当前位置:文档之家› 高考之【圆锥曲线篇】-秒杀技巧切线方程

高考之【圆锥曲线篇】-秒杀技巧切线方程

高考之【圆锥曲线篇】-秒杀技巧切线方程
高考之【圆锥曲线篇】-秒杀技巧切线方程

大招九圆锥曲线的切线方程及其应用

现行人教版统编教材高中数学第二册上、第75页例题2,给出了经过圆上一点的切线方程为;当在圆外时,过点引切

线有且只有两条,过两切点的弦所在直线方程为。那么,在圆锥曲线中,又将如何?我们不妨进行几个联想。

联想一:(1)过椭圆上一点切线方程为;(2)当在椭圆的外部时,过引切线有两条,过两切点的弦所在直线方程为:

证明:(1)的两边对求导,得,得,由点斜式得切线方程为,即。

(2)设过椭圆外一点引两条切线,切点分别为、。由(1)可知过、两点的切线方程分别为:、。又因是两条切线的交点,所以有、

。观察以上两个等式,发现、满足直线,所以过两切点、两点的直线方程为。

评注:因在椭圆上的位置(在椭圆上或椭圆外)的不同,同一方程表示直线的几何意义亦不同。

联想二:(1)过双曲线上一点切线方程为;(2)当在双曲线的外部时,过引切线有两条,

过两切点的弦所在直线方程为:。(证明同上)

联想三:(1)过圆锥曲线(A,C不全为零)上的点的切线方程为k;(2)当

在圆锥曲线(A,C不全为零)的外部时,过

引切线有两条,过两切点的弦所在直线方程为:

证明:(1)两边对求导,得

得,由点斜式得切线方程为

化简得………………….①

因为…………………………………………………②

由①-②×2可求得切线方程为:

(2)同联想一(2)可证。结论亦成立。

根据前面的特点和圆上点的切线方程,得到规律:过曲线上的点的切线方程为:把原方程中的用代换,用代换。若原方程中含有或的一次项,把用代换,用代换,得到的方程即为过该点的切线方程。当点在曲线外部时,过引切线有两条,过两切点的弦所在直线方程为:

通过以上联想可得出以下几个推论:

推论1:(1)过抛物线上一点切线方程为;(2)过抛物线的外部一点引两条切线,过两切点的弦所在直线方程为:

推论2:(1)过抛物线上一点切线方程为

;(2)过抛物线的外部一点引两条切线,

过两切点的弦所在直线方程为:。

推论3:(1)过抛物线上一点切线方程为;(2)过抛物线的外部一点引两条切线,过两切点的弦所在直线方程为:。

推论4:(1)过抛物线上一点切线方程为;(2)过抛物线的外部一点引两条切线,

过两切点的弦所在直线方程为:。

在以上的研究中,我们成功的运用了联想,由过已知圆上和圆外的点的切线方程联想到过圆锥曲线上和圆锥曲线外的切线方程,触类旁通,实现了知识的内迁,使知识更趋于系统化,取得了事半功倍的效果。

1.(13分)(2013?山东)椭圆C:的左右焦点分别是F1,

F2,离心率为,过F1且垂直于x轴的直线被椭圆C截得的线段长为1.

(1)求椭圆C的方程;

(2)点P是椭圆C上除长轴端点外的任一点,连接PF1,PF2,设∠F1PF2的角平分线PM

交C的长轴于点M(m,0),求m的取值范围;

(3)在(2)的条件下,过点P作斜率为k的直线l,使得l与椭圆C有且只有一个公共

点,设直线PF1,PF2的斜率分别为k1,k2,若k≠0,试证明为定值,并求出这个定值.

解:(1)把﹣c代入椭圆方程得,解得,∵过F1且垂直于x轴的直线被

椭圆C截得的线段长为1,∴.又,联立得解得

,∴椭圆C的方程为.

(2)如图所示,设|PF1|=t,|PF2|=n,由角平分线的性质可得,

又t+n=2a=4,消去t得到,化为∵a﹣c<n<a+c,即

,也即,解得.

∴m的取值范围;.

第三问若用传统方法,联立利用=0计算非常复杂,若用切线方程则非常方便

(3)证明:设P(x0,y0),

不妨设y0>0,由椭圆方程,

取,则=,∴k==.∵,,

∴=,

∴==﹣8为定值.

2.(12分)(2013?重庆)如图,椭圆的中心为原点O,长轴在x轴上,离心率,过左焦点F1作x轴的垂线交椭圆于A、A′两点,|AA′|=4.

(Ⅰ)求该椭圆的标准方程;

(Ⅱ)取垂直于x轴的直线与椭圆相交于不同的两点P、P′,过P、P′作圆心为Q的圆,使椭圆上的其余点均在圆Q外.若PQ⊥P'Q,求圆Q的标准方程.

解:(Ⅰ)由题意知点A(﹣c,2)在椭圆上,则,即

∵离心率,∴②

联立①②得:,所以b2=8.

把b2=8代入②得,a2=16.

