当前位置:文档之家› 石墨烯-负极

石墨烯-负极

石墨烯-负极
石墨烯-负极

Silicon-graphene battery triples lithium ion batteries density

28/10/2012

Batteries, System Operator

Electric car range could triple with silicon-graphene breakthrough in lithium batteries.

A new lithium-ion battery designed by CalBattery, with a silicon-graphene anode, promises a dramatic energy density breakthrough, according to a news release issued by the company on Friday.

Energy density is the key measure of electric car batteries to determine driving range and ultimately the usefulness of the vehicle. It was the energy density improvements of lithium-ion batteries that enabled the resurgence of electric cars.

But the current crop of lithium ion batteries do not allow for enough energy storage, and driving range, at a low enough cost, to get past the “too expensive” sniff test that is hindering electric car adoption today.

The company is a finalist in the Dept of Energy?s 2012 Start UP America?s Next Top Energy Innovator challenge. Independent test results using full-cell lithium-ion battery cells designed by CalBattery demonstrate an energy density of 525 watt-hours per kilogram, and a specific anode capacity of 1,250 mili-amp-hours per gram.Most commercial batteries have an energy density in the 100-180 watt-hours per kilogram range, and specific anode capacity in the 325 mili-amp-hours per gram range.

For those who don?t understand battery capacity measurements, this means that per kilogram of battery weight a battery pack made with CalBattery cells will store 300% more energy than current batteries.

For the same battery pack weight this means the ability to drive 300% as far as with current electric cars, or to have the same driving range as today the battery pack would be about 1/3rd the weight.

“This equates to more than a 300% improvement in lithium-ion battery capacity, and an estimated 70% reduction in lifetime cost for batteries used in consumer electronics, EVs, and grid-scale energy storage,” said CalBattery CEO Phil Roberts.

This is based on what the company has dubbed the “GEN3″ silicon-graphene composite anode material for lithium-ion batteries. The key to the GEN3 design is use of a breakthrough developed at Argonne National Labs that stabilizes the use of silicon in a lithium battery anode. Silicon is known to absorb lithium better than any other anode material, it quickly deteriorates during use. CalBattery has worked closely with researchers at Argonne and other facilities to develop the new anode material, to integrate it in lithium-ion batteries having multiple cathode and electrolyte materials.

The anode is the electrode by which the electrons leave a battery into the device, while the cathode is the electrode through which electrons return to the battery, and the

electrolyte is the material between anode and cathode through which lithium ions move. In other words, the anode is the negative terminal of the battery, and the cathode is the positive terminal.

Conventional lithium-ion batteries use graphite-based anodes. CalBattery?s silicon-graphite anode is suitable for use with a number of other electrolyte and cathode materials. The superior results of testing at Argonne Labs led the company to believe this new anode could eventually replace traditional anodes used in most lithium-ion batteries today. Further the cost of the resulting batteries would be low enough to be cost competitive with fossil fuels for energy storage.

The company says it is now in the process of fast-tracking commercialization of the GEN3 battery anode technology. Over the next two years they plan to produce and sell silicon-graphene anodes to battery and electric vehicle OEM?s around the world, and (in the U.S.) produce a limited supply of specialized batteries for high end applications. The technology could be transformational in the lithium battery market, with cost for lithium-ion batteries dropping to under $175 per kilowatt-hour.

“We believe that our new advanced silicon graphene anode composite material is so good in terms of specific capacity and extended cycle life that it will become a graphite anode …drop-in? replacement material for anodes in most lithium ion batteries over the next 2-3 years,” said Roberts.

石墨作为锂离子电池负极材料

石墨作为锂离子电池负极材料 锂离子电池是指以两种不同的能够可逆地嵌入及脱出锂离子的嵌锂化合物分别作为电池正极和负极的二次电池体系。充电时,锂离子从正极脱嵌,通过电解质和隔膜,嵌入到负极中;放电时则相反,锂离子从负极脱嵌,通过电解质和隔膜,嵌入到正极中。 锂离子电池的负极是由负极活性物质、粘合剂和添加剂混合制成糊状胶合剂均匀涂抹在铜箔两侧,经干燥、滚压而成。 石墨由于具备电子电导率高、锂离子扩散系数大、层状结构在嵌锂前后体积变化小、嵌锂容量高和嵌锂电位低等优点,成为目前主流的商业化锂离子电池负极材料。 石墨的嵌锂机理 石墨导电性好,结晶程度高,具有良好的层状结构,十分适合锂离子的反复嵌入-脱嵌,是目前应用最广泛、技术最成熟的负极材料。锂离子嵌入石墨层间后,形成嵌锂化合LixC6(0≤x≤1),理论容量可达372mAh/g(x=1),反应式为:xLi++6C+xe-→LixC6 锂离子嵌入使石墨层与层之间的堆积方式由ABAB变为AAAA,如下图所示。

●石墨的改性处理 由于石墨层间距(d002≤0.34nm)小于石墨嵌锂化合物LixC6的晶面层间距(0.37nm),致使在充放电过程中,石墨层间距改变,易造成石墨层剥落、粉化,还会发生锂离子与有机溶剂分子共同嵌入石墨层及有机溶剂分解,进而影响电池循环性能。 通过石墨改性,如在石墨表面氧化、包覆聚合物热解炭,形成具有核-壳结构的复合石墨,可以改善石墨的充放电性能,提高比容量。 ●其它负极材料 石墨是目前主流的商业化锂电负极材料,但由于石墨本身结构特性的制约,石墨负极材料的发展也遇到了瓶颈,比如比容量已经到达极限、不能满足大型动力电池所要求的持续大电流放电能力等。因此业界也开始把目光投向非石墨类材料,比如硬碳和其它非碳材料(氧化锡、硅碳合金、钛酸锂等)。 江苏凤谷节能科技有限公司专注于节能环保产品设计研发,主要从事高效燃烧器及控制系统的研发与应用,可提供设计、制造、成套配套、安装调试、人员培训等总承包服务的专业公司;凤谷节能科技在喷嘴的设计研发和产品开发方面拥有丰富的经验。 凤谷节能科技通过并购无锡市大禾机械有限公司进入到化工行业的细分领域,主要产品包括机械消泡器、清釜机、汽水混合器等化工设备及配件。

