当前位置:文档之家› 几种特殊函数的图象及应用

几种特殊函数的图象及应用

几种特殊函数的图象及应用
几种特殊函数的图象及应用

几种特殊函数の图象及应用

函数学习中,除了二次函数、指数函数、对数函数、三角函数等常见函数外,还有一类分式函数、绝对值函数也常常出现.这类函数问题,虽说借助于导数等工具也能解决,但如果能够掌握这类函数の基本图象特征,便能起到事半功倍の效果.本文介绍四个最常见の函数模型及其图象特征,并在实际问题中借助于换元、分离变量等手段将函数表达式转化为这几个函数模型之一,根据函数图象,迅速找到解决问题の切入点和解题思路.

先了解这四个基本函数:

①函数1y x =(图1);②函数1y x x =+(图2); ③函数1

y x x

=-(图3);④函数y x =(图4).

从函数の图象很容易看出函数の对称性、单调性、值域等性质,下面看它们各自の应用.

一、形如()0c y a c x

b =+

≠-の函数可利用函数1y x =(或1

y

x

=-)の性质.当0c >时,函数c y a x b =+-の图象可看成由函数c

y x

=の图象左右、上下平移得到,在区间(,)b -∞、(,)b +∞上

分别递减;当0c <时,函数c y a x b =+-の图象可看成由函数c

y x

=の图象左右、上下平移得到,

在区间(,)b -∞、(,)b +∞上分别递增.

例1 函数())0(11

lg

>--=k x kx x f 在[)+∞,10上单调递增,求实数k の取值范围. 解析:令11,lg )(--==x kx t t x f ,由复合函数单调性及题意可得:1

1

--=x kx t 需满足两个条件:①

t 在[)+∞∈,10x 上单调递增;②0>t 在[)+∞∈,10x 上恒成立.

考虑)1(1

1

11≠--+=--=

x x k k x kx t 当1=k 时,0)(=x f 不合题意,舍去;

当1>k 时,t 在()()+∞∞-,1,1,上均递减,不合题意,舍去; 当10<

∴t 也在[)+∞,10上递增,且当10=x 时,

图4

图3 图2

09110min >-=

k t ,即,101>k ∴??

?

??∈1,101k , 综上所述,实数k の取值范围是1,110??

???

二、形如(),0b

y ax c a b x

=++>の函数可利用函数1y x x =+の性质.类似地,如图5,函数(),0b

y ax a b x

=+>在

区间(,-∞

、)+∞

上递增,在区间[

上递减.其中,

b ax x =时解得.

例2 已知a R ∈,函数2()223f x ax x a =+--在区间[-1,1]上有零点,求实数a の取值范围. 解析:“函数2()223f x a x x a =+--在区间[-1,1]上有零点”等价于“方程

22230ax x a +--=在区间[-1,1]上有解”

.显然0a ≠,可得2

121

32x a x

-=-,令32[1,5]t x =-∈,可得216717()322t t t a t t -+==+-,

∴13,0)(0,1]a ∈?,

解得(,[1,)a ∈-∞?+∞.

例 3 已知集合(){}

02,2

=+-+=y mx x y x A ,(){}

20,01,≤≤=+-=x y x y x B ,如果

A B φ?≠,求实数m の取值范围.

解析:A B φ?≠,即方程022

=+-+y mx x 与方程01=+-y x (20≤≤x )の图象有公共点,消去y 得关于x の方程01)1(2

=+-+x m x 在[]2,0上有解,显然0=x 不是方程の解,当

(]2,0∈x 可得x

x m 11+

=-. ∴21≥-m ,即1-≤m .

三、形如(),0b

y ax c a b x

=-

+>の函数可利用函数1y x x =-の性质.类似地,如图6,函数(),0b

y ax a b x

=->在

图6

图5

区间(,0)-∞、(0,)+∞

上分别递增.其中,

由b ax x =时解得.

例4 函数())1(4)41(2≥+-+=a a x a ax x f 在区间[]2,2-上の最大值、最小值分别为M 、

m ,记m M a g +=)(,求)(a g の最小值.

解析:由题得()x f の对称轴??

?

???∈-

=2,23212a x , ∴()2162-=-=a f M ,a

a a f m 41

8212-=

??? ?

?-

= ∴())1(41

16≥-=a a a a g ,由()a g 图象易得()a g 在[1,)+∞上递增, ∴

4

63

)1()(min ==g a g .

四、形如()0y a x b c a =-+≠の函数可利用函数y x =の性质.当0a >时,函数

y a x b c =-+在区间(,]b -∞上递减、在区间[,)b +∞上递增;当0a <时,函数y a x b c =-+在

区间(,]b -∞上递增、在区间[,)b +∞上递减.

例5 若函数()2+-=b x a x f 在[)+∞,0为增函数,分别确定实数b a ,の取值范围. 解析:函数x y =在()0,∞-上递减、[)+∞,0上递增;函数x y -=在()0,∞-上递增、在[)+∞,0上递减.函数()x f の图象可由x y =の图象经过平移伸缩变换得到,不难得到0,0≤>b a .

例6 若关于x の不等式2

2x x t <--至少有一个负数解,求实数t の取值范围. 解析:考察函数

22y x =-与||y x t =-の图象,如图7,当t 在区间

12(,)t t 内变化时,两函数の图象在y 轴左侧有交点,22x x t <--至少有一

个负数解.当1t

t =时,两图象相切,由?=0,可求得19

4

t =-,当2t t =时,

||y x t =-经过点P(0,2),解得22t =,所以t ∈9,24

??- ??

?

五、综合应用.

例7 已知函数()||2f x x x a =--,当(0,1]x ∈时,2

1()12

f x x <-恒成立,求实数a の取值范围.

解析:由题意得||2x x a --2

112

x <

-在(0,1]x ∈上恒成立,分离变量可得113122x a x x x -<<+在(0,1]x ∈上恒成立,令11()2g x x x =-,31()2h x x x

=+,由图象特征可得,()g x 在(0,1]上单调递增,()h x

上递减、在,1)上递增,∴()g x の最大值为1(1)2g =-,()h x

の最小值为h =

12a -<<

例8 求函数()x

a

x x f -=2在定义域(]1,0上の最大值及最小值,并求出函数取最值时相应x の值.

解析:实数a 应分0,0,0>=

当0≥a 时,()x f 在(]1,0上递增,从而有(),2)1(max a f x f -==()x f min 不存在; 当0

>-

a

可得2-

2,0a 上递减、在????

?

?-1,2a 上递增,从而有(),22)2

(min a a

f x f -=-=()x f max 不存在.

