高压直流输电工程。②送电距离远。世界上已有输送距离达1700km的高压直流输电工程。我国的葛南(葛洲坝—上海南桥)直流输电工程输送距离为1052km,天广(天生桥—广东)、三常(三峡—常州)、三广(三峡—广东)、贵广(贵州—广东)等直流输电工程输送距离都接近1000km。③输送功率的大小和方向可以快速控制和调节。④直流输电的接入不会增加原有电力系统的短路电流容量,也不受系统稳定极限的限制。⑤直流输电可以充分利用线路走廊资源,其线路走廊宽度约为交流输电线路的一半,且送电容量大,单位走廊宽度的送电功率约为交流的4倍。如直流±500kV线路走廊宽度约为30m,送电容量达3GW;而交流500kV线路走廊宽度为55m,送电容量却只有1GW。⑥直流电缆线路不受交流电缆线路那样的电容电流困扰,没有磁感应损耗和介质损耗,基本上只有芯线电阻损耗,绝缘水平相对较低。⑦直流输电工程的一个极发生故障时,另一个极能继续运行,并通过发挥过负荷能力,可保持输送功率或减少输送功率的损失。⑧直流系统本身配有调制功能,可以根据系统的要求做出反应,对机电振荡产生阻尼,阻尼低频振荡,提高电力系统暂态稳定水平。⑨能够通过换流站配置的无功功率控制进行系统的交流电压调节。⑩大电网之间通过直流输电互联(如背靠背方式),2个电网之间不会互相干扰和影响,必要时可以迅速进行功率交换。 特高压直流输电的特点:①电压高,高达±800kV。对与电压有关的设备,如高压端(±

零序电流互感器的作用及原理

(当电路中发生触电或漏电故障时,互感器二次侧输出零序电流,使所接二次线路上的设备保护动作(切断电源,报警等等)。 零序电流保护一般适合使用于TN接地系统。因为当发生一相接地时,对TN-S 系统Id回路阻抗包括相线阻抗Z1,PE线阻抗ZPE和接触阻抗 Zf,即 Zs=Z1+ZPE+Zf;对于TN-C系统,Id回路阻抗包括相线阻抗Z1,PEN线阻抗ZPEN 和接触电阻Zf,即 ZS=Z1+ZPEN+Zf;对于TN-C-S系统,Id回路阻抗包括相线阻抗Z1,PEN线阻抗ZPEN,PE线阻抗ZPE和接触电阻Zf,即 ZS=Z1+ZPEN+ZPE+Zf,产生的单相接地故障电流Id=220/ZS,明显大于无故障时的三相不平衡电流,只要整定合适,就可检测出发生接地故障时的零序电流,以切断故障回路。 而对IT系统,一般均是使用对供电可靠性要求较高、对单相接地不必要立即切断供电回路、但需发出绝缘破坏监察信号、以维持继续供电一段时间的工矿企业内的不配出中性线的三相三线配电线路。当单相接地时,该故障线路上流过的零序电流是全系统非故障系统电容电流之和,因而容易检测出接地故障电流,故可用零序电流保护装置来监察相对地第一次接地故障。 TT 接地系统常应用于工农业、民用建筑的照明、动力混合供电的三相四线配电系统中,常发现三相不平衡电流较大,当发生一相接地时,Id回路阻抗包括相线阻抗Z1,PE线阻抗ZPE,负载侧接地电阻RA和电源侧接地电阻RB,接触阻抗Zf,即ZS=Z1+ZPE+RA+RB+Zf,接地故障电流Id=220/ZS,由于RA+RB》》Z1+ZPE+Zf,且RA+RB数值一般均较大,很明显TT 系统的故障环路阻抗大,产生的单接故障电流Id,远远小于不平衡电流,很难检测出故障电流,故不适用于TT接地系统。 艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有 10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。 如需进一步了解相关低压配电产品的选型,报价,采购,参数,图片,批发等信息,请关注艾驰商城https://www.doczj.com/doc/5d12180854.html,。

