当前位置:文档之家› 气体分子动理论典型例题解析

气体分子动理论典型例题解析

气体分子动理论典型例题解析
气体分子动理论典型例题解析

气体分子动理论·典型例题解析

【例1】一定质量的理想气体被一绝热气缸的活塞封在气缸内,气体的压强为p0.如果外界突然用力压活塞,使气体的体积缩小为原来的一半,则此时

压强p的大小为

[ ] A.p<2p0

B.p=2p0

C.p>2p0

D.无法判断

解答:正确答案为C

点拨:气体被绝热压缩,其内能将会变大,相应的气体的温度会升高,所以绝热压缩的终状态的压强比同情况下等温压缩的终状态的压强大.【例2】如果使一个普通居室的室温升高一些,则室中空气的压强(设室外的大气压强不变)

[ ] A.一定增大B.一定减小

C.保持不变D.一定会发生变化

解答:正确答案是C

点拨:一般说来普通居室是室内空气与室外空气相通的,温度升高,室内空气发生等压变化,气体温度升高,分子密度变小.

【例3】密封容器中气体的压强

[ ] A.是由气体受到重力产生的

B.是由气体分子间的相互作用(吸引和排斥)产生的

C.是大量气体分子频繁地碰撞器壁产生的

D.当容器处于下落时将减小为零

点拨:气体的压强是大量气体分子频繁地碰撞器壁产生的,与宏观运动没有直接关系.

参考答案:C

【例4】有一医用氧气钢瓶,瓶内氧气的压强p=5.0×106Pa,温度t=27℃,求氧气的密度,氧气的摩尔质量μ=3.2×10-2kg/mol.结果取两位有效数字.

点拨:用克拉珀龙方程求解.也可以用取1mol的氧气在标准状态与此状态比较,求出此状态下的密度.

跟踪反馈

1.有一定质量的理想气体,如果要使它的密度减小,可能的办法是

[ ]

A .保持气体体积一定,升高温度

B .保持气体的压强和温度一定,减小体积

C .保持气体的温度一定,增大压强

D .保持气体的压强一定,升高温度

2.用一导热的可自由滑动的轻隔板把一圆柱形容器分成A 、B 两部分,如图13-86所示,A 和B 中分别封闭有质量相等的氮气和氧气,均可视为理想气体.则可知两部分气体处于热平衡时

[ ]

A .内能相等

B .分子的平均动能相等

C .分子的平均速度相等

D .分子数相等

3.一定质量的某种理想气体的压强为p ,热力学温度为T ,单位体积里气体分子数为n ,则

[ ]

A .p 增大时,n 一定增大

B .T 减小时,n 一定增大

C n

D n .增大时,一定增大.增大,一定减小p T p T

4.对一定量的理想气体,用p 、V 、T 分别表示其压强、体积和温度,则

[ ]

A .若T 不变,p 增大,则分子热运动的平均动能增大

B .若p 不变,V 增大,则分子热运动的平均动能减小

C .若p 不变,T 增大,则单位体积中的分子数减小

D .若V 不变,p 减小,则单位体积中的分子数减小

参考答案

1.D 2.B 3.C 4.C

动量冲量和动量定理典型例题精析

动量、冲量和动量定理·典型例题精析 [例题1]质量为m的物体,在倾角为θ的光滑斜面上由静止开始下滑.如图7-1所示.求在时间t内物体所受的重力、斜面支持力以及合外力给物体的冲量. [思路点拨]依冲量的定义,一恒力的冲量大小等于这力大小与力作用时间的乘积,方向与这力的方向一致.所以物体所受各恒力的冲量可依定义求出.而依动量定理,物体在一段时间t内的动量变化量等于物体所受的合外力冲量,故合外力给物体的冲量又可依动量定理求出. [解题过程]依冲量的定义,重力对物体的冲量大小为 I G=mg·t, 方向竖直向下. 斜面对物体的支持力的冲量大小为 I N=N·t=mg·cosθ·t,

方向垂直斜面向上. 合外力对物体的冲量可分别用下列三种方法求出. (1)先根据平行四边形法则求出合外力,再依定义求出其冲量. 由图7-1(2)知,作用于物体上的合力大小为F=mg·sinθ,方向沿斜面向下. 所以合外力的冲量大小 I F=F·t=mg·sinθ·t. 方向沿斜面向下. (2)合外力的冲量等于各外力冲量的矢量和,先求出各外力的冲量,然后依矢量合成的平行四边形法则求出合外力的冲量. 利用前面求出的重力及支持力冲量,由图7-1(3)知合外力冲量大小为 方向沿斜面向下.

或建立平面直角坐标系如图7-1(4),由正交分解法求出.先分别求出合外力冲量I F在x,y方向上分量I Fx,I Fy,再将其合成. (3)由动量定理,合外力的冲量I F等于物体的动量变化量Δp. I F=Δp=Δmv=mΔv=m(at)=mgsinθ·t. [小结] (1)计算冲量必须明确计算的是哪一力在哪一段时间内对物体的冲量. (2)冲量是矢量,求某一力的冲量除应给出其大小,还应给出其方向. (3)本题解提供了三种不同的计算合外力冲量的方法.

高三物理《理想气态的方程及气体分子动理论》教案

理想气态的方程及气体分子动理论 一、学习目标 1、知道什么是理想气体,能够由气体的实验定律推出理想气体状态方程。 2、掌握理想气体状态方程,并能用来分析计算有关问题。 3、知道理想气体状态方程的适用条件。 4、掌握克拉珀龙方程并能利用方程计算有关问题。 5、明确摩尔气体常量,R是一个热学的重要常数,其重要性与阿伏加德罗常数是一样的。 6、应用克拉珀龙方程解题时,由于R=8.31J/(mol· K)=0.082atm·L/(mol· K)。因此p、 V的单位必须与选用的R的单位相对应。 7、明确p-V, p-T, V-T图线的意义。 8、能够在相应的坐标中表达系统的变化过程。 二、重点难点及考点 1、这一节的内容重点在于能够知道用理想气体状态方程解决问题的基本思路和方法,并 能解决有关具体问题,还要注意到计算时要统一单位,难点在于用理想气体状态方程 解题时有时压强比较难找。 2、本节重点是克拉珀珑方程的应用,应用克拉珀龙方程可以解决很多气体问题,如果把 它学习好,对学生的学习气体这一节会有很大帮助,本节难点是对克拉珀龙方程的应用,但本节在高考中所占比例并不是特别大,因为这一节为现行教材中的新增长率加 内容。 3、本节重点是把气体的三个状态量用分子动理论来描述清楚,难点是用分子动理论解释 气体三定律,要从逻辑严谨的理相气体模型出发解释每个气体定律,本节在高考中涉 及的题目不多但出曾出现过。