石墨烯及其复合材料在水处理中的研究

石墨烯及其复合材料在水处理中的研究 摘要:石墨烯作为一种新型碳纳米材料,具有巨大的比表面积、较高的机械强度和稳定的化学性质等优点,在诸多领域有广泛的应用。石墨烯因具有巨大的比表面积和高的反应活性,作为一种优异的吸附材料在水处理方向具有较好的应用前景。本文概述了石墨烯及其复合材料在水处理方面的研究进展。石墨烯及其复合材料对于处理重金属离子和有机污染物质的吸附效果好,吸附容量高。最后对其在水处理中的应用前景做了展望。关键词:石墨烯;复合材料;吸附;水处理 引言 石墨烯(graphene,GN)自2004年发现以来,由于具有独特的结构与性能,很快成为新材料研究领域的热点。石墨烯是一种sp2杂化的碳原子以六边形排列的周期性蜂窝状二维碳质新材料[1]。石墨烯具有独特的物理化学性质[2],除强度较高外,其理论比表面积竟高达2630m2/g,孔隙结构较丰富,这一点使其成为良好吸附材料的基础[3]。除此之外,还具有良好热导率和电导率[4]~[5],可在传感器、电极材料、储氢材料等应用[6]。 石墨烯作为水处理材料,在环保领域拥有广阔的应用前景。这主要是因为,它具有二维的平面结构、开放的孔结构、良好的柔韧性、稳定的化学特性、巨大的比表面积等优点;石墨烯的比表面积比碳纳米管更大,吸附能力更强。从而应用石墨烯的优异性能,可将其加工成催化材料、吸附材料和过滤材料等,可以有效吸附水中的多种污染物。同时,由于制造石墨烯的石墨来源比较广泛,且石墨烯相比碳纳米管价格比较低廉,制备过程简单,许多学者开始研究石墨烯在水处理中的应用[7]~[8]。 本文介绍了石墨烯与水处理相关的主要性能,综述了石墨烯及其复合材料在水处理中的研究进展,并对当今石墨烯材料在水处理研究中遇到的挑战和问题做了进一步分析,对今后这一领域的研究作了展望。 1石墨烯及其复合材料在水处理中的研究 1.1石墨烯 石墨烯因其吸附原理简单、费用低及处理效果好等优点广泛应用在水环境治理中。巨大的比表面积使石墨烯成为良好的吸附材料。作为吸附剂在水处中的相关研究主要集中在吸附两类污染物:有机物与无机阴离子[9]。水中的有机污染物易与石墨烯表面发生相互作用,形成稳定的复合物,进一步得到去除。因而许多学者主要研究了石墨烯吸附去除水中的有机染料。 Liu 等人研究了石墨烯在不同温度、pH值、接触时间和浓度下对亚甲基蓝的吸附,研究发现石墨烯最大吸附量高达到153.85mg/g,吸附等温线符合Langmu模型[10]。Wu 等人研究了石墨烯对丙烯腈、甲苯磺酸及甲基蓝的吸附,与其他碳纳米材料相比,石墨烯表现出较强的吸附能力,甲基蓝因为有苯环和大分子,从而使石墨烯的吸附速度更快,吸附容量更大[11]。Li等人研究了石墨烯在不同温度、pH值、反应时间下对氟化物的吸附性能,结果发现在298K下,当氟化物的初始浓度为25mg/L时,石墨烯的吸附量可达17.65 mg/g[12]。石墨烯对无机污染物的吸附研究使其在水处理领域的研究进一步扩大。

石墨烯及其复合材料在水处理中的研

石墨烯及其复合材料在水处理中的研 石墨烯及其复合材料在水处理中的研究 摘要:石墨烯作为一种新型碳纳米材料,具有巨大的比表面积、较高的机械强度和稳定的化学性质等优点,在诸多领域有广泛的应用。石墨烯因具有巨大的比表面积和高的反应活性,作为一种优异的吸附材料在水处理方向具有较好的应用前景。本文概述了石墨烯及其复合材料在水处理方面的研究进展。石墨烯及其复合材料对于处理重金属离子和有机污染物质的吸附效果好,吸附容量高。最后对其在水处理中的应用前景做了展望。关键词:石墨烯;复合材料;吸附;水处理 引言 石墨烯( graphene, GN )自 2004 年发现以来 ,由于具有独特的结构与性能,很快成为新材料研究领域的热点。石墨烯是一种 sp2 杂化的碳原子以六边形排列的周期性蜂窝状二维碳质新材料 [1] 。石墨烯具有独特的物理化学性质 [2] ,除强度较高外,其理论比表面积竟高达2630m2/g,孔隙结构较丰富,这一点使其成为良好吸附材料的基础[3]。除此之外,还 具有良好热导率和电导率[4]?[5],可在传感器、电极材料、储氢材料等应用⑹。 石墨烯作为水处理材料,在环保领域拥有广阔的应用前景。这主要是因为,它具有二维的平面结构、开放的孔结构、良好的柔韧性、稳定的化学特性、巨大的比表面积等优点;石墨烯的比表面积比碳纳米管更大,吸附能力更强。从而应用石墨烯的优异性能,可将其加工成催化材料、吸附材料和过滤材料等,可以有效吸附水中的多种污染物。同时,由于制造石墨烯的石墨来源比较广泛,且石墨烯相比碳纳米管价格比较低廉,制备过程简单,许多学者开始研究石墨烯在水处理中的应用 [7] ? [8] 。 本文介绍了石墨烯与水处理相关的主要性能,综述了石墨烯及其复合材料在水处理中的研究进展,并对当今石墨烯材料在水处理研究中遇到的挑战和问题做了进一步分析,对今后这一领域的研究作了展望。 1石墨烯及其复合材料在水处理中的研究 1.1石墨烯 石墨烯因其吸附原理简单、费用低及处理效果好等优点广泛应用在水环境治理中。巨大的比表面积使石墨烯成为良好的吸附材料。作为吸附剂在水处中的相关研究主要集中在吸附两类污染物:有机物与无机阴离子 [9] 。水中的有机污染物易与石墨烯表面发生相互作用,