如何正确选择及使用电流互感器

浅谈如何正确选择及使用电流互感器 1.前言 近几年来,随着我国电力工业中城网及农网的改造,以及供电系统的自动化程度不断提高,电流互感器作为电力系统的一种重要电气设备,已被广泛地应用于继电保护、系统监测和电力系统分析之中。电流互感器作为一次系统和二次系统间联络元件,起着将一次系统的大电流变换成二次系统的小电流,用以分别向测量仪表、继电器的电流线圈供电,正确反映电气设备的正常运行参数和故障情况,使测量仪表和继电器等二次侧的设备与一次侧高压设备在电气方面隔离,以保证工作人员的安全。同时,使二次侧设备实现标准化、小型化,结构轻巧,价格便宜,便于屏内安装,便于采用低压小截面控制电缆,实现远距离测量和控制。当一次系统发生短路故障时,能够保护测量仪表和继电器等二次设备免受大电流的损害。下面就有关电流互感器的选择和使用作一浅薄探讨,以飨各位读者朋友。 2电流互感器的原理 互感器,一般W1≤W2,可见电流互流感器为一“变流”器,基本原理与变压器相同,工作状况接近于变压器短路状态,原边符号为L1、L2,副边符号为K1、K2。互感器的原边串接入主线路,被测电流为I1,原边匝数为W1,副边接内阻很小的电流表或功率表的电流线圈,副边电流为I2,副边匝数为W2。原副边电磁量及规定正方向由电工学规定。 由原理可知,当副边开路时,原边电流I1中只有用来建立主磁通Φm的磁化电流I0,当副边电流不等于零时,则产生一个去磁磁化力I2W1,它力图改变Φm,但U1一定时,Φm是基本不变的,即保持I0W1不变,因为I2的出现,必使原边电流Il增加,以抵消I2W2的去磁作用,从而保证I0W1不变,故有:I1W1=I0W1+(-I2W2) (1) 即I0=I1+W2I2/W1 (2) 在理想情况下,即忽略线圈的电阻,铁心损耗及漏磁通可得: I1W1=-I2W2 有:Il/I2=-W2/W1 3 电流互感器的选择 3.1 电流互感器选择与检验的原则 1)电流互感器额定电压不小于装设点线路额定电压; 2)根据一次负荷计算电流IC选择电流互感器变化; 3)根据二次回路的要求选择电流互感器的准确度并校验准确度; 4)校验动稳定度和热稳定度。 3.2 电流互感器变流比选择 电流互感器一次额定电流I1n和二次额定电流I2n之比,称为电流互感器的额定变流比,Ki=I1n/I2n ≈N2/N1。 式中,N1和N2为电流互感器一次绕组和二次绕组的匝数。 电流互感器一次侧额定电流标准比(如20、30、40、50、75、100、150(A)、2Xa/C)等多种规格,二次侧额定电流通常为1A或5A。其中2Xa/C表示同一台产品有两种电流比,通过改变产品顶部储油柜外的连接片接线方式实现,当串联时,电流比为a/c,并联时电流比为2Xa/C。一般情况下,计量用电流互感器变流比的选择应使其一次额定电流I1n不小于线路中的负荷电流(即计算IC)。如线路中负荷计算电流为350A,则电流互感器的变流比应选择400/5。保护用的电流互感器为保证其准确度要求,可以将变比选得大一些。 表1 电流互感器准确级和误差限值 3.3 电流互感器准确度选择及校验 所谓准确度是指在规定的二次负荷范围内,一次电流为额定值时的最大误差。我国电流互感器的准确度和误差限值如表1所示,对于不同的测量仪表,应选用不同准确度的电流互感器。

高压电流互感器选型指南

高压电流互感器选型指南 使用条件: 1、温度-25~40℃; 2、海拔高度≤1000m; 3、地震烈度Ⅷ(8)度; 4、污秽等级:户内不低于2级,户外不低于3级; 5、户内需考虑:(1)环境空气无明显灰尘、烟、腐蚀性气体、蒸汽或盐等污秽;(2)湿度条件:24h内测得的相对湿度平均值不超过95%;24h 内水蒸气压力平均不超过2.2kPa;一个月内相对湿度平均值不超过90%;一个月内水蒸气压力平均不超过1.8kPa。 6、户外需考虑:(1)24h期间测得的环境气温平均值不超过40℃;(2)日照辐射达到1000W/m2(晴天中午)时应予以考虑;(3)环境空气可能有灰尘、烟、腐蚀性气体、蒸汽或盐污秽;(4)风压不超过700Pa(相当于34m/s);(5)应考虑出现凝露和降水。 7、特殊使用条件(另作考虑) 产品技术特征: 1、制造单位名及其所在地名或国名(出口产品),以及其他容易识别制造单位的标志、生产序号和日期; 2、互感器型号及名称、采用标准的代号、计量许可标志及计量许可批号; 3、额定一次电压及最高电压Um(例如:额定电压35kV,最高电压40.5kV); 4、额定频率(例如:50Hz); 5、极性关系:所有标有P1、S1和C1的接线端子,在同一瞬间具有同