三、例题分析 第一阶段 [例1]在密闭的容器里装有氧气100g,压强为10×106Pa,温度为37oC,经一段时间后温度 降为27oC,由于漏气,压强降为6.0×105Pa,求该容器的容积和漏掉气的质量。 思路分析: 本题研究的是变质量气体问题,由于容器的容积和气体种类(设氧气摩尔质量为M)仍未变,只是质量变为m2,再由克拉珀龙方程列出一个方程,联解两个方程,即可求得容器的容积和漏掉的氧气,抓住状态和过程分析是解题的关键。根据题意可得: ①② 方程①可得: 将V代入②可求: 所以漏掉的氧气质量△m=m1-m2=38g 答案:该容器的容积8.05×10-3m3,漏掉气的质量是38g, [例2]一个横截面积为S=50cm2竖直放置的气缸,活塞的质量为80kg,活塞下面装有质量m=5g的NH3,现对NH3加热,当NH3的温度升高△T=100oC时,求活塞上升的高度为多少?设大气压强为75cmHg,活塞与气缸无摩擦。 思路分析:本题研究的是定质量气体问题,首先确定定研究对象HN3,确认初态压强与末态压强相等,由于温度升高,NH3变化过程是等压膨胀,体积发生变化。由克拉珀龙方程可列两个状态下的方程,求出体积变化。再由体积变化和横截面积求出活塞上升的高度。确认等压膨胀是解本题的关键。 根据题意:根据克拉珀龙方程得: 所以活塞上升高度

新人教版八年级数学下册勾股定理典型例题分析

新人教版八年级下册勾股定理典型例习题 一、经典例题精讲 题型一:直接考查勾股定理 例1.在ABC ?中,90C ∠=?. ⑴已知6AC =,8BC =.求AB 的长 ⑵已知17AB =,15AC =,求BC 的长分析:直接应用勾股定理 222a b c += 解:⑴2210AB AC BC =+= ⑵228BC AB AC =-= 题型二:利用勾股定理测量长度 例题1 如果梯子的底端离建筑物9米,那么15米长的梯子可以到达建筑物的高度是多少米? 解析:这是一道大家熟知的典型的“知二求一”的题。把实物模型转化为数学模型后,.已 知斜边长和一条直角边长,求另外一条直角边的长度,可以直接利用勾股定理! 根据勾股定理AC 2+BC 2=AB 2, 即AC2+92=152,所以AC 2 =144,所以AC=12. 例题2 如图(8),水池中离岸边D 点1.5米的C 处,直立长着一根芦苇,出水部分B C的长是0.5米,把芦苇拉到岸边,它的顶端B 恰好落到D 点,并求水池的深度AC. 解析:同例题1一样,先将实物模型转化为数学模型,如图 2. 由题意可知△AC D中,∠ACD=90°,在Rt △ACD 中,只知道CD =1.5,这是典型的利用勾股定理“知二求一”的类型。 标准解题步骤如下(仅供参考): 解:如图2,根据勾股定理,AC 2+CD 2=A D2 设水深AC= x 米,那么AD =A B=AC+CB =x +0.5 x2+1.52=( x +0.5)2 解之得x =2. 故水深为2米. 题型三:勾股定理和逆定理并用—— 例题3 如图3,正方形ABCD 中,E 是BC 边上的中点,F 是AB 上一点,且AB FB 4 1= 那么△DEF 是直角三角形吗?为什么? C B D A

0气体动理论习题解答

第六章 气体动理论 一 选择题 1. 若理想气体的体积为V ,压强为p ,温度为T ,一个分子的质量为m ,k 为玻耳兹曼常量,R 为摩尔气体常量,则该理想气体的分子总数为( )。 A. pV /m B. pV /(kT ) C. pV /(RT ) D. pV /(mT ) 解 理想气体的物态方程可写成NkT kT N RT pV ===A νν,式中N =ν N A 为气体的分子总数,由此得到理想气体的分子总数kT pV N = 。 故本题答案为B 。 2. 在一密闭容器中,储有A 、B 、C 三种理想气体,处于平衡状态。A 种气体的分子数密度为n 1,它产生的压强为p 1,B 种气体的分子数密度为2n 1,C 种气体的分子数密度为3 n 1,则混合气体的压强p 为 ( ) A. 3p 1 B. 4p 1 C. 5p 1 D. 6p 1 解 根据nkT p =,321n n n n ++=,得到 1132166)(p kT n kT n n n p ==++= 故本题答案为D 。 3. 刚性三原子分子理想气体的压强为p ,体积为V ,则它的内能为 ( ) A. 2pV B. 2 5pV C. 3pV D.27pV 解 理想气体的内能RT i U ν2 =,物态方程RT pV ν=,刚性三原子分子自由度i =6, 因此pV pV RT i U 326 2===ν。 因此答案选C 。 4. 一小瓶氮气和一大瓶氦气,它们的压强、温度相同,则正确的说法为:( ) A. 单位体积内的原子数不同 B. 单位体积内的气体质量相同 C. 单位体积内的气体分子数不同 D. 气体的内能相同 解:单位体积内的气体质量即为密度,气体密度RT Mp V m = = ρ(式中m 是气体分子

(完整版)勾股定理典型例题详解及练习(附答案)

