当前位置:文档之家› 第三章习题答案 二维随机变量及其概率分布(1)

第三章习题答案 二维随机变量及其概率分布(1)

第三章习题答案  二维随机变量及其概率分布(1)
第三章习题答案  二维随机变量及其概率分布(1)

随机变量及分布列习题43462

随机变量及分布列 1.已知随机变量() 20,X N σ~,若(2)P X a <=,则(2)P X >的值为( ) A. 12a - B. 2 a C. 1a - D. 12a + 2.已知随机变量,若,则的值为( ) A. 0.4 B. 0.2 C. 0.1 D. 0.6 3.已知,,则的值为( ) A. 10 B. 7 C. 3 D. 6 4.集装箱有标号为1,2,3,4,5,6且大小相同的6个球,从箱中一次摸出两个球,记下并放回,如果两球之积是4的倍数,则获奖.若有4人参与摸奖,恰好有3人获奖的概率是( ) A. B. C. D. 5.甲袋中放有大小和形状相同的小球若干,其中标号为0的小球为1个,标号为1的小球2个,标号为2的小球2个.从袋中任取两个球,已知其中一个的标号是1,则另一个标号也是1的概率为__________. 6.设随机变量服从正态分布,,则__________. 7.某人通过普通话二级测试的概率是,他连线测试3次,那么其中恰有1次通过的概率是( ) A. B. C. D. 8.从1,2,3,4,5,6,7中任取两个不同的数,事件为“取到的两个数的和为偶数”,事件为“取到的两个数均为奇数”,则( ) A. B. C. D. 9.班主任为了对本班学生的考试成绩进行分析,决定从全班25位女同学,15位男同学中随机 抽取一个容量为8的样本进行分析. (Ⅰ)如果按性别比例分层抽样,求样本中男生、女生人数分别是多少; (Ⅱ)随机抽取8位同学,数学成绩由低到高依次为:6065707580859095,,,,,,,; 物理成绩由低到高依次为:7277808488909395,,,,,,,,若规定90分(含90分)以上为优秀,记ξ为这8位同学中数学和物理分数均为优秀的人数,求ξ的分布列和数学期望. 10.某品牌汽车的4S 店,对最近100份分期付款购车情况进行统计,统计情况如下表所示.已知分9期付 款的频率为0.4;该店经销一辆该品牌汽车,若顾客分3期付款,其利润为1万元;分6期或9期付款, (1)若以上表计算出的频率近似替代概率,从该店采用分期付款购车的顾客(数量较大)中随机抽取3为顾客,求事件A :“至多有1位采用分6期付款“的概率()P A ; (2)按分层抽样方式从这100为顾客中抽取5人,再从抽取的5人中随机抽取3人,记该店在这3人身上赚取的总利润为随机变量η,求η的分布列和数学期望()E η. 11.某公司有,,,,A B C D E 五辆汽车,其中,A B 两辆汽车的车牌尾号均为1. ,C D 两辆汽车的车牌尾号均

概率论习题第三章答案

第三章连续型随机变量 3、1设随机变量 ξ 的分布函数为F(x),试以F(x)表示下列概率: 。 )()4();()3();()2();()1(a P a P a P a P >≥≤=ξξξξ 。 )(解:)0(1)()4(); (1)()3(); 0()(P 2); ()0()()1(+-=>-=≥+=≤-+==a F a P a F a P a F a a F a F a P ξξξξ 3、2函数x 211 F(x)+=就是否可以作为某一随机变量的分布函数,如果 在其它场合恰当定义。 在其它场合恰当定义;)(,0)3(,0)2(1<<∞-∞<<∞ <<∞-x x x 解:(1)F(x)在),(∞-∞内不单调,因而不可能就是随机变量的分布函数; (2)F(x)在)0∞,(内单调下降,因而也不可能就是随机变量的分布函数; (3)F(x)在) ,(-0∞内单调上升、连续且,若定义 ???≥<<∞=01 0)()(~x x X F x F - 则)(~ x F 可以就是某一随机变量的分布函数。 3、3函数 sinx 就是不就是某个随机变量ξ的分布函数?如果ξ的取值范围为 []。,);(,);(,)(?? ??????????πππ230302201 解:(1)当?? ????∈2,0πx 时,sinx 0≥且1sin 20=?πxdx ,所以 sinx 可以就是某个随机变量的分布密度; (2) 因为12sin 0≠=?πxdx ,所以sinx 不就是随机变量的分布密度; (3) 当 ?????? ∈23, ππx 时,sinx<=0所以sinx 不就是随机变量的分布密度。 3、4设随机变量ξ具有对称的分布函数p(x),即p(x)=p(-x) 证明:对任意的a>0,有