∴椭圆的标准方程为;

(Ⅱ)设Q(t,0),圆Q的半径为r,则圆Q的方程为(x﹣t)2+y2=r2,

不妨取P为第一象限的点,因为PQ⊥P'Q,则P()(t>0).

联立,得x2﹣4tx+2t2+16﹣2r2=0.

由△=(﹣4t)2﹣4(2t2+16﹣2r2)=0,得t2+r2=8

又P()在椭圆上,所以.

整理得,.

代入t2+r2=8,得.

解得:.所以,.

此时.

满足椭圆上的其余点均在圆Q外.

由对称性可知,当t<0时,t=﹣,.

故所求圆Q的标准方程为.

本题考查椭圆的标准方程,考查椭圆的几何性质,考查方程组的解法,考查学生的第三问若用公切线做非常方便(2009安徽理科)点在椭圆

上,直线与直线

垂直,O为坐标原点,直线OP的倾斜角为,直线的倾斜角为. (I)证明: 点是椭圆与直线的唯一交点;

(II)证明:构成等比数列。

练习

1(2012大纲理科)已知抛物线C:y=(x+1)2与圆

(r>0)有一个公共点A,且在A处两曲线的切线为同一直线l.

(Ⅰ)求r;

(Ⅱ)设m,n是异于l且与C及M都相切的两条直线,m,n的交点为D,求D到l的距离.

2( 2013广东卷)已知抛物线的顶点为原点,其焦点到直线:的距离为.设为直线上的点,过点作抛物线的两条切线,其中

为切点.

(Ⅰ) 求抛物线的方程;

(Ⅱ) 当点为直线上的定点时,求直线的方程;

(Ⅲ) 当点在直线上移动时,求的最小值.

3(2012福建).如图,椭圆E:(a>b>0)的左焦点为F1,右焦点为F2,离心率.过F1的直线交椭圆于A、B两点,且△ABF2的周长为8.

(1)求椭圆E的方程;

(2)设动直线l:y=kx+m与椭圆E有且只有一个公共点P,且与直线x=4相交于点Q.试探究:在坐标平面内是否存在定点M,使得以PQ为直径的圆恒过点M?若存在,求出点M的坐标;若不存在,说明理由.

圆锥曲线的切线问题

圆锥曲线的切线问题 圆锥曲线的切线问题有两种处理思路:思路 1,导数法,将圆锥曲线方程化为函数 y =f (x) ,利用导数法求出函数y =f (x) 在点(x 0 , y ) 处的切线方程,特别是焦点在y 轴 上常用此法求切线;思路 2,根据题中条件设出切线方程,将切线方程代入圆锥切线方程,化为关于x(或y)的一元二次方程,利用切线与圆锥曲线相切的充要条件为判别式?= 0 ,即可解出切线方程,注意关于x (或y)的一元二次方程的二次项系数不为 0 这一条件,圆锥曲线的切线问题要根据曲线不同,选择不同的方法. 类型一 导数法求抛物线切线 例1 【2017 课表1,文 20】设A,B为曲线C:y= x 4 (1)求直线A B的斜率; 上两点,A与B的横坐标之和为 4. (2)设M为曲线C上一点,C在M处的切线与直线A B平行,且A M⊥B M,求直线A B的方程. 类型二椭圆的切线问题 2

5 + = > > 例 2(2014 广东 20)(14 分)已知椭圆C : x a 2 y 2 + = 1(a > b > 0) 的一个焦点为( 5, 0) , b 2 离心率为 . 3 (1) 求椭圆 C 的标准方程; (2) 若动点 P (x 0 , y 0 ) 为椭圆外一点,且点 P 到椭圆 C 的两条切线相互垂直,求点 P 的轨 迹方程. 类型三 直线与椭圆的一个交点 例 3.【2013 年高考安徽卷】已知椭圆 C : x a 2 y 2 b 2 1(a b 0) 的焦距为 4 , 且过点 (Ⅰ)求椭圆 C 的方程; (Ⅱ)设Q (x 0 , y 0 )(x 0 y 0 ≠ 0) 为椭圆C 上一点,过点Q 作 x 轴的垂线,垂足为 E .取点 A (0, 2 2) ,连接 AE ,过点 A 作 AE 的垂线交 x 轴于点 D .点G 是点 D 关于 y 轴的对称点, 作直 线QG ,问这样作出的直线QG 是否与椭圆 C 一定有唯一的公共点?并说明理由. 【解析】(1)因为椭圆过点 P ( 2,3) ∴ 2 + 3 = 1 a 2 b 2 且a 2 = b 2 + c 2 P ( 2,3) . 2 2