典型例题 知识点一、直接应用勾股定理或勾股定理逆定理 例1:如图,在单位正方形组成的网格图中标有AB CD EF、GH四条线段, 其中能构成一个直角三角形三边的线段是() A.CD、EF、 GH C. AB、CD GH B.AB、EF、GH D. AB、CD EF 愿路分乐屮 1)題意分析’本题考查幻股定理及勾股定理的逆定理.亠 2)解題思器;可利用勾脸定理直接求出各边长,再试行判断?』 解答过整屮 在取DEAF中,Af=l, AE=2,根据勾股定理,得昇 EF = Q抡於十£尸° = Q +F二艮 同理HE = 2百* QH. = 1 CD = 2^5 计算发现W十◎血尸=(鸥31即血+曲=GH2,根据勾股定理的逆宦理得到UAAE、EF\ GH为辺的三角形是直毎三角形.故选B. * 縮題后KJ思专:* 1.勾股定理只适用于直角三角形,而不适用于说角三角形和钝角三角形? 因此」辭题时一宦妾认真分析题目所蛤■条件■,看是否可用勾股定理来解口* 2.在运用勾股左理时,要正确分析题目所给的条件,不要习惯性地认为就是斜 迫而“固执”地运用公式川二/十就其实,同样是S6

"不一罡就等于餌,疋不一罡就昱斜辺,KABC不一定就是直角三祐

3.直角三第形的判定条件与勾股定理是互逆的.区别在于勾股定理的运用是一个从 卅形s—个三角形是直角三角形)到懺 y =沖十沪)的过程,而直角三角形的判定是一 ①从嗦(一个三角形的三辺满足X二护+酹的条件)到偲个三角形是直角三角形)的过 程.a 4?在应用勾股定理解题叭聲全面地琴虑间题.注意m题中存在的多种可能性,遊免漏辭.初 例玉如圏,有一块直角三角形?椀屈U,两直角迫4CM5沁丸m?现将直角边AC沿直绘AD折蠡便它落在斜边AB上.且点C落到点E处, 则切等于(、* C/) "禎 B. 3cm G-Icni n題童分析,本题着查勾股定理的应用刎 :)解龜思路;車题若直接在△MQ中运用勾股定理是无法求得仞的长的,因为貝知遒一条边卫0的长,由题意可知,AACD和心迓门关于直线KQ对称.因而^ACD^hAED ?进一歩则有应RUm CZAED ED 丄AB,设UD=E2>黄泱,则在Rt A ABO中,由勾股定 理可得^=^(^+^=^83=100,得AB=10cm,在松迟DE 中,W ClO-fl)2= d驚解得尸 九4 解龜后的思琴尸 勾股定理说到底是一个等式,而含有未知数的等式就是方程。所以,在利用勾股定理求线段的长时常通过解方程来解决。勾股定理表达式中有三个量,如果条件中只有一个已知量,必须设法求出另一个量或求出另外两个量之间的关系,这一点是利用勾股定理求线段长时需要明确的思路。 方程的思想:通过列方程(组)解决问题,如:运用勾股定理及其逆定理求线段的长度或解决实际问题时,经常利用勾股定理中的等量关系列出方程来解 决问题等。 例3:一场罕见的大风过后,学校那棵老杨树折断在地,此刻,张老师正和占 明、清华、绣亚、冠华在楼上凭栏远眺。 清华开口说道:“老师,那棵树看起来挺高的。” “是啊,有10米高呢,现在被风拦腰刮断,可惜呀!” “但站立的一段似乎也不矮,有四五米高吧。”冠华兴致勃勃地说。 张老师心有所动,他说:“刚才我跑过时用脚步量了一下,发现树尖距离树根恰好3米,你们能求出杨树站立的那一段的高度吗?” 占明想了想说:“树根、树尖、折断处三点依次相连后构成一个直角三角

第8章 气体动理论习题解答

习题 8-1 设想太阳是由氢原子组成的理想气体,其密度可当成是均匀的。若此理想气体的压强为1.35×1014 Pa 。试估计太阳的温度。(已知氢原子的质量m = 1.67×10-27 kg ,太阳半径R = 6.96×108 m ,太阳质量M = 1.99×1030 kg ) 解:m R M Vm M m n 3π)3/4(== = ρ K 1015.1)3/4(73?===Mk m R nk p T π 8-2 目前已可获得1.013×10-10 Pa 的高真空,在此压强下温度为27℃的1cm 3体积内有多少个气体分子? 解:3462310 /cm 1045.210300 1038.110013.1?=????===---V kT p nV N 8-3 容积V =1 m 3的容器内混有N 1=1.0×1023个氢气分子和N 2=4.0×1023个氧气分子,混合气体的温度为 400 K ,求: (1) 气体分子的平动动能总和;(2)混合气体的压强。 解:(1) J 1014.41054001038.12 3)(233232321?=?????=+=-∑N N kT t ε (2)Pa kT n p i 32323 1076.210540010 38.1?=????== -∑ 8-4 储有1mol 氧气、容积为1 m 3的容器以v =10 m/s 的速率运动。设容器突然停止,其中氧气的80%的机械运动动能转化为气体分子热运动动能。问气体的温度及压强各升高多少?(将氧气分子视为刚性分子) 解:1mol 氧气的质量kg 10323 -?=M ,5=i 由题意得 T R Mv ?=?ν2 5 %80212K 102.62-?=??T T R V p RT pV ?=???=νν

动量定理与动量守恒定律·典型例题解析

动量定理与动量守恒定律·典型例题解析 【例1】 在光滑的水平面上有一质量为2m 的盒子,盒子中间有一质量为m 的物体,如图55-1所示.物体与盒底间的动摩擦因数为μ现给物体以水平速度v 0向右运动,当它刚好与盒子右壁相碰时,速度减为 v 02 ,物体与盒子右壁相碰后即粘在右壁上,求: (1)物体在盒内滑行的时间; (2)物体与盒子右壁相碰过程中对盒子的冲量. 解析:(1)对物体在盒内滑行的时间内应用动量定理得:-μmgt = m mv t 0·-,=v v g 0022 (2)物体与盒子右壁相碰前及相碰过程中系统的总动量都守恒,设碰 撞前瞬时盒子的速度为,则:=+=+.解得=,=.所以碰撞过程中物体给盒子的冲量由动量定理得=-=,方向向右. v mv m v 22mv (m 2m)v v v I 2mv 2mv mv /61001212210v v 0043 点拨:分清不同的物理过程所遵循的相应物理规律是解题的关键. 【例2】 如图55-2所示,质量均为M 的小车A 、B ,B 车上 挂有质量为的金属球,球相对车静止,若两车以相等的速率M 4 C C B 1.8m/s 在光滑的水平面上相向运动,相碰后连在一起,则碰撞刚结束时小车的速度多大?C 球摆到最高点时C 球的速度多大? 解析:两车相碰过程由于作用时间很短,C 球没有参与两车在水平方向的相互作用.对两车组成的系统,由动量守恒定律得(以向左为正):Mv -Mv =

