74HC595完整中文资料
- 格式:doc
- 大小:39.50 KB
- 文档页数:7
74HC595芯片是一种串入并出的芯片,在电子显示屏制作当中有广泛的应用。
74HC595是8位串行输入/输出或者并行输出移位寄存器,具有高阻、关、断状态。
三态。
特点 8位串行输入 8位串行或并行输出存储状态寄存器,三种状态输出寄存器可以直接清除 100MHz的移位频率输出能力并行输出,总线驱动串行输出;标准中等规模集成电路应用串行到并行的数据转换 Remote c ontrol holding register. 描述 595是告诉的硅结构的CMOS 器件,兼容低电压TTL电路,遵守JEDEC标准。
595是具有8位移位寄存器和一个存储器,三态输出功能。
移位寄存器和存储器是分别的时钟。
数据在SCHcp的上升沿输入,在STcp的上升沿进入的存储寄存器中去。
如果两个时钟连在一起,则移位寄存器总是比存储寄存器早一个脉冲。
移位寄存器有一个串行移位输入(Ds),和一个串行输出(Q7’),和一个异步的低电平复位,存储寄存器有一个并行8位的,具备三态的总线输出,当使能OE时(为低电平),存储寄存器的数据输出到总线。
CPD决定动态的能耗, PD=CP D×VCC×f1+∑(CL×VCC2×f0) F1=输入频率,CL=输出电容 f0=输出频率(MHz) Vcc=电源电压引脚说明符号引脚描述内部结构结合引脚说明就能很快理解 595的工作情况引脚功能表:真值表:74595的数据端:QA--QH: 八位并行输出端,可以直接控制数码管的8个段。
QH': 级联输出端。
我将它接下一个595的SI端。
SI: 串行数据输入端。
74595的控制端说明:/SRCLR(10脚): 低点平时将移位寄存器的数据清零。
通常我将它接Vcc。
SRCK(11脚):上升沿时数据寄存器的数据移位。
QA-->QB-->QC-->...-->QH;下降沿移位寄存器数据不变。
(脉冲宽度:5V时,大于几十纳秒就行了。
移位寄存器74HC595中文资料--------------------------------------------------------------------------------移位寄存器74HC595中文资料74HC595 是一款漏极开路输出的CMOS 移位寄存器,输出端口为可控的三态输出端,亦能串行输出控制下一级级联芯片。
74HC595特点:高速移位时钟频率Fmax>25MHz标准串行(SPI)接口CMOS 串行输出,可用于多个设备的级联低功耗:TA =25℃时,Icc=4μA(MAX)图1 74HC595引脚图74HC595引脚功能表:管脚编号管脚名管脚定义功能1、2、3、4、5、6、7、15QA—QH三态输出管脚8GND电源地9SQH串行数据输出管脚10SCLR移位寄存器清零端11SCK数据输入时钟线12RCK输出存储器锁存时钟线13OE输出使能14SI数据线15VCC电源端图2 74HC595逻辑图74HC595真值表:输入管脚输出管脚SISCKSCLRRCKOEXXXXHQA—QH 输出高阻XXXLQA—QH 输出有效值XXLXX移位寄存器清零L上沿HXX移位寄存器存储LH上沿HXX移位寄存器存储HX下沿HXX移位寄存器状态保持XXX上沿X输出存储器锁存移位寄存器中的状态值XXX下沿X输出存储器状态保持74HC595参数:Absolute Maximum Ratings绝对最大额定值参数数值Supply Voltage电源电压(VCC)−0.5 to +7.0VDC Input Voltage 直流输入电压(VIN)−1.5 to VCC +1.5VDC Output V oltage 直流输出电压(VOUT)−0.5 to VCC +0.5VClamp Diode Current 钳位二极管电流(IIK, IOK)±20mADC Output Current直流输出电流,每个引脚(输出)±35mADC VCC or GND Current,per pin (ICC)±70mAStorage Temperature Range 储存温度范围(TSTG)−65℃to +150℃Power Dissipation 功耗(PD)(Note 3)600mWS.O. Package only500mWLead Temperature (TL) (Soldering 10 seconds)260℃Recommended Operating Conditions建议操作条件参数最小最大单位Supply Voltage电源电压(VCC)26vDC Input or Output Voltage(VIN, VOUT)输入输出电压0VCCVOperating Temperature Range工作温度范围(TA)−40+85℃Input Rise or Fall Times 输入上升或下降时间(tr,tf) VCC = 2.0V-1000nsVCC = 4.5V-500nsVCC = 6.0V-400nsDC SPECIFICATIONS直流电气规格Symbol 符号Parameter 参数Conditions 条件VCCTA=25℃TA= −40to85℃TA= −55to125℃UNIT 单位典型Guaranteed Limits保证界限VIHMinimum High Level Input V oltage最大高电平输入电压-2.0V-1.51.51.5V4.5V-3.153.153.156.0V-4.24.24.2VILMaximum LOW Level Input V oltage最大低电平输入电压-2.0V-0.50.50.5V4.5V-1.351.351.356.0V-1.81.81.8VOHMinimum HIGH Level Output V oltage最大高电平输出电压VIN=VIH or VIL|IOUT|≤20μA2.0V2.01.91.91.9V4.5V4.54.44.44.46.0V6.05.95.95.9Q'HVIN = VIH or VILV|IOUT| ≤4.0mA4.5V4.23.983.843.7|IOUT| ≤5.2mA6.0V5.25.485.345.2QA thru QHVIN = VIH or VILV|IOUT| ≤6.0mA4.5V4.23.983.843.7IOUT| ≤7.8mA6.0V5.75.485.345.2VOLMaximum LOW Level Output V oltage最大低电平输出电压VIN=VIH or VIL|IOUT| ≤20μA2.0V0.10.10.1V4.5V0.10.10.16.0V0.10.1Q'HVIN = VIH or VILV|IOUT| ≤4mA4.5V0.20.260.330.4|IOUT| ≤5.2mA6.0V0.20.260.330.4QA thru QHVIN = VIH or VILV|IOUT| ≤6.0mA4.5V0.20.260.330.4|IOUT| ≤7.8mA6.0V0.20.260.330.4IINMaximum Input Current最大输入电流VIN=VCC or GND6.0V±0.1±1.0±1.0μAIOZMaximum 3-STATE Output Leakage最大3态输出泄漏电流VOUT = VCC or GND G = VIH6.0V-±0.5±5.0±10μAICCMaximum Quiescent Supply Current电源电流VIN=VCC or GND IOUT = 0μA6.0V-8.080160μA交流电气特性:Symbol 符号Parameter 参数Conditions 条件典型Guaranteed LimitUNIT 单位fMax最高工作频率-5030MHztPHL, tPLHMaximum Propagation Delay,最大传输延迟SCK to Q’HCL = 45 pF1220nstPHL, tPLHMaximum Propagation Delay, 最大传输延迟RCK to QA thru QHCL = 45 pF1830nstPZH, tPZLMaximum Output Enable Time from G to QA thru QH 最大输出启用时间G to QA thru QH RL=1kΩ CL=45pF1728nstPHZ, tPLZMaximum Output Disable Time from G to QA thru QH最大输出禁用时间G to QA thru QH RL=1kΩ CL=5pF1525nstSMinimum Setup Time from SER to SCK--20nstSMinimum Setup Time from SCLR to SCK--20nstSMinimum Setup Time from SCK to RCK--40nstHMinimum Hold Time from SER to SCK--nstWMinimum Pulse Width of SCK or RCK--16ns本文来自: 原文网址:/info/cmos/0083302.html。
