当前位置:文档之家› 人教版八年级上153分式方程例题与讲解

人教版八年级上153分式方程例题与讲解

人教版八年级上153分式方程例题与讲解
人教版八年级上153分式方程例题与讲解

** 分式方程

1.分式方程的概念

分母中含未知数的方程叫做分式方程.

谈重点 分式方程与整式方程的区别 从分式方程的定义可以看出分式方程有两个重要特征:一是方程;二是分母中含未知数.因此整式方程和分式方程的根本区别就在于分母中是否含未知数.

【例1】 下列方程:①x -35=1,②3x =2,③1+x 5+x =12

,④x 2+2x =5.其中是分式方程的有( ).

A .①②

B .②③

C .③④

D .②③④

解析:根据分式方程的定义知②③④是分式方程,故选D.

答案:D

2.分式方程的解法

(1)解分式方程的基本思路:

分式方程――→去分母

转化

整式方程. (2)解分式方程的一般方法和步骤:

①去分母:即在方程两边同乘最简公分母,把分式方程转化为整式方程;

②解这个整式方程;

③验根:把整式方程的根代入最简公分母,使最简公分母不等于0的根是原方程的根,使最简公分母等于0的根不是原方程的根,必须舍去.

(3)对分式方程解法的理解:

①解分式方程的基本思想是转化,即把分式方程转化为整式方程,通过解整式方程从而确定分式方程的解; ②将分式方程转化为整式方程时,是将分式方程两边同乘最简公分母,当所乘的整式不为零时,所得整式方程与原分式方程同解;当所乘整式为零时,所求出的未知数的值就不是原分式方程的解;

③在解分式方程时,方程两边约去含有未知数的公因式时,若该公因式的值为零,会造成原方程失根,所以在解分式方程时,两边不能同时除以含有未知数的公因式;

④验根的方法:代入原分式方程,看左右两边是否相等,但这种方法较麻烦,直接代入最简公分母验根较为简捷.

解技巧 分式方程验根的方法 把解得的未知数的值代入最简公分母较为简捷,但是不能检查解方程的过程中出现的计算错误,我们可以采用另一种验根的方法,即把求得的未知数的值代入原方程进行检验,这种方法可以检查解方程时有无计算错误.

【例2】 解下列方程:

(1)7x 2+x +3x 2-x =6x 2-1;

(2)x 2x -5-1=55-2x

. 解:(1)方程两边同乘x (x +1)(x -1),得7(x -1)+3(x +1)=6x .

解这个方程,得x =1.

检验:当x =1时,x (x +1)(x -1)=0,所以x =1是原方程的增根,即原方程无解.

(2)方程两边同乘2x -5,得x -(2x -5)=-5.

解这个方程,得x =10.

检验:当x =10时,2x -5≠0,所以x =10是原方程的解.

3.分式方程的应用

分式方程的应用主要是列方程解应用题,它与列一元一次方程解应用题的基本思路和方法是一样的.

列分式方程解应用题的一般步骤:

①审:审清题意;

②找:找出相等关系;

③设:设未知数;

④列:列出方程;

⑤解:解这个分式方程;

⑥验:既要检验根是否是所列分式方程的根,又要检验根是否符合题意;

⑦答:写出答案.

解技巧 构建分式方程的方法 (1)在实际问题中,有时题目中包含多个相等的数量关系,在列方程时一定要选择一个能够体现全部(或大部分)题意的相等关系列方程;(2)在一些实际问题中,有时直接设出题中所求的未知数可能比较麻烦,需要间接地设出未知数,或设出一个未知数不好表示相等关系,还可设多个未知数,即设辅助未知数.

【例3】 今年春季我国西南五省持续干旱,旱情牵动着全国人民的心.“一方有难、八方支援”,某厂计划生产1 800吨纯净水支援灾区人民,为尽快把纯净水发往灾区,工人把每天的工作效率提高到原计划的1.5倍,结果比原计划提前3天完成了生产任务.求原计划每天生产多少吨纯净水?

解:设原计划每天生产x 吨纯净水,

则依据题意,得1 800x -1 8001.5x

=3, 整理,得4.5x =900,

解之,得x =200.

把x =200代入原方程,成立,

∴x =200是原方程的解.

答:原计划每天生产200吨纯净水.

4.分式方程无解型问题

解答分式方程无解型问题的方法是:首先将分式方程转化为整式方程,然后再将分式方程的增根(使分式方程的分母为零的未知数的值)代入整式方程(因为方程若有增根,则增根是通过解整式方程而得到的,故它满足整式方程),从而求出方程中的参数值.

5.生活中的分式方程

列分式方程解实际问题时,关键是从实际问题中找出等量关系.另外,还要注意对方程的根进行检验.检验时,要注意双重检验:既要根据所列方程进行检验,又要根据实际问

题进行检验.

举例:甲、乙两人加工同一种玩具,甲加工90个玩具所用的时间与乙加工120个玩具所用的时间相等.已知甲、乙两人每天共加工35个玩具,问甲、乙两人每天各加工多少个玩具?

解:设甲每天加工x 个玩具,则乙每天加工(35-x )个玩具. 根据题意,得90x =12035-x ,解得,x =15. 经检验,x =15是原方程的解且符合实际意义.

所以35-x =35-15=20(个).

答:甲每天加工15个玩具,乙每天加工20个玩具.

【例4-1】 已知关于x 的分式方程a -1x +2

=1有增根,则a =________. 解析:去分母得a -1=x +2,将x =-2代入得a -1=0,解得a =1.

答案:1

【例4-2】 若关于x 的方程x -2x -3=m x -3

+2无解,求m 的值. 解:方程两边同乘(x -3),得x -2=m +2(x -3).

整理,得m =-x +4.

因为当x =3时,分式方程无解,所以m =1.

【例5】 某文化用品商店用2 000元购进一批学生书包,面市后发现供不应求,商店又购进第二批同样的书包,所购数量是第一批购进数量的3倍,但单价贵了4元,结果第二批用了6 300元.

(1)求第一批购进书包的单价是多少元?

(2)若商店销售这两批书包时,每个售价都是120元,全部售出后,商店共盈利多少元? 解:(1)设第一批购进书包的单价是x 元,则第二批购进书包的单价为(x +4)元.

根据题意,得2 000x ×3=6 300x +4

,解得x =80. 经检验,x =80是原方程的解.

答:第一批购进书包的单价是80元.

(2)解法一:2 00080×(120-80)+6 30084

×(120-84)=1 000+2 700=3 700(元). 解法二:2 00080

×(1+3)×120-(2 000+6 300)=12 000-8 300=3 700(元). 答:商店共盈利3 700元.