§5.3 二次曲线的切线

§5.3 二次曲线的切线 一、概念 1. 定义1:如果直线与二次曲线交于相互重合的两个点,那么这条直线就叫做二次曲线的切线,这个重合的交点叫做切点;如果直线全部在二次曲线上,我们也称它为二次曲线的切线,直线上的每一个点都可以看作切点. 2.定义2:二次曲线F(x, y)=0上满足条件F1(x0, y0)=F2(x0, y0)=0的点(x0, y0)叫做二次曲线的奇异点,简称奇点;二次曲线的非奇异点叫做二次曲线的正常点. 奇点是中心,但中心不一定是奇点. 注:(1) 二次曲线有奇点的充要条件是I3= 0, (2) 二次曲线的奇点一定是二次曲线的中心,但反之不然. 二、切线求法 1.已知切点求切线: 设点(x0, y0)是二次曲线F(x, y)=0上的点, 则通过点(x0, y0)的直线方程总可以写成 那么此直线成为二次曲线切线的条件,当Φ(X, Y)≠0时 ?=[F1(x0, y0)X +F2(x0, y0)Y]2-Φ(X, Y)?F(x0, y0)=0. 因为点 (x0, y0) 在二次曲线上,所以F(x0, y0)=0;因而上式可化为 F1(x0, y0)X +F2(x0, y0)Y=0. 当Φ(X, Y)= 0时除了F(x0, y0)=0外,唯一的条件仍然是 F1(x0, y0)X +F2(x0, y0)Y=0. (1)如果点(x0, y0)是二次曲线F (x, y)=0的正常点:那么由以上条件得 X:Y = F2(x0, y0):(-F1(x0, y0)), 因此切线方程为 或写成, 或 (x-x0)F1(x0, y0)+(y-y0)F2(x0, y0)=0, 其中 (x0, y0) 是它的切点; (2)如果点 (x0, y0) 是二次曲线F (x, y)=0的奇异点,即F1(x0, y0)=F2(x0, y0)=0,则切线方向X:Y不能唯一地被确定,从而通过点 (x0, y0)的切线不确定,这时通过点 (x0, y0) 的任何直线都和二次曲线F (x, y)=0相交于相互重合的两点,我们把这样的直线也看成是二次曲线的切线. 这样我们就得到 定理1:如果点(x0, y0) 是二次曲线F (x, y)= 0的正常点,则通过点(x0, y0)的切线方程是 (x-x0)F1(x0, y0)+(y-y0)F2(x0, y0)=0,(x0, y0)是它的切点.

过一点求曲线的切线方程的三种类型

过一点求曲线的切线方程的三种类型 舒云水 过一点求曲线的切线方程有三种不同的类型,下面举例说明﹒ 1.已知曲线)(x f y =上一点))(,(00x f x P ,求曲线在该点处的切线方程﹒ 这是求曲线的切线方程的基本类型,课本上的例、习题都是这种类型﹒其求法为:先求出函数)(x f 的导数)(x f ',再将0x 代入)(x f '求出)(0x f ',即得切线的斜率,后写出切线方程)(0x f y -=)(0x f ')(0x x -,并化简﹒ 例1 求曲线33)(23+-=x x x f 在点)1,1(P 处的切线方程﹒ 解:由题设知点P 在曲线上, ∵x x y 632-=',∴曲线在点)1,1(P 处的切线斜率为3)1(-='f ,所求的切线方程为)1(31--=-x y ,即43+-=x y ﹒ 2. 已知曲线)(x f y =上一点))(,(11x f x A ,求过点A 的曲线的切线方程﹒ 这种类型容易出错,一般学生误认为点A 一定为切点,事实上可能存在过点A 而点A 不是切点的切线,如下面例2,这不同于以前学过的圆、椭圆等二次曲线的情况,要引起注意,这类题型的求法为:设切点为))(,(00x f x P ,先求出函数)(x f 的导数)(x f ',再将0x 代入)(x f '求出)(0x f ',即得切线的斜率(用0x 表示),写出切线方程 )(0x f y -=)(0x f ')(0x x -,再将点A 坐标),(11y x 代入切线方程得)(01x f y -=)(0x f ')(01x x -,求出0x ,最后将0x 代入方程

)(0x f y -=)(0x f ')(0x x -求出切线方程﹒ 例2 求过曲线x x y 23-=上的点)1,1(-的切线方程﹒ 解:设切点为点)2,(0300x x x -,232-='x y ,切线斜率为2320-x , 切线方程为))(23()2(020030x x x x x y --=--﹒ 又知切线过点)1,1(-,把它代入上述方程,得 )1)(23()2(100030x x x x --=---﹒ 解得10=x ,或2 10-=x ﹒ 所求切线方程为)1)(23()21(--=--x y ,或)21)(243()181(+-=+--x y ,即02=--y x ,或0145=-+y x ﹒ 上面所求出的两条直线中,直线02=--y x 是以)1,1(-为切点的切线,而切线0145=-+y x 并不以)1,1(-为切点,实际上它是经过了点)1,1(-且以)87,21(-为切点的直线,如下图所示﹒这说明过曲线上一点的切线,该点未必是切点﹒ 3. 已知曲线)(x f y =外一点))(,(11x f x A ,求过点A 作的曲线的切线方程﹒ 这种类型的题目的解法同上面第二种类型﹒ 例3 过原点O 作曲线6324+-=x x y 的切线,求切线方程﹒(2009年全国卷Ⅰ文21题改编 )