74HC595芯片资料74HC595是硅结构的CMOS器件,兼容低电压TTL电路,遵守JEDEC 标准。
74HC595是具有8位移位寄存器和一个存储器,三态输出功能。
移位寄存器和存储器是分别的时钟。
数据在SHcp的上升沿输入到移位寄存器中,在STcp的上升沿输入到存储寄存器中去。
如果两个时钟连在一起,则移位寄存器总是比存储寄存器早一个脉冲。
移位寄存器有一个串行移位输入(Ds),和一个串行输出(Q7’),和一个异步的低电平复位,存储寄存器有一个并行8位的,具备三态的总线输出,当使能OE时(为低电平),存储寄存器的数据输出到总线。
8位串行输入/输出或者并行输出移位寄存器,具有高阻关断状态。
三态。
将串行输入的8位数字,转变为并行输出的8位数字,例如控制一个8位数码管,将不会有闪烁。
特点:8位串行输入 /8位串行或并行输出存储状态寄存器,三种状态输出寄存器(三态输出:就是具有高电平、低电平和高阻抗三种输出状态的门电路。
)可以直接清除 100MHz的移位频率输出能力并行输出,总线驱动;串行输出;标准中等规模集成电路595移位寄存器有一个串行移位输入(Ds),和一个串行输出(Q7’),和一个异步的低电平复位,存储寄存器有一个并行8位的,具备三态的总线输出,当使能OE时(为低电平),存储寄存器的数据输出到总线。
符号引脚描述Q0…Q7 第15脚, 1, 7 并行数据输出GND 第8脚地Q7’ 第9脚串行数据输出MR 第10脚主复位(低电平)SHCP 第11脚移位寄存器时钟输入STCP 第12脚存储寄存器时钟输入OE 第13脚输出有效(低电平)DS 第14脚串行数据输入VCC 第16脚电源功能表H=高电平状态L=低电平状态↑=上升沿↓=下降沿Z=高阻NC=无变化×=无效74HC595 内含8 位串入、串/并出移位寄存器和8位三态输出锁存器。
寄存器和锁存器分别有各自的时钟输入 (SH_CP和 ST_CP) , 都是上升沿有效。
74HC595芯片是一种串入并出的芯片,在电子显示屏制作当中有广泛的应用。
74HC595是8位串行输入/输出或者并行输出移位寄存器,具有高阻、关、断状态。
三态。
特点 8位串行输入 8位串行或并行输出存储状态寄存器,三种状态输出寄存器可以直接清除 100MHz的移位频率输出能力并行输出,总线驱动串行输出;标准中等规模集成电路应用串行到并行的数据转换 Remote contr ol holding register. 描述 595是告诉的硅结构的CMOS器件,兼容低电压TTL电路,遵守JEDEC标准。
595是具有8位移位寄存器和一个存储器,三态输出功能。
移位寄存器和存储器是分别的时钟。
数据在SCHcp的上升沿输入,在STcp 的上升沿进入的存储寄存器中去。
如果两个时钟连在一起,则移位寄存器总是比存储寄存器早一个脉冲。
移位寄存器有一个串行移位输入(Ds),和一个串行输出(Q7’),和一个异步的低电平复位,存储寄存器有一个并行8位的,具备三态的总线输出,当使能OE时(为低电平),存储寄存器的数据输出到总线。
CPD决定动态的能耗, PD=CPD×VCC×f1+∑(CL×VCC2×f0) F1=输入频率,CL=输出电容 f0=输出频率(MHz) Vcc=电源电压引脚说明符号引脚描述内部结构结合引脚说明就能很快理解 595的工作情况引脚功能表:管脚编号管脚名管脚定义功能1、2、3、4、5、6、7、15QA—QH 三态输出管脚8 GND 电源地9 SQH 串行数据输出管脚10 SCLR 移位寄存器清零端11 SCK 数据输入时钟线12 RCK 输出存储器锁存时钟线13 OE 输出使能14 SI 数据线15 VCC 电源端真值表:输入管脚输出管脚SI SCK SCLR RCK OEX X X X H QA—QH 输出高阻X X X X L QA—QH 输出有效值X X L X X 移位寄存器清零L 上沿H X X 移位寄存器存储LH 上沿H X X 移位寄存器存储HX 下沿H X X 移位寄存器状态保持X X X 上沿X 输出存储器锁存移位寄存器中的状态值X X X 下沿X 输出存储器状态保持74595的数据端:QA--QH: 八位并行输出端,可以直接控制数码管的8个段。