6.分式方程中的阅读题

在解分式方程中的阅读题时,首先要认真阅读题意,仔细观察列举的条件,观察比较所给各方程的特点和它的解与原方程的关系,发现解答过程的错误或探究得出其中的规律,然后根据题目的要求改正题目中的错误或者根据发现的规律解答提出的问题.

阅读理解题是新课标理念下的创新题型,应予以重视.

7.分式方程中的开放型问题

分式方程中的开放型问题,其答案一般不唯一.有两种类型:一是条件开放型问题,二是结论开放型问题.

解答这类题目的一般方法是:通过条件,联想有关概念或法则,探求结论.例如:请根据所给方程6x +6x -5=1联系生活实际,编一道应用题.(要求题目完整,题意清楚,不要求解方程) 解:甲、乙两人合作加工一批零件,已知甲比乙每小时多加工5个零件,他们合作6 h 完成了加工任务.问:甲、乙每小时各加工零件多少个?这批零件共有几个?

8.列分式方程解答综合性问题

解答应用题的关键是弄清题目中的数量关系,选择合适的关系式列出分式方程,求出方程的解来解决问题.如果涉及用其他知识的综合题,应认真分析题意建立适当的数学模型来解答.

例如:从甲地到乙地共50千米,其中开始的10千米是平路,中间的20千米是上坡路,余下的20千米又是平路.小明骑自行车从甲地出发,经过2小时10分钟到达甲、乙两地的中点,再经过1小时50分钟到达乙地,求小明在平路上的速度(假设小明在平路和上坡路上保持匀速).

解:设小明在平路上的速度为x 千米/时,

根据题意,得136-10x

=3????116-20x , 解得x =15.

经检验,x =15是所列方程的解,且符合题意.

答:小明在平路上的速度为15千米/时.

【例6】 先阅读下列一段文字,然后解答问题:

已知方程x -1x =112的解是x 1=2,x 2=-12

. 方程x -1x =223的解是x 1=3,x 2=-13

. 方程x -1x =334的解是x 1=4,x 2=-14

. 方程x -1x =445的解是x 1=5,x 2=-15

. 问题:观察上述方程及其解,再猜想出方程x -1x =101011

的解.把你解题得到的收获用语言表述出来,和你的同伴互相交流.

解:x 1=11,x 2=-111

.方程的左边是未知数与其倒数的差,方程的右边是比带分数的整数部分大1的数与其倒数的差,此时方程的解就可以直接写出了.

【例7】 请选择一组a ,b 的值,写出一个形如a x +2

=b 的关于x 的分式方程,使它的解为x =2,这样的分式方程可以是__________.

解析:根据题意,把x =2代入方程a x +2

=b 中, 化简整理,得a =4b .

再任意给出一对a ,b 的值,使其满足a =4b 即可.

写出一个题目所要求的分式方程,如当a =4,b =1时,所写的方程为4x +2

=1.

答案:4x +2

=1(不唯一) 【例8】 某市在道路改造过程中,需要铺设一条长为1 000米的管道,决定由甲、乙两个工程队来完成这一工程.已知甲工程队比乙工程队每天能多铺设20米,且甲工程队铺设350米所用的天数与乙工程队铺设250米所用的天数相同.

(1)甲、乙工程队每天各能铺设多少米?

(2)如果要求完成该项工程的工期不超过10天,那么为两工程队分配工程量(以百米为单位)的方案有几种?请你帮助设计出来.

解:(1)设甲工程队每天能铺设x 米,则乙工程队每天能铺设(x -20)米.

根据题意得350x =250x -20

,解得x =70. 检验:x =70是原分式方程的解.

答:甲、乙工程队每天分别能铺设70米和50米.

(2)设分配给甲工程队y 米,

则分配给乙工程队(1 000-y )米.

由题意,得???

y 70≤10,1 000-y 50≤10.

解得500≤y ≤700. 所以分配方案有3种.

方案一:分配给甲工程队500米,分配给乙工程队500米;

方案二:分配给甲工程队600米,分配给乙工程队400米;

方案三:分配给甲工程队700米,分配给乙工程队300米.

八年级数学下册《分式第二讲分式方程》知识点及典型例习题.doc

【知识要点】 1. 分式方程的概念以及解法 ; 2. 分式方程产生增根的原因 3. 分式方程的应用题 【主要方法】 2. 1. 分式方程主要是看分母是否有外未知数 ; 解分式方程的关健是化分式方程为整式方程 ; 方程两边同乘以最简公分 母. 3. 解分式方程的应用题关健是准确地找出等量关系, 恰当地设末知数 . 2019-2020 年八年级数学下册《分式第二讲 分式方程》知识点和典型例习题 题型一:用常规方法解分式方程 【例 1】解下列分式方程 ( 1) 1 3 ;( 2) 2 1 0 ;( 3) x 1 4 1 ;( 4) 5 x x 5 x 1 x x 3 x x 1 x 2 1 x 3 4 x 提示易出错的几个问题: ①分子不添括号;②漏乘整数项;③约去相同因式至使漏根; ④忘 记验根 . 题型二:特殊方法解分式方程 【例 2】解下列方程 ( 1) x 4 x 4 4 ; ( 2) x 7 x 9 x 10 x 6 x 1x x 6 x 8 x 9 x 5 提示:( 1)换元法,设 x y ;( 2)裂项法, x 7 1 1 . x 1 x 6 x 6 【例 3】解下列方程组 1 1 1 (1) x y 2 1 1 1 (2) y z 3 1 1 1 (3) z x 4 题型三:求待定字母的值 【例 4】若关于 x 的分式方程 2 1 m 有增根,求 m 的值 . x 3 x 3