高考★圆锥曲线★的基本公式推导(学长整合版)

圆锥曲线的几大大题特征公式:焦半径、准线、弦长、切线方程、弦中点公式、极线方程 令狐采学 /*另外,针对“计算不好”的同学,本人提供“硬解定理”供大家无脑使用。具体的请参考本目录下的【硬解定理的推导和使用】文章。*/ 圆锥 曲线 的切 线 方程 在 历年高考题中出现,但是在高中教材及资料都涉及较少。本文主要探索圆锥曲线的切线方程及其应用。从而为解这一类题提供统一、清晰、简捷的解法。 【基础知识1:切线方程、极线方程】 【1-0】公式小结:x2换成xx0,y2换成yy0,x 换成(x+x0)/2,y 换成(y+y0)/2. 【1-1】 椭圆的切线方程 : ①椭圆 12222=+b y a x 上一点),(00y x P 处的切线方程是 12020=+b yy a xx 。 ②过椭圆 122 22=+b y a x 外一点),(00y x P 所引两条切线的切点弦方程是 120 20=+b yy a xx 。 ③椭圆 12 2 22=+b y a x 与直线0=++C Bx Ax 相切的条件是 022222=-+C b B a A (也就是下篇文档所讲的硬解定理公式△=0的充要条件) 【1-2】双曲线的切线方程: ①双曲线12222=-b y a x 上一点),(00y x P 处的切线方程是 12020=-b yy a xx 。 ②过椭圆 122 22=-b y a x 外一点),(00y x P 所引两条切线的切点弦方程是

120 20=-b yy a xx 。 ③椭圆 12 2 22=-b y a x 与直线0=++C Bx Ax 相切的条件是 022222=--C b B a A 【1-3】抛物线的切线方程: 物线 px y 22= 上一点),(00y x P 处的切线方程是 )(200x x p yy += ②过抛物线px y 22=外一点 处所引两条切线是)(200x x p yy += ③抛物线 px y 22=与直线0=++C Bx Ax 相切的条件是AC pB 22= 【1-4】 基础知识的证明: 【公式一:曲线C 上切点公式证明】 1、第1种证明思路:过曲线上一点的切线方程 设曲线C 上某一点处 ),(00y x P 的 切 线 方 程 为 )(00x x k y y -=-, 联立方程,令0=?,得到k 的表达式,再代入原 始式,最后得切线方程式1)()(22 02202020=+=+b y a x b yy a xx (注:k 的表达式可以在草稿中巧用点差法求,具体见下) 2、第2种证明思路:点差法(求斜率,其余跟第一种方法一样) 证明:设某直线与曲线C 交于M 、N 两点坐标分别为),(11y x 、 ),(22y x ,中点 P ),(00y x 则有???????=+=+) 2(.1)1(,122 22 2222 1221 b y a x b y a x ?)2()1(-,得.022 22122221=-+-b y y a x x 22 12121212a b x x y y x x y y -=++?--∴ 又.22,0 0021211212x y x y x x y y x x y y k MN ==++--= 2 200a b x y k MN -=?∴ (弦中点公式的椭圆基本表达式。双曲线则是

一般n次曲线切线方程的推导

一般n 次曲线切线方程的推导 光信1001 黄飞洪 关键词:一般n 次曲线,某点的切线方程, 提要:在求曲线上某点的切线时,通常会使用先求导得到斜率后再求切线,此法在二次曲线中尚可使用,但如果是n 次曲线就不大现实了,因此如果能找到该类曲线切线的某些规律,在求高次曲线的切线方程时会节省很多时间 首先,我们先来分析几个比较特殊的例子: ○1圆A :x 2+y 2=r 2在(x 0,y 0)处的切线方程为x 0x+ y 0y= r 2 ○2椭圆B :A 2a)x +(+B b y 2 )(+=1在(x 0,y 0)处的切线方程为1))(())((00=+++++B b y b y A a x a x ○3双曲线C :A 2a)x +(-B b y 2 )(+在(x 0,y 0 )处的切线方程为1))(())((00=++-++B b y b y A a x a x ○4抛物线C :y 2 =2px 在(x 0,y 0)处的切线方程为y 0y=p(x+x 0) 以上都是几个比较典型的二次曲线在某点切线的方程,总结起来就是在原曲线方程框架的基础上将x 2(或y 2)型变为x 0x (或y 0y )型,x(或y)型转变为2 0x x +(或20y y +)型,但在一般的二次曲线中包含了xy 的项,那么,这种一般型曲线的切线是否仍存在某种规律呢? 设f(x,y)=Ax 2+Bxy+Cy 2+Dx+Ey+F=0,求在(x 0,y 0)处的切线方程 方程两边求导得2Ax+By+Bxy ’+2Cyy ’+D+Ey ’=0 y’= -E Cy Bx D By Ax ++++220 ∴在(x 0,y 0)处的切线方程为y-y 0= - E Cy Bx D By Ax ++++220(x-x 0)