随机变量及其分布列经典例题

随机变量及其分布列典型例题 【知识梳理】 一.离散型随机变量的定义 1定义:在随机试验中,确定一个对应关系,使得每一个试验结果都用一个确定的数字表示.在这个对应关系下,数字随着试验结果变化而变化的变量称为随机变量、 ①随机变量就是一种对应关系;②实验结果必须与数字对应; ③数字会随着实验结果的变化而变化、 2.表示:随机变量常用字母X ,Y,ξ,η,…表示. 3、所有取值可以一一列出的随机变量,称为离散型随机变量 ( dis cre te ran dom var ia ble ) . 二、离散型随机变量的分布列 1.一般地,若离散型随机变量X 可能取的不同值为x 1,x 2,…,xi ,…,x n, X 取每一个值x i (i=1,2,…, n)的概率P (X =xi)=pi ,则称表: 为离散型随机变量X P(X =x i )=p i , i =1,2,…,n, 也可以用图象来表示X 的分布列、 2.离散型随机变量的分布列的性质 ①pi ≥0,i=1,2,…,n ;②11 =∑=n i i p . 三.两个特殊分布 1.两点分布),1(~P B X 若随机变量X 的分布列具有上表形式,则称服从两点分布,并称p =P (X =1)为成功概率. 2、超几何分布),,(~n M N H X 一般地,在含有M 件次品的N 件产品中,任取n件,其中恰有X 件次品,则P (X =k )= n N k n M N k M C C C --,k =0,1,2,…,m ,其中m =min {}n M ,,且n ≤N ,M ≤N ,n ,M,N ∈N * . 三、二项分布 一般地,在n 次独立重复试验中,用 X 表示事件A 发生的次数,设每次试验中事件A发生的概率为p ,则P (X=k )=C 错误!p k (1-p)n - k ,k=0,1,2,…,n 、此时称随机变量X服从二项分布,记作X ~B (n ,p),并称p 为成功概率.易得二项分布的分布列如下;

概率论与数理统计习题及答案第三章

习题3-1 1. 而且12{P X X =. 求X 1和X 2的联合分布律. 解 由12 {0}1P X X ==知12{0}0P X X ≠=. 因此X 1和X 2的联合分布必形 于是根据边缘概率密度和联合概率分布的关系有X 1和X 2的联合分布律

(2) 注意到12{0,0}0P X X ===, 而121{0}{0}04 P X P X =?== ≠, 所以X 1和X 2 不独立. 2. 一盒子中有3只黑球、2只红球和2只白球, 在其中任取4只球. 以X 表示取到黑球的只数, 以Y 表示取到红球的只数. 求X 和Y 的联合分布律. 解 从7只球中取4球只有354 7 =C 种取法. 在4只球中, 黑球有i 只, 红 球有j 只(余下为白球4i j -- 只)的取法为 4322i j i j C C C --,0,1,2,3,0,1,2,i j i j ==+≤4. 于是有 022 322 1{0,2}35 35 P X Y C C C ====,111322 6{1,1}35 35 P X Y C C C ====, 121322 6 {1,2}35 35 P X Y C C C ====,202322 3 {2,0}35 35 P X Y C C C ==== , 211 322 12{2,1}35 35P X Y C C C ==== ,220 322 3{2,2}35 35P X Y C C C === = , 301 322 2 {3,0}3535P X Y C C C === =, 310 322 2 {3,1}3535 P X Y C C C ====, {0,0}{0,1}{1,0}{3,2}0P X Y P X Y P X Y P X Y ============. 3. (,)(6),02,24, 0,.f x y k x y x y =--<<<

概率论与数理统计第三章课后习题答案

习题三 1.将一硬币抛掷三次,以X 表示在三次中出现正面的次数,以Y 表示三次中出现正面次数与 出现反面次数之差的绝对值.试写出X 和Y 的联合分布律. 【解】X 和Y 的联合分布律如表: 222??222 ??= 2.盒子里装有3只黑球、2只红球、2只白球,在其中任取4只球,以X 表示取到黑球的只数,以Y 表示取到红球的只数.求X 和Y 的联合分布律. 【解】X 和Y 的联合分布律如表: 324 C 35= 32 4 C 35= 322 4 C 35= 11322 4 C C 12C 35=132 4 C 2C 35 = 21322 4 C C 6C 35 = 2324 C 3 C 35 = 3.设二维随机变量(X ,Y )的联合分布函数为 F (x ,y )=?????≤ ≤≤≤., 020,20,sin sin 其他ππy x y x 求二维随机变量(X ,Y )在长方形域? ?? ? ??≤<≤<36,40πππy x 内的概率. 【解】如图πππ {0,}(3.2)463 P X Y <≤ <≤公式 ππππππ(,)(,)(0,)(0,)434636 F F F F --+