2Mv 1两车相碰后速度v 1=0,这时C 球的速度仍为v ,向左,接着C 球向左上方摆动与两车发生相互作用,到达最高点时和两车 具有共同的速度,对和两车组成的系统,水平方向动量守恒,=++,解得==,方向向左.v C v (M M )v v v 0.2m /s 222M M 4419 点拨:两车相碰的过程,由于作用时间很短,可认为各物都没有发生位移,因而C 球的悬线不偏离竖直方向,不可能跟B 车发生水平方向的相互作用.在C 球上摆的过程中,作用时间较长,悬线偏离竖直方向,与两车发生相互作用使两车在水平方向的动量改变,这时只有将C 球和两车作为系统,水平方向的总动量才守恒. 【例3】 如图55-3所示,质量为m 的人站在质量为M 的小车的右端,处于静止状态.已知车的长度为L ,则当人走到小车的左端时,小车将沿光滑的水平面向右移动多少距离? 点拨:将人和车作为系统,动量守恒,设车向右移动的距离为s ,则人向左移动的距离为L -s ,取向右为正方向,根据动量守恒定律可得M ·s -m(L -s)=0,从而可解得s .注意在用位移表示动量守恒时,各位移都是相对地面的,并在选定正方向后位移有正、负之分. 参考答案 例例跟踪反馈...;;.×·3 m M +m L 4 M +m M H [] 1 C 2h 300v 49.110N s 04M m M 【例4】 如图55-4所示,气球的质量为M 离地的高度为H ,在气球下方有一质量为m 的人拉住系在气球上不计质量的软绳,人和气球恰悬浮在空中处于静止状态,现人沿软绳下滑到达地面时软绳的下端恰离开地面,求软绳的长度.

高中物理人教版选修气体分子动理论单元测试题

物理同步测试—分子运动理论能量守恒气体 一、选择题(每小题4分,共40分。在每小题给出的四个选项中,至少有一个选项是正确 的) 1.下列说法中正确的是() A. 物质是由大量分子组成的,分子直径的数量级是10-10m B. 物质分子在不停地做无规则运动,布朗运动就是分子的运动 C. 在任何情况下,分子间的引力和斥力是同时存在的 D. 1kg的任何物质含有的微粒数相同,都是6.02×1023个,这个数叫阿伏加德罗常数 2.关于布朗运动,下列说法正确的是( ) A.布朗运动是在显微镜中看到的液体分子的无规则运动 B.布朗运动是液体分子无规则运动的反映 C.悬浮在液体中的微粒越小,液体温度越高,布朗运动越显着 D.布朗运动的无规则性反映了小颗粒内部分子运动的无规则性 3.以下说法中正确的是( ) A.分子的热运动是指物体的整体运动和物体内部分子的无规则运动的总和 B.分子的热运动是指物体内部分子的无规则运动 C.分子的热运动与温度有关:温度越高,分子的热运动越激烈 D.在同一温度下,不同质量的同种液体的每个分子运动的激烈程度可能是不相同的

4.在一杯清水中滴一滴墨汁,经过一段时间后墨汁均匀地分布在水中,只是由于() A.水分子和碳分子间引力与斥力的不平衡造成的 B.碳分子的无规则运动造成的 C.水分子的无规则运动造成的 D.水分子间空隙较大造成的 5.下列关于布朗运动的说法中正确的是() A.将碳素墨水滴入清水中,观察到的布朗运动是碳分子无规则运动的反映 B.布朗运动是否显着与悬浮在液体中的颗粒大小无关 C.布朗运动的激烈程度与温度有关 D.微粒的布朗运动的无规则性,反映了液体内部分子运动的无规则性 6.下面证明分子间存在引力和斥力的试验,错误的是() A.两块铅压紧以后能连成一块,说明存在引力 B.一般固体、液体很难被压缩,说明存在着相互排斥力 C.拉断一根绳子需要一定大小的力说明存在着相互吸引力 D.碎玻璃不能拼在一起,是由于分子间存在着斥力 7.下列叙述正确的是()A.悬浮在液体中的固体微粒越大,布朗运动就越明显B.物体的温度越高,分子热运动的平均动能越大 C.当分子间的距离增大时,分子间的引力变大而斥力减小

高中物理动量定理试题经典及解析

高中物理动量定理试题经典及解析 一、高考物理精讲专题动量定理 1.如图所示,静置于水平地面上的二辆手推车沿一直线排列,质量均为m ,人在极短的时间内给第一辆车一水平冲量使其运动,当车运动了距离L 时与第二辆车相碰,两车以共同速度继续运动了距离L 时停。车运动时受到的摩擦阻力恒为车所受重力的k 倍,重力加速度为g ,若车与车之间仅在碰撞时发生相互作用,碰撞吋间很短,忽咯空气阻力,求: (1)整个过程中摩擦阻力所做的总功; (2)人给第一辆车水平冲量的大小。 【答案】(1)-3kmgL ;(2)10m kgL 【解析】 【分析】 【详解】 (1)设运动过程中摩擦阻力做的总功为W ,则 W =-kmgL -2kmgL =-3kmgL 即整个过程中摩擦阻力所做的总功为-3kmgL 。 (2)设第一辆车的初速度为v 0,第一次碰前速度为v 1,碰后共同速度为v 2,则由动量守恒得 mv 1=2mv 2 22101122 kmgL mv mv -= - 2 21(2)0(2)2 k m gL m v -=- 由以上各式得 010v kgL = 所以人给第一辆车水平冲量的大小 010I mv m kgL == 2.观赏“烟火”表演是某地每年“春节”庆祝活动的压轴大餐。某型“礼花”底座仅0.2s 的发射时间,就能将质量为m =5kg 的礼花弹竖直抛上180m 的高空。(忽略发射底座高度,不计空气阻力,g 取10m/s 2) (1)“礼花”发射时燃烧的火药对礼花弹的平均作用力是多少?(已知该平均作用力远大于礼花弹自身重力) (2)某次试射,当礼花弹到达最高点时爆炸成沿水平方向运动的两块(爆炸时炸药质量忽略