新型石墨烯涂层使金属耐腐蚀性提高百倍

新型石墨烯涂层使金属耐腐蚀性提高百倍 链接:https://www.doczj.com/doc/5c6598354.html,/tech/39047.html 新型石墨烯涂层使金属耐腐蚀性提高百倍 最近,澳大利亚莫纳什大学和美国莱斯大学研究人员合作,用肉眼看不见的石墨烯薄膜作为涂层,使铜的耐腐蚀性增强近百倍,为恶劣环境下的金属防洪提供了巨大潜力。研究人员指出,用石墨烯薄膜作防腐蚀涂层也意味着在开发保护性涂层方面有了模式性转变。相关论文发表在9月出版的《碳》杂志上。 作为广受关注的新材料,目前,科学家们正在开发用石墨烯提高金属耐腐蚀性方面的潜能。研究小组通过一种叫做“化学气相沉积”的技术,在800—900摄氏度时使石墨烯紧密贴在铜上,并在盐水中对其进行测试。“我们的成果也是迄今为止所报道的最佳改进之一。”论文合著者曼纳卡玛加姆德说,“其耐腐蚀性比未经处理的铜提高了近100倍。其他研究可能只有五六倍或更多。这是一个相当大的飞跃。” 该研究的主要实验人员帕拉玛班纳吉说,石墨烯具有优良的机械性能和很高的强度。金属上常用的聚合物涂层很容易被刮伤,降低了保护性能。虽然石墨烯涂层从外观上既看不到也摸不着,却更加坚固抗损伤。“我把它叫做‘神奇的材料’。” “在澳大利亚这样被海洋包围的国家,用原子涂层为环境提供特殊保护尤为重要。”班纳吉说,虽然初步实验仅限于铜,目前他们已在用其他金属开展实验。 研究人员指出,这项技术具有广泛的应用前景,从远洋轮船到电子产品,在任何用到金属并有腐蚀风险的地方,都能大大延长金属的使用寿命。这也意味着许多行业将因此节约巨大的成本。目前,该技术的工艺过程尚处于实验测试阶段。玛加姆德说,他们不仅在各种金属上进行实验,还研究怎样在低温下制作涂层,这将简化生产并提高产品的市场潜力。(记者 常丽君) 原文地址:https://www.doczj.com/doc/5c6598354.html,/tech/39047.html 页面 1 / 1

锂离子电池石墨负极材料的优点和缺点

锂离子电池石墨负极材料的优点和缺点 一、石墨定义: 1、石墨是元素碳的一种同素异形体,每个碳原子的周边连结着另外三个碳原子(排列方式呈蜂巢式的多个六边形)以共价键结合,构成共价分子。 2、由于每个碳原子均会放出一个电子,那些电子能够自由移动,因此石墨属于导电体。石墨是其中一种最软的矿物,它的用途包括制造铅笔芯和润滑剂。 二、石墨的特殊性质: 1、导电性:石墨的导电性比一般非金属矿高一百倍。石墨能够导电是因为石墨中每个碳原子与其他碳原子只形成3个共价键,每个碳原子仍然保留1个自由电子来传输电荷。 2、导热性:导热性超过钢、铁、铅等金属材料。导热系数随温度升高而降低,甚至在极高的温度下,石墨成绝热体。 3、耐高温性:石墨的熔点为3850±50℃,沸点为4250℃,即使经超高温电弧灼烧,重量的损失很小,热膨胀系数也很小。石墨强度随温度提高而加强,在2000℃时,石墨强度提高一倍。 4、润滑性:石墨的润滑性能取决于石墨鳞片的大小,鳞片越大,摩擦系数越小,润滑性能越好。由于其润滑性,在超细研磨里难度很高,使用叁星飞荣立式砂磨机可以研磨到纳米级别细度。 5、化学稳定性:石墨在常温下有良好的化学稳定性,能耐酸、耐碱和耐有机溶剂的腐蚀。 6、可塑性:石墨的韧性好,可碾成很薄的薄片。 7、抗热震性:石墨在常温下使用时能经受住温度的剧烈变化而不致破坏,温度突变时,石墨的体积变化不大,不会产生裂纹。 .