ππππππ sin sin sin sin sin0sin sin0sin 434636 2 (31). 4 =--+ =- 题3图 说明:也可先求出密度函数,再求概率。 4.设随机变量(X,Y)的分布密度 f(x,y)= ? ? ?> > + - . ,0 ,0 ,0 ,)4 3( 其他 y x A y x e 求:(1)常数A; (2)随机变量(X,Y)的分布函数; (3)P{0≤X<1,0≤Y<2}. 【解】(1)由-(34) 00 (,)d d e d d1 12 x y A f x y x y A x y +∞+∞+∞+∞ + -∞-∞ === ???? 得A=12 (2)由定义,有 (,)(,)d d y x F x y f u v u v -∞-∞ =?? (34)34 00 12e d d(1e)(1e)0,0, 0, 0, y y u v x y u v y x -+-- ??-->> ? == ?? ? ?? ?? 其他 (3) {01,02} P X Y ≤<≤< 12(34)38 00 {01,02} 12e d d(1e)(1e)0.9499. x y P X Y x y -+-- =<≤<≤ ==--≈ ?? 5.设随机变量(X,Y)的概率密度为 f(x,y)= ? ? ?< < < < - - . ,0 ,4 2,2 ), 6( 其他 y x y x k

随机变量分布列练习题二套

随机变量及分布训练一 1. 某群体中的每位成员使用移动支付的概率都为,各成员的支付方式相互独立.设为该群体的位成员中使用移动支付的人数,,,则 A. B. C. D. 2. 设,随机变量的分布列是 则当在内增大时,() A.减小 B.增大 C.先减小后增大 D.先增大后减小 3. 已知甲盒中仅有个球且为红球,乙盒中有个红球和个蓝球,从乙盒中随机抽取 个球放入甲盒中. 放入个球后,甲盒中含有红球的个数记为; 放入个球后,从甲盒中取个球是红球的概率记为. 则() A., B., C., D., 4. 如图,将一个各面都涂了油漆的正方体,切割为个同样大小的小正方体,经过搅拌后,从中随机取一个小正方体,记它的涂漆面数为,则的均值 A. B. C. D. 5. 已知离散型随机变量的分布列为 则的数学期望

A. B. C. D. 6. 已知台机器中有台存在故障,现需要通过逐台检测直至区分出台故障机器为止.若检测一台机器的费用为元,则所需检测费的均值为() A. B. C. D. 7. 某班级有男生人,女生人,现选举名学生分别担任班长、副班长、团支部书记和体育班委.男生当选的人数记为,则的数学期望为() A. B. C. D. 8. 某种种子每粒发芽的概率都为,现播种了粒,对于没有发芽的种子,每粒需再补种粒,补种的种子数记为,则的数学期望为() A. B. C. D. 9. 某工厂的某种产品成箱包装,每箱件,每一箱产品在交付用户之前要对产品作检验,如检验出不合格品,则更换为合格品.检验时,先从这箱产品中任取件作检验,再根据检验结果决定是否对余下的所有产品作检验.设每件产品为不合格品的概率都为,且各件产品是否为不合格品相互独立. (1)记件产品中恰有件不合格品的概率为,求的最大值点. (2)现对一箱产品检验了件,结果恰有件不合格品,以(1)中确定的作为的值.已知每件产品的检验费用为元,若有不合格品进入用户手中,则工厂要对每件不合格品支付元的赔偿费用. 若不对该箱余下的产品作检验,这一箱产品的检验费用与赔偿费用的和记为,求; 以检验费用与赔偿费用和的期望值为决策依据,是否该对这箱余下的所有产品作检验?