从上述几类问题の应用可以看出,如果能够熟练掌握四类函数の基本图象及性质,在解题中便能有效地避免复杂の运算过程,把思维集中在数形结合思想の运用上,深刻理解函数图象与方程之间の联系.总结而言,一般地,形如()0≠++=

a b

ax d

cx y の函数均可向形式①转化;形如)0(2≠?+++=c a b

ax e

dx cx y 或)0(2≠?+++=c a e dx cx b ax y の函数可向形式②或形式③式转化.迅速

把握问题の特征和解题方向,结合图象,函数中の“存在性”、“恒成立”、“恒不成立”等问题便能

迎刃而解.

6.5一次函数图象的应用(第二课时)教学设计

第六章一次函数 5.一次函数图象的应用(二) 成都七中陈中华 一、学生起点分析 在前几节课,学生已经分别学习了一次函数,一次函数的图象,一次函数图象的特征,并且了解到一次函数的应用十分广泛.在此基础上,通过生活中的实际问题进一步探讨一次函数图象的应用. 二、教学任务分析 《一次函数图象的应用》是义务教育课程标准北师大版实验教科书八年级(上)第六章《一次函数》的第五节。本节内容安排了2个课时完成.第一课时让学生利用一次函数的图象解决一些简单的实际问题,本节课为第2课时,主要是利用两个一次函数的图象解决一些生活中的实际问题.和前一课时一样,教科书注重从函数图象中获取信息从而解决具体问题,关注数形结合思想的揭示,关注形象思维能力的发展,同时,这为今后学习用图象法解二元一次方程组打下基础. 三、教学目标分析 1.教学目标 ●知识与技能目标: 1.进一步训练学生的识图能力,能通过函数图象获取信息,解决简单的实际问题; ●过程与方法目标: 1.在函数图象信息获取过程中,进一步培养学生的数形结合意识,发展形象思维; 2.在解决实际问题过程中,进一步发展学生的分析问题、解决问题的能力和数学应用意识.●情感与态度目标: 在现实问题的解决中,使学生初步认识数学与人类生活的密切联系,从而培养学生学习数学的兴趣. 2.教学重点 一次函数图象的应用 3.教学难点 从函数图象中正确读取信息 四、教法学法 1.教学方法:“问题情境—建立模型—应用与拓展” 2.课前准备: 教具:教材,课件,电脑 学具:教材,练习本,铅笔,直尺

五、教学过程: 本节课设计了五个环节:第一环节:情境引入;第二环节:问题解决;第三环节:反馈练习;第四环节:课时小结;第五环节:作业布置. 第一环节:情境引入 内容:一农民带上若干千克自产的土豆进城出售,为了方便,他带了一些零钱备用,按市场价 售出一些后,又降价出售,售出的土豆千克数与他手中持有 的钱数(含备用零钱)的关系,如图所示,结合图象回答下列 问题. (1)农民自带的零钱是多少? (2)试求降价前y与x之间的关系 (3)由表达式你能求出降价前每千克的土豆价格是多少? (4)降价后他按每千克0.4元将剩余土豆售完,这时他手中 的钱(含备用零钱)是26元,试问他一共带了多少千克土豆? 意图:通过与上一课时相似的问题,回顾旧知,导入新知学习。 效果:由于问题与上一课时问题相近,学生很快明确并解决了问题。 第二环节:问题解决 内容1:例1 小聪和小慧去某风景区游览,约好在“飞瀑”见面,上午 7:00小聪乘电动汽车从“古刹”出发,沿景区公路去“飞 瀑”,车速为36km/h,小慧也于上午7:00从“塔林”出发, 骑电动自行车沿景区公路去“飞瀑”,车速为26km/h. (1)当小聪追上小慧时,他们是否已经过了“草甸”? (2)当小聪到达“飞瀑”时,小慧离“飞瀑”还有多少km? 分析:当小聪追上小慧时,说明他们两个人的什么量是相同 的?是否已经过了“草甸”该用什么量来表示?你会选择用哪 种方式来解决?图象法?还是解析法? 解:设经过t时,小聪与小慧离“古刹”的路程分别为S1、S2, 由题意得:S1=36t, S2=26t+10 将这两个函数解析式画在同一个直角坐标系上,观察图象,得 ⑴两条直线S1=36t, S2=26t+10的交点坐标为(1,36)这说明当小聪追上小慧时,S1=S2=36 km,即离“古刹”36km,已超过35km,也就是说,他们已经过了“草甸” ⑵当小聪到达“飞瀑”时,即S1=45km,此时S2=42.5km. 所以小慧离“飞瀑”还有45-42.5=2.5(km) 思考:用解析法如何求得这两个问题的结果?小聪、小慧运行时间与路程之间的关系式分别是什么(小聪的解析式为S1=36t,小慧的解析式为S2=26t+10)? 意图:培养学生的识图能力和探究能力,调动学生学习的自主意识.通过问题串的精心设计,引导学生根据实际问题建立适当的函数模型,利用该函数图象的特征解决这个问题.在此过程中渗透数形结合的思想方法,发展学生的数学应用能力. 说明:在这个环节的学习过程中,如果学生入手感到困难,可用以下问题串引导学生进行分析。⑴两个人是否同时起步?⑵在两个人到达之前所用时间是否相同?所行驶的路程是否

八年级数学辅导: 一次函数图象的几何变换

平移,对称,旋转 一次函数图象的几何变换 【教学目标】 1.熟练掌握一次函数图象经过平移后的函数表达式求解方法. 2.了解一次函数的图象经过简单的旋转、对称的等几何变换后的表达式. 3.培养学生的位置感和推理能力. 【重难点】 重点:求一次函数平移变换后的表达式. 难点:由坐标系中不同的函数图象求相关的几何问题(面积,边长). 【知识要点】 1.直线b kx y +=向左平移m 个单位得到直线 ,向右平移m 个单位得到直线 ,向上平移m 个单位得到直线 , 向下平移m 个单位得到直线 . 2.将直线b kx y +=①关于x 轴对称,得到直线 ; ②关于y 轴对称,得到直线 . ③关于原点对称,得到直线 . 3. 111b x k y +=和222b x k y +=,当,,2121b b k k ≠=两直线平行.当121-=?k k 时,两直线垂直. 【典型例题】 例1. (1)求函数3 6-= x y 向上平移4个单位后得到新函数的解析式. (2)直线121+-=x y 向 平移 个单位可得直线521--=x y 。

例2 已知函数25y x =-的图象与x 轴、y 轴分别交于A 、B 两点,把它向右平移2个单位后与x 轴、y 轴分别交于C 、D 两点,求C ,D 两点的坐标. 例3 已知在直角坐标系中,直线y =+x 轴和y 轴分别交于A 、B 两点,作AB 边关于x 轴、y 轴和坐标原点的对称直线,画出图象,并求这四条直线围成的四边形的面积。 例4 如图,已知直线AB 与y 轴、x 轴分别交于点A (0,4)和点B (2,0),将此直线向左平移与x 轴的负半轴和y 轴的负半轴分别交于点C 、点D ,使DB=DC ,求直线CD 的解析式。 例5 已知直线1l :21y x =-与2l :122 y x =-+,将1l 向左平移3个单位得3l ,将2l 向下平移