【例 5】若分式方程 2 x a 1的解是正数,求 a 的取值范围 . x 2 提示: 2 a 0 且 x 2 , a 2 且 a 4 . x 3 题型四:解含有字母系数的方程 【例 6】解关于 x 的方程 x a c b x d (c d 0) 提示:( 1) a, b, c, d 是已知数;( 2) c d 0 . 题型五:列分式方程解应用题 练习: 1.解下列方程: ( 1) x 1 2x 0 ; (2) x 2 4 ; x 1 1 2x x 3 x 3 ( 3) 2x 3 2 ; (4) 7 3 1 7 x 2 x 2 x 2 x 2 x x x 2 x 2 1 ( 5) 5x 4 2x 5 1 (6) 1 1 1 1 2x 4 3x 2 2 x 1 x 5 x 2 x 4 ( 7) x x 9 x 1 x 8 x 2 x 7 x 1 x 6 2.解关于 x 的方程: ( 1) 1 1 2 (b 2a) ;( 2) 1 a 1 b (a b) . a x b a x b x 3.如果解关于 x 的方程 k 2 x 会产生增根,求 k 的值 . x 2 x 2 4.当 k 为何值时,关于 x 的方程 x 3 (x k 2) 1 的解为非负数 . x 2 1)( x 5.已知关于 x 的分式方程 2a 1 a 无解,试求 a 的值 . x 1 (二)分式方程的特殊解法 解分式方程,主要是把分式方程转化为整式方程,通常的方法是去分母,并且要检验, 但对一些特殊的分式方程,可根据其特征,采取灵活的方法求解,现举例如下: 一、交叉相乘法 例 1.解方程: 1 x 3 x 2 二、化归法 例 2.解方程: 1 2 0 1 x 2 x 1

数理方程练习题(1)

一、填空题 1.二阶线性偏微分方程xx xy yy x y Au Bu C u D u Eu Fu G +++++=(其中各系数均为x 和y 的函数)在某一区域的性质由式子:24B AC -的取值情况决定,取值为正对应的是( 双曲 )型,取值为负对应的是( 椭圆)型,取值为零对应的是( 抛物 )型。 2.在实际中广泛应用的三个典型的数学物理方程: 第一个叫( 弦自由横振动 ),表达式为(2tt xx u a B u =),属于(双曲)型; 第二个叫( 热传导 ),表达式为( 2t xx u a B u =),属于( 椭圆 )型; 第三个叫(拉普拉斯方程和泊松方程),表达式为(0 x x y y u u +=, (,)xx yy u u x y ρ+=-),属于(椭圆)型; 二、选择题 1.下列泛定方程中,属于非线性方程的是[ B ] (A) 260t xx u u xt u ++=; (B) sin i t tt xx u u u e ω-+=; (C) ( )22 0y xx xxy u x y u u +++=; (D) 340t x xx u u u ++=; 2. 下列泛定方程中,肯定属于椭圆型的是[ D ] (A)0xx yy u xyu +=; (B) 22x xx xy yy x u xyu y u e -+=; (C)0xx xy yy u u xu +-=; (D)()()()22sin sin 2cos xx xy yy x u x u x u x ++=; 3. 定解问题 ()()( )()()()2,0,00,,0 ,0,,0tt xx x x t u a u t x l u t u l t u x x u x x ?φ?=><

新人教版八年级数学分式典型例题(供参考)

分式的知识点及典型例题分析 1、分式的定义: 例:下列式子中,y x +15、8a 2 b 、-239a 、y x b a --25、4322b a -、2-a 2、m 1、65xy x 1、21、212+x 、πxy 3、 y x +3、m a 1 +中分式的个数为( ) (A ) 2 (B ) 3 (C ) 4 (D) 5 练习题:(1)下列式子中,是分式的有 . ⑴275x x -+; ⑵ 123 x -;⑶25a a -;⑷22x x π--;⑸22b b -;⑹22 2xy x y +. (2)下列式子,哪些是分式? 5a -; 234x +;3 y y ; 78x π+;2x xy x y +-;145b -+. 2、分式有,无意义,总有意义: 例1:当x 时,分式 51 -x 有意义; 例2:分式x x -+212中,当____=x 时,分式没有意义 例3:当x 时,分式112-x 有意义。 例4:当x 时,分式1 2+x x 有意义 例5:x ,y 满足关系 时,分式 x y x y -+无意义; 例6:无论x 取什么数时,总是有意义的分式是( ) A . 122+x x B.12+x x C.133+x x D.2 5 x x - 例7:使分式2 +x x 有意义的x 的取值范围为( )A .2≠x B .2-≠x C .2->x D .2

分式方程解法的标准

分式方程解法的标准 一,内容综述: 1.解分式方程的基本思想 在学习简单的分式方程的解法时,是将分式方程化为一元一次方程,复杂的(可化为一元二次方程)分式方程的基本思想也一样,就是设法将分式方程"转化"为整式方程.即 分式方程整式方程 2.解分式方程的基本方法 (1)去分母法 去分母法是解分式方程的一般方法,在方程两边同时乘以各分式的最简公分母,使分式方程转化为整式方程.但要注意,可能会产生增根.所以,必须验根. 产生增根的原因: 当最简公分母等于0时,这种变形不符合方程的同解原理(方程的两边都乘以或除以同一个不等于零的数,所得方程与原方程同解),这时得到的整式方程的解不一定是原方程的解. 检验根的方法: 将整式方程得到的解代入原方程进行检验,看方程左右两边是否相等. 为了简便,可把解得的根直接代入最简公分母中,如果不使公分母等于0,就是原方程的根;如果使公分母等于0,就是原方程的增根.必须舍去. 注意:增根是所得整式方程的根,但不是原方程的根,增根使原方程的公 分母为0. 用去分母法解分式方程的一般步骤: (i)去分母,将分式方程转化为整式方程; (ii)解所得的整式方程; (iii)验根做答 (2)换元法 为了解决某些难度较大的代数问题,可通过添设辅助元素(或者叫辅助未知数)来解决.辅助元素的添设是使原来的未知量替换成新的未知量,从而把问题化繁为简,化难为易,使未知量向已知量转化,这种思维方法就是换元法.换元法是解分式方程的一种常用技巧,利用它可以简化求解过程. 用换元法解分式方程的一般步骤: (i)设辅助未知数,并用含辅助未知数的代数式去表示方程中另外的代数 式; (ii)解所得到的关于辅助未知数的新方程,求出辅助未知数的值; (iii)把辅助未知数的值代回原设中,求出原未知数的值; (iv)检验做答. 注意:(1)换元法不是解分式方程的一般方法,它是解一些特殊的分式方程的特殊

15.3分式方程例题与讲解(2013-2014学年新人教版七年级上)