三、石墨的中国产地: 1、我国以鸡西市恒山区密山市柳毛乡为最大的产地。以及省的七台河市、鹤岗市和双鸭山市等。 2、省莱西市为我国石墨重要产地之一。 3、省磐石市也是石墨产地之一。 4、乌拉特中旗高勒图矿区发现全国最大晶质石墨单体矿。 5、省煤田地质局一九四队在洋县发现3条石墨矿带。 四、石墨世界著名产地: 1、纽约Ticonderoga。 2、马达加斯加。 3、斯里兰卡(Ceylon)。 五、石墨分类: 1、天然石墨:石墨的工艺特性主要决定于它的结晶形态。结晶形态不同的石墨矿物,具有不同的工业价值和用途。 2、人造石墨:广义上,一切通过有机炭化再经过石墨化高温处理得到的石墨材料均可称为人造石墨,如炭纤维、热解炭、泡沫石墨等。而狭义上的人造石墨通常指以杂质含量较低的炭质原料为骨料、煤沥青等为粘结剂,经过配料、混捏、成型、炭化和石墨化等工序制得的块状固体材料,如石墨电极、等静压石墨等。 人造石墨就成型方式通常可分为:振动成型,挤压成型,模压成型,等静压成型。 3、块状石墨:块状石墨又叫致密结晶状石墨。此类石墨结晶明显晶体肉眼可见。颗粒直 .

金属嵌入石墨烯

金嵌入石墨烯:一个可能具有高活性的催化剂 Au嵌入石墨烯的催化活性是通过使用CO的氧化为基准探针并且利用第一性原理方法来研究的。CO氧化Au嵌入石墨烯的催化的第一个最可能的步骤是继续进行朗缪尔 - 欣谢尔伍德反应(CO + O2→OOCO→ CO2 +O),其能量势垒是低至0.31ev。氧化的第二步骤将是埃利-Rideal反应(CO+O→ CO2)其具有小得多的能量势垒(0.18ev)。金部分填充d状态处于费米能级的周围,由于Au与相邻的碳原子之间的相互作用。Au嵌入石墨烯的高活性可能归因于CO,O2,Au之间的电子共振,尤其,是在Au原子的d状态和CO和O2的反键2π状态。这将打开一个新的途径来制造低成本,高活性碳系催化剂。 介绍 石墨烯、单原子厚度的碳板具有独特的电子和几何特性,被认为是最有前途的下一代电子材料。完美的石墨烯在正常环境下化学惰性是稳定的。然而,对于过渡金属催化剂而言,纳米结构的碳材料和石墨烯是比较好的基底材料,如碳纳米管(CNT)和碳纳米纤维(CNFs)。主要由于其高的表面积,已被广泛地研究。近来,有报道说,金属subnanoclusters,包含仅有几个原子,在石墨烯片显示出对氧化反应不寻常的高活性。金属簇和石墨烯之间的强相互作用被发现。在单层石墨烯或碳原子的悬空键处的碳空位可以调节负载金属簇的电子结构。调查了过渡金属利用密度泛函理论嵌入石墨烯,发现过渡金属原子和相邻的碳原子之间的键确定系统的磁性和电子结构。因此,惰性石墨烯可以通过碳空位和金属簇,甚至一个单一的原子之间的相互作用转变为非常活泼的催化剂。该金属原子的嵌入石墨烯结构最近已制造,并且金属原子在石墨烯平面中的扩散可被控制。它开辟了新的途径来设计基于石墨烯的先进催化剂。在本文中,我们使用CO氧化为基准探头,对金嵌入石墨烯的催化活性进行研究。我们对金特别感兴趣,因为金是最高贵的金属而且并没有被认为是一个很好的催化剂,直到最近。我们的计算显示,金嵌入石墨烯是一个很好的高效催化剂,并且成本低。

石墨烯对废水中重金属处理

石墨烯对水中重金属的处理技术 摘要:石墨烯作为目前自然界最薄、强度最高的材料,具有极大的比表面积、良好的化学稳定性以及表面活性,是一种高效的去除水中重金属的吸附材料。本文介绍了石墨烯材料的种类、特征,分析了去除废水中重金属离子的机理,应用情况,影响因素。指出了石墨烯作为吸附剂的潜在劣势,以及在水处理过程中的应用前景。 Abstract: As the thinnest and strongest material, graphene has huge surface area, excellent chemical stability and suface activity, which is an efficient absorption material for removing heavy metals from water. This paper introduces the types and characteristics of graphenematerials; analyzes the mechanism of graphenen materials removing heavy metal ion from waste water, the applications and influencing factors; points out the disadvantages and prospects of the graphene as an absorbent. 关键词:重金属污染石墨烯吸附水处理 前言 水乃生命之源,不管是对于人类,动植物,还是微生物,但是随着工业的发 展,各种各样的重金属离子被排入水体,随后被动植物吸收,又随着食物链浓缩, 进入人体,在人体内能和蛋白质及各种酶发生强烈的相互作用,使它们失去活性, 也可能在人体的某些器官中富集,如果超过人体所能耐受的限度,会造成人体急 性中毒、亚急性中毒、慢性中毒等,严重危害人类的健康。如日本发生的水俣病 和骨痛病等公害病,都是由重金属污染引起的。 面对亟待解决的重金属污染问题,寻求一种高效便捷的处理技术极其重要, 常见的重金属处理方法有化学沉淀法、混凝沉淀法、电解法、离子交换法、吸附 法和生物处理法等,其中吸附法操作简单,成本低廉,备受青睐,而吸附剂的选 择是吸附法的关键。