高中数学双曲线函数的图像与性质及应用

一个十分重要的函数的图象与性质应用 新课标高一数学在“基本不等式 ab b a ≥+2”一节课中已经隐含了函数x x y 1 +=的图象、性质与重要的应用,是高考要求范围内的一个重要的基础知识.那么在高三第一轮复习 课中,对于重点中学或基础比较好一点学校的同学而言,我们务必要系统介绍学习 x b ax y + =(ab ≠0)的图象、性质与应用. 2.1 定理:函数x b ax y +=(ab ≠0)表示的图象是以y=ax 和x=0(y 轴) 的直线为渐近线的双曲线. 首先,我们根据渐近线的意义可以理解:ax 的值与x b 的值比较,当x 很大很大的时候, x b 的值几乎可以忽略不计,起决定作用的是ax 的值;当x 的值很小很小,几乎为0的时候,ax 的值几乎可以忽略不计,起决定作用的是x b 的值.从而,函数x b ax y +=(ab ≠0)表示 的图象是以y=ax 和x=0(y 轴)的直线为渐近线的曲线.另外我们可以发现这个函数是奇 函数,它的图象应该关于原点成中心对称. 由于函数形式比较抽象,系数都是字母,因此要证明曲线是双曲线是很麻烦的,我们通过一个例题来说明这一结论. 例1.若函数x x y 3 233+= 是双曲线,求实半轴a ,虚半轴b ,半焦距c ,渐近线及其焦点,并验证双曲 线的定义. 分析:画图,曲线如右所示;由此可知它的渐近线应该是x y 3 3 = 和x=0两条直线;由此,两条渐近线的夹角的平分线y=3x 就是实轴了,得出顶点为A (3,3),A 1(-3,-3); ∴ a=OA =32, 由渐近线与实轴的夹角是30o,则有a b =tan30o, 得b=2 , c=22b a +=4, ∴ F 1(2,32)F 2(-2,-32).为了验证函数的图象是双曲线,在曲线上任意取一点P (x, x x 3 233+)满足3421=-PF PF 即可;

(完整版)一次函数图象的平移及解析式的变化规律

一次函数图象的平移及解析式的变化规律 我们在研究两个一次函数的图象平行的条件时,曾得出“其中一条直线可以由另外一条直线通过平移得到”的结论,这就涉及到一次函数图象平移的问题. 函数的图象及其解析式,是从“形”和“数”两个方面反映函数的性质,也是初中数学中数形结合思想的重要体现.在平面直角坐标系中,当一次函数的图象发生平移(平行移动)时,与之对应的函数解析式也随之发生改变,并且函数解析式的变化呈现出如下的变化规律: 一次函数()0≠+=k b kx y 的图象平移后其解析式的变化遵循“上加下减,左加右减”的规律: (1)上下平移,k 值不变,b 值“上加下减”:将一次函数()0≠+=k b kx y 的图象向上平移m 个单位长度,解析式变为()0≠++=k m b kx y ;将一次函数()0≠+=k b kx y 的图象向下平移m 个单位长度,解析式变为()0≠-+=k m b kx y . (2)左右平移,k 值不变,自变量x “左加右减”:将一次函数()0≠+=k b kx y 的图象向左平移n 个单位长度,解析式变为()()0≠++=k b n x k y ,展开得()0≠++=k b kn kx y ;将一次函数()0≠+=k b kx y 的图象向右平移n 个单位长度,解析式变为()()0≠+-=k b n x k y ,展开得()0≠+-=k b kn kx y . 注意: (1)无论一次函数的图象作何种平移,平移前后,k 值不变,b 值改变.设上下平移的单位长度为m ,则b 值变为m b ±;设左右平移的单位长度为n ,则b 值变为kn b ±. (2)上面的规律如下页图(51)所示.

2015高考数学(理)一轮题组训练:2-7函数的图象及其应用

第7讲 函数的图象及其应用 基础巩固题组 (建议用时:40分钟) 一、填空题 1.把函数f (x )=(x -2)2+2的图象向左平移1个单位长度,再向上平移1个单位长度,所得图象对应的函数解析式是________. 解析 把函数f (x )=(x -2)2+2的图象向左平移1个单位长度,得y =[(x +1)-2]2+2=(x -1)2+2,再向上平移1个单位长度,得y =(x -1)2+2+1=(x -1)2+3. 答案 y =(x -1)2+3 2.函数f (x )=x +1 x 的图象的对称中心为________. 解析 f (x )=x +1x =1+1 x ,故f (x )的对称中心为(0,1). 答案 (0,1) 3.已知f (x )=? ???? 13x ,若f (x )的图象关于直线x =1对称的图象对应的函数为g (x ), 则g (x )的表达式为________. 解析 在函数g (x )的图象上任取一点(x ,y ),这一点关于x =1的对称点为(x 0,y 0),则??? x 0=2-x , y 0=y . ∴y =? ???? 132-x =3x -2. 答案 g (x )=3x -2 4.函数y =(x -1)3+1的图象的对称中心是________. 解析 y =x 3的图象的对称中心是(0,0),将y =x 3的图象向上平移1个单位,再向右平移1个单位,即得y =(x -1)3+1的图象,所以对称中心为(1,1). 答案 (1,1)

5. 设奇函数f (x )的定义域为[-5,5].若当x ∈[0,5]时,f (x )的图象如图,则不等式f (x )<0的解集是________. 解析 利用函数f (x )的图象关于原点对称.∴f (x )<0的解集为(-2,0)∪(2,5). 答案 (-2,0)∪(2,5) 6.若函数f (x )在区间[-2,3]上是增函数,则函数f (x +5)的单调递增区间是________. 解析 ∵f (x +5)的图象是f (x )的图象向左平移5个单位得到的. ∴f (x +5)的递增区间就是[-2,3]向左平移5个单位得到的区间[-7,-2] 答案 [-7,-2] 7.若方程|ax |=x +a (a >0)有两个解,则a 的取值范围是________. 解析 画出y =|ax |与y =x +a 的图象,如图.只需a >1. 答案 (1,+∞) 8.(2013·泰州模拟)已知函数f (x )=??? log 2x (x >0),2x (x ≤0),且关于x 的方程f (x )-a =0有 两个实根,则实数a 的范围是________. 解析 当x ≤0时,0<2x ≤1,所以由图象可知要使方程f (x )-a =0有两个实