74HC595简单工作原理74HC595是具有8位移位寄存器和一个存储器,三态输出功能。
移位寄存器和存储器是分别的时钟。
数据在SHcp的上升沿输入,在STcp的上升沿进入的存储寄存器中去。
如果两个时钟连在一起,则移位寄存器总是比存储寄存器早一个脉冲。
移位寄存器有一个串行移位输入(Ds),和一个串行输出(Q7’),和一个异步的低电平复位,存储寄存器有一个并行8位的,具备三态的总线输出,当使能OE时(为低电平),存储寄存器的数据输出到总线。
74HC595各个引脚的功能:Q1~7是并行数据输出口,即储寄存器的数据输出口Q7'串行输出口,其应该接SPI总线的MISO接口STcp存储寄存器的时钟脉冲输入口SHcp移位寄存器的时钟脉冲输入口OE的非输出使能端MR的非芯片复位端Ds串行数据输入端程序说明:每当spi_shcp上升沿到来时,spi_ds引脚当前电平值在移位寄存器中左移一位,在下一个上升沿到来时移位寄存器中的所有位都会向左移一位,同时Q7'也会串行输出移位寄存器中高位的值,这样连续进行8次,就可以把数组中每一个数(8位的数)送到移位寄存器;然后当spi_stcp上升沿到来时,移位寄存器的值将会被锁存到锁存器里,并从Q1~Q7引脚输出;附子程序:voidhc595send_data(uint8data)//要传输的数据,建议用数组的方法来查询{uint8i;IO0CLR=spi_stcp;12脚for(i=0;i<8;i++){IO0CLR=spi_shcp;11脚if((data&0x80)!=0)IO0SET=spi_ds;elseIO0CLR=spi_ds;data<<=1;IO0SET=spi_shcp;}IO0SET=spi_stcp;}1引言单片机应用系统中使用的显示器主要有LED和LCD两种。
近年来也有用CRT显示的。
前者价格低廉,配置灵活,与单片机接口方便;后者可进行图形显示,但接口较复杂,成本也较高。
74HC595芯片是一种8位串行输入/串行输出并行输出皆可的串转并芯片,可实现多级级联,在电子显示屏制作当中有广泛的应用。
74HC595芯片资料 8位串行输入/输出或者并行输出移位寄存器,具有高阻关断状态。
三态。
特点:8位串行输入 8位串行或并行输出存储状态寄存器,三种状态输出寄存器可以直接清除 100MHz的移位频率输出能力并行输出,总线驱动串行输出;标准中规模集成电路。
应用:串行到并行的数据转换 Remote control holding register. 描述 595是高速的硅结构CMOS器件,兼容低电压TTL电路,遵守JEDEC标准。
595是具有8位移位寄存器和一个存储器,三态输出功能。
移位寄存器和存储器是分别的时钟。
数据在SCHcp的上升沿输入,在STcp的上升沿进入的存储寄存器中去。
如果两个时钟连在一起,则移位寄存器总是比存储寄存器早一个脉冲。
移位寄存器有一个串行移位输入端(Ds),和一个串行输出端(Q7’),和一个异步的低电平复位(直接复位端),存储寄存器有一个并行8位的,具备三态的总线输出,当输出使能端OE有效时(为低电平),存储寄存器的数据输出到总线。
CPD决定动态的能耗, PD=CPD×VCC ×f1+∑(CL×VCC2×f0) F1=输入频率,CL=输出电容 f0=输出频率(MHz)Vcc=电源电压引脚说明:符号、引脚、描述Q0…Q7 15, 1, 7 并行数据输出 GND 8 地Q7’ 9 串行数据输出 MR 10 主复位(低电平) SHCP 11 移位寄存器时钟输入 STCP 12 存储寄存器时钟输入 OE 13 输出有效(低电平) DS 14 串行数据输入 VCC 16 电源。
74HC595芯片资料74HC595是硅结构的CMOS器件,兼容低电压TTL电路,遵守JEDEC 标准。
74HC595是具有8位移位寄存器和一个存储器,三态输出功能. 移位寄存器和存储器是分别的时钟。
数据在SHcp的上升沿输入到移位寄存器中,在STcp的上升沿输入到存储寄存器中去。