锂离子电池石墨负极材料的优点和缺点

锂离子电池石墨负极材料的优点和缺点

锂离子电池石墨负极材料的优点和缺点 一、石墨定义: 1、石墨是元素碳的一种同素异形体,每个碳原子的周边连结着另外三个碳原子(排列方式呈蜂巢式的多个六边形)以共价键结合,构成共价分子。 2、由于每个碳原子均会放出一个电子,那些电子能够自由移动,因此石墨属于导电体。石墨是其中一种最软的矿物,它的用途包括制造铅笔芯和润滑剂。 二、石墨的特殊性质: 1、导电性:石墨的导电性比一般非金属矿高一百倍。石墨能够导电是因为石墨中每个碳原子与其他碳原子只形成3个共价键,每个碳原子仍然保留1个自由电子来传输电荷。 2、导热性:导热性超过钢、铁、铅等金属材料。导热系数随温度升高而降低,甚至在极高的温度下,石墨成绝热体。 3、耐高温性:石墨的熔点为3850±50℃,沸点为4250℃,即使经超高温电弧灼烧,重量的损失很小,热膨胀系数也很小。石墨强度随温度提高而加强,在2000℃时,石墨强度提高一倍。 4、润滑性:石墨的润滑性能取决于石墨鳞片的大小,鳞片越大,摩擦系数越小,润滑性能越好。由于其润滑性,在超细研磨里难度很高,使用叁星飞荣立式砂磨机可以研磨到纳米级别细度。 5、化学稳定性:石墨在常温下有良好的化学稳定性,能耐酸、耐碱和耐有机溶剂的腐蚀。 6、可塑性:石墨的韧性好,可碾成很薄的薄片。

7、抗热震性:石墨在常温下使用时能经受住温度的剧烈变化而不致破坏,温度突变时,石墨的体积变化不大,不会产生裂纹。 三、石墨的中国产地: 1、我国以黑龙江鸡西市恒山区密山市柳毛乡为最大的产地。以及黑龙江省的七台河市、鹤岗市和双鸭山市等。 2、山东省莱西市为我国石墨重要产地之一。 3、吉林省磐石市也是石墨产地之一。 4、内蒙古乌拉特中旗高勒图矿区发现全国最大晶质石墨单体矿。 5、陕西省煤田地质局一九四队在陕西洋县发现3条石墨矿带。 四、石墨世界著名产地: 1、纽约Ticonderoga。 2、马达加斯加。 3、斯里兰卡(Ceylon)。 五、石墨分类: 1、天然石墨:石墨的工艺特性主要决定于它的结晶形态。结晶形态不同的石墨矿物,具有不同的工业价值和用途。

石墨负极材料项目可行性报告

石墨负极材料项目可行性报告 规划设计/投资分析/产业运营

石墨负极材料项目可行性报告 负极是锂电池的主要组成部分,它是由负极活性物质、粘合剂和添加 剂混合制成糊状均匀涂抹在铜箔两侧,经干燥、滚压而成。我们所谈的负 极材料主要指的是负极活性物质。负极可分为碳材料和非碳材料两大类, 碳材料包括人造石墨、天然石墨、中间相碳微球和硬碳软碳等,非碳材料 包括硅基材料、锡基材料和钛酸锂等。 该石墨负极材料项目计划总投资15248.38万元,其中:固定资产投资12738.50万元,占项目总投资的83.54%;流动资金2509.88万元,占项目 总投资的16.46%。 达产年营业收入19120.00万元,总成本费用15233.02万元,税金及 附加273.93万元,利润总额3886.98万元,利税总额4697.05万元,税后 净利润2915.24万元,达产年纳税总额1781.82万元;达产年投资利润率25.49%,投资利税率30.80%,投资回报率19.12%,全部投资回收期6.73年,提供就业职位413个。 坚持“实事求是”原则。项目承办单位的管理决策层要以求实、科学 的态度,严格按国家《建设项目经济评价方法与参数》(第三版)的要求,在全面完成调查研究基础上,进行细致的论证和比较,做到技术先进、可

靠、经济合理,为投资决策提供可靠的依据,同时,以客观公正立场、科学严谨的态度对项目的经济效益做出科学的评价。 ......

石墨负极材料项目可行性报告目录 第一章申报单位及项目概况 一、项目申报单位概况 二、项目概况 第二章发展规划、产业政策和行业准入分析 一、发展规划分析 二、产业政策分析 三、行业准入分析 第三章资源开发及综合利用分析 一、资源开发方案。 二、资源利用方案 三、资源节约措施 第四章节能方案分析 一、用能标准和节能规范。 二、能耗状况和能耗指标分析 三、节能措施和节能效果分析 第五章建设用地、征地拆迁及移民安置分析 一、项目选址及用地方案

全面解读锂离子电池石墨负极材料

全面解读锂离子电池石墨负极材料 锂离子电池,又称为摇椅电池,他的主要组成部分是正极、负极、隔膜及电解液。当前锂离子动力电池正极一般采用尖晶石型LiMn2O4或镍基层状氧化物,负极以石墨为主,电解液为含LiPF6 的碳酸酯(EC,EMC)有机溶液。LiMn2O4是一种被认为最安全的材料,也是最廉价的正极材料,已经被多种型号的动力电池采用。Li(NiCo)O2 容量高,但安全性能较差,需通过掺杂改性并限制其使用电压等手段来改善其安全性能;从整车安全和电池成本考虑,磷酸铁锂LiFePO4 安全性好、寿命长是最适合在汽车动力电池上应用的锂离子电池正极材料。 锂离子电池能量密度在很大程度上取决于负极材料,从锂离子电池实现商业化到现在,所用的负极材料最成熟,应用最广的是碳材料,其中最主要的依然是石墨。石墨具有六元环碳网层状结构,碳碳之间是SP2 杂化的,层层之间是分子作用力连接。石墨中存在两种不同的晶体结构:六面体石墨(2H)和菱面体石墨(3R)。2H相具有ABABA特征堆积,3R 相的堆积结构则是ABCABC。两种相可以相互转变,2H相是热力学稳定,在石墨中较多,约占总体的五分之四在锂离子电池负极材料中,天然石墨和人造石墨一直是使用最大的负极材料,但是人造石墨由于在生产过程中需要高温处理,使其生产成本大幅提高并对环境产生不利影响,相对于人造石墨而言,天然石墨有很多优点,它的成本低、结晶程度高,提纯、粉碎、分级技术成熟,充放电电压平台低,理论比容量高等,这些为其在锂离子电池行业的应用奠定了良好的基础。 天然石墨分无定形石墨(土状石墨或微晶石墨)和鳞片石墨两种。理论容量为372 mAh/g。无定形石墨纯度低,石墨晶面间距(d002)为0.336 nm。主要为2H晶面排序结构,即石墨层按ABAB顺序排,单个微晶之间的取向呈现各项异性,但经过加工,微晶颗粒相互之间有一定的交互作用,形成块状或颗粒状的粒子时具有各向同性性质。且形成的块状颗粒容易粉碎成形状较好的颗粒。 在锂离子嵌入脱嵌过程中体积变化小,结构相对稳定,但是可逆比容量仅260 mAh/g,不可逆比容量在100 mAh/g 以上。鳞片石墨的结晶度高,片层结构单元化大,具有明显的