一次函数图象的应用

一次函数图象的应用 一.知识与技能目标: 1.能通过函数图象获取信息,解决简单的实际问题; 2.在解决问题过程中,初步体会方程与函数的关系,建立各种知识的联系。 过程与方法目标: 1.通过对函数图象的观察与分析,培养学生数形结合的意识,发展形象思维; 2.通过具体问题的解决,培养学生的数学应用能力; 3.引导学生从事观察、操作、交流、归纳等探索活动,使学生初步形成多样的学习方式. 情感与态度目标: 1.在具体的案例中,培养学生良好的环保意识和对生活的热爱等. 教学重点 一次函数图象的应用. 教学难点 正确地根据图象获取信息,并解决现实生活中的有关问题. 教学过程 第一环节复习 .怎样应用一次函数的图象和性质来解决现实生活中的实际问

题,是我们这节课的主要内容.首先,想一想一次函数具有什么性质? 在一次函数y kx b =+中 当0k >时,y 随x 的增大而增大, 当0b >时,直线交y 轴于正半轴,必过一、二、三象限; 当0b <时,直线交y 轴于负半轴,必过一、三、四象限. 当0时,直线交y 轴于正半轴,必过一、二、四象限; 当0b <时,直线交y 轴于负半轴,必过二、三、四象限. 在前面的学习中我们已得到一次函数的图象是一条直线,并且讨论了k 、b 的正负对图象的影响.通过对上节课学习内容的回顾,为进一步研究一次函数图象和性质的应用做好铺垫. 第二环节 自主学习 由于持续高温和连日无雨,某水库的蓄水量随着时间的增加而减少.干旱持续时间t (天)与蓄水量V (万米3)的关系如下图所示,回答下列问题: (1)干旱持续10天后,蓄水量为多 少?连续干旱23天后呢? (2)蓄水量小于400万米3时,将发 生严重干旱警报.干旱多少天后将发出 严重干旱警报? (3)按照这个规律,预计持续干旱多少天水库将干涸? (根据图象回答问题,有困难的可以互相交流.) 第三环节 反馈练习: 当得知周边地区的 干旱情况 后,育才学校的小明意识到节约用 水的重要性.当天在班上倡议节约

一次函数与几何图形综合专题

一次函数与几何图形综合专题思想方法小结: (1)函数方法. 函数方法就是用运动、变化的观点来分析题中的数量关系,抽象、升华为函数的模型,进而解决有关问题的方法.函数的实质是研究两个变量之间的对应关系,灵活运用函数方法可以解决许多数学问题. (2)数形结合法. 数形结合法是指将数与形结合,分析、研究、解决问题的一种思想方法,数形结合法在解决与函数有关的问题时,能起到事半功倍的作用.知识规律小结: (1)常数k,b对直线y=kx+b(k≠0)位置的影响. ①当b>0时,直线与y轴的正半轴相交; 当b=0时,直线经过原点; 当b﹤0时,直线与y轴的负半轴相交. b>0时,直线与x轴正半轴相交; ②当k,b异号时,即- k b=0时,直线经过原点; 当b=0时,即- k b﹤0时,直线与x轴负半轴相交. 当k,b同号时,即- k ③当k>O,b>O时,图象经过第一、二、三象限; 当k>0,b=0时,图象经过第一、三象限; 当b>O,b<O时,图象经过第一、三、四象限; 当k﹤O,b>0时,图象经过第一、二、四象限; 当k﹤O,b=0时,图象经过第二、四象限;

当b <O ,b <O 时,图象经过第二、三、四象限. (2)直线y=kx+b (k ≠0)与直线y=kx(k ≠0)的位置关系. 直线y=kx+b(k ≠0)平行于直线y=kx(k ≠0) 当b >0时,把直线y=kx 向上平移b 个单位,可得直线y=kx+b ; 当b ﹤O 时,把直线y=kx 向下平移|b|个单位,可得直线y=kx+b . (3)直线b 1=k 1x+b 1与直线y 2=k 2x+b 2(k 1≠0 ,k 2≠0)的位置关系. ①k 1≠k 2?y 1与y 2相交; ②?? ?=≠2 121b b k k ?y 1与y 2相交于y 轴上同一点(0,b 1)或(0,b 2); ③?? ?≠=2 121,b b k k ?y 1与y 2平行; ④???==2 121,b b k k ?y 1与y 2重合. 例题精讲: 1、直线y=-2x+2与x 轴、y 轴交于A 、B 两点,C 在y 轴的负半轴上,且OC=OB (1) 求AC (2) 在 OA 的延长线上任取一点P,作PQ ⊥BP,交直线AC 于Q,试探究BP 与PQ 的数量关系,并证明你的结论。 (3) 在(2)的前提下,作 PM ⊥AC 于M,BP 交AC 于N,下面两个结论:① x

教案正弦型函数的图像和性质

教案 正弦型函数的图像和性质 1.,,A ω?的物理意义 当sin()y A x ω?=+,[0,)x ∈+∞(其中0A >,0ω>)表示一个振动量时,A 表示这个量振动时离开平衡位置的最大距离,通常称为这个振动的振幅,往复振动一次需要的时间2T π ω = 称为这个振动的周期,单位时间内往复振动的次数12f T ω π = = ,称为振动的频率。x ω?+称为相位,0x =时的相位?称为初相。 2.图象的变换 例 : 画出函数3sin(2)3 y x π =+的简图。 解:函数的周期为22 T π π= =,先画出它在长度为一个周期内的闭区间上的简图,再 函数3sin(2)3 y x π =+ 的图象可看作由下面的方法得到的: ①sin y x =图象上所有点向左平移 3 π 个单位,得到sin()3y x π=+的图象上;②再把 图象上所点的横坐标缩短到原来的12,得到sin(2)3 y x π =+的图象;③再把图象上所有点 的纵坐标伸长到原来的3倍,得到3sin(2)3 y x π =+的图象。 x y O π 3 π- 6 π- 53 π 2π sin(3 y x π =+ sin(2)3 y x π =+ sin y x = 3sin(23 y x π =+