圆锥曲线的切线方程总结

运用联想探究圆锥曲线的切线方程 现行人教版统编教材高中数学第二册上、第75页例题2,给出了经过圆2 22r y x =+上 一点),(00y x M 的切线方程为2 00r y y x x =+;当),(00y x M 在圆外时,过M 点引切线有且只有两条,过两切点的弦所在直线方程为2 00r y y x x =+。那么,在圆锥曲线中,又 将如何?我们不妨进行几个联想。 联想一:(1)过椭圆)0(122 22>>=+b a b y a x 上一点),(00y x M 切线方程为 1202 0=+b y y a x x ;(2)当),(00y x M 在椭圆122 22=+b y a x 的外部时,过M 引切线有两条,过两切点的弦所在直线方程为:12020=+b y y a x x 证明:(1)2222 1x y a b +=的两边对x 求导,得22220x yy a b ' +=,得020 2 x x b x y a y ='=-,由点斜式得切线方程为20 0020 ()b x y y x x a y -=--,即22000022221x x y y x y a b a b +=+= 。 (2)设过椭圆)0(122 22>>=+b a b y a x 外一点),(00y x M 引两条切线,切点分别 为),(11y x A 、),(22y x B 。由(1)可知过A 、B 两点的切线方程分别为:12121=+b y y a x x 、 12222=+b y y a x x 。又因),(0 0y x M 是两条切线的交点,所以有1201201=+b y y a x x 、120 2202=+b y y a x x 。观察以上两个等式,发现),(11y x A 、),(22y x B 满足直线12020=+b y y a x x ,所以过两切点A 、B 两点的直线方程为12020=+b y y a x x 。 评注:因),(00y x M 在椭圆)0(12222>>=+b a b y a x 上的位置(在椭圆上或椭圆 外)的不同,同一方程12020=+b y y a x x 表示直线的几何意义亦不同。 联想二:(1)过双曲线)0,0(122 22>>=-b a b y a x 上一点),(00y x M 切线方程为 1202 0=-b y y a x x ;(2)当),(00y x M 在双曲线122 22=-b y a x 的外部时,过M 引切线有两条,过两切点的弦所在直线方程为:12020=-b y y a x x 。(证明同上) 联想三:(1)过圆锥曲线2 2 0Ax Cy Dx Ey F ++++=(A ,C 不全为零)上的点 ),(00y x M 的切线方程为00 00022 x x y y Ax x Cy y D E F ++++++=;(2)当

圆锥曲线的切线方程及切点弦方程的应用

圆锥曲线的切线方程及切点弦方程的应用 张生 引例 给定圆2 22)()(r b y a x =-+-和点),(00y x P ,证明: (1)若点P 在圆上,则过点P 的圆的切线方程为2 00))(())((r b y b y a x a x =--+--; (2)若点P 在圆外,设过点P 所作圆的两条切线的切点分别为B A ,,则直线AB 的方程为2 00))(())((r b y b y a x a x =--+--。 高考链接 3. (2011江西)若椭圆22221x y a b +=的焦点在x 轴上,过点(1,12 )作圆22 +=1x y 的切线, 切点分别为A,B ,直线AB 恰好经过椭圆的右焦点和上顶点,则椭圆方程是 【答案】22 154 x y += (2013山东)过点(3,1)作圆 22 (1)1x y -+=的两条切线,切点分别为A ,B ,则直线AB 的方程为 ( ) A .230x y +-= B .230x y --= C .430x y --= D .430x y +-= 【答案】A 过点)4,3(P 作圆1:2 2 =+y x O 的两条切线,切点分别为B A ,,点)0,0)(,(>>b a b a M 在直线AB 上,则b a 2 1+的最小值为 。6411+ 过椭圆14 92 2=+y x 上点P 作圆2:22=+y x O 的两条切线,切点分别为B A ,,过B A ,的直线l 与x 轴y 轴分别交于点Q P ,两点,则POQ ?的面积的最小值为 。 3 2 已知椭圆)1(12222>>=+b a b y a x ,圆2 22:b y x O =+,过椭圆上任一与顶点不重合的点P

高考之【圆锥曲线篇】-秒杀技巧切线方程

大招九圆锥曲线的切线方程及其应用 现行人教版统编教材高中数学第二册上、第75页例题2,给出了经过圆上一点的切线方程为;当在圆外时,过点引切 线有且只有两条,过两切点的弦所在直线方程为。那么,在圆锥曲线中,又将如何?我们不妨进行几个联想。 联想一:(1)过椭圆上一点切线方程为;(2)当在椭圆的外部时,过引切线有两条,过两切点的弦所在直线方程为: 证明:(1)的两边对求导,得,得,由点斜式得切线方程为,即。 (2)设过椭圆外一点引两条切线,切点分别为、。由(1)可知过、两点的切线方程分别为:、。又因是两条切线的交点,所以有、 。观察以上两个等式,发现、满足直线,所以过两切点、两点的直线方程为。 评注:因在椭圆上的位置(在椭圆上或椭圆外)的不同,同一方程表示直线的几何意义亦不同。 联想二:(1)过双曲线上一点切线方程为;(2)当在双曲线的外部时,过引切线有两条,