一极性。 6、额定电流:一次额定电流(例如:500A),二次额定电流(5A或1A); 7、额定绝缘水平;额定电压因数和相应的额定时间; 8、绝缘耐热等级; 9、二次绕组性能参数;二次绕组之间及对地绝缘的额定短时工频耐压3kV,二次绕组之间及对地的绝缘电阻应不低于100MΩ。绕组匝间绝缘应能承受额定短时工频耐压4.5kV(峰值)。 10、设备种类:户内或户外; 11、结构型式:油浸式或全封闭浇注式 12、仪表保安系数:FS≤10; 13、热稳定和动稳定;热稳定电流选取下列(短路持续时间为4s内) 3.15,6.3,8,10,12.5,16,20,25,31.5,40,50,63,80,100kA 动稳定电流为热稳定电流2.5倍。 14、额定输出标准值 5、10、15、20、25、30、40、50、60、75、80、100V A 基本分类: 表1 电流互感器分类

特高压电流互感器自动化检定系统设计与应用

特高压电流互感器自动化检定系统设计与应用 发表时间:2018-06-11T15:08:31.347Z 来源:《河南电力》2018年2期作者:李昊孙一宁焦通崔广泉杨默涵 [导读] 为解决特高压电流互感器现场检定难题,研究特高压气体绝缘组合电器(GIS)电流互感器自动化检定系统。 (国网辽宁省电力有限公司电力科学研究院辽宁沈阳 110000) 摘要;为解决特高压电流互感器现场检定难题,研究特高压气体绝缘组合电器(GIS)电流互感器自动化检定系统。该系统主要包括智能工频电源、大容量升流器、无功补偿装置、标准电流互感器等关键部件。智能工频电源具有功率电子电源与电工电源串联输出、回路参数计算、无功补偿控制和误差检定等功能。采用一次绕组串并联的方法,设计了大容量升流器。采用原边和副边并联补偿电容器的方式,设计了多组合无功补偿装置。通过了省级计量测试机构测试和国家电网公司重点特高压工程电流互感器现场检定试验。 关键词:特高压;电流互感器;自动化检定系统 引言 特高压变电站计量关口电流互感器现场误差需要按照国家计量检定规程《JJG1021-2007电力互感器》《DL/T448-2016电能计量装置技术管理规程》要求进行现场检定,以确保特高压计量关口准确可靠。目前,淮南-南京-上海1000kV交流特高压输变电工程在江苏境内已分别建设盱眙、泰州、东吴等多座特高压变电站。特高压电流互感器封装于气体绝缘组合电器(Gas insulated switchgear,GIS)中,存在变比大、集成度高、全封闭等特点。特高压电流互感器附近的接地开关及GIS外壳因通流能力的限制,无法形成7200A大电流的升流回路。在检定时,特高压电流互感器需带上很长的管道母线和一些电气元件,检定回路感性无功分量很大,对检定设备和现场电源的容量要求极大。 1智能工频电源设计 智能工频电源结构控制部分主要实现正弦脉冲宽度调制(Sinu-soidal pulse width modulation,SPWM)波形的产生、功率输出部分控制、快速傅立叶变换(Fas tFourier transformation,FFT)的电压与电流信号的采样数据计算、电容投切输出控制、人机交互显示控制以及保护功能。CPU控制模块采用美国德州仪器浮点型数字信号处理器(Digital signal processor,DSP)TMS320F28335,具有高速数字处理能力和丰富的数字输入/输出接口,通过双极性面积等效法原理输出SPWM波形。为减少高频开关噪声的影响及满足大功率输出要求,设置SPWM的开关频率为10kHz,DSP运行主频为150MHz,计算得到DSP指令周期为15ns。DSP产生的SPWM数字信号通过逻辑芯片电平转换后输出至绝缘栅双极晶体管(Insulate-gate bipolar transistor,IGBT)功率驱动模块。IGBT驱动板最小死区时间为3μs,实际SPWM 输出死区时间设计采用5μs,以保证在全桥逆变过程中功率输出模块上下桥臂之间不会产生任何直通短路的情况。IGBT功率驱动板的保护输出信号输出至复杂可编程逻辑器件(Complex programmab lelogic device,CPLD)控制模块的保护引脚,当功率输出产生过热、短路、功率驱动欠压等状况时,保护信号立即关断DSP的SPWM输出,并通过智能工频电源机柜操作面板上的红色故障灯,告知系统操作者。 2大容量升流器及其原副边无功补偿装置设计 2.1大容量升流器 升流器属特殊变压器,一般是降压变压器,它的二次侧为输入,一次侧为输出。特高压升流器一次电流达到7200A,设计时要考虑一次电流的集肤效应和导线阻抗带来的电压降和损耗。升流器一次绕组匝数少,要考虑一次、二次绕组的磁耦合性,尽量减小漏抗。升流器的负载为大电流检定回路,结构和参数差异很大。在设计升流器时,要充分考虑负载参数的变化范围,尽量设计成多组合方式,扩大其应用范围,结构要满足特高压现场使用的需要。特高压升流器设计如图所示。 采用高磁导率合金材料的环形铁心,多个并联方式叠加,绕线时分多股铜线,采用并绕方式均匀分布,紧密地绕制在铁心上,增加耦合度,最大程度地减小铁心窗口面积,降低升流器的阻抗压降。这种设计可以使铁心利用率最高,提高单位质量的能量密度,最大程度地减少升流器体积和重量,降低使用成本。 2.2无功补偿装置 特高压电流互感器检定回路感抗大,检定时感性无功分量大,可利用并联电容或者串联电容的方法进行感性无功补偿,系统只需要提供有功部分的容量,降低了系统的容量要求。升流器原边并联电容补偿能补偿调压器容量,但不能补偿升流器容量;升流器副边并联电容补偿能同时补偿调压器和升流器的容量,但补偿电容电压低,电容容量要求大;升流器副边串联电容补偿也能同时补偿调压器和升流器的容量,但增加了有功消耗;升流器原边和副边并联电容补偿的补偿方式多、范围广、效率高,能实现系统的步进式多档补偿,同时补偿调压器和升流器的容量,但控制难度大。 3互感器校验仪设计与检定系统测试 互感器校验仪设计互感器校验仪由模拟电路和数字电路部分组成,模拟电路部分主要完成对差流、差压和百分表的信号处理,从而将差流、差压信号进行同相和正交的分离。数字电路部分主要对所处理的信号进行A/D转换,并对转换的数据进行处理,从而得出误差检定结果。该校验仪选用SAM-SUNG公司的S3C44B0作为单片机芯片,进行数字信号处理和人机交换,自动按照规程的规定电流检定点进行误差