随机变量及其分布练习题

随机变量及其分布练习 题 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

第二章随机变量及其分布练习题 1.甲、乙两人各进行一次射击,甲击中目标的概率是,乙击中目标的概率是,则两人都击中目标的概率是( ) A. B. C. D. 2.设随机变量1 ~62X B ?? ??? ,,则(3)P X =等于( ) A. 516 B. 316 C.5 8 D. 716 3.设随机变量X 的概率分布列为 X 1 2 3 P 则E (X +2)B . 4.两台相互独立工作的电脑,产生故障的概率分别为a ,b ,则产生故障的电脑台数的均值为( ) A.ab B.a b + C.1ab - D.1a b -- 5.某普通高校招生体育专业测试合格分数线确定为60分.甲、乙、丙三名考生独立参加测试,他们能达到合格的概率分别是,,,则三人中至少有一人达标的概率为( ) A . B . 6.设随机变量~()X B n p ,,则2 2 ()()DX EX 等于( ) A.2p B.2(1)p - C.np D.2(1)p p - 7.对标有不同编号的6件正品和4件次品的产品进行检测,不放回地依次摸出 2件.在第一次摸出正品的条件下,第二次也摸到正品的概率是( ).

8.从1,2,3,4,5中任取2个不同的数,事件A=“取到的2个数之和为偶数”,事件B=“取到的2个数均为偶数”,则P(B|A)=(). 9.设随机变量ξ服从正态分布N(0,1),P(ξ>1)=p,则P(-1<ξ<0)等于(). p B.1-p C.1--p 10.已知随机变量X服从正态分布N(μ,σ2),且P(μ-2σ

概率论与数理统计修订版第三章练习答案郝志峰,谢国瑞

概率论与数理统计第三章习题 率分布。 ,试写出命中次数的概标的命中率为目;设已知射手每次射击射击中命中目标的次数指示射手在这三次独立以本空间上定义一个函数验的样本空间;试在样作为试验,试写出此试察这些次射击是否命中三次独立射击,现将观一射手对某目标进行了7.0.1 。 出的废品数的概率分布前已取个,求在取得合格品之不再放回而再取来使用,若取得废品就个这批零件中任取个废品,安装机器时从个合格品、一批零件中有1139.2

11880 54 99101112123)3(132054 109112123)2(132 27 119123)1(12 9 )0(3 210191911011111121121311019111121121311119112131121 9= ???=???=== ??=??=== ?=?=== ==C C C C C C C C P C C C C C C P C C C C P C C P ξξξξξξ,,,可能取值为:代表废品数,则解:令 .1188054132054132271293210 ??? ? ??的分布列为 所以,ξ 废品数的概率分布。 况,求出取得)取后放回两种不同情)取后不放回;(个,试分别就(件,每次取个废品,现从中任取混有个同类型的一堆产品内设在2113210.3 .008.0096.0384.0512.03210 008.0)3(096.0)2(384.0)1(512.0)0(32102210)2()1()0(2 1013 1101 22 1101211018231101 22 1101 8133 1101831022183101228310383 10 2 2 18310122831038??? ? ??=??? ? ??===???? ?????? ??===??? ? ????? ? ??===???? ??==???? ? ?????==?====的分布列为 所以,,,,有 ,,,,则可能取值有:)设废品数为(的分布列为 所以,,,,,的可能值有:代表废品数,则)令解:(ηηηηηηξξξξξξC C P C C C C C P C C C C C P C C P C C C C C C C C C C C P C C C P C C P

第二章__随机变量及其概率分布_考试模拟题答案范文

第二章 随机变量及其概率分布 考试模拟题 (共90分) 一.选择题(每题2分共20分) 1.F(X)是随机变量X 的分布函数,则下列结论不正确的是( B ) A.≤0F(x )1≤ B.F(x )=P{X=x } C.F(x )=P{X x ≤} D.F(∞+)=1, F(∞-)=0 解析: A,C,D 都是对于分布函数的正确结论,请记住正确结论!B 是错误的。 2.设随机变量X 的分布函数律为如下表格:F(x)为其分布函数,则F(5)=( C ) A.0.3 B.0.5 C.0.6 D.0.4 解析:由分布函数定义F(5)=P{X ≤5}=P{X=0}+P{X=2}+P{X=4}=0.1+0.2+0.3=0.6 3.下列函数可以作为随机变量分布函数的是( D ) 4x 01≤≤x 2x 10<≤x A.F(x)= B.F(x)= 1 其它 2 其它 -1 x<0 0 x<0 C.F(x)= 2x 10<≤x D.F(x)= 2x 5.00<≤x 1 其它 1 x ≥0.5 解析:由分布函数F(x)性质:01)(≤≤x F ,A,B,C 都不满足这个性质,选D 4 x 31<<-x 4.设X 的密度函数为f(x)= 则P{-2