过两切点的弦所在直线方程为:。(证明同上) 联想三:(1)过圆锥曲线(A,C不全为零)上的点的切线方程为k;(2)当 在圆锥曲线(A,C不全为零)的外部时,过 引切线有两条,过两切点的弦所在直线方程为: 证明:(1)两边对求导,得 得,由点斜式得切线方程为 化简得………………….① 因为…………………………………………………② 由①-②×2可求得切线方程为: (2)同联想一(2)可证。结论亦成立。 根据前面的特点和圆上点的切线方程,得到规律:过曲线上的点的切线方程为:把原方程中的用代换,用代换。若原方程中含有或的一次项,把用代换,用代换,得到的方程即为过该点的切线方程。当点在曲线外部时,过引切线有两条,过两切点的弦所在直线方程为: 通过以上联想可得出以下几个推论: 推论1:(1)过抛物线上一点切线方程为;(2)过抛物线的外部一点引两条切线,过两切点的弦所在直线方程为: 推论2:(1)过抛物线上一点切线方程为

圆锥曲线的切线方程

圆锥曲线的切线 方程 点击此处添加副标题 作者:鲜海东微信:xhd1438488322

11),(1),()0(13))(())((),())(())((),(),()()(2),(),(1202022220020200022 222000020000002222000020000222=+=+=+=+=--+--=--+--=-+-=+=+=+b y y a x x M b y a x y x M b y y a x x y x M b a b y a x r b y b y a x a x M y x M r b y b y a x a x y x M y x M r b y a x r y y x x M y x M r y y x x y x M r y x 弦所在直线方程为:点的引切线有两条,过两切的外部时,过在椭圆当切线方程为:上一点>>:过椭圆结论所在直线方程: 点切线有两条:切点弦在圆外,过若切线方程:则过一点 为圆上,若的方程::若圆心不在原点,圆结论。 弦所在直线方程为,过两切点的 点引切线有且只有两条在圆外时,过当。 的切线方程为上一点:经过圆结论

。两点的直线方程为、所以过两切点,满足直线现观察以上两个等式,发、以有是两条切线的交点,所。又因、: 两点的切线方程分别为、可知过由为引两条切线,切点分别外一点>>()设过椭圆(即由点斜式得切线方程为,得求导,得的两边对)大学隐函数求导)(证明: 11),(),,(.11),(11)1().,(),,(),()0121),(,02211(20202020221120220220120100222221212211002222202000202 0020202222 22=+=+=+=+=+=+=+=+--==--==='='+=+b y y a x x B A b y y a x x y x B y x A b y y a x x b y y a x x y x M b y y a x x b y y a x x B A y x B y x A y x M b a b y a x b y y a x x x x y a x b y y y a x b x x y b y y a x x b y a x

圆锥曲线的切线方程和切点弦方程

课题:圆锥曲线的切线方程和切点弦方程 教学目标: (1).掌握圆锥曲线在某点处的切线方程及切点弦方程。 (2).会用切线方程及切点弦方程解决一些问题。 (3)通过复习渗透数形结合、类比的思想,逐步培养学生分析问题和解决问题的能力。 (4) 掌握曲线与方程的关系。 教学重点: 切线方程及切点弦方程的应用 教学难点: 如何恰当使用切线方程及切点弦方程 教学过程: 1. 引入: 通过09年安徽省高考题及近几年各省考察圆锥曲线的实例引出本节课。 2. 知识点回顾: 1. 2. 3. 4. 圆锥曲线切线的几个性质: 性质1 过椭圆的准线与其长轴所在直线的交点作椭圆的两条切线,则切点弦长等于 该椭圆的通径.同理:双曲线,抛物线也有类似的性质 性质2 过椭圆的焦点F 1的直线交椭圆于A ,B 两点,过A ,B 两点作椭圆的切线交 于点P ,则P 点的轨迹是焦点 的对应的准线,并且 同理:双曲线,抛物线也有类似的性质 3. 例题精讲: 练习1: 抛物线 与直线 围成的封闭的图形的面积为 ,若直线l 与抛物线相切,且平行于直线 ,则直线l 的方程为 例1: 设抛物线 的焦点为F ,动点P 在直线 上运动,过P 作抛物线C 的两条切线PA 、PB ,且与抛物线C 分别相切于A 、B 两点.求△APB 22200 (,)x y r M x y +=过圆 上一点 的切线方程:200xx yy r +=00221xx yy a b +=220022(,)1x y P x y a b +=设为椭圆上的点,则过该点的切线方程为:22 0022(,)1x y P x y a b -=设为双曲线上的点,则过该点的切线方程为: 00221xx yy a b -=00(,)2P x y px =2设为抛物线y 上的点,则过该点的切线方程为: 00() yy p x x =+1PF AB ⊥1F :20 l x y --=2:C y x =2(0)y ax a =>1x =43 260x y -+=