一般地,函数sin()y A x ω?=+,x R ∈的图象(其中0A >,0ω>)的图象,可看作由下面的方法得到: ①把正弦曲线上所有点向左(当0?>时)或向右(当0?<时)平行移动||?个单位长度; ②再把所得各点横坐标缩短(当1ω>时)或伸长(当01ω<<时)到原来的 1 ω 倍(纵坐标不变); ③再把所得各点的纵坐标伸长(当1A >时)或缩短(当01A <<时)到原来的A 倍(横坐标不变)。 即先作相位变换,再作周期变换,再作振幅变换。 问题:以上步骤能否变换次序? ∵3sin(2)3sin 2()36y x x π π=+ =+,所以,函数3sin(2)3 y x π =+的图象还可看作 由下面的方法得到的: ①sin y x =图象上所点的横坐标缩短到原来的 1 2 ,得到函数sin 2y x =的图象; ②再把函数sin 2y x =图象上所有点向左平移6 π 个单位,得到函数sin 2()6y x π=+的 图象; ③再把函数sin2()6y x π =+的图象上所有点的纵坐标伸长到原来的3倍,得到3sin 2() 6 y x π=+的图象。 3.实际应用 例1:已知函数sin()y A x ω?=+(0A >,0ω>)一个周期内的函数图象,如下图 所示,求函数的一个解析式。 又∵0A > ,∴A = 由图知 52632 T πππ=-= ∴2T π πω ==,∴2ω=, 又∵157()23612 πππ+=, ∴图象上最高点为7( 12 π , ∴7)12π?=?+,即7sin()16π?+=,可取23 π?=-, 所以,函数的一个解析式为2)3 y x π =-. 2.由已知条件求解析式 例2: 已知函数cos()y A x ω?=+(0A >,0ω>,0?π<<) 的最小值是5-, 图x 3 3 π 56 π 3 O

一次函数图象的变换

一次函数图象的变换——平移求一次函数图像平移后的解析式是一类重要题型,同学们在做时经常做错,下面我介绍一种简便的方法:抓住点的坐标变化解决问题。 知识点:“已知一个点的坐标和直线的斜率 k,我们就可以写出这条直线的解析式”。我们知道:y =kx+b经过点(0,b),而(0,b)向上平移m 个单位得到点(0,b+m),向下平移m个单位得到点(0,b-m),向左平移m个单位得到点(0-m,b),向右平移m个单位得到点(0+m,b),直线y =kx+b平移后斜率不变仍然是k,设出平移后的解析式为y =kx+h,把平移后得到的点的坐标带入这个解析式求出h,就可以求出平移后直线的解析式。下面我们通过例题的讲解来反馈知识的应用: 例1:把直线y=2x-1向右平移1个单位,求平移后直线的解析式。 分析:y=2x-1经过点(0,-1),向右平移1个单位得到(1,-1)。平移后斜率不变,即k=2,所以可以设出平移后的解析式为y =2x+h,再将点(1,-1)代入求出解析式中的h,就可以求出平移后直线的解析式。 解:设平移后的直线解析式为y=2x+h 点(0,-1)在y=2x-1上,向右平移1个单位得到(1,-1), 将点(1,-1)代入y=2x+h中得: -1=2×1+h h=-3 所以平移后直线的解析式为y=2x-3 例2:把直线y=2x-1向上平移3个单位,再向右平移1个单位,求平移后直线的解析式。 分析:点(0,-1)在直线y=2x-1上,当直线向上平移3个单位,点变为(0,-1+3),即为(0 , 2 );再向右平移1个单位后,点(0,2)变为点(0+1,2),即点变为(1 , 2 )。设出平移后的解析式为y =kx+h,根据斜率k=2不变,以及点(1 , 2 )就可以求出h,从而就可以求出平移后直线的解析式。 解:设平移后的直线解析式为y=2x+h.

高中数学 含绝对值的函数图象的画法及其应用素材

含绝对值的函数图象的画法及其应用 一、三点作图法 三点作图法是画函数)0(||≠++=ak c b ax k y 的图象的一种简捷方法(该函数图形形状似“V ”,故称V 型图)。 步骤是:①先画出V 型图顶点?? ? ?? - c a b ,; ②在顶点两侧各找出一点; ③以顶点为端点分别与另两个点画两条射线,就得到函数)0(||≠++=ak c b ax k y 的图象。 例1. 作出下列各函数的图象。 (1)1|12|--=x y ;(2)|12|1+-=x y 。 解:(1)顶点?? ? ??-12 1 ,,两点(0,0) ,(1,0)。其图象如图1所示。 图1 (2)顶点?? ? ?? - 121 ,,两点(-1,0) ,(0,0)。其图象如图2所示。 图2 注:当k>0时图象开口向上,当k<0时图象开口向下。函数图象关于直线a b x -=对称。 二、翻转作图法 翻转作图法是画函数|)(|x f y =的图象的一种简捷方法。 步骤是:①先作出)(x f y =的图象;②若)(x f y =的图象不位于x 轴下方,则函数 )(x f y =的图象就是函数|)(|x f y =的图象; ③若函数)(x f y =的图象有位于x 轴下方的,则可把x 轴下方的图象绕x 轴翻转180°到x 轴上方,就得到了函数|)(|x f y =的图象。 例2. 作出下列各函数的图象。 (1)|1|||-=x y ;(2)|32|2 --=x x y ;(3)|)3lg(|+=x y 。 解:(1)先作出1||-=x y 的图象,如图3,把图3中x 轴下方的图象翻上去,得到图4。图4就是要画的函数图象。 图3 图4

17一次函数-一次函数的图像与几何变换

一次函数 一次函数 图像性质 【培优练习】 1. 在同一直角坐标系中,对于函数:①y=﹣x ﹣1,①y=x+1,①y=﹣x+1,①y=﹣2(x+1)的图象,下列说法正确的是( ) A . 通过点(﹣1,0)的是①和① B . 交点在y 轴上的是①和① C . 相互平行的是①和① D . 关于x 轴对称的是①和① 2. 如果点P(a ,b)关于x 轴的对称点p’在第三象限,那么直线y=ax+b 的图像不经过( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 3. 一次函数y=ax+b 在直角坐标系中的图象如图所示,则化简|a+b|﹣|a ﹣b|的结果是( ) A . 2a B . ﹣2a C . 2b D . ﹣2b 4. 函数y=kx+|k| (k≠0)在直角坐标系中的图象可能是( ) A . B . C . D .

5. 作函数y 1=﹣x+4,y 2=3x ﹣4的图象如图,若y 1>y 2成立,则x 的取值范围为( ) A . x≤2 B . x <2 C . x >2 D . x≥2 6. 一次函数y 1=kx+b 与y 2=x+a 的图象如图,则下列结论:①k <0;①a >0;①当x >2时,y 2>y 1,其 中正确的个数是( ) A .0 B .1 C .2 D .3 7. 下列图象中,不可能是关于x 的一次函数y=mx ﹣(m ﹣3)的图象的是( ) A . B . C . D . 8. 设直线kx+(k+1)y ﹣1=0与坐标轴所构成的直角三角形的面积为S k ,则S 1+S 2+…+S 2008= .