如果两个时钟连在一起,则移位寄存器总是比存储寄存器早一个脉冲。
移位寄存器有一个串行移位输入(Ds),和一个串行输出(Q7’),和一个异步的低电平复位,存储寄存器有一个并行8位的,具备三态的总线输出,当使能OE时(为低电平),存储寄存器的数据输出到总线。
8位串行输入/输出或者并行输出移位寄存器,具有高阻关断状态.三态. 将串行输入的8位数字,转变为并行输出的8位数字,例如控制一个8位数码管,将不会有闪烁.特点:8位串行输入 /8位串行或并行输出存储状态寄存器,三种状态输出寄存器(三态输出:就是具有高电平、低电平和高阻抗三种输出状态的门电路。
)可以直接清除 100MHz的移位频率输出能力并行输出,总线驱动;串行输出;标准中等规模集成电路595移位寄存器有一个串行移位输入(Ds),和一个串行输出(Q7’),和一个异步的低电平复位,存储寄存器有一个并行8位的,具备三态的总线输出,当使能OE时(为低电平),存储寄存器的数据输出到总线。
符号引脚描述Q0…Q7 第15脚, 1, 7 并行数据输出GND 第8脚地Q7’ 第9脚串行数据输出MR 第10脚主复位(低电平)SHCP 第11脚移位寄存器时钟输入STCP 第12脚存储寄存器时钟输入OE 第13脚输出有效(低电平)DS 第14脚串行数据输入VCC 第16脚电源功能表H=高电平状态L=低电平状态↑=上升沿↓=下降沿Z=高阻NC=无变化×=无效74HC595 内含8 位串入、串/并出移位寄存器和8位三态输出锁存器.寄存器和锁存器分别有各自的时钟输入(SH_CP和 ST_CP),都是上升沿有效。
74HC595芯片是一种串入并出的芯片,在电子显示屏制作当中有广泛的应用。
令狐采学
74HC595是8位串行输入/输出或者并行输出移位寄存器,具有高阻、关、断状态。
三态。
特点 8位串行输入 8位串行或并行输出存储状态寄存器,三种状态输出寄存器可以直接清除 100MHz的移位频率输出能力并行输出,总线驱动串行输出;
标准中等规模集成电路应用串行到并行的数据转换 Remote co ntrol holding register. 描述 595是告诉的硅结构的CMOS器件,兼容低电压TTL电路,遵守JEDEC标准。
595是具有8位移位寄存器和一个存储器,三态输出功能。
移位寄存器和存储器是分别的时钟。
数据在SCHcp的上升沿输入,在STcp的上升沿进入的存储寄存器中去。
如果两个时钟连在一起,则移位寄存器总是比存储寄存器早一个脉冲。
移位寄存器有一个串行移位输入(Ds),和一个串行输出(Q 7’),和一个异步的低电平复位,存储寄存器有一个并行8位的,具备三态的总线输出,当使能OE时(为低电平),存储寄存器的数据输出到总线。
CPD决定动态的能耗, PD=CPD×VCC×f1+∑(CL×VCC2×f0) F1=输入频率,CL=输出电容 f0=输出频率(MHz) Vc c=电源电压引脚说明符号引脚描述
内部结构
结合引脚说明就能很快理解 595的工作情况
引脚功能表:
真值表:
74595的数据端:
QA--QH: 八位并行输出端,可以直接控制数码管的8个段。
QH': 级联输出端。
我将它接下一个595的SI端。
SI: 串行数据输入端。
74595的控制端说明:
/SRCLR(10脚): 低点平时将移位寄存器的数据清零。
通常我将它接Vcc。
SRCK(11脚):上升沿时数据寄存器的数据移位。
QA-->QB-->QC-->...-->QH;下降沿移位寄存器数据不变。
(脉冲宽度:5V时,大于几十纳秒就行了。
我通常都选微秒级)
RCK(12脚):上升沿时移位寄存器的数据进入数据存储寄存器,下降沿时存储寄存器数据不变。
(通常我将RCK置为低电平,) 当移位结束后,在RCK端产生一个正脉冲(5V时,大于几十纳秒就行了。
我通常都选微秒级),更新显示数据。
/G(13脚): 高电平时禁止输出(高阻态)。
如果单片机的引脚不紧张,用一个引脚控制它,可以方便地产生闪烁和熄灭效果。
比通过数据端移位控制要省时省力。
注:1)74164和74595功能相仿,都是8位串行输入转并行输出移位寄存器。
74164的驱动电流(25mA)比74595(35mA)的要小,14脚封装,体积也小一些。
2)74595的主要优点是具有数据