电缆的接地线为什么要穿过零序电流互感器

电缆的接地线为什么要穿过零序电流互感器零序电流互感器与接地线的关系应掌握一个原则:电缆两端端部接地线与电缆金属保护层、大地形成的闭合回路不得与零序电流互感器匝链(穿过)。即当电缆接地点在零序电流互感器以下时,接地线应直接接地;接地点在零序电流互感器以上时,接地线应穿过零序电流互感器接地。同时,由电缆头至零序电流互感器的一段电缆金属护层和接地线应对地绝缘,对地绝缘电阻值应不低于50kΩ。以上做法是为了防止电缆接地时的零序电流在零序电流互感器前面泄漏,造成误判断;经电缆金属护层流动的杂散电流由接地线流入大地,也不与零序电流互感器匝链,杂散电流也不会影响正确判断。 零序电流互感器与接地线的关系应掌握一个原则:电缆两端端部接地线与电缆金属保护层、大地形成的闭合回路不得与零序电流互感器匝链(穿过)。即当电缆接地点在零序电流互感器以下时,接地线应直接接地;接地点在零序电流互感器以上时,接地线应穿过零序电流互感器接地。同时,由电缆头至零序电流互感器的一段电缆金属护层和接地线应对地绝缘,对地绝缘电阻值应不低于50kΩ。以上做法是为了防止电缆接地时的零序电流在零序电流互感器前面泄漏,造成误判断;经电缆金属护层流动的杂散电流由接地线流入大地,也不与零序电流互感器匝链,杂散电流也不会影响正确判断。 1、如果单纯用于电缆接地,电缆的接地线是可以不经过电流互感器,而直接接地的。