A. 0 B.83 C. 43 D. 85 解析:P{-2

概率论第三章习题答案

第三章练习题 一、单项选择题 1.设二维随机变量(X ,Y )的分布律为 Y X 1 2 3 1 2 101 103 102 101 102 101 则P{XY=2}=( C )A .5 B .10 C .2 D .5 2.设二维随机变量(X ,Y )的概率密度为 ? ??≤≤≤≤=,,0; 10,10,4),(其他y x xy y x f 则当0≤y ≤1时,(X ,Y )关于Y 的边缘概率密度为f Y ( y ) 1 =(,)4f x y dx xydx +∞ -∞ ==? ?= ( D ) A .x 21 B .2x C .y 21 D .2y 3.设随机变量X ,Y 相互独立,其联合分布为 1+9 α 12 1 +9 α 1+18β 116=+9918 α?? ??? 则有( B ) A .92 ,91==βα B .91,92==βαC .32,31==βα D .3 1,32==βα 二、填空题 1.设随机变量X ,Y 相互独立,且P{X ≤1}=21,P{Y ≤1}=3 1 , 则P{X ≤1,Y ≤1}=_ 1 6 __. 2.已知二维随机变量(X ,Y )的分布律为 0 2 5 0 0.1 0.1 0.3 Y X

1 0.25 0 0.25 则P (X ≤0,Y =2)=___0.1___. 3.设二维随机变量(X ,Y )的分布律为 Y X 1 2 3 1 2 61 121 81 81 41 4 1 则P{Y=2}=____ 4 _______. 4.设随机变量(X,Y)的概率密度为f(x,y)=? ??≤≤≤≤其他02 y 0,1x 0xy , 则X 的边缘概率密度f x (x)= 2 (,)f x y dy xydy +∞ -∞ ==? ?_____2x___________. 三、计算题 1.设二维随机变量(X ,Y )只能取下列数组中的值:(0,0),(-1,1),(-1,3 1 ),(2,0), 且取这些值的概率依次为61,31,121,12 5 .(1)写出(X ,Y )的分布律; (2)分别求(X ,Y )关于X ,Y 的边缘分布律. (1) {} {} 1351112 3 121166551212 71112 12 3 01-10 00020 1 j i X Y P Y y P X x == (2) 13711 12 12 3 1 X P 5 5112 6 12 10 2 Y P - 2.设二维随机变量(X ,Y )的概率密度为?? ???>>=+.,0;0,0,e ),()-(其他y x y x f y x (1)分别求(X ,Y )关于X 和Y 的边缘概率密度; f x (x)= ()0 (,),0x y x f x y dy e dy e x +∞ ∞ -+--∞ ==>? ? f Y ( y ) ()0 = (,),0x y y f x y dx e dx e y +∞ ∞ -+--∞ ==>? ? (2) 问:X 与Y 是否相互独立,为什么? () ()()(,)x y x y X Y f x y e e e f x f y -+--==?=?,因此相互独立 3.设二维随机变量(X ,Y )的分布律为 0.7 0.4 0.2 0.4 (1)求(X ,Y )分别关于X ,Y 的边缘分布律;(2)试问X 与Y 是否相互独立,为什么?

概率论答案第三章测试题

第三章测试题 1箱子里装有12件产品,其中两件是次品.每次从箱子里任取1件产品,共取两次(取后不放回).定义随机变量X Y ,如下: 0X=1???,若第一次取出正品,若第一次取出次品 0Y=1??? ,若第二次取出正品,若第二次取出次品 (1)求出二维随机变量X Y (,)的联合分布律及边缘分布律; (2)求在Y=1的条件下,X 的条件分布律。 解 (2) 2 设二维随机变量 X Y (,)的概率密度Cy(2-x),0x 1,0y x, f(x,y)=0,.≤≤≤≤??? 其他 (1)试确定常数C ;(2)求边缘概率密度。 解 (1)1)(=??+∞∞-+∞∞-dy dx x f 即1)2(100=??-x dxdy x Cy x ,5 12 = ∴C 3设X Y (,)的联合分布律为: 求(1)Z X Y =+的分布律;(2)V min(X ,Y )=的分布律 (2)