勾股定理练习题及问题详解(共6套)

勾股定理课时练(1) 1. 在直角三角形ABC中,斜边AB=1,则AB2 2 2AC BC+ +的值是() A.2 B.4 C.6 D.8 2.如图18-2-4所示,有一个形状为直角梯形的零件ABCD,AD∥BC,斜腰DC的长为10 cm,∠D=120°,则该零件另一腰AB的长是______ cm(结果不取近似值). 3. 直角三角形两直角边长分别为5和12,则它斜边上的高为_______. 4.一根旗杆于离地面12m处断裂,犹如装有铰链那样倒向地面,旗杆顶落于离旗杆地步16m,旗杆在断裂之前高多少m? 5.如图,如下图,今年的冰雪灾害中,一棵大树在离地面3米处折断,树的顶端落在离树杆底部4米处,那么这棵树折断之前的高度是米. 6. 飞机在空中水平飞行,某一时刻刚好飞到一个男孩子头顶正上方4000米处,过了20秒,飞机距离这个男孩头顶5000米,求飞机每小时飞行多少千米? 7. 如图所示,无盖玻璃容器,高18cm,底面周长为60cm,在外侧距下底1cm的点C处有一蜘蛛,与蜘蛛相对的容器的上口外侧距开口1cm的F处有一苍蝇,试求急于扑货苍蝇充饥的蜘蛛,所走的最短路线的长度. 8. 一个零件的形状如图所示,已知AC=3cm,AB=4cm,BD=12cm。求CD的长. 9. 如图,在四边形ABCD 中,∠A=60°,∠B=∠D=90°,BC=2,CD=3,求AB的长. 10. 如图,一个牧童在小河的南4km的A处牧马,而他正位于他的小屋B的西8km北 7km处,他想把他的马牵到小河边去饮水,然后回家.他要完成这件事情所走的最短路程是多少? 11如图,某会展中心在会展期间准备将高5m,长13m,宽2m的楼道上铺地毯,已知地毯平方米18元,请你帮助计算一下,铺完这个楼道至少需要多少元钱? 12. 甲、乙两位探险者到沙漠进行探险,没有了水,需要寻找水源.为了不致于走散,他们用两部对话机联系,已知对话机的有效距离为15千米.早晨8:00甲先出发,他以6千米/时的速度向东行走,1小时后乙出发,他以5千米/时的速度向北行进,上午10:00,甲、乙二人相距多远?还能保持联系吗?

高二物理动量定理的应用

动量定理的应用(2)·典型例题解析 【例1】 500g 的足球从1.8m 的高处自由下落碰地后能弹回到1.25m 高,不计空气阻力,这一过程经历的时间为1.2s ,g 取10m/s 2,求足球对地面的作用力. 解析:对足球与地面相互作用的过程应用动量定理,取竖直向下为 正,有-Δ=′-其中Δ=--=-×-×=--=,′=-=-××=(mg N)t mv mv t 1.2 1.21.20.60.50.1(s)v 2gh 210 1.2522221810 21251012h g h g .. -,==××=,解得足球受到向上的 弹力='+=+×=+=5(m /s)v 2gh 210 1.86(m /s)N mg 0.51055560(N)1v v v t ().(). -+?056501 由牛顿第三定律得足球对地面的作用力大小为60N ,方向向下. 点拨:本例也可以对足球从开始下落至弹跳到最高点的整个过程应用动量定理:mgt 总-N Δt =0-0,这样处理更为简便. 从解题过程可看出,当Δt 很短时,N 与mg 相比较显得很大,这时可略去重力. 【例2】如图51-1所示,在光滑的水平面上有两块前后并排且靠在一起的木块A 和B ,它们的质量分别为m 1和m 2,今有一颗子弹水平射向A 木块,已知子弹依次穿过A 、B 所用的时间分别是Δt 1和Δt 2,设子弹所受木块的阻力恒为f ,试求子弹穿过两木块后,两木块的速度各为多少? 解析:取向右为正,子弹穿过A 的过程,以A 和B 作为一个整体, 由动量定理得=+,=,此后,物体就以向右匀速运动,接着子弹要穿透物体. f t (m m )v v A v B 112A A A ??f t m m 1 12+ 子弹穿过B 的过程,对B 应用动量定理得f Δt 2=m 2v B -m 2v A , 解得子弹穿出后的运动速度=+.B B v B f t m m f t m ??11222 + 点拨:子弹穿过A 的过程中,如果只将A 作为研究对象,A 所受的冲量

大学物理气体动理论热力学基础复习题集与答案解析详解

第12章 气体动理论 一、填空题: 1、一打足气的自行车内胎,若在7℃时轮胎中空气压强为4.0×5 10pa .则在温度变为37℃, 轮胎内空气的压强是 。(设内胎容积不变) 2、在湖面下50.0m 深处(温度为4.0℃),有一个体积为531.010m -?的空气泡升到水面上 来,若湖面的温度为17.0℃,则气泡到达湖面的体积是 。(取大气压强为50 1.01310p pa =?) 3、一容器内储有氧气,其压强为50 1.0110p pa =?,温度为27.0℃,则气体分子的数密度 为 ;氧气的密度为 ;分子的平均平动动能为 ; 分子间的平均距离为 。(设分子均匀等距排列) 4、星际空间温度可达2.7k ,则氢分子的平均速率为 ,方均根速率为 , 最概然速率为 。 5、在压强为5 1.0110pa ?下,氮气分子的平均自由程为66.010cm -?,当温度不变时,压强为 ,则其平均自由程为1.0mm 。 6、若氖气分子的有效直径为82.5910cm -?,则在温度为600k ,压强为2 1.3310pa ?时,氖分子1s 内的平均碰撞次数为 。 7、如图12-1所示两条曲线(1)和(2),分别定性的表示一定量的 某种理想气体不同温度下的速率分布曲线,对应温度高的曲线 是 .若图中两条曲线定性的表示相同温 度下的氢气和氧气的速率分布曲线,则表示氧气速率分布曲线的 是 . 图12-1