圆锥曲线知识点全归纳完整精华版图文稿

圆锥曲线知识点全归纳 完整精华版 集团文件发布号:(9816-UATWW-MWUB-WUNN-INNUL-DQQTY-

圆锥曲线知识点全归纳(精华版) 圆锥曲线包括椭圆,双曲线,抛物线。其统一定义:到定点的距离与到 定直线的距离的比e是常数的点的轨迹叫做圆锥曲线。当01时为双曲线。 一、圆锥曲线的方程和性质: 1)椭圆 文字语言定义:平面内一个动点到一个定点与一条定直线的距离之比是 一个小于1的正常数e。定点是椭圆的焦点,定直线是椭圆的准线,常数e是椭圆的离心率。 标准方程: 1.中心在原点,焦点在x轴上的椭圆标准方程:(x^2/a^2)+(y^2/b^2)=1?其中a>b>0,c>0,c^2=a^2-b^ 2. 2.中心在原点,焦点在y轴上的椭圆标准方程:(x^2/b^2)+(y^2/a^2)=1其中a>b>0,c>0,c^2=a^2-b^2. 参数方程: X=acosθY=bsinθ(θ为参数,设横坐标为acosθ,是由于圆锥曲线的 考虑,椭圆伸缩变换后可为圆此时c=0,圆的acosθ=r) 2)双曲线 文字语言定义:平面内一个动点到一个定点与一条定直线的距离之比是 一个大于1的常数e。定点是双曲线的焦点,定直线是双曲线的准线,常 数e是双曲线的离心率。 标准方程:

1.中心在原点,焦点在x轴上的双曲线标准方程:(x^2/a^2)- (y^2/b^2)=1? 其中a>0,b>0,c^2=a^2+b^2. 2.中心在原点,焦点在y轴上的双曲线标准方程:(y^2/a^2)- (x^2/b^2)=1. 其中a>0,b>0,c^2=a^2+b^2. 参数方程: x=asecθy=btanθ(θ为参数) 3)抛物线 标准方程: 1.顶点在原点,焦点在x轴上开口向右的抛物线标准方程:y^2=2px其中p>0 2.顶点在原点,焦点在x轴上开口向左的抛物线标准方程:y^2=-2px其中p>0 3.顶点在原点,焦点在y轴上开口向上的抛物线标准方程:x^2=2py其中p>0 4.顶点在原点,焦点在y轴上开口向下的抛物线标准方程:x^2=-2py其中p>0 参数方程? x=2pt^2?y=2pt(t为参数)t=1/tanθ(tanθ为曲线上点与坐标原点确定直线的斜率)特别地,t可等于0 直角坐标?

圆锥曲线的切线方程的推导

圆锥曲线的切线方程的推导 2 2 1.若点P(x o ,y o ) 是椭圆 笃?爲=1上任一点,则椭圆过该点的切线方程为: 一 b x o x y o y 1 a 证明: 1° 当 b 2 2 2 由占"亠 b a x- -a 时,过点 ???对①式求导:2yy'= 2 y 2二圧(1一笃)……① a P 的切线斜率k 一定存在,且k - y' |x 2b 2 x O , a 二 k 二 y ' |x 談- a y o 2 x ???点P(x o ,y o )在椭圆 — a _b X 。 . b 2x ?切线方程为 y_y o =_ — (X_xJ ..... a yo 2 2 故辱1 a 2 b 2 而当x = a 时, 代入②得 y o = 0 X o x _y o y 2 .2 ~ 1 a b 切线方程为x 二- a ,也满足③式 故驴晋可是椭圆过点 P(x 0,y 0)的切线方程. 2.若点P(x o ,y o )是双曲线 2 2 計計1上任一点,则双曲线过该点的切线方程为: x °x y o y a 2 证明: 1°当 2 = 1。 b 2 2 2 由 b-^-1- b a x = -a 时,过点P 的切线斜率k 一定存在,且k = y'L 承。 2 b 2(^2 -1) .. ① a ?对①式求导 ?切线方程为 2b 2 2yy'=-^rxo ?- k= y'l x’ a b 2x o 2 a y o y _y 。二 警(x - X 。) a y o 2 2 2 2 ??点 P(x o ,y °)在双曲线 仔-与=1上,故 第逆 =1 a b a b 代入②得 x o x y o y a 2 b 2 =1…③ 而当x 二-a 时,y 。二O ,切线方程为x 二-a ,也满足③式

(完整)高考数学圆锥曲线的常用公式及结论(非常推荐)