2、如果该路出线(进线)设有零序保护,则要求取零序电流信号,该信号源就是这个电流互感器,为了准确测量这个零序电流,就要求被测的电流导体通过这个电流互感器,于是就出现了电缆的接地线通过零序电流互感器的情况。

(高压电气测量技术)电压电流互感器

电压互感器 电压互感器的作用是隔离高电压,并把高电压变为低电压,供继电保护、自动装置和测量仪表获取一次侧电压信息。 电压互感器的配置原则是:应满足测量、保护、同期和自动装置的要求;保证在运行方式改变时,保护装置不失压、同期点两侧都能方便地取压。通常如下配置: 1、母线6~220kV电压级的每组主母线的三相上应装设电压互感器,旁路母线视回路出线外侧装设电压互感器的需要而确定。 2、线路当需要监视和检测线路断路器外侧有无电压,供同期和自动重合闸使用,该侧装一台单相电压互感器 3、发电机一般在出口处装两组。一组(三只单相、双绕组接线)用于自动调节励磁装置。一组供测量仪表、同期和继电保护使用,该组电压互感器采用三相五柱式或三只单相接地专用互感器,接成接线,辅助绕组接成开口三角形,供绝缘监察用。当互感器负荷太大时,可增设一组不完全星形连接的互感器,专供测量仪表使用。50MW及以上发电机中性点常还设一单相电压互感器,用于100%定子接地保护。 4、变压器变压器低压侧有时为了满足同步或继电保护的要求,设有一组电压互感器。 5、330~500kV电压级的电压互感器配置:双母线接线时,在每回出线和每组母线三相上装设。一个半断路器接线时,在每回出线三相上装设,主变压器进线和每组母线上则根据继电保护装置、自动装置和测量仪表的要求,在一相或三相上装设。线路与母线的电压互感器二次回路不切换。 影响误差的主要因素:1、一次电流2、二次负载:二次负荷阻抗增加,比差向负方向增大,角差向正方向增大。3、负载功率因素:比差按正弦曲线规律变化,角差按余弦规律变化。 三、电压互感器的选择: 1、额定电压的选择: 三相式电压互感器(用于3~15kV系统),其一、二次绕组均接成星形,一次绕组三个引出端跨接于电网线电压上,额定电压均以线电压表示,分别为UNS和100V。 单相式电压互感器,其一、二次绕组的额定电压的表示有两种情况: 1、单台使用或两台接成不完全星形,一次绕组两个引出端跨接于电网线电压上(用于3~35kV 系统),一、二次绕组额定电压均以线电压表示,分别为UNS 和IOOV; 2、三台单相互感器的一、二次绕组分别接成星形(用于3kV及以上系统),每台一次绕组接于电网相电压上,单台的一、二次绕组的额定电压均以相电压表示,分别为和100/3V V。第三绕组(又称辅助绕组或剩余电压绕组)的额定电压,对中性点非直接接地系统为100/3V,对中性点直接接地系统为100V。 2.种类和型式选择 电压互感器的种类和形式应根据安装地点和使用技术条件来选择。 (1)3~20kV屋内配电装置,宜采用油浸式绝缘结构,也可采用树脂浇注结构的电磁式电压互感器。 (2)35kV配电装置,宜采用油浸绝缘结构的电磁式电压互感器。 (3)110~220kV配电装置,用电容式或串级电磁式电压互感器。为避免铁磁谐振,当容量和准确度级满足要求时,宜优先采用电容式电压互感器。 (4)330kV及以上配电装置,宜采用电容式电压互感器。 (5)全封闭组合电器应采用电磁式电压互感器。 3、按其准确级选择 电压互感器准确级的选择原则,可参照电流互感器准确级选择。用于继电保护的电压互感器不应低于3级。至此,可初选出电压互感器的型号,由产品目录或手册查得其在相应准确级下的额定二次容量。