石墨烯可用于重构太赫兹光电子学

石墨烯可用于重构太赫兹光电子学 这篇文章阐述了设计重构太赫兹器件的潜力,这类太赫兹器件使用的是具有电学可调谐光学特性的石墨烯调制器和开关。 Berardi Sensale-Rodr?′guez, Student Member IEEE, Rusen Yan, Lei Liu, Member IEEE, Debdeep Jena, Member IEEE, and Huili Grace Xing, Member IEEE 翻译:蒋均 摘要:在这篇文章中,我们测试了石墨烯作为一种材料用于重构太赫兹光电学。他能在相当大的太赫兹频带中实现电控调节光学特性,联合其具有的2维特性和易集成特点,这将会导致它有独特的性能从而设计新的太赫兹器件,与此同时也可以提高现行的太赫兹技术。我们第一次回顾了从石墨烯发现至今在太赫兹光电器件上的表现,包括大面积石墨烯、等离子体的和超材料的器件。进一步的讨论先进的设计和挑战将会在后面进行。 关键词:自主优化;滤波器;石墨烯;超材料;调制器;等离子体;重构;开关;太赫兹; 介绍 有前途的运用包括很多的人们致力的领域,其中包括了医药、生物学、通信系统,安全和天文学等等,在最近几年里太赫兹技术已经转变为一个比较热门的研究领域[1]-[3]。在太赫兹常常被定义在0.1-30THz频段内,是近几十年内最少被研究的电磁频谱,主要因为缺乏在该频段与之产生作用并可以控制的材料和器件。但是由于太赫兹发射和探测技术的不断提高,太赫兹科学技术在工业和商业应用得到了更多的关注。例如,太赫兹成像技术运用在几个医学和安全运用行业(例如:牙成像[5],活体内皮肤癌探测[6],死人扫描仪[7]等),因为相比更长波长辐射源,太赫兹波更能实现高空间分辨率(比如毫米波),同时也可以比短波长(例如紫外线和X光射线)不容易电离。同样的许多很重要的光谱信息也在太赫兹频段,这使得太赫兹光谱分析对薄膜特性分析中成为一种很有效的技术[9],生物学运用[10]和非法物品的检测(比如爆炸物和毒药等)[11]。此外,因为太赫兹波相比无线电波和微波拥有较高的带宽,同时相比红外辐射也受到较少闪烁效应的影响[12],在太赫兹频段内有一些确定