15.3 分式方程 1.分式方程的概念 分母中含未知数的方程叫做分式方程. 谈重点 分式方程与整式方程的区别 从分式方程的定义可以看出分式方程有两个重要特征:一是方程;二是分母中含未知数.因此整式方程和分式方程的根本区别就在于分母中是否含未知数. 【例1】 下列方程:①x -35=1,②3x =2,③1+x 5+x =12 ,④x 2+2x =5.其中是分式方程的有( ). A .①② B .②③ C .③④ D .②③④ 解析:根据分式方程的定义知②③④是分式方程,故选D. 答案:D 2.分式方程的解法 (1)解分式方程的基本思路: 分式方程――→去分母 转化 整式方程. (2)解分式方程的一般方法和步骤: ①去分母:即在方程两边同乘最简公分母,把分式方程转化为整式方程; ②解这个整式方程; ③验根:把整式方程的根代入最简公分母,使最简公分母不等于0的根是原方程的根,使最简公分母等于0的根不是原方程的根,必须舍去. (3)对分式方程解法的理解: ①解分式方程的基本思想是转化,即把分式方程转化为整式方程,通过解整式方程从而确定分式方程的解; ②将分式方程转化为整式方程时,是将分式方程两边同乘最简公分母,当所乘的整式不为零时,所得整式方程与原分式方程同解;当所乘整式为零时,所求出的未知数的值就不是原分式方程的解; ③在解分式方程时,方程两边约去含有未知数的公因式时,若该公因式的值为零,会造成原方程失根,所以在解分式方程时,两边不能同时除以含有未知数的公因式; ④验根的方法:代入原分式方程,看左右两边是否相等,但这种方法较麻烦,直接代入最简公分母验根较为简捷. 解技巧 分式方程验根的方法 把解得的未知数的值代入最简公分母较为简捷,但是不能检查解方程的过程中出现的计算错误,我们可以采用另一种验根的方法,即把求得的未知数的值代入原方程进行检验,这种方法可以检查解方程时有无计算错误. 【例2】 解下列方程: (1)7x 2+x +3x 2-x =6x 2-1;

人教版初二数学分式方程应用题汇总

人教版初二数学分式方程应用题汇总 文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-

分式方程 1. 对于非零的两个实数a,b,规定a⊕b=1 b - 1 a ,若2⊕(2x-1)=1,则x的值为( ) A. 5 6 B. 5 4 C. 3 2 D. - 1 6 2. 货车行驶25千米与小车行驶35千米所用时间相同,已知小车每小时比货车多行20千米,求两车的速度各为多少?设货车的速度为x千米/小时,依题意列方程正确的是( ) A. 25 x = 35 x-20 B. 25 x-20 = 35 x C. 25 x = 35 x+20 D. 25 x+20 = 35 x 3. 分式方程 2 x-2 - 1 x =0的根是( ) A. x=1 B. x=-1 C. x=2 D. x=-2 4.方程 2x x-1 =1+ 1 x-1 的解是( ) A. x=-1 B. x=0 C. x=1 D. x=2 5. 解方程:①: 1 x-1 - 3 x2-1 =0. ②: 2 x-3 +2= x-2 x-3 . ③已知关于x的分式方程1+2-mx 3-x = 2x-3 x-3 无解,求m的值. 6把分式方程 2 x+4 = 1 x 转化为一元一次方程时,方程两边需同乘( ) A. x B. 2x C. x+4 D. x(x+4) 7分式方程 3 x+2 = 1 x 的解为________. 8解方程: 4x x-2 -1= 3 2-x ,则方程的解是________.

9阅读思考题. 解方程:2x x2-1= 3x+1 x2-1 . 解:方程两边都乘x2-1,得2x=3x+1 解这个方程,得x=-1. 所以x=-1是方程的根. 上面解题过程是否有错误?若有错误,请指出来,并改正. 10关于x的方程2x+a x-1 =1的解是正数,则a的取值范围是( ) A. a>-1 B. a>-1且a≠0 C. a<-1 D. a<-1且a≠-2 11已知关于x的分式方程a-1 x+2 =1有增根,则a=________. 12 已知关于x的分式方程2x+m x-2 =3的解是正数,则m的取值范围为________. 13某服装厂设计了一款新式夏装,想尽快制作8800件投入市场,服装厂有A,B两个制衣车间,A车间每天加工的数量是B车间的1.2倍,A,B两车间共同完成一半后,A车间出现故障停产,剩下全部由B车间单独完成,结果前后共用20天完成,求A,B两车间每天分别能加工多少件? 14某电子元件厂准备生产4600个电子元件,甲车间独立生产一半后,由于要尽快投入市场,乙车间也加入了该电子元件的生产,若乙车间每天生产的电子元件个数是甲车间的1.3倍,结果共用33天完成任务,问甲车间每天生产电子元件多少个?在这个问题中设甲车间每天生产电子元件x个,根据题意可得方程为( ) A. 2300 x + 2300 1.3x =33 B. 2300 x + 2300 x+1.3x =33

分式方程的解法与技巧_知识精讲

分式方程的解法与技巧 【典型例题】 1. 局部通分法: 例1. 解方程:x x x x x x x x -----=-----34456778 分析:该方程的特点是等号两边各是两个分式,相邻两个分式的分子与分子,分母与分母及每个分式的分子与分母都顺序相差1,象这类通常采取局部通分法。 解:方程两边分别通分并化简,得: 145178()()()() x x x x --=-- 去分母得:()()()()x x x x --=--4578 解之得:x =6 经检验:x =6是原分式方程的根。 点拨:此题如果用常规法,将出现四次项且比较繁,而采用局部通分法,就有明显的优越性。 但有的时候采用这种方法前需要考虑适当移项,组合后再进行局部通分。 2. 换元法: 例2. 解方程: 7643165469222x x x x x x ----+=--+ 分析:此方程中各分式的分母都是含未知数x 的二次三项式,且前两项完全相同,故可考虑用换元法求解。令或或或k x x k x x k x x =--=-+=-+222646569 k x x =-26均可。 解:设,则原方程可化为:k x x =-+265 793144k k k --=-+ 去分母化简得:20147111602k k --= ∴()()k k -+=1220930 ∴,k k ==-129320 当时,k x x =--=126702 ()()x x -+=710 解之得:,x x 1217=-=

当时,k x x =--+=-93206593202 2012019302x x -+= 解此方程此方程无解。 经检验:,是原分式方程的根。x x 1217=-= 点拨:换元法解分式方程,是针对方程实际,正确而巧妙地设元,达到降次,化简的目的,它是解分式方程的又一重要的方法,本题还有其它的设法,同学们可自己去完成。 3. 拆项裂项法: 例3. 解方程: 12442212x x x x ++-+-= 分析:这道题虽然可用通分去分母的常规解法,但若将第二项拆项、裂项,则更简捷。 解:原方程拆项,变形为: ()()()()12222222221x x x x x x ++++-+---= 裂项为: 122222221x x x x ++-++--= 化简得:321x += 解之得:x =1 经检验:x =1是原分式方程的解。 4. 凑合法: 例4. 解方程:x x x x 4143412 +-=--- 分析:观察此方程的两个分式的分母是互为相反数,考虑移项后易于运算合并,能使运算过程简化。 解:部分移项得: x x x x 4143412=--+--- ∴x x x x 4143412=------ ∴x 412= ∴x =2 经检验:x =2是原分式方程的根。