110-220KV变电所电流互感器通用配置原则

附件一、福建省网110-220KV变电所电流互感器通用配置原则 一、总则 1、全网220千伏变电站的CT变比要整齐统一,并适应未来十年的短路电流发展水平。 2、充分发挥线路的输电能力和变压器的各侧容量。 3、CT抽头的选择要满足计量专业的精度要求,在设关口表的220KV线路上,计量用0.2S 级次。 4、继电保护用CT的配置原则 A、电网设备的两套主保护的CT不公用,经负荷校核后备保护、故障录波器、失灵启 动、安控装置的电流可与主保护串用同一组CT。 B、220千伏和110千伏侧主变旁代按旁路开关旁代一套差动保护方式。 C、母差保护用CT的型式要相同。 D、线路保护两侧CT的一次电流差小于4倍,主变高中低压侧的额定二次电流在4 倍以内。 E、保护均要选用P级(5P或10P),其CT的额定准确限值一次电流按大于30倍额 定电流确定,容量要30VA以上。 二、各电压等级的CT配置原则 1、220KV电压等级: ①线路型号2*LGJ(F)-300 P 2*750/5A 线路保护1、故障录波 P 2*750/5A 线路保护2 P 2*750/5A :母差失灵保护1 P 2*750/5A :母差失灵保护2 0.5 2*750/5A 抽头2*300/5A:仪表 0.2S 2*750/5A 抽头2*300/5A:计量

②线路型号2*LGJ(F)-400 2*LGJ(F)-500 P 2*1000/5A :线路保护1、故障录波P 2*1000/5A :线路保护2 P 2*1000/5A :母差失灵保护1 P 2*1000/5A :母差失灵保护2 0.5 2*1000/5A 抽头2*600/5A:仪表0.2S 2*1000/5A 抽头2*600/5A:计量 ③母联开关间隔CT P 2*1000/5A :母差失灵保护1 P 2*1000/5A :母差失灵保护2 P 2*1000/5A :母联过流保护 P 2*1000/5A :故障录波 0.5 2*1000/5A :抽头2*600/5A:仪表 ④主变间隔(120-180-240MVA)开关CT P 2*600/5A :主变保护1、故障录波P 2*600/5A :主变保护2 P 2*600/5A :母差失灵保护1 P 2*600/5A :母差失灵保护2 P 2*600/5A :备用 0.2 2*600/5A 抽头2*300/5A:计量 ⑤分段开关间隔CT P 2*1000/5A :Ⅰ/Ⅲ母差失灵保护1 P 2*1000/5A :Ⅰ/Ⅲ母差失灵保护2 P 2*1000/5A :Ⅱ/Ⅳ母差失灵保护1 P 2*1000/5A :Ⅱ/Ⅳ母差失灵保护2 P 2*1000/5A :过流保护、故障录波0.5 2*1000/5A:仪表

零序电流互感器的原理及作用

零序电流互感器的原理及作用 原理:零序电流保护的基本原理是基于基尔霍夫电流定律:流入电路中任一节点的复电流的代数和等于零。在线路与电气设备正常的情况下,各相电流的矢量和等于零,因此,零序电流互感器的二次侧绕组无信号输出,执行元件不动作。当发生接地故障时的各相电流的矢量和不为零,故障电流使零序电流互感器的环形铁芯中产生磁通,零序电流互感器的二次侧感应电压使执行元件动作,带动脱扣装置,切换供电网络,达到接地故障保护的目的。 作用:当电路中发生触电或漏电故障时,保护动作,切断电源。 使用:可在三相线路上各装一个电流互感器,或让三相导线一起穿过一零序电流互感器,也可在中性线N上安装一个零序电流互感器,利用其来检测三相的电流矢量和。 在三相四线电路中,三相电流的相量和等于零,即Ia+Ib+Ic=0 如果在三相四线中接入一个电流互感器,这时感应电流为零。当电路中发生触电或漏电故障时,回路中有漏电电流流过,这时穿过互感器的三相电流相量和不等零,其相量和为:Ia+Ib+Ic=I(漏电电流)这样互感器二次线圈中就有一个感应电压,此电压加于检测部分的电子放大电路,与保护区装置预定动作电流值相比较,如大于动作电流,即使灵敏继电器动作,作用于执行元件掉闸。这里所接的互感器称为零序电流互感器,三相电流的相量和不等于零,所产生的电流即为零序电流。 产生零序电流的两个条件: 1、无论是纵向故障、还是横向故障、还是正常时和异常时的不对称,只要有零序电压的产生; 2、零序电流有通路。 以上两个条件缺一不可。因为缺少第一个,就无源泉;缺少第二个,就是我们通常讨论的“有电压是否一定有电流的问题。 零序公式:3U0=UA+UB+UC,3I0=IA+IB+IC

相关主题
文本预览
相关文档 最新文档