石墨烯在金属防腐蚀领域中的应用

金属材料的腐蚀不仅给社会带来了巨大的经济损失,而且给工业生产、运输及 家居生活带来了安全隐患。为解决这一问题,常在金属表面涂覆防腐涂料,这 种方法便于施工和维护,且成本低。其原理是利用涂料固化成膜后隔绝氧气、 水分子等腐蚀介质,达到保护基材的作用。石墨烯是碳原子以sp2 轨道杂化形 成的二维网状碳材料,其中每个碳原子与其相邻的3 个碳原子形成C-C σ键,按正六边形紧密有序排列形成稳定结构。单层石墨烯理论厚度0. 35 nm,具有 超大的比表面积(达2630 m2/g),超高的力学性能(杨氏模量达1100 GPa,断裂强度达130 GPa),超快的载流子迁移率(达15 000 cm2/(V·s))。 凭借这些优异的性能,石墨烯在防腐蚀领域得到了广泛的应用。 1石墨烯的制备 1.1 机械剥离法机械剥离法的应用原理是通过物理作用力克服石墨分子层间的范德华力,进而分离石墨片获得石墨烯。2004 年,Novoselov 等使用机械剥离法,用胶带反复剥离石墨片直至获得仅一个原子厚度的石墨单片,即为石墨烯。此外,用石墨反复摩擦另一个固体表面,从而获得附着于该固体表面上的石墨 烯层。早期对石墨烯片层的研究是通过扫描隧道显微镜或原子力显微镜的针尖 与石墨相互作用而获得石墨烯的结构。通过机械玻璃法合成的石墨烯分子缺陷少,但制备时间久、产率低下,不适于大规模生产。 1.2 氧化还原法先将石墨氧化。石墨在氧化过程中,表面和边缘会形成大量含氧官能团,如—COOH、—C = O、—OH、—O—等。氧原子进入石墨层间,拉大 了氧化石墨层间距。再经超声使得层与层剥离得到氧化石墨烯,最后利用还原 反应将氧化石墨烯中氧化基团还原为C—C 结构,得到石墨烯。其中,石墨的 氧化方法包括Brodie法、Staudenmaier 法和Hummers 法,三种方法均用强质 子酸( 如浓H 2SO 4 、HNO3或其混合物) 处理原始石墨,形成石墨层间化合物,再 利用强氧化剂( 如KMnO 4、KClO 3 等)对其进行氧化,得到氧化石墨。经超声后得 氧化石墨烯,再将氧化石墨烯还原。根据还原方法的不同,可以分为热还原、化学试剂还原、光照还原、水热还原等。 1.3 化学气相沉积法( CVD)CVD 法是将含碳化合物作为碳源在基体表面升温至气态,气态碳源裂解形成的碳原子在金属基体表面沉积生成石墨烯。由于铜薄膜对碳源、温度、压力等要求较低,因此一般用铜作为基体,在铜表面富集石墨烯,这是CVD 中最有前景的制备高质量石墨烯的方法。 为了进一步降低石墨烯的制备温度和能耗,采用等离子体增强化学气相沉积法( PECVD),生长温度为700 ℃,在镍/石英衬底上直接生长单层石墨烯,比使用热CVD 合成的石墨烯低250 ℃。Li 等以苯为碳源,在300 ℃下制得质量优异的单层石墨烯片。CVD 法制得的石墨烯质量高、可大面积生长,已成为制备石墨烯的主要方法。 1.4 外延生长法是指利用晶格匹配,在一个晶体层基质上生长出另外一种晶体层的方法。基于不同的基底材料,外延生长法可以分为金属催化外延生长法和碳化硅外延生长法。金属催化外延生长法是指特定温度和压强条件下,在基底( 如Pt、Ir、Ru、Cu 等) 表面进行碳氢化合物(碳源) 的吸附,通过催化剂作用及加热,使吸附气体催化脱氢,从而制得石墨烯。碳化硅外延生长法是通过高温加热碳化硅使其分解,当表面硅原子气化离开后,剩余的碳原子在碳

石墨负极材料

1.负极材料企业 杉杉、BTR、长沙海容(摩根)、汕头诚翔、湖南辉宇、青岛大华、远东、弘光、红顶、金卡本、瑞富特、华容、斯诺、湖南星光、余姚宏远、北京创亚、佛山三高、大阪石墨、长沙星城、金润、江苏镇江华邦能源材料有限公司 目前在国内,负极材料领先企业主要包括深圳贝特瑞、上海杉杉和长沙海容。 而在全球范围内,负极材料的市场份额主要集中在日本日立、日本精工碳素、JFE日本钢铁、三菱、中国贝特瑞、杉杉股份6大厂家2.碳负极材料分类 锂电池中具实用价值和应用前景的碳主要有三种:(1)高度石墨化的碳;(2)软碳和硬碳;(3)碳纳米材料。 2.1石墨类碳负极材料(动力电池负极普遍用该种材料)

人造石墨(主流产品)是将易石墨化炭(如沥青焦炭)在N2气氛中于1900~2800℃经高温石墨化处理制得。常见人造石墨有中间相碳微球(MCMB)、石墨化碳纤维。MCMB的优点是可逆容量高、可大倍率充放电,应用方向为动力电池和倍率电池。缺点:价格略高、容量略低,在高容量和超高容量型产品中处于劣势(经常进行掺杂等改性手段制成高端产品)。 天然石墨一般都以天然石墨矿石出现。在锂电应用中需要提纯为含碳在91~99%的高碳石墨,多以常用化学方法提纯。天然石墨由于表面有较高的活性点,比表面高,不能直接用作负极材料,需要做表面改性处理。优点:嵌锂电化学容量高;放电电压平台平稳;来源广泛,加工工艺成熟,制造成本低;加工性能优秀。缺点:与电解液相容性差,电解液分解,SEI膜不稳定;溶剂共嵌入,石墨层剥离,循环稳定性差,衰减快,电池鼓胀;辊压造成各粒子晶体c轴平行且垂直板面,空隙小,大倍率充放电效率低。 3.碳负极材工艺流程

石墨烯增强金属基复合材料项目

石墨烯增强金属基复合材料项目 可行性研究报告 有色金属及复合材料研究所编制 二零一四年十月

目录 第一章研究概论 (1) 第二章项目背景和发展概况 (4) 第三章项目发展环境分析 (12) 第四章应用技术方案 (20) 第五章 项目企业竞争策略 (21) 第六章行业国内市场分析 (22) 第七章可行性研究结论与建议 (27) 报告撰写人 冷金凤 二〇一五年十月

第一章 研究概述 1.1研究背景及目标 上世纪九十年代,我国开始金属基复合材料(MMC)的研究,经过二十多年发展,金属基复合材料已经在军事国防领域取得了产业化应用并向民用领域渗透,如今已在陆上交通、民航、工业和体育休闲产业等诸多领域实现商业化的应用。从全球溯源及发展来看,美国是起步最早、投入最大,也是终端产品应用最多的国家,日本和英国也拥有一些生产工艺成熟的企业。相比较而言,我国在金属基研究方向起步较晚,目前在军工、航天领域已在某些器件上获得规模化应用,但也存在生产工艺不成熟,成品率低等问题,在民用领域还没有大的突破。同时,对于颗粒增强金属基复合材料的增强体选择上,通常为陶瓷相,产业化上应用最多的是SiC、Al2O3等陶瓷颗粒,由于硬、脆质点的本征属性,导致金属基复合材料难以进一步塑形成型,同时加工成本高。所以,从金属基复合材料应用深度和广度来看,有必要进一步完善金属基复合材料的制备工艺,提高工艺稳定性,降低制备和加工成本。二维特殊结构石墨烯纳米材料的出现,为解决硬、脆质点加入导致的难以二次加工提供了解决方案,同时进一步降低密度,提高综合性能,所以有必要研究石墨烯增强的金属基复合材料,以满足我国航空航天、军工、交通运输及热管理领域等需求。本文目标在于论证石墨烯增强金属基复合材料在国内生产的项目可行性研究。