分式方程例题讲

15.3 分式方程 1.分式方程的概念 分母中含未知数的方程叫做分式方程. 谈重点 分式方程与整式方程的区别 从分式方程的定义可以看出分式方程有两个重要特征:一是方程;二是分母中含未知数.因此整式方程和分式方程的根本区别就在于分母中是否含未知数. 【例1】 下列方程:①x -35=1,②3x =2,③1+x 5+x =12 ,④x 2+2x =5.其中是分式方程的有( ). A .①② B .②③ C .③④ D .②③④ 2.分式方程的解法 (1)解分式方程的基本思路: 分式方程――→去分母转化整式方程. (2)解分式方程的一般方法和步骤: ①去分母:即在方程两边同乘最简公分母,把分式方程转化为整式方程; ②解这个整式方程; ③验根:把整式方程的根代入最简公分母,使最简公分母不等于0的根是原方程的根,使最简公分母等于0的根不是原方程的根,必须舍去. (3)对分式方程解法的理解: ①解分式方程的基本思想是转化,即把分式方程转化为整式方程,通过解整式方程从而确定分式方程的解; ②将分式方程转化为整式方程时,是将分式方程两边同乘最简公分母,当所乘的整式不为零时,所得整式方程与原分式方程同解;当所乘整式为零时,所求出的未知数的值就不是原分式方程的解; ③在解分式方程时,方程两边约去含有未知数的公因式时,若该公因式的值为零,会造成原方程失根,所以在解分式方程时,两边不能同时除以含有未知数的公因式; ④验根的方法:代入原分式方程,看左右两边是否相等,但这种方法较麻烦,直接代入最简公分母验根较为简捷. 解技巧 分式方程验根的方法 把解得的未知数的值代入最简公分母较为简捷,但是不能检查解方程的过程中出现的计算错误,我们可以采用另一种验根的方法,即把求得的未知数的值代入原方程进行检验,这种方法可以检查解方程时有无计算错误. 【例2】 解下列方程: (1)7x 2+x +3x 2-x =6x 2-1; (2)x 2x -5-1=55-2x .

数理方程版课后习题答案

第一章曲线论 §1 向量函数 1. 证明本节命题3、命题5中未加证明的结论。 略 2. 求证常向量的微商等于零向量。 证:设,为常向量,因为 所以。证毕3. 证明 证: 证毕4. 利用向量函数的泰勒公式证明:如果向量在某一区间内所有的点其微商为零,则此向量在该区间上是常向量。

证:设,为定义在区间上的向量函数,因为在区间上可导当且仅当数量函数,和在区间上可导。所以,,根据数量函数的Lagrange中值定理,有 其中,,介于与之间。从而 上式为向量函数的0阶Taylor公式,其中。如果在区间上处处有,则在区间上处处有 ,从而,于是。证毕 5. 证明具有固定方向的充要条件是。 证:必要性:设具有固定方向,则可表示为,其中为某个数量函数,为单位常向量,于是。 充分性:如果,可设,令,其中为某个数量函数,为单位向量,因为,于是

因为,故,从而 为常向量,于是,,即具有固定方向。证毕 6. 证明平行于固定平面的充要条件是。 证:必要性:设平行于固定平面,则存在一个常向量,使得,对此式连续求导,依次可得和,从而,,和共面,因此。 充分性:设,即,其中,如果,根据第5题的结论知,具有固定方向,则可表示为,其中为某个数量函数,为单位常向量,任取一个与垂直的单位常向量,于是作以为法向量过原点的平面,则平行于。如果,则与不共线,又由可知,,,和共面,于是, 其中,为数量函数,令,那么,这说明与共线,从而,根据第5题的结论知,具有固定方向,则可表示为,其中为某个数量函数,为单位常向量,作以为法向量,过原点的平面,则平行于。证毕 §2曲线的概念

1. 求圆柱螺线在点的切线与法平面的方程。 解:,点对应于参数,于是当时,,,于是切线的方程为: 法平面的方程为 2. 求三次曲线在点处的切线和法平面的方程。 解:,当时,,, 于是切线的方程为: 法平面的方程为 3. 证明圆柱螺线的切线和轴成固定角。 证: 令为切线与轴之间的夹角,因为切线的方向向量为,轴的方向向量为,则

人教版八年级数学分式单元测试题及答案

八年级数学(上)分式单元测试 一、选择题 1. 下列各式:()222 1451, , , 532x x y x x x π---其中分式共有( ) A .1个 B .2个 C .3个 D .4个 2.下列计算正确的是( ) A.m m m x x x 2=+ B.22=-n n x x C.3332x x x =? D.264x x x -÷= 3. 下列约分正确的是( ) A . 313m m m +=+ B .2 12y x y x -=-+ C . 1 23369+= +a b a b D .()()y x a b y b a x =-- 4.若x 、y 的值均扩大为原来的2倍,则下列分式的值保持不变的是( ) … A.y x 23 B.223y x C.y x 232 D. 2 3 23y x 5.计算 x x -+ +11 11的正确结果是( ) B.212x x - C.212x - D.1 2 2 -x 6. 在一段坡路,小明骑自行车上坡的速度为每小时V 1千米,下坡时的速度为每小时V 2千米, 则他在这段路上、下坡的平均速度是每小时( ) A . 2 2 1v v +千米 B .2121v v v v +千米 C .21212v v v v +千米 D .无法确定 7. 某厂接到加工720件衣服的订单,预计每天做48件,正好按时完成,后因客户要求提前 5天交货,设每天应多做x 件,则x 应满足的方程为( ) A .x +48720─548 720 = B .x +=+48720548720 C . 572048720=-x D .-48720x +48720 =5 8. 若0≠-=y x xy ,则分式 =-x y 1 1( ) A . xy 1 B .x y - C .1 D .-1 ! 9. 已知 xy x y +=1,yz y z +=2,zx z x +=3,则x 的值是( )