8、试说明下列各量的物理物理意义: (1) 12kT , (2)32 kT , (3)2i kT , (4)2 i RT , (5)32RT , (6)2M i RT Mmol 。 参考答案: 1、54.4310pa ? 2、536.1110m -? 3、2533 2192.4410 1.30 6.2110 3.4510m kg m J m ----???? 4、2121 121.6910 1.8310 1.5010m s m s m s ---?????? 5、6.06pa 6、613.8110s -? 7、(2) ,(2) 8、略 二、选择题: 教材习题12-1,12-2,12-3,12-4. (见课本p207~208) 参考答案:12-1~12-4 C, C, B, B. 第十三章热力学基础 一、选择题 1、有两个相同的容器,容积不变,一个盛有氦气,另一个盛有氢气(均可看成刚性分 子)它们的压强和温度都相等,现将 5 J 的热量传给氢气,使氢气温度升高,如果使氦气也 升高同样的温度,则应向氦气传递的热量是 ( ) (A ) 6 J (B ) 5 J (C ) 3 J (D ) 2 J 2、一定量理想气体,经历某过程后,它的温度升高了,则根据热力学定理可以断定: (1)该理想气体系统在此过程中作了功; (2)在此过程中外界对该理想气体系统作了正功;

高考物理动量定理试题经典含解析

高考物理动量定理试题经典含解析 一、高考物理精讲专题动量定理 1.2022年将在我国举办第二十四届冬奥会,跳台滑雪是其中最具观赏性的项目之一.某滑道示意图如下,长直助滑道AB 与弯曲滑道BC 平滑衔接,滑道BC 高h =10 m ,C 是半径R =20 m 圆弧的最低点,质量m =60 kg 的运动员从A 处由静止开始匀加速下滑,加速度a =4.5 m/s 2,到达B 点时速度v B =30 m/s .取重力加速度g =10 m/s 2. (1)求长直助滑道AB 的长度L ; (2)求运动员在AB 段所受合外力的冲量的I 大小; (3)若不计BC 段的阻力,画出运动员经过C 点时的受力图,并求其所受支持力F N 的大小. 【答案】(1)100m (2)1800N s ?(3)3 900 N 【解析】 (1)已知AB 段的初末速度,则利用运动学公式可以求解斜面的长度,即 22 02v v aL -= 可解得:22 1002v v L m a -== (2)根据动量定理可知合外力的冲量等于动量的该变量所以 01800B I mv N s =-=? (3)小球在最低点的受力如图所示 由牛顿第二定律可得:2C v N mg m R -= 从B 运动到C 由动能定理可知: 221122 C B mgh mv mv = -

解得;3900N N = 故本题答案是:(1)100L m = (2)1800I N s =? (3)3900N N = 点睛:本题考查了动能定理和圆周运动,会利用动能定理求解最低点的速度,并利用牛顿第二定律求解最低点受到的支持力大小. 2.半径均为52m R =的四分之一圆弧轨道1和2如图所示固定,两圆弧轨道的最低端切线水平,两圆心在同一竖直线上且相距R ,让质量为1kg 的小球从圆弧轨道1的圆弧面上某处由静止释放,小球在圆弧轨道1上滚动过程中,合力对小球的冲量大小为5N s ?,重力加速度g 取210m /s ,求: (1)小球运动到圆弧轨道1最低端时,对轨道的压力大小; (2)小球落到圆弧轨道2上时的动能大小。 【答案】(1)2 5(22 +(2)62.5J 【解析】 【详解】 (1)设小球在圆弧轨道1最低点时速度大小为0v ,根据动量定理有 0I mv = 解得05m /s v = 在轨道最低端,根据牛顿第二定律, 20 v F mg m R -= 解得252N 2F ??=+ ? ?? ? 根据牛顿第三定律知,小球对轨道的压力大小为252N F ' ?=+ ?? (2)设小球从轨道1抛出到达轨道2曲面经历的时间为t , 水平位移: 0x v t = 竖直位移: 2 12 y gt =

(完整版)勾股定理经典例题(教师版)

勾股定理全章知识点和典型例习题 一、基础知识点: 1?勾股定理 内容:____________________________________________________________ 表示方法:如果直角三角形的两直角边分别为 a , b,斜边为c,那么__________________ 2 ?勾股定理的证明 勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是 ①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下: 3 ?勾股定理的应用①已知直角三角形的任意两边长,求第三边在ABC中,C 90 , 则 __________________________________________ ②知道直角三角形一边,可得另外两边之间的数量关系③可运用勾股定 理解决一些实际问题 4. 勾股定理的逆定理 如果三角形三边长a , b , c满足a2 b2c,那么这个三角形是直角三角形,其中c为斜边 ①勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过数转化为形”来确定三角形的可能 形状,在运用这一定理时,可用两小边的平方和a2 b2与较长边的平方c2作比较,若它们相等时,以 a , b , c为三边 的三角形是直角三角形;若 _________ ,时,以a , b , c为三边的三角形是钝角三角形;若__________________ ,时,以a , b , c为三边的三角形是锐角三角形; ②定理中a , b , c及a2 b2 c2只是一种表现形式,不可认为是唯一的,如若三角形三边长 a , b , c满足a2 c2 b2, 那么以a , b , c为三边的三角形是直角三角形,但是b为斜边 ③勾股定理的逆定理在用问题描述时,不能说成:当斜边的平方等于两条直角边的平方和时,这个三角形是直角三角形 5. 勾股数 ①能够构成直角三角形的三边长的三个正整数称为勾股数,即a2 b2 c2中,a , b , c为正整数时,称a , b , c为 一组勾股数 ②记住常见的勾股数可以提高解题速度,如3,4,5 ; 6,8,10 ; 5,12,13; 7,24,25等 ③用含字母的代数式表示n组勾股数: 2 2 n 1,2n,n 1 (n 2, n 为正整数); 2n 1,2n2 2n,2n2 2n 1 (n为正整数)m2 n2,2mn,m2 n2(m n, m , n为正整数)7 .勾股定理的应用