石墨烯在金属表面上 Graphene on metal surfaces

U N C O R R E C T E D P R O O F 1 2 Graphene on metal surfaces 3 J.Wintterlin a,*,M.-L.Bocquet b 4a Ludwig-Maximilians-Universit?t München,Dept.Chemie und Biochemie and Center for Nanoscience CeNS,Butenandtstr.5-13,81377Munich,Germany 5 b Universitéde Lyon,Laboratoire de Chimie,Ecole Normale Supérieure de Lyon,CNRS,F69007Lyon,France 68a r t i c l e i n f o 9Article history: 10Available online xxxx 11Keywords:12Review 13Graphene 14Metal surfaces 15Nickel 16Ruthenium 17Platinum 18Iridium 19 20a b s t r a c t 21The article reviews work on graphene monolayers adsorbed on metal surfaces.Graphene layers on metals 22have been prepared by surface segregation of carbon and by decomposition of hydrocarbons.The ?lms 23are often not rotationally aligned to the metal surface.However,for a number of hexagonally close-24packed surfaces perfectly ordered epitaxial overlayers can be obtained,with domains larger than the ter-25races of the metal substrate.In most cases the well-ordered overlayers display moiréstructures with 26large periodicities,resulting from the lattice mismatch between graphene and the underlying metal.27These structures are connected with a buckling of the graphene layer indicating local variations of the 28binding to the metal.For the metal–graphene spacings values between approximately 2.1and 3.8?were 29found,depending on the metal.Reasons for these strong variations are not yet clear,but there are indi-30cations that the systems fall into two classes that differ qualitatively with respect to the metal/graphene 31interaction.These variations are also re?ected by the electronic structure.There are metal–graphene sys-32tems in which the p band is signi?cantly downshifted in energy compared to the free-standing graphene, 33and a band gap of order eV has opened at the K point of the Brillouin zone.In other systems,the electronic 34structure of free-standing graphene is almost intact.The perfectness of the epitaxial moiréphases offers 35promising applications,e.g.,as templates for nanostructures. 36ó2009Published by Elsevier B.V. 37 3839 1.Introduction 40The publication in 2004of a method to prepare free-standing 41graphene,single 2D carbon sheets with the same structure as the 42individual layers in graphite,has initiated enormous scienti?c 43activities [1–4].Graphene is a unique material.It is strictly 2D 44(apart from a small,long-range buckling [5]),it has a high crystal-45lographic quality,and it is stable under ambient conditions.It has a 46very special electronic structure,the p and p *bands touch in a sin-47gle point at the Fermi energy (E F )at the corner of the Brillouin 48zone,and close to this so-called Dirac point the bands display a lin-49ear dispersion.This topology of the bands gives rise to exotic elec-50tronic transport properties –the charge carriers behave like 51relativistic particles –which manifest themselves in unusual phe-52nomena such as an anomalous quantum Hall effect [6,7].The bal-53listic charge carrier transport at 300K and at high charge carrier 54concentrations makes graphene also interesting for applications 55in electronic devices [4]. 56In the adsorbed form on metal surfaces graphene has been 57known for at least 40years.The formation of graphene was ?rst 58observed during preparation of Pt and Ru single crystal surfaces 59[8–12].When during the usual preparation the samples were 60 annealed to high temperatures,carbon impurities segregated from 61the bulk to the surface.It was soon realized that one form of this 62surface carbon is graphene [11].Graphene on metal surfaces is also 63known from industrial heterogeneous catalysis,where,for reac-64tions involving hydrocarbons,the deposition of graphitic carbon 65on the catalyst surface is a major reason for deactivation [13,14].66Recent investigations have shown that these graphitic layers can 67consist of a few graphene layers only,or even of monolayers 68[15].Not surprisingly,the current boom in research on free-stand-69ing graphene has led to renewed interest in graphene adsorbed on 70metal surfaces.Exploration of these systems has meanwhile be-71come a third main ?eld of graphene research,in addition to inves-72tigations of free-standing graphene and of epitaxial graphene on 73SiC.(The decomposition of SiC is the second major method for 74graphene preparation [16–18],apart from the mechanical exfolia-75tion from graphite.) 76In this contribution,we give an overview of results for metal–77graphene systems.The available published material on graphene 78on metals has strongly grown since two previous reviews from 791997[19,20],and currently the ?eld is developing so rapidly that 80we cannot hope to provide much more than a snapshot.An impor-81tant issue in many of the investigations has been the question of 82how the graphene layer interacts with the metal,which,of course,83is the discriminating factor from isolated and SiC-supported graph-84ene:Is the graphene layer physisorbed –as one may expect from 85the very weak interaction between the layers in bulk graphite –86 or is it bound more strongly?And how is the electronic structure 0039-6028/$-see front matter ó2009Published by Elsevier B.V.doi:10.1016/j.susc.2008.08.037 *Corresponding author.Tel.:+4908921807606;fax:+49089218079994.E-mail address:wintterlin@cup.uni-muenchen.de (J.Wintterlin).Surface Science xxx (2009)xxx–xxx Contents lists available at ScienceDirect Surface Science j o u r n a l ho m e p a g e :w w w.e l s e vier.c om/locate/susc

相关主题
文本预览
相关文档 最新文档