分式方程的解法及应用(提高)知识讲解

分式方程的解法及应用(提高) 责编:杜少波 【学习目标】 1. 了解分式方程的概念和检验根的意义,会解可化为一元一次方程的分式方程. 2. 会列出分式方程解简单的应用问题. 【要点梳理】 【高清课堂分式方程的解法及应用知识要点】 要点一、分式方程的概念 分母中含有未知数的方程叫分式方程. 要点诠释:(1)分式方程的重要特征:①是等式;②方程里含有分母;③分母中含有未知数. (2)分式方程和整式方程的区别就在于分母中是否有未知数(不是一般的字母系数).分母中含有未知数的方程是分式方程,分母中不含有未知数 的方程是整式方程. (3)分式方程和整式方程的联系:分式方程可以转化为整式方程. 要点二、分式方程的解法 解分式方程的基本思想:将分式方程转化为整式方程.转化方法是方程两边都乘以最简公分母,去掉分母.在去分母这一步变形时,有时可能产生使最简公分母为零的根,这种根叫做原方程的增根.因为解分式方程时可能产生增根,所以解分式方程时必须验根. 解分式方程的一般步骤: (1)方程两边都乘以最简公分母,去掉分母,化成整式方程(注意:当分母是多项式时,先分解因式,再找出最简公分母); (2)解这个整式方程,求出整式方程的解; (3)检验:将求得的解代入最简公分母,若最简公分母不等于0,则这个解是原分式方程的解,若最简公分母等于0,则这个解不是原分式方程的解,原分式方程无解. 要点三、解分式方程产生增根的原因 方程变形时,可能产生不适合原方程的根,这种根叫做原方程的增根. 产生增根的原因:去分母时,方程两边同乘的最简公分母是含有字母的式子,这个式子有可能为零,对于整式方程来说,求出的根成立,而对于原分式方程来说,分式无意义,所以这个根是原分式方程的增根. 要点诠释:(1)增根是在解分式方程的第一步“去分母”时产生的.根据方程的同解原理,方程的两边都乘以(或除以)同一个不为0的数,所得方程是原方 程的同解方程.如果方程的两边都乘以的数是0,那么所得方程与原方 程不是同解方程,这时求得的根就是原方程的增根. (2)解分式方程一定要检验根,这种检验与整式方程不同,不是检查解方程过程中是否有错误,而是检验是否出现增根,它是在解方程的过程中 没有错误的前提下进行的. 要点四、分式方程的应用 分式方程的应用主要就是列方程解应用题. 列分式方程解应用题按下列步骤进行: (1)审题了解已知数与所求各量所表示的意义,弄清它们之间的数量关系; (2)设未知数; (3)找出能够表示题中全部含义的相等关系,列出分式方程; (4)解这个分式方程;

初中数学分式方程典型例题讲解

第十六章分式知识点和典型例习题 【知识网络】 【思想方法】 1.转化思想 转化是一种重要的数学思想方法,应用非常广泛,运用转化思想能把复杂的问题转化为简单问题,把生疏的问题转化为熟悉问题,本章很多地方都体现了转化思想,如,分式除法、分式乘法;分式加减运算的基本思想:异分母的分式加减法、同分母的分式加减法;解分式方程的基本思想:把分式方程转化为整式方程,从而得到分式方程的解等. 2.建模思想 本章常用的数学方法有:分解因式、通分、约分、去分母等,在运用数学知识解决实际问题时,首先要构建一个简单的数学模型,通过数学模型去解决实际问题,经历“实际问题———分式方程模型———求解———解释解的合理性”的数学化过程,体会分式方程的模型思想,对培养通过数学建模思想解决实际问题具有重要意义. 3.类比法 本章突出了类比的方法,从分数的基本性质、约分、通分及分数的运算法则类比引出了分式的基本性质、约分、通分及分式的运算法则,从分数的一些运算技巧类比引出了分式的一些运算技巧,无一不体现了类比思想的重要性,分式方程解法及应用也可以类比一元一次方程. 第一讲 分式的运算 【知识要点】1.分式的概念以及基本性质; 2.与分式运算有关的运算法则 3.分式的化简求值(通分与约分) 4.幂的运算法则 【主要公式】1.同分母加减法则:()0b c b c a a a a ±±=≠ 2.异分母加减法则:()0,0b d bc da bc da a c a c ac ac ac ±±=±=≠≠; 3.分式的乘法与除法: b d bd a c ac ?=,b c b d bd a d a c ac ÷=?= 4.同底数幂的加减运算法则:实际是合并同类项 5.同底数幂的乘法与除法;a m ● a n =a m+n ; a m ÷ a n =a m -n 6.积的乘方与幂的乘方:(ab)m = a m b n , (a m ) n = a mn 7.负指数幂: a -p = 1p a a 0 =1 8.乘法公式与因式分解:平方差与完全平方式 (a+b)(a-b)= a 2 - b 2 ;(a ±b)2= a 2±2ab+b 2 (一)、分式定义及有关题型 题型一:考查分式的定义(一)分式的概念: 形如 A B (A 、B 是整式,且B 中含有字母,B ≠0)的式子,叫做分式.其中 A 叫做分式的分子,B 叫做分式的分母. 【例1】下列代数式中:y x y x y x y x b a b a y x x -++-+--1 , ,,21,22π,是分式的有: . 题型二:考查分式有意义的条件:在分式中,分母的值不能是零.如果分母的值是零,则分式没 有意义. 【例2】当x 有何值时,下列分式有意义 (1) 44+-x x (2)232+x x (3)122-x (4)3||6--x x (5)x x 11- 题型三:考查分式的值为0的条件: 1、分母中字母的取值不能使分母值为零,否则分式无意义