高考物理动量定理试题经典

高考物理动量定理试题经典 一、高考物理精讲专题动量定理 1.观赏“烟火”表演是某地每年“春节”庆祝活动的压轴大餐。某型“礼花”底座仅0.2s 的发射时间,就能将质量为m =5kg 的礼花弹竖直抛上180m 的高空。(忽略发射底座高度,不计空气阻力,g 取10m/s 2) (1)“礼花”发射时燃烧的火药对礼花弹的平均作用力是多少?(已知该平均作用力远大于礼花弹自身重力) (2)某次试射,当礼花弹到达最高点时爆炸成沿水平方向运动的两块(爆炸时炸药质量忽略不计),测得前后两块质量之比为1:4,且炸裂时有大小为E =9000J 的化学能全部转化为了动能,则两块落地点间的距离是多少? 【答案】(1)1550N ;(2)900m 【解析】 【分析】 【详解】 (1)设发射时燃烧的火药对礼花弹的平均作用力为F ,设礼花弹上升时间为t ,则: 212 h gt = 解得 6s t = 对礼花弹从发射到抛到最高点,由动量定理 00()0Ft mg t t -+= 其中 00.2s t = 解得 1550N F = (2)设在最高点爆炸后两块质量分别为m 1、m 2,对应的水平速度大小分别为v 1、v 2,则: 在最高点爆炸,由动量守恒定律得 1122m v m v = 由能量守恒定律得 2211221122E m v m v = + 其中 121 4m m = 12m m m =+ 联立解得 1120m/s v =

230m/s v = 之后两物块做平抛运动,则 竖直方向有 212 h gt = 水平方向有 12s v t v t =+ 由以上各式联立解得 s=900m 2.如图所示,光滑水平面上有一轻质弹簧,弹簧左端固定在墙壁上,滑块A 以v 0=12 m/s 的水平速度撞上静止的滑块B 并粘在一起向左运动,与弹簧作用后原速率弹回,已知A 、B 的质量分别为m 1=0.5 kg 、m 2=1.5 kg 。求: ①A 与B 撞击结束时的速度大小v ; ②在整个过程中,弹簧对A 、B 系统的冲量大小I 。 【答案】①3m/s ; ②12N ?s 【解析】 【详解】 ①A 、B 碰撞过程系统动量守恒,以向左为正方向 由动量守恒定律得 m 1v 0=(m 1+m 2)v 代入数据解得 v =3m/s ②以向左为正方向,A 、B 与弹簧作用过程 由动量定理得 I =(m 1+m 2)(-v )-(m 1+m 2)v 代入数据解得 I =-12N ?s 负号表示冲量方向向右。 3.汽车碰撞试验是综合评价汽车安全性能的有效方法之一.设汽车在碰撞过程中受到的平均撞击力达到某个临界值F 0时,安全气囊爆开.某次试验中,质量m 1=1 600 kg 的试验车以速度v 1 = 36 km/h 正面撞击固定试验台,经时间t 1 = 0.10 s 碰撞结束,车速减为零,此次碰撞安全气囊恰好爆开.忽略撞击过程中地面阻力的影响. (1)求此过程中试验车受到试验台的冲量I 0的大小及F 0的大小; (2)若试验车以速度v 1撞击正前方另一质量m 2 =1 600 kg 、速度v 2 =18 km/h 同向行驶的汽车,经时间t 2 =0.16 s 两车以相同的速度一起滑行.试通过计算分析这种情况下试验车

第七章 气体分子动理论

第七章气体动理论 研究对象:由大量分子(原子)组成的系统。分子视为刚性小球,分子间作弹性碰撞。 研究方法:由于分子的数量极其庞大,彼此之间的相互作用又非常频繁,而且还具有偶然性,所以只能用统计的方法进行处理。研究微观量(m,v,p,f)集体表现出来的宏观特征。 §7-1 物质的微观模型统计规律性 1. 分子的数密度和线度:单位体积内的分子数叫分子数密度。气体(n氮=2.47*1019/cm3)、液体(n水=3.3*1022/cm3)、固体(n =7.3*1022/cm3)。不同种类的分子大小不等,小分子约为10-铜 10m的数量级。实验表明:标准状态下,气体分子间距为分子直 径的10倍。 2.分子力:当rr0时,分子力主要表现为吸引力,并 且随r的增加而逐渐减小(当r约为10-9m)时,可以忽略)。 3.分子热运动的无序性及统计规律性 (1)系统由大量分子(原子)组成的。由于分子的数量极其庞大,彼此之间的相互作用又非常频繁(标准状态下, 气体分子平均每秒钟要经历109次碰撞),在总体上表现 为热运动中所具有的无序性。 (2)物质内的分子在分子力的作用下欲使分子聚集在一起,形成有序的排列;而分子的热运动则要使分子尽量分 开;这样一来,分子的聚合将决定于环境的温度和压 强,从而导至物质形成气、液、固、等离子态等不同的 集合体。 (3)个别分子的运动具有偶然性,大量分子的整体表现具有规律性。称其为统计规律性。 §7-2 理想气体的压强公式 1.理想气体的微观模型 (1)气体分子看成是质点 (2)除碰撞外,分子间作用力可以忽略不计 (3)分子间以及分子与器壁间的碰撞可以看成是完全弹性碰撞 2.理想气体的压强公式 (1)定义:压强为单位面积上,大量气体分子无规则运动撞

最新勾股定理逆定理讲义(经典例题+详解+习题)