4设X 和Y 是两个相互独立的随机变量,X 服从(0,1)上的均匀分布,Y 的概率密度为: y 212Y e ,y 0 f (y )0,y 0 -??>=? ≤?? (1)求X 和Y 的联合概率密度; (2)设含有a 的二次方程为2 a 2Xa Y 0++=,试求a 有实根的概率。 解 (1)X 1,0x 1 f (x )0,other <<<==∴-other y x e y f x f y x f y Y X , 00,10,21)()(),(2 (2)2 a 2Xa Y 0++=有实根,则0442≥-=?Y X ,即求02 ≥-Y X 的概率 ?-=??=??=≥---≥-1 01 00 20 2 2 22 121),(}0{dx e dy e dx dxdy y x f Y X P x x y y x 3413.0)0()1(211 2 2=Φ-Φ=?- dx e x π ,π23413.010 22=?∴-dx e x

随机变量及其分布期末练习题及答案

随机变量及其分布期末练习题及答案 1.在事件A 发生的概率为p 的伯努利试验中,若以ξ记第r 次A 发生时的试验的次数,求 ξ的分布。 [解] {} 发生次试验次而第恰好出现了次试验中前A k r A k P k P 11-)(-==ξ ) ,1,(,) 1()1(1 1 1 11Λ+=-=?-=-------r r k p p C p p p C r k r r k r k r r k 小结 求离散型随机变量的分布律时,首先应该搞清随机变量取可能值时所表示的随机事件,然后确定其分布列。为验证所求分布是否正确,通常可计算一下所求得的“分布列”之和是否为1,若不是,则结果一定是错误的。 2.设随机变量X 的分布函数为 ??? ??>≤≤<=.1,1;10.0 ,1)(2x x Ax x x F 求(1)A 的值;(2)X 落在)21,1(-及)2,3 1 (内的概率;(3)X 的概率密度函数。 [解] (1)有分布函数的右连续性, 在1=x 点处有1)01()1(=+==F A F ,即1=A (2)由分布函数的性质知,4 1)1()21())21 ,1((= --=-∈F F X P ; 98311)31()2())2,31((2 =?? ? ??-=-=-∈F F X P ; (3)由于)(x F 最多除1=x 和0点外处处可导,且在1,0=x 处连续,若取 ? ??≤≤><=.10,2; 10,0)(x x x x x f 或 则0)(≥x f ,且对一切x 有? ∞ -=x dt t f x F )()(,从而)(x f 为随机变量X 的密度函数。 3.设),2(~2 σN X ,且3.0)42(=<

离散型随机变量和分布列(基础+复习+习题+练习)

课题:离散型随机变量及其分布列 考纲要求:①理解取有限个值的离散型随机变量及其分布列的概念,了解分布列对于刻画随机现象的重要性;②理解超几何分布及其推导过程,并能进行简单的应用. 教材复习 1.随机变量:如果随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机变量随机变量常用希腊字母ξ、η等表示 2.离散型随机变量:对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变 量叫做离散型随机变量 若ξ是随机变量,a b ηξ=+,其中a 、b 是常数,则η也是随机变量 3.连续型随机变量: 对于随机变量可能取的值,可以取某一区间的一切值,这样的变量就 叫做连续型随机变量 4.离散型随机变量与连续型随机变量的区别与联系: 离散型随机变量与连续型随机变 量都是用变量表示随机试验的结果;但是离散型随机变量的结果可以按一定次序一一列出,而连续性随机变量的结果不可以一一列出 5.离散型随机变量的分布列:设离散型随机变量ξ可能取的值为1x 、2x 、…、i x 、… ξ 为随机变量ξ的概率分布,简称ξ的分布列 6.离散型随机变量分布列的两个性质:任何随机事件发生的概率都满足:0≤()P A ≤1,并且不可能事件的概率为0,必然事件的概率为1.由此你可以得出离散型随机变量的分布列都具有下面两个性质:()1i p ≥0,1,2,i =…;()212p p ++…1= 对于离散型随机变量在某一围取值的概率等于它取这个围各个值的概率的和.即 (P ξ≥1)()()k k k x P x P x ξξ+==+=+??? 7.两点分布:若随机变量服从两点分布,即其分布列: 其中P =(1)P X =称为成功概率(表中01p <<). 8.几何分布:在独立重复试验中,某事件第一次发生时, 所作试验的次数ξ也是一个正整数的离散型随机变量.“k ξ=”表示在第k 次独立重复试验时事件第一次发生.如果把k 次试验时事件A 发生记为k A 、事件A 不发生记为k A ,()k p A p =, ()(1)k p A q q p ==-,那么 112311231()()()()()() ()k k k k k P k P A A A A A P A P A P A P A P A q p ξ---====(0,1,2,k =…, p q -=1)