初中数学分式方程典型例题讲解

a c=ac,b a c= a p a0=1形如 A 【例1】下列代数式中:x1 x-y ,是分式的有:.π2 x-y,a+b , x+y , (1)x-4 x+4 (2) x2+2 (3) x2-1 (4)|x|-3 (5) a=“ ± . a±ac=bc±da(a≠0,c≠0); 第十六章分式知识点和典型例习题 3.分式的乘法与除法:b ? d bd a÷ c d= b d bd ? ac 【知识网络】 4.同底数幂的加减运算法则:实际是合并同类项 5.同底数幂的乘法与除法;a m●a n=a m+n;a m÷a n=a m-n 6.积的乘方与幂的乘方:(ab)m=a m b n,(a m) n= 7.负指数幂:a-p=1 a mn 【思想方法】 1.转化思想 转化是一种重要的数学思想方法,应用非常广泛,运用转化思想能把复杂的问题转化为简单问题,把生疏的问题转化为熟悉问题,本章很多地方都体现了转化思想,如,分式除法、分式乘法;分式加减运算的基本思想:异分母的分式加减法、同分母的分式加减法;解分式方程的基本思想:把分式方程转化为整式方程,从而得到分式方程的解等. 2.建模思想 本章常用的数学方法有:分解因式、通分、约分、去分母等,在运用数学知识解决实际问题时,首先要构建一个简单的数学模型,通过数学模型去解决实际问题,经历实际问题———分式方程模型———求解———解释解的合理性”的数学化过程,体会分式方程的模型思想,对培养通过数学建模思想解决实际问题具有重要意义. 3.类比法 本章突出了类比的方法,从分数的基本性质、约分、通分及分数的运算法则类比引出了分式的基本性质、约分、通分及分式的运算法则,从分数的一些运算技巧类比引出了分式的一些运算技巧,无一不体现了类比思想的重要性,分式方程解法及应用也可以类比一元一次方程. 第一讲分式的运算 【知识要点】1.分式的概念以及基本性质; 2.与分式运算有关的运算法则 3.分式的化简求值(通分与约分) 4.幂的运算法则 【主要公式】1.同分母加减法则:b c b±c(a≠0) a a 8.乘法公式与因式分解:平方差与完全平方式 (a+b)(a-b)=a2-b2;(a±b)2=a2±2ab+b2 (一)、分式定义及有关题型 题型一:考查分式的定义(一)分式的概念: B(A、B是整式,且B中含有字母,B≠0)的式子,叫做分式.其中A叫做分式的分子,B 叫做分式的分母. 1 a-b x2-y2x+y , 题型二:考查分式有意义的条件:在分式中,分母的值不能是零如果分母的值是零,则分式没 有意义. 【例2】当x有何值时,下列分式有意义 3x26-x1 x-1 x 2.异分母加减法则:b d bc c=ac± da ac题型三:考查分式的值为0的条件: 1、分母中字母的取值不能使分母值为零,否则分式无意义

数理方程习题集综合

例 1.1.1 设v=v(线x,y),二阶性偏微分方程v xy =xy 的通解。 解 原方程可以写成 e/ex(ev/ey) =xy 两边对x 积分,得 v y =¢(y )+1/2 x 2 Y, 其中¢(y )是任意一阶可微函数。进一步地,两边对y 积分,得方程得通解为 v (x,y )=∫v y dy+f (x )=∫¢(y )dy+f (x )+1/4 x 2y 2 =f (x )+g (y )+1/4 x 2y 2 其中f (x ),g (y )是任意两个二阶可微函数。 例1.1.2 即 u(ξ,η) = F(ξ) + G(η), 其中F(ξ),G(η)是任意两个可微函数。 例1.2.1设有一根长为L 的均匀柔软富有弹性的细弦,平衡时沿直线拉紧,在受到初始小扰动下,作微小横振动。试确定该弦的运动方程。 取定弦的运动平面坐标系是O XU ,弦的平衡位置为x 轴,弦的长度为L ,两端固定在O,L 两点。用u(x,t)表示弦上横坐标为x 点在时刻t 的位移。由于弦做微小横振动,故u x ≈0.因此α≈0,cos α≈1,sin α≈tan α=u x ≈0,其中α表示在x 处切线方向同x 轴的夹角。下面用微元法建立u 所满足的偏微分方程。 在弦上任取一段弧'MM ,考虑作用在这段弧上的力。作用在这段弧上的力有力和外力。可以证明,力T 是一个常数,即T 与位置x 和时间t 的变化无关。 事实上,因为弧振动微小,则弧段'MM 的弧长 dx u x x x x ? ?++=?2 1s ≈x ?。 这说明该段弧在整个振动过程中始终未发生伸长变化。于是由Hooke 定律,力T 与时间 t 无关。 因为弦只作横振动,在x 轴方向没有位移,故合力在x 方向上的分量为零,即 T(x+x ?)cos α’-T(x)cos α=0. 由于co's α’≈1,cos α≈1,所以T(X+?x)=T(x),故力T 与x 无关。于是,力是一个

(完整版)人教版八年级数学上分式教案

15.1 分 式 第1课时 从分数到分式 教学目标 1.了解分式的概念,知道分式与整式的区别和联系. 2.了解分式有意义的含义,会根据具体的分式求出分式有意义时字母所满足的条件. 3.理解分式的值为零、为正、为负时,分子分母应具备的条件. 教学重点 分式的意义. 教学难点 准确理解分式的意义,明确分母不得为零. 教学设计一师一优课 一课一名师 (设计者: ) 教学过程设计 一、创设情景,明确目标 一艘轮船在静水中的最大航速是20 km/h ,它沿江以最大船速顺流航行100 km 所用时间,与以最大航速逆流航行60 km 所用的时间相等.江水的流速是多少? 提示:顺流速度=水速+静水中的速度;逆流速度=静水中的速度-水速. ●自主学习 指向目标 1.自学教材第127至128页. 2.学习至此:请完成《学生用书》相应部分. 三、合作探究,达成目标 探究点一 分式的概念 活动一:阅读教材思考问题:式子S a ,V S 以及式子10020+v 和6020-v 有什么共同特点?它们与分数有什么相同点和不同点? 展示点评:如果A ,B 表示两个________(整式),并且B 中含有________(字母),那么式子A B 叫做分式. 小组讨论:如何判断一个式子是否为分式?分式与整式有什么区别?

反思小结:判断一个式子是否为分式,可根据:①具有分数的形式;②分子、分母都是整式;③分母中含有字母,分式与整式的区别在于:分式的分母中含有字母,而整式的分母中不含字母. 针对训练:见《学生用书》相应部分 探究点二 分式有意义的条件 活动二:(1)当x ≠0时,分式23x 有意义; (2)当x ≠1时,分式x x -1 有意义; (3)当b ≠53时,分式15-3b 有意义; (4)x ,y 满足__x≠y __时,分式x +y x -y 有意义. 展示点评:教师示范解答的一般步骤,强调分母不为零. 小组讨论:归纳分式有意义的条件. 反思小结:对于任何分式,分母均不能为零,即当分母不为零时,分式有意义;反之,分母为零时,分式无意义. 针对训练:见《学生用书》相应部分 四、总结梳理,内化目标 1.知识小结——(1)学习了分式,知道了分式与分数的区别.(2)知道了分式有意义和值为零的条件. 2.思想方法小结——类比、转化等数学思想. 五、达标检测,反思目标 1.下列各式①2x ,②x +y 5,③12-a ,④x π-1 中,是分式的有( C ) A .①② B .③④ C .①③ D .①②③④ 2.当x 为任意实数时,下列分式中,一定有意义的是( C ) A.x -1x 2 B.x +1x 2-1 C.x -1x 2+1 D.x -1x +2 3.某食堂有煤m t ,原计划每天烧煤a t ,现每天节约用煤b(b

分式方程解题技巧(提高)