专题九函数图象及其综合应用

专题九 函数图象及综合应用 函数图象是研究函数性质、方程、不等式的重要工具,是数形结合的基础,是高考考查的热点,复习时,应重点掌握几种基本初等函数的图象,并在审题、识图上多下功夫,学会分析“数”与“形”的结合点,把几种常见题型的解法技巧理解透彻。 知识网络: 一、新课引入 在初中我们是采用什么方法来画出函数的图象?描点法作图。 描点法作图的步骤有哪些? 描点法作图的基本步骤是:列表、描点、连线。 基本函数的图象要熟记:一次函数、二次函数、反比例函数、幂函数、指数函数、对数函数、幂函数。 二、新课讲解 1、函数图象的基本作法有两种: ① 描点法②图象变换法 2、画函数图象时有时也可利用函数的性质如单调性、奇偶性、对称性、周期性等,以及图象上的特殊点、线(如对称轴、渐近线等)。 3、图象的变换是指一个函数的图象经过适当的变换,得到另一个与之有关的函数图 象。 . 在高考中要求学生掌握的三种变换是:平移变换、对称变换、伸缩变换、翻折变换。 4、常用函数图象变换的规律。 (1)平移变换 ①水平平移:y =f(x±a)(a>0)的图象,可由y =f(x)的图象向左(+)或向右(-)平移a 个单位而得到。 ②竖直平移:y =f(x)±b(b>0)的图象,可由y =f(x)的图象向上(+)或向下(-)平移b 个单位而得到。 (2)对称变换 ①y =f(-x)与y =f(x)的图象关于y 轴对称。 ②y =-f(x)与y =f(x)的图象关于x 轴对称。 ③y =-f(-x)与y =f(x)的图象关于原点对称。 (3)伸缩变换 ①y =af(x)(a >0)的图象,可将y =f(x)图象上每点的纵坐标伸(a >1时)或缩(a <1时)到原来的a 倍,横坐标不变。 ②y =f(ax)(a >0)的图象,可将y =f(x)的图象上每点的横坐标伸(a <1时)或缩(a >1时)到原来的1a 倍,纵坐标不变。 (4)翻折变换 ①作为y =f(x)的图象,将图象位于x 轴下方的部分以x 轴为对称轴翻折到上方,其余部分不变,得到y =|f(x)|的图象。

三角函数图象及应用

函数y =A sin(ωx +φ)的图象及应用 1.y =A sin(ωx +φ)的有关概念 y =A sin(ωx + φ)(A >0,ω>0),x ∈ [0,+∞) 振幅 周期 频率 相位 初相 A T = 2πω f =1 T =ω 2π ωx +φ φ 2.如下表所示. x 0-φ ω π2 -φω π-φ ω 3π2 -φω 2π-φ ω ωx +φ 0 π2 π 3π2 2π y =A sin(ωx +φ) 0 A -A 3.函数y x y A x 【思考辨析】 判断下面结论是否正确(请在括号中打“√”或“×”) (1)作函数y =sin(x -π6)在一个周期的图象时,确定的五点是(0,0),(π 2,1),(π,0),(3π2,- 1),(2π,0)这五个点.( × ) (2)将函数y =3sin 2x 的图象左移π 4个单位长度后所得图象的解析式是y =3sin(2x + π 4 ).( × ) (3)函数y =sin(x -π4)的图象是由y =sin(x +π4)的图象向右移π 2 个单位长度得到的.( √ )

(4)函数y =sin(-2x )的递减区间是(-3π4-k π,-π 4-k π),k ∈Z .( × ) (5)函数f (x )=sin 2x 的最小正周期和最小值分别为π,0.( √ ) (6)函数y =A cos(ωx +φ)的最小正周期为T ,那么函数图象的两个相邻对称中心之间的距离为 T 2 .( √ ) 1.(2014·)为了得到函数y =sin(2x +1)的图象,只需把函数y =sin 2x 的图象上所有的点( ) A .向左平行移动1 2个单位长度 B .向右平行移动1 2个单位长度 C .向左平行移动1个单位长度 D .向右平行移动1个单位长度 答案 A 解析 y =sin 2x 的图象向左平移12个单位长度得到函数y =sin 2(x +1 2)的图象,即函数y = sin(2x +1)的图象. 2.(2013·)函数f (x )=2sin(ωx +φ)(ω>0,-π2<φ<π 2)的部分图象如图所 示,则ω,φ的值分别是( ) A .2,-π 3 B .2,-π 6 C .4,-π 6 D .4,π 3 答案 A 解析 ∵34T =5π12-????-π 3,∴T =π,∴ω=2, ∴2×5π12+φ=2k π+π2,k ∈Z ,∴φ=2k π-π 3,k ∈Z , 又φ∈??? ?-π2,π2,∴φ=-π 3,故选A.

二次函数图像性质及应用

.. 二次函数图象性质及应用 一选择题 1.已知抛物线y=﹣x2+2x﹣3,下列判断正确的是() A.开口方向向上,y 有最小值是﹣2 B.抛物线与x轴有两个交点 C.顶点坐标是(﹣1,﹣2) D.当x<1 时,y 随x增大而增大 2.若二次函数y=x2+bx+5 配方后为y=(x-2)2+k,则b、k 的值分别为() A.0、5 B.0、1 C.﹣4、5 D.﹣4、1 3.将抛物线先向左平移2个单位,再向上平移3个单位后得到新的抛物线,则新抛物线的表达式是 A. B. 3 y2- - )2 y2- =x + (5 =x D.3 (52+ )2 (5 - =x )2 y C. 3 4.把抛物线y=﹣2x2+4x+1 图象向左平移2个单位,再向上平移3个单位,所得的抛物线函数关系式是() A.y=﹣2(x-1)2+6 B.y=﹣2(x-1)2﹣6 C.y=﹣2(x+1)2+6 D.y=-2(x+1)2-6 5.函数y=ax+b 和y=ax2+bx+c 在同一直角坐标系内的图象大致是() A. B. C. D. 6.二次函数y=ax2+bx+c 的图象如图,则a bc,b2﹣4ac,2a+b,a+b+c 这四个式子中,值为正数的有() A.4 个 B.3 个 C.2 个 D.1 个 第6题图第8题图 7.二次函数y=ax2+bx+c 对于x的任何值都恒为负值的条件是() A.a>0,△>0 B.a>0,△<0 C.a<0,△>0 D.a<0,△<0 8.抛物线的图象如图所示,根据图象可知,抛物线的解析式可能是() A.y=x2-x-2 B.y=﹣x2﹣x+2 C.y=﹣x2﹣x+1 D.y=﹣x2+x+2