联合概率分布:离散与连续随机变量

Joint Distributions,Discrete Case In the following,X and Y are discrete random variables. 1.Joint distribution(joint p.m.f.): ?De?nition:f(x,y)=P(X=x,Y=y) ?Properties:(1)f(x,y)≥0,(2) x,y f(x,y)=1 ?Representation:The most natural representation of a joint discrete distribution is as a distribution matrix,with rows and columns indexed by x and y,and the xy-entry being f(x,y).This is analogous to the representation of ordinary discrete distributions as a single-row table.As in the one-dimensional case,the entries in a distribution matrix must be nonnegative and add up to1. 2.Marginal distributions:The distributions of X and Y,when considered separately. ?De?nition: ?f X(x)=P(X=x)= y f(x,y) ?f Y(y)=P(Y=y)= x f(x,y) ?Connection with distribution matrix:The marginal distributions f X(x)and f Y(y) can be obtained from the distribution matrix as the row sums and column sums of the entries.These sums can be entered in the“margins”of the matrix as an additional column and row. ?Expectation and variance:μX,μY,σ2 X ,σ2 Y denote the(ordinary)expectations and variances of X and Y,computed as usual:μX= x xf X(x),etc. https://www.doczj.com/doc/5d10227149.html,putations with joint distributions: ?Probabilities:Probabilities involving X and Y(e.g.,P(X+Y=3)or P(X≥Y)can be computed by adding up the corresponding entries in the distribution matrix:More formally,for any set R of points in the xy-plane,P((X,Y)∈R))= (x,y)∈R f(x,y). ?Expectation of a function of X and Y(e.g.,u(x,y)=xy):E(u(X,Y))= x,y u(x,y)f(x,y).This formula can also be used to compute expectation and variance of the marginal distributions directly from the joint distribution,without?rst computing the marginal distribution.For example,E(X)= x,y xf(x,y). 4.Covariance and correlation: ?De?nitions:Cov(X,Y)=E(XY)?E(X)E(Y)=E((X?μX)(Y?μY))(Covariance of X and Y),ρ=ρ(X,Y)=Cov(X,Y) σXσY (Correlation of X and Y) ?Properties:|Cov(X,Y)|≤σXσY,?1≤ρ(X,Y)≤1 ?Relation to variance:Var(X)=Cov(X,X) ?Variance of a sum:Var(X+Y)=Var(X)+Var(Y)+2Cov(X,Y)(Note the analogy of the latter formula to the identity(a+b)2=a2+b2+2ab;the covariance acts like a “mixed term”in the expansion of Var(X+Y).) 1

概率论与数理统计第三章习题及答案

概率论与数理统计习题 第三章 多维随机变量及其分布 习题3-1 盒子里装有3只黑球、2只红球、2只白球,在其中任取4只球.以X 表示取到黑球的只数,以Y 表示取到红球的只数,求X 和Y 的联合分布律. (X ,Y )的可能取值为(i , j ),i =0,1,2,3, j =0,12,i + j ≥2,联合分布律为 P {X=0, Y=2 }= 35147 2222=C C C P {X=1, Y=1 }=356 47 221213=C C C C P {X=1, Y=2 }= 3564 7 1 2 2213=C C C C P {X=2, Y=0 }=353 472 223=C C C P {X=2, Y=1 }= 35124 712 1223=C C C C P {X=2, Y=2 }=353 47 2 223=C C C P {X=3, Y=0 }= 35247 1233=C C C P {X=3, Y=1 }=352 47 1233=C C C P {X=3, Y=2 }=0 习题3-2 设随机变量),(Y X 的概率密度为 ?? ?<<<<--=其它 , 0, 42,20), 6(),(y x y x k y x f (1) 确定常数k ; (2) 求{}3,1<

?? ????????<<<<=42,20),(y x y x D o 解:(1)∵??? ? +∞∞-+∞ ∞ ---= = 20 12 )6(),(1dydx y x k dy dx y x f ,∴8 1= k (2)8 3 )6(8 1)3,1(32 1 ? ?= --= <