分式方程解题技巧 例一, 一般结构的分式方程 解方程:x x x x x ++-=-2227115 解:(分解因式以便确定最简公分母)原方程变形为: ) 1(7)1)(1(1)1(5++-+=-x x x x x x )1(7)1(5-+=+x x x 4=x 检验:把4=x 代入0)1)(1(≠-+x x x 所以4=x 是原方程的解。 例1:解方程:) 4)(1(52)3)(2(1)2)(1(1+++=+++++x x x x x x x 分析:一般解法,最简公分母为)4)(3)(2)(1(++++x x x x ,此题直接去分母较为复杂。经观察发现,左边分母两个因式的差等与分子,右边分母两个因式的和等与分子。故考虑将分式拆开。 解:原方程变形为: 4 11131212111+++=+-+++-+x x x x x x 4 132+=+-x x 2 7-=x 经检验27- =x 是原方程的根。 例2:解方程:

20 7245361121330163223223+++++=+++++x x x x x x x x x x 分析:经观察发现直接去分母计算量非常可观,而且分母用公式法或十字相乘法都不能分解成两个因式的积。但是,同时也发现分子的最高次项的次数都比分母的最高次项高。我们知道假分数可以转化为带分数,故考虑将假分式变为真分式。 解:原方程变形为: 20 72522134222+++++=+++++x x x x x x x x 20 725213422+++=+++x x x x x x 解得:5=x 经检验5=x 是原方程的根。 例3:解方程:02)1(2122=++-+x x x x 分析:此题借用关系式2)1(122 2-+=+x x x x 较为简单。 解:原方程变形为:0)1 (2)1 (2=+-+x x x x 设x x y 1+= 则022=-y y 0=y 或2 当0=y 时,01=+x x ,则方程无解。 当2=y 时,21=+ x x ,即0122=+-x x ,则1=x 经检验:1=x 是原方程的解。 例4:解方程:5 26423234=+-+-+x x x x 分析:根据题目特点,利用下面关系式解题较为简单, 若c c x x 11+=+(c 为常数),则X=C 或c 1。

分式方程及其应用的典型例题讲解学习

分式方程及其应用 一、知识点回顾: 1、分式方程的定义: 。 例如:下列方程:(1)31-x =5(2)x 1=14-x (3)π32-x =x-1(4)),(1为常数b a b a x = 其中属于分式方程的有 2、分式方程的增根:使得原分式方程的分母为零,所以解分式方程必须 。 3、解分式方程的基本步骤可以归纳为: 、 、 、 、 。 二.范例 1.当x =______时, 13x x ++的值等于13 . 2.当x =______时,424x x --的值与54 x x --的值相等. 3.若方程212 x a x +=--的解是最小的正整数,则a 的值为________. 4.下列关于x 的方程,是分式方程的是 ( ) A .23356x x ++-= B .137x x a -=-+ C .x a b x a b a b -=- D .2 (1)11 x x -=- 5.若3 x 与6 1x -互为相反数,则x 的值为 ( ) A . 13 B .-13 C .1 D .-1 6.若关于x 的方程2233 x m x x -=+--无解,则m 的值为___________. 7.解分式方程13132x x x +-=,去分母后所得的方程是 ( ) A .12(31)3x -+= B .12(31)2x x -+= C .12(31)6x x -+= D .1626x x -+= 8.解方程: (1) 623-=x x ; (2)12x -+ 3 =12x x --.

(3) 1121-=---x x x x . (4)1 613122-=-++x x x ; 9.已知关于x 的方程 2122x m x x -=--的解为正数,求m 的取值范围. 10. 解含有字母系数m 的分式方程 2233x m x x -=+-- 11. 若分式方程 223242 mx x x x +=--+有增根,试求m 的值. 12. 甲、乙两打字员,甲每分钟打字数比乙少10个.两人分别打同一份搞件,结果乙完成所需的时间是甲的 56 ,那么甲、乙两人每分钟打字数分别是多少?

数学物理方法习题解答(完整版)

数学物理方法习题解答 一、复变函数部分习题解答 第一章习题解答 1、证明Re z 在z 平面上处处不可导。 证明:令Re z u iv =+。Re z x =,,0u x v ∴==。 1u x ?=?,0v y ?=?, u v x y ??≠??。 于是u 与v 在z 平面上处处不满足C -R 条件, 所以Re z 在z 平面上处处不可导。 2、试证()2 f z z = 仅在原点有导数。 证明:令()f z u iv =+。()2 2222,0f z z x y u x y v ==+ ∴ =+=。 2,2u u x y x y ??= =??。v v x y ?? ==0 ??。 所以除原点以外,,u v 不满足C -R 条件。而 ,,u u v v x y x y ???? , ????在原点连续,且满足C -R 条件,所以()f z 在原点可微。 ()00 00x x y y u v v u f i i x x y y ====???????? '=+=-= ? ?????????。 或:()()()2 * 00 0lim lim lim 0z z x y z f z x i y z ?→?→?=?=?'==?=?-?=?。 2 2 ***0* 00lim lim lim()0z z z z z z z zz z z z z z z z z =?→?→?→+?+?+??==+??→???。 【当0,i z z re θ≠?=,*2i z e z θ-?=?与趋向有关,则上式中**1z z z z ??==??】

3、设333322 ()z 0 ()z=0 0x y i x y f z x y ?+++≠? =+??? ,证明()z f 在原点满足C -R 条件,但不可微。 证明:令()()(),,f z u x y iv x y =+,则 ()332222 22 ,=0 0x y x y u x y x y x y ?-+≠? =+?+??, 332222 22 (,)=0 0x y x y v x y x y x y ?++≠? =+?+?? 。 3 300(,0)(0,0)(0,0)lim lim 1x x x u x u x u x x →→-===, 3300(0,)(0,0)(0,0)lim lim 1y y x u y u y u y y →→--===-; 3300(,0)(0,0)(0,0)lim lim 1x x x v x v x v x x →→-===, 3300(0,)(0,0)(0,0)lim lim 1y y x v y v y v y y →→-===。 (0,0)(0,0),(0,0)(0,0)x y y x u v u v ∴ = =- ()f z ∴ 在原点上满足C -R 条件。 但33332200()(0)() lim lim ()()z z f z f x y i x y z x y x iy →→--++=++。 令y 沿y kx =趋于0,则 333333434322222 0()1(1)1(1) lim ()()(1)(1)(1)z x y i x y k i k k k k i k k k x y x iy k ik k →-++-++-++++-+==+++++ 依赖于k ,()f z ∴在原点不可导。 4、若复变函数()z f 在区域D 上解析并满足下列条件之一,证明其在区域D 上

相关主题
文本预览
相关文档 最新文档