XX教育一对一个性化教案 授课日期:2014 年月日学生姓名许XX 教师姓名授课时段2h 年级8 学科数学课型VIP 教学内容勾股定理及逆定理 教学重、难点重点:运用勾股定理判定一个三角形是否为直角三角形。难点:运用用勾股定理和勾股定理逆定理解决实际问题。 教学步骤及突出教学方法一、知识归纳 1、勾股定理的逆定理 如果三角形三边长a,b,c满足222 a b c +=,那么这个三角形是直角三角形,其中c为斜边。 ①勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和22 a b +与较长边的平方2c作比较,若它们相等时,以a,b,c为三边的三角形是直角三角形;若222 a b c +<,时,以a,b,c为三边的三角形是钝角三角形;若222 a b c +>,时,以a,b,c为三边的三角形是锐角三角形; ②定理中a,b,c及222 a b c +=只是一种表现形式,不可认为是唯一的,如若三角形三边长a,b,c满足222 a c b +=,那么以a,b,c为三边的三角形是直角三角形,但是b为斜边。 ③勾股定理的逆定理在用问题描述时,不能说成:当斜边的平方等于两条直角边的平方和时,这个三角形是直角三角形。 2、勾股数 ①能够构成直角三角形的三边长的三个正整数称为勾股数,即222 a b c +=中,a,b,c为正整数时,称a,b,c为一组勾股数 ②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25等 ③用含字母的代数式表示n组勾股数: 22 1,2,1 n n n -+(2, n≥n为正整数); 22 21,22,221 n n n n n ++++(n为正整数) 2222 ,2, m n mn m n -+(, m n >m,n为正整数)

动量定理典型例题

动量定理典型例题 典型例题1——由动量定理判断物体的冲量变化 甲、乙两个质量相同的物体,以相同的初速度分别在粗糙程度不同的水平面上运动,乙物体先停下来,甲物体又经较长时间停下来,下面叙述中正确的是( ). A 、甲物体受到的冲量大于乙物体受到的冲量 B 、两个物体受到的冲量大小相等 C 、乙物体受到的冲量大于甲物体受到的冲量 D 、无法判断 分析与解:本题中甲、乙两物体受到的冲量是指甲、乙两物体所受合外力的冲量,而在这个过程中甲、乙两物体所受合外力均为摩察力,那么由动量定理可知,物体所受合外力的冲量等于动量的增量,由题中可知,甲、乙两物体初、末状态的动量都相同,所以所受的冲量均相同. 答案:B . 典型例题2——由动量大小判断外力大小 质量为0.1kg 的小球,以10m /s 的速度水平撞击在竖直放置的厚钢板上,而后以7m /s 的速度被反向弹回,设撞击的时间为0.01s ,并取撞击前钢球速度的方向为正方向,则钢球受到的平均作用力为( ). A .30N B .-30N C .170N D .-170N 分析与解:在撞击过程中小球的动量发生了变化,而这个变化等于小球所受合外力的冲量,这个合外力的大小就等于钢板对钢球作用力的大小.(此时可忽略小球的重力) N 170) 10(1.0)7(1.001.01 2-=---?=?-=??=F F mv mv t F p I 答案:D . 典型例题3——由速度变化判断冲量 质量为m 的钢球自高处落下,以速率1v 碰地,竖直向上弹回,碰撞时间极短离地的速率为2v ,在碰撞过程中,地面对钢球的冲量的方向和大小为( ). A .向下,)(21v v m - B .向下,)(21v v m + C .向上,)(21v v m - D .向上,)(21v v m + 分析与解:在小球碰撞到弹起的过程中,小球速度变化的方向是向上的,所以小球受到地面冲量的方向一定是向上的,在忽略小球重力的情况下,地面对小球冲量的大小等于小球动量的变化.

初二数学经典讲义 勾股定理(基础)知识讲解

勾股定理(基础) 【学习目标】 1. 掌握勾股定理的内容及证明方法,能够熟练地运用勾股定理由已知直角三角形中的两条 边长求出第三条边长. 2. 掌握勾股定理,能够运用勾股定理解决简单的实际问题,会运用方程思想解决问题. 3. 熟练应用勾股定理解决直角三角形中的问题,进一步运用方程思想解决问题. 【要点梳理】 【高清课堂 勾股定理 知识要点】 要点一、勾股定理 直角三角形两直角边的平方和等于斜边的平方.如果直角三角形的两直角边长分别为 a b ,,斜边长为c ,那么222a b c +=. 要点诠释:(1)勾股定理揭示了一个直角三角形三边之间的数量关系. (2)利用勾股定理,当设定一条直角边长为未知数后,根据题目已知的线 段长可以建立方程求解,这样就将数与形有机地结合起来,达到了解 决问题的目的. (3)理解勾股定理的一些变式: 222a c b =-,222b c a =-, ()2 22c a b ab =+-. 要点二、勾股定理的证明 方法一:将四个全等的直角三角形拼成如图(1)所示的正方形. 图(1)中,所以. 方法二:将四个全等的直角三角形拼成如图(2)所示的正方形. 图(2)中,所以. 方法三:如图(3)所示,将两个直角三角形拼成直角梯形.

,所以. 要点三、勾股定理的作用 1. 已知直角三角形的任意两条边长,求第三边; 2. 用于解决带有平方关系的证明问题; 3. 利用勾股定理,作出长为 的线段. 【典型例题】 类型一、勾股定理的直接应用 1、在△ABC 中,∠C =90°,∠A 、∠B 、∠C 的对边分别为a 、b 、c . (1)若a =5,b =12,求c ; (2)若c =26,b =24,求a . 【思路点拨】利用勾股定理222a b c +=来求未知边长. 【答案与解析】 解:(1)因为△ABC 中,∠C =90°,222a b c +=,a =5,b =12, 所以2222251225144169c a b =+=+=+=.所以c =13. (2)因为△ABC 中,∠C =90°,222a b c +=,c =26,b =24, 所以222222624676576100a c b =-=-=-=.所以a =10. 【总结升华】已知直角三角形的两边长,求第三边长,关键是先弄清楚所求边是直角边还是斜边,再决定用勾股原式还是变式. 举一反三: 【变式】在△ABC 中,∠C =90°,∠A 、∠B 、∠C 的对边分别为a 、b 、c . (1)已知b =2,c =3,求a ; (2)已知:3:5a c =,b =32,求a 、c . 【答案】 解:(1)∵ ∠C =90°,b =2,c =3, ∴ 2222325a c b =-=-; (2)设3a k =,5c k =. ∵ ∠C =90°,b =32, ∴ 222a b c +=. 即222(3)32(5)k k +=. 解得k =8. ∴ 33824a k ==?=,55840c k ==?=. 类型二、勾股定理的证明

相关主题
文本预览
相关文档 最新文档