存储寄存器,在移位的过程中,输出端的数据可以保持不变。
这在串行速度慢的场合很有用处,数码管没有闪烁感。
与164只有数据清零端相比,595还多有输出端时能/禁止控制端,可以使输出为高阻态。
3)595是串入并出带有锁存功能移位寄存器,它的使用方法很简单,在正常使用时SCLR为高电平, G为低电平。
从SER每输入一位数据,串行输595是串入并出带有锁存功能移位寄存器,它的使用方法很简单,如下面的真值表,在正常使用时SCLR为高电平, G为低电平。
从SER每输入一位数据,串行输入时钟SCK上升沿有效一次,直到八位数据输入完毕,输出时钟上升沿有效一次,此时,输入的数据就被送到了输出端。
入时钟SCK上升沿有效一次,直到八位数据输入完毕,输出时钟上升沿有效一次,此时,输入的数据就被送到了输出端。
其实,看了这么多595的资料,觉得没什么难的,关键是看懂其时序图,说到底,就是下面三步(引用):
第一步:目的:将要准备输入的位数据移入74HC595数据输入端上。
方法:送位数据到 P1.0。
第二步:目的:将位数据逐位移入74HC595,即数据串
入方法:P1.2产生一上升沿,将P1.0上的数据移入
74HC595中.从低到高。
第三步:目的:并行输出数据。
即数据并出方法:P1.1产生一上升沿,将由P1.0上已移入数据寄存器中的数
据送入到输出锁存器。
说明:从上可分析:从P1.2产生一上升沿(移入数据)和P1.1产生一上升沿(输出数据)是二个独立过程,实际应用时互不干扰。
即可输出数据的同时移入数据。
而具体编程方法为
如:R0中存放3FH,LED数码管显示“0”
;*****接口定义: DS_595 EQU P1.0 ;串行数据输入(595-14) CH_595 EQU P1.2 ;移位时钟脉冲(595-11) CT_595 EQU P1.1 ;输出锁存器控制脉冲(595-12) ;*****将移位寄存器内的数据锁存到输出寄存器并显示OUT_595: CALL WR_595 ;调用移位寄存器接收一个字节数据子程序 CLR CT_595 ;拉低锁存器控制脉
冲 NOP NOP SETB CT_595 ;上升沿将数据送到输出锁存器,LED数码管显示“0” NOP NOP CLR CT_595 RET
;*****移位寄存器接收一个字节(如3FH)数据子程
序 WR_595: MOV R4,#08H ;一个字节数据(8位) MOV A,R0 ;R0中存放要送入的数据
3FH LOOP: ;第一步:准备移入74HC595数据 RLC A ;数据移位 MOV DS_595,C ;送数据到串行数据输入端上(P1.0) ;第二步:产生一上升沿将数据移入74HC595 CLR CH_595 ;拉低移位时
钟 NOP NOP setb CH_595 ;上升沿发生移位(移入一数据)
DJNZ R4,LOOP ;一个字节数据没移完继续 RET 而其级联的应用 74HC595主要应用于点阵屏,以16*16点阵为例:传送一行共二个字节(16位)如:发送的是
06H和3FH。
其方法是: 1.先送数据3FH,后送06H。
2.通过级联串行输入后,3FH在IC2内,06H在IC1内。
应用如图二 3.接着送锁存时钟,数据被锁存并出现在IC1和IC2的并行输出口上显示。
编程方法:数据在30H和31H中 ;MOV
30H,#3FH ;MOV 31H,#06H
;*****接口定义: DS_595 EQU P1.0 ;串行数据输入(595-14) CH_595 EQU P1.2 ;移位时钟脉冲(595-
11) CT_595 EQU P1.1 ;输出锁存器控制脉冲(595-12) ;*****串行输入16位数据 MOV R0,30H CALL
WR_595 ;串行输入3FH nop NOP MOV
R0,31H CALL WR_595 ;串行输入
06H NOP NOP SETB CT_595 ;上升沿将数据送到输出锁存器,显示 NOP NOP CLR CT_595 RET MC74HC595A包括一个8位移位寄存器和一个8位D型锁存器和三态并行输出。
移位寄存器接受串行数据并提供串行输出。
移位寄存器也提供并行数据输出和8位锁存器。
移位寄存器和锁存器都有独立的时钟输入。
这个IC还具有异步复位的功能。
HC595A可以直接和CMOS MPU的和MCU的SPI接口进行连接。