随机变量及其分布列经典例题教程文件

随机变量及其分布列 经典例题

随机变量及其分布列典型例题 【知识梳理】 一.离散型随机变量的定义 1定义:在随机试验中,确定一个对应关系,使得每一个试验结果都用一个确定的数字表示.在这个对应关系下,数字随着试验结果变化而变化的变量称为随机变量. ①随机变量是一种对应关系;②实验结果必须与数字对应; ③数字会随着实验结果的变化而变化. 2.表示:随机变量常用字母X ,Y ,ξ,η,…表示. 3.所有取值可以一一列出的随机变量,称为离散型随机变量 ( discrete random variable ) . 二.离散型随机变量的分布列 1.一般地,若离散型随机变量X 可能取的不同值为x 1,x 2,…,x i ,…,x n, X 取每一个值x i (i =1,2,…,n )的概率P (X =x i )=p i ,则称表: 为离散型随机变量X P (X =x i )=p i ,i =1,2,…,n, 也可以用图象来表示X 的分布列. 2.离散型随机变量的分布列的性质 ①p i ≥0,i =1,2,…,n ;②11 =∑=n i i p . 三.两个特殊分布 1.两点分布),1(~P B X 若随机变量X p =P (X =1)为成功概率. 2.超几何分布),,(~n M N H X 一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则P (X =k )= n N k n M N k M C C C --,k =0,1,2,…,m ,其中m =min {}n M ,,且n ≤N ,M ≤N ,n ,M ,N ∈N *. 三.二项分布 一般地,在n 次独立重复试验中,用X 表示事件A 发生的次数,设每次试验中事件A 发

概率论与数理统计习题及答案 第三章

《概率论与数理统计》习题及答案 第 三 章 1.掷一枚非均质的硬币,出现正面的概率为p (01)p <<,若以X 表示直至掷到正、反面都出现时为止所需投掷次数,求X 的分布列。 解 ()X k =表示事件:前1k -次出现正面,第k 次出现反面,或前1k -次出现反面,第k 次出现正面,所以 1 1()(1)(1),2,3,.k k P X k p p p p k --==-+-=L 2.袋中有b 个黑球a 个白球,从袋中任意取出r 个球,求r 个球中黑球个 数X 的分布列。 解 从a b +个球中任取r 个球共有r a b C +种取法,r 个球中有k 个黑球的取法有k r k b a C C -,所以X 的分布列为 ()k r k b a r a b C C P X k C -+==,max(0,),max(0,)1,,min(,)k r a r a b r =--+L , 此乃因为,如果r a <,则r 个球中可以全是白球,没有黑球,即0k =;如果r a >则r 个球中至少有r a -个黑球,此时k 应从r a -开始。 3.一实习生用一台机器接连生产了三个同种零件,第i 个零件是不合格品的概率1 (1,2,3)1 i p i i ==+,以X 表示三个零件中合格品的个数,求X 的分布列。 解 设i A =‘第i 个零件是合格品’1,2,3i =。则 1231111 (0)()23424 P X P A A A === ??= , 123123123(1)()P X P A A A A A A A A A ==++ 123123123()()()P A A A P A A A P A A A =++ 1111211136 23423423424 = ??+??+??= , 123123123(2)()P X P A A A A A A A A A ==++ 123123123()()()P A A A P A A A P A A A =++ 1211131231123423423424 = ??+???+??=,

概率论第三章习题解答

第三章习题解 1 在一箱子中装有12只开关,其中 2 只就是次品,在其中任取两次,每次任取一只,考虑两种试验:(1)放回抽样;(2)不放回抽样。定义随机变量X ,Y 如下: 0,1X ?=??若第一次取出的是正品,,若第一次取出的是次品。 0,Y 1?=?? 若第二次取出的是正品,,若第二次取出的是次品。 试分别就(1),(2)两种情况写出X ,Y 的联合分布律。 解 (1)放回抽样 由于每次抽取时都就是12只开关,第一次取到正品有10种可能,即第一次取到正品的概率为 105{0}126 P X ===, 第一次取出的就是次品的概率为 21{1}126 P X === 同理,第二次取到正品的概率105{0}126 P Y === 第二次取到次品的概率为21{1}126 P Y === 由乘法公式得X ,Y 的联合分布率为 {,}{|}{}{}{}P X i Y j P Y j X i P X i P X i P Y j =========,0,1i =,0,1j =。 具体地有 5525{0,0}6636P X Y ===?=,515{0,1}6636 P X Y ===?=, 155{1,0}6636P X Y ===?=,111{1,1}6636 P X Y ===?= 用表格的形式表示为 (2)不放回抽样 5{0}6P X ==,1{1}6 P X == 因为第二次抽取时,箱子里只有11只开关,当第一次抽取的就是正品,则箱子中有9只正品)。所以 9{0|0}11P Y X === , 2{1|0}11 P Y X === 10{0|1}11P Y X ===, 1{1|1}11P Y X ===

相关主题
文本预览
相关文档 最新文档