一次函数图象的变换对称.doc

一次函数图象的变换——对称求一次函数图像关于某条直线对称后的解析式是一类重要题型,同学们在做时经常做错,下面我介绍一种简便的方法:抓住对称点的坐标解决问题。 知识点: 1、与直线y=kx+b关于x轴对称的直线l,每个点与它的对应点都关于x轴对称,横坐标不变纵坐标互为相反数。设l上任一点的坐标为(x,y),则(x, -y)应当在直线y=kx+b上,于是有-y=kx+b,即l:y=-kx-b。 2、与直线y=kx+b关于y轴对称的直线l,每个点与它的对应点都关于y轴对称,纵坐标不变横坐标互为相反数。设l上任一点的坐标为(x,y),则(-x, y)应当在直线y=kx+b上,于是有y=-kx+b,即l:y=-kx+b。下面我们通过例题的讲解来反馈知识的应用: 例:已知直线y=2x+6.分别求与直线y=2x+6关于x轴,y轴和直线x=5对称的直线l的解析式。 分析:关于x轴对称时,横坐标不变纵坐标互为相反数; 关于y轴对称时,纵坐标不变横坐标互为相反数; 关于某条直线(垂直坐标轴)对称时,则相关点 解:1、关于x轴对称 设点(x , y )在直线l上,则点(x , -y )在直线y=2x+6上。 即:-y=2x+6 y=-2x-6 所以关于x轴对称的直线l的解析式为:y=-2x-6. 关于直线对称。 2、关于y轴对称 设点(x,y)在直线l上,则点(-x,y)在直线y=2x+6上。 即:y=2(-x) +6 y=-2x+6 所以关于y轴对称的直线l的解析式为:y=-2x+6.

3、关于直线x=5对称(作图) 由图可知:AB=BC则C点横坐标:-x+5+5=-x+10 所以点C (-x+10, y) 设点(x,y)在直线l上, 则点(-x+10, y)在直线y=2x+6上。 即:y=2(-x+10)+6 y=-2x+26 所以关于直线x=5对称的直线l的解析式为:y=-2x+26. 总结:根据对称求直线的解析式关键在找对称的坐标点。 关于x轴对称,横坐标不变纵坐标互为相反数; 关于y轴对称,纵坐标不变横坐标互为相反数; 关于某条直线(垂直对称轴)对称,可见例题 中分析的方法去求对称点。 练习:1、和直线y=5x-3关于y轴对称的直线解析式为,和直线y=-x-2关于x轴对称的直线解析式为。 2、已知直线y=kx+b与直线y= -2x+8关于y轴对称, 求k、b的值。 答案:1、y=-5x-3;y=x+2 分析:设点(x,y)在直线上,则点(-x,y)在关于y轴对称的直线y=5x-3上,所以直线为y=-5x-3;设点(x,y)在直线上,则点(x,-y)在

正弦型函数教案

正弦型函数y=Asin(ψx+φ)的图象变换教学设计 一、教学目标: 1、知识与技能目标: 能借助计算机课件,通过探索、观察参数A、ω、φ对函数图象的影响,并能概括出三角函数图象各种变换的实质和内在规律;会用图象变换画出函数y=Asin(ωx+φ)的图象。 2、过程与方法目标: 通过对探索过程的体验,培养学生的观察能力和探索问题的能力,数形结合的思想;领会从特殊到一般,从具体到抽象的思维方法,从而达到从感性认识到理性认识的飞跃。 3、情感、态度价值观目标: 通过学习过程培养学生探索与协作的精神,提高合作学习的意识。 二、教学重点:考察参数ω、φ、A对函数图象的影响,理解由y=sinx的图象到y=Asin(ωx+φ)的图象变化过程。这个内容是三角函数的基本知识进行综合和应用问题接轨的一个重要模型。学生学习了函数y=Asin(ωx+φ)的图象,为后面高中物理研究《单摆运动》、《简谐运动》、《机械波》等知识提供了数学模型。所以,该内容在教材中具有非常重要的意义,是连接理论知识和实际问题的一个桥梁。 三、教学难点:对y=Asin(ωx+φ)的图象的影响规律的发现与概括是本节课的难点。因为相对来说,、A对图象的影响较直观,ω的变化引起图象伸缩变化,学生第一次接触这 种图象变化,不会观察,造成认知的难点,在教学中,抓住“对图象的影响”的教学,使学生学会观察图象,经历研究方法,理解图象变化的实质,是克服这一难点的关键。 学情分析: 本节课在高一第二学段,对于高中常用的数学思想方法和研究问题的方法已经有初步的了解,并且逐步适应高中的学习方式和教师的教学方式,喜欢小组探究学习,喜欢独立思考,探究未知内容,学习欲望迫切。关于函数图象的变换,学生在学习第一模块时,接触过函数图象的平移,有“左加右减”,“上加下减”这样一些粗略的关于图象平移的认识,但对于本节内容学生要理解并掌握三个参数对函数图象的影响,还要研究三个参数对函数图象的综合影响,且方法不唯一,知识密度较大,理解掌握起来难度较大。 教学内容分析:

函数图象及其应用

函数图象及其应用 武安市第十中学李冉 一.教学内容分析: 本堂课安排在人教版必修1第二章结束之后,第三章教学之前,对所学常见函数模型及其图像进行归纳总结,使学生对函数图像有个系统的认识,在此基础上,一方面加强学生的看图识图能力,探究函数模型的广泛应用,另一方面,着重探讨函数图像与方程的联系,渗透函数与方程的思想及数形结合思想,为第三章作了很好的铺垫,承上启下,衔接自然,水到渠成。 学生对函数与方程的关系有一个逐步认识的过程,应遵循由浅入深、循序渐进的原则.从学生认为较简单的问题入手,由具体到一般,建立方程的根与函数图像的联系。另外,函数与方程相比较,一个“动”,一个“静”;一个“整体”,一个“局部”,用函数的观点研究方程,本质上就是将局部的问题放在整体中研究,将静态的结果放在动态的过程中研究,这为今后进一步学习函数与不等式等其它知识的联系奠定了坚实的基础。 二.学生学习情况分析: 学生在学完了第一章《集合与函数概念》、第二章《基本初等函数》后,对函数的性质和基本初等函数及其图像有了一定的了解和把握,但学生素质参差不齐,又存在能力差异,导致不同学生对知识的领悟与掌握能力的差距很大。因此进行本堂课的教学,应首先有意识地让学生归纳总结旧知识,提高综合能力,对新知识的传授,即如何利用函数图像解决方程的根的问题,则应给足学生思考的空间和时间,充分化解学生的认知冲突,化难为易,化繁为简,突破难点。 高中数学与初中数学相比,数学语言在抽象程度上突变,思维方法向理性层次跃迁,知识内容的整体数量剧增,以上这三点在函数这一章中得到了充分的体现,本章的特点是具有高度的抽象性、逻辑性和广泛的适用性,对能力要求较高。因此,在教学中应多考虑初高中的衔接,更好地帮助学生借由形象的手段理解抽象的概念,在函数这一章,函数的图像就显得尤其重要而且直观。 三.设计思想:

5函数图象及其应用

6、函数图象及其应用 一.教学内容分析: 本堂课安排在人教版必修1第二章结束之后,第三章教学之前,对所学常见函数模型及其图像进行归纳总结,使学生对函数图像有个系统的认识,在此基础上,一方面加强学生的看图识图能力,探究函数模型的广泛应用,另一方面,着重探讨函数图像与方程的联系,渗透函数与方程的思想及数形结合思想,为第三章作了很好的铺垫,承上启下,衔接自然,水到渠成。 学生对函数与方程的关系有一个逐步认识的过程,应遵循由浅入深、循序渐进的原则.从学生认为较简单的问题入手,由具体到一般,建立方程的根与函数图像的联系。另外,函数与方程相比较,一个“动”,一个“静”;一个“整体”,一个“局部”,用函数的观点研究方程,本质上就是将局部的问题放在整体中研究,将静态的结果放在动态的过程中研究,这为今后进一步学习函数与不等式等其它知识的联系奠定了坚实的基础。 二.学生学习情况分析: 学生在学完了第一章《集合与函数概念》、第二章《基本初等函数》后,对函数的性质和基本初等函数及其图像有了一定的了解和把握,但学生素质参差不齐,又存在能力差异,导致不同学生对知识的领悟与掌握能力的差距很大。因此进行本堂课的教学,应首先有意识地让学生归纳总结旧知识,提高综合能力,对新知识的传授,即如何利用函数图像解决方程的根的问题,则应给足学生思考的空间和时间,充分化解学生的认知冲突,化难为易,化繁为简,突破难点。 高中数学与初中数学相比,数学语言在抽象程度上突变,思维方法向理性层次跃迁,知识内容的整体数量剧增,以上这三点在函数这一章中得到了充分的体现,本章的特点是具有高度的抽象性、逻辑性和广泛的适用性,对能力要求较高。因此,在教学中应多考虑初高中的衔接,更好地帮助学生借由形象的手段理解抽象的概念,在函数这一章,函数的图像就显得尤其重要而且直观。 三.设计思想: 1.尽管我们的教材为学生提供了精心选择的课程资源,但教材仅是教师在教学设计时所思考的依据,在具体实施中,我们需要根据自己学生数学学习的特点,联系学生的学习实际,对教材内容进行灵活处理,比如调整教学进度、整合教学内容等,本节课是必修1第二章与第三章的过渡课,既巩固了第二章所学知识,又为第三章学习埋下伏笔,对教材做了一次成功的加工整合,正所谓磨刀不误砍材功。 2.树立以学生为主体的意识,实现有效教学。现代教学论认为,学生的数学学习过程是一个学生已有的知识和经验为基础的主动建构的过程,只有学生主动参与到学习活动中,才是有效的教学。在本节课的设计中,首先设计一些能够启发学生思维的活动,学生通过观察、试验、思考、表述,体现学生的自主性和活动性;其次,设计一些问题情境,而解决问题所需要的信息均来自学生的真实水平,要么定位在学生已有的知识基础,要么定位在一些学生很容易掌握的知识上,保证课堂上大部分学生都能够轻松地解决问题。随着学生的知识和信息不断

一次函数与图形变换

一次函数与图形变换(含答案) 1.(2011?苏州)如图,巳知A点坐标为(5,0),直线y=x+b(b>0)与y轴交于点B,连接AB,∠α=75°,则b 的值为()A.3 B. C.4 D. 1 2 3 2.(2013?重庆)如图,平面直角坐标系中,已知直线y=x上一点P(1,1),C为y轴上一点,连接PC,线段PC 绕点P顺时针旋转90°至线段PD,过点D作直线AB⊥x轴,垂足为B,直线AB与直线y=x交于点A,且BD=2AD,连接CD,直线CD与直线y=x交于点Q,则点Q的坐标为. 3.(2013?湖州)如图,已知点A是第一象限内横坐标为2的一个定点,AC⊥x轴于点M,交直线y=﹣x于点N.若点P是线段ON上的一个动点,∠APB=30°,BA⊥PA,则点P在线段ON上运动时,A点不变,B点随之运动.求当点P从点O运动到点N时,点B运动的路径长是. 4.(2013?义乌市)如图,直线l1⊥x轴于点A(2,0),点B是直线l1上的动点.直线l2:y=x+1交l1于点C,过点B作直线l3垂直于l2,垂足为D,过点O,B的直线l4交l2于点E,当直线l1,l2,l3能围成三角形时,设该三角形面积为S1,当直线l2,l3,l4能围成三角形时,设该三角形面积为S2. (1)若点B在线段AC上,且S1=S2,则B点坐标为; (2)若点B在直线l1上,且S2=S1,则∠BOA的度数为. 4 5 5.(2011?深圳)如图,△ABC的内心在y轴上,点C的坐标为(2,0),点B的坐标是(0,2),直线AC的解析式为,则tanA的值是.

6.(2011?攀枝花)如图,已知直线l1:与直线l2:y=﹣2x+16相交于点C,直线l1、l2分别交x轴于A、 B两点,矩形DEFG的顶点D、E分别在l1、l2上,顶点F、G都在x轴上,且点G与B点重合,那么S矩形DEFG:S△ABC=. 6 7 7.(2007?南平)如图,直线y=x+4与x轴、y轴分别交于A、B两点,点C在OB上,若将△ABC沿AC折叠, 使点B恰好落在x轴上的点D处,则点C的坐标是. 8.(2015?黑龙江)如图,四边形OABC是矩形,点A、C在坐标轴上,△ODE是△OCB绕点O顺时针旋转90°得到的,点D在x轴上,直线BD交y轴于点F,交OE于点H,线段BC、OC的长是方程x2﹣6x+8=0的两个根,且OC>BC. (1)求直线BD的解析式; (2)求△OFH的面积; (3)点M在坐标轴上,平面内是否存在点N,使以点D、F、M、N为顶点的四边形是矩形?若存在,请直接写出点N的坐标;若不存在,请说明理由. 9.(2014?新疆)如图,直线y=﹣x+8与x轴交于A点,与y轴交于B点,动点P从A点出发,以每秒2个单位 的速度沿AO方向向点O匀速运动,同时动点Q从B点出发,以每秒1个单位的速度沿BA方向向点A匀速运动,当一个点停止运动,另一个点也随之停止运动,连接PQ,设运动时间为t(s)(0<t≤3). (1)写出A,B两点的坐标; (2)设△AQP的面积为S,试求出S与t之间的函数关系式;并求出当t为何值时,△AQP的面积最大? (3)当t为何值时,以点A,P,Q为顶点的三角形与△ABO相似,并直接写出此时点Q的坐标.

相关主题
文本预览
相关文档 最新文档