高考数学常用公式及结论 圆锥曲线 1.椭圆22 221(0)x y a b a b +=>>的参数方程是cos sin x a y b θθ=??=?. 2.椭圆22 221(0)x y a b a b +=>>焦半径公式 )(21c a x e PF +=,)(2 2x c a e PF -=. 3.椭圆的的内外部 (1)点00(,)P x y 在椭圆22 221(0)x y a b a b +=>>的内部22 00221x y a b ?+<. (2)点00(,)P x y 在椭圆22 221(0)x y a b a b +=>>的外部22 00221x y a b ?+>. 4. 椭圆的切线方程 (1)椭圆22221(0)x y a b a b +=>>上一点00(,)P x y 处的切线方程是00221x x y y a b +=. (2)过椭圆22 221(0)x y a b a b +=>>外一点00(,)P x y 所引两条切线的切点弦方程 是 00221x x y y a b +=. (3)椭圆22 221(0)x y a b a b +=>>与直线0Ax By C ++=相切的条件是 22222A a B b c +=.

5.双曲线22 221(0,0)x y a b a b -=>>的焦半径公式 21|()|a PF e x c =+,2 2|()|a PF e x c =-. 6.双曲线的内外部 (1)点00(,)P x y 在双曲线22 221(0,0)x y a b a b -=>>的内部22 00221x y a b ?->. (2)点00(,)P x y 在双曲线22 221(0,0)x y a b a b -=>>的外部22 00221x y a b ?-<. 7.双曲线的方程与渐近线方程的关系 (1)若双曲线方程为12222=-b y a x ?渐近线方程:22220x y a b -=?x a b y ±=. (2)若渐近线方程为x a b y ±=?0=±b y a x ?双曲线可设为λ=-22 22 b y a x . (3)若双曲线与12222=-b y a x 有公共渐近线,可设为λ=-22 22b y a x (0>λ,焦 点在x 轴上,0<λ,焦点在y 轴上). 8. 双曲线的切线方程 (1)双曲线22 221(0,0)x y a b a b -=>>上一点00(,)P x y 处的切线方程是 00221x x y y a b -=. (2)过双曲线22 221(0,0)x y a b a b -=>>外一点00(,)P x y 所引两条切线的切点弦 方程是 00221x x y y a b -=.

求曲线在点处切线方程

一、求曲线32 31y x x x =-+-在点(2,3)P -处的切线方程. 二、已知成本C 与产量q 的函数关系式为C=2q 2+5,求产量q=80时的边际成本. 三、确定抛物线方程2y x bx c =++中的常数b c 、,使其与直线2y x =在2x =处相切. 四、求下列函数的单调区间: 1. 42()23f x x x =-- 2. 32()23f x x x =- 3. 42()23617f x x x =-+ 五、求下列函数的极值: 1. 32()23121f x x x x =+-+ 2. 32()(10)f x x x =- 3. 2()(2)f x x x =- 4. 32()32412f x x x x =+-+ 六、求下列函数在指定区间上的最大值和最小值: 1. 32()23121f x x x x =+-+,[3,3]x ∈- 2. 32()2153624,[1,4]f x x x x x =-+-∈ 3. 543()551,[1,2]f x x x x x =-++∈- 七、设函数3232y x ax bx c x x =+++=-=在处有极大值,在处有极小值-10,求常数a b c 、、, 八、函数3226[2,2]y x x m =-+-在区间上有最大值3,求它的最小值 九、三次函数()f x 当3x =时有极小值0,又:曲线()y f x =上点(1,8)处的切线过(3,0)点. 求()f x 的表达式 十、要靠墙建造6间猪圈(如图),若新砌墙的总长度 为36米,求每间猪圈的最大面积 【导数的应用练习题(文科)答案】 一、2|1,50.x k y x y ='==--=方程为 二、8080|4|320q q C q =='==.

圆锥曲线的切线方程总结

圆锥曲线的切线方程总-CAL-FENGHAL-(YICAI)-Company One 1

运用联想探究圆锥曲线的切线方程 现行人教版统编教材高中数学第二册上、第75页例题2,给出了经过圆/ + y2 = r2上一点M( x0 , y0)的切线方程为x o x + y o y = r2;当M(x0 , y0)在圆外时,过M点引切线有且只有两条,过两切点的弦所在直线方程为兀卅+儿.V = r2o 那么,在圆锥曲线中,乂将如何我们不妨进行儿个联想。 2 2 联想一:(D过椭圆二+二=1 (d>b>o)上一点M(心」())切线方cr \r 程为孚+卑=1 ;(2)当M(x°,儿)在椭圆^ + 4 = 1的外部时,过M cr lr cr lr 引切线有两条,过两切点的弦所在直线方程为:辔+労=1 cr \r 证明:(1)存汀的两边对X求导,得务攀“,得 仏,由点斜式得切线方程为y-v0 = -^(x-x0),即 Vo 2 2 (2)设过椭圆+ = 1 (?>/?> 0 )外一点M( x0 , y0)引两条切线,切cr 点分别为A(“,儿)、8(勺,儿)。由(1)可知过人、B两点的切线方程分别为:工+辱=1、孚+卑=1。又因M(x°,儿)是两条切线的交点,所cr b?cr 以有洋+器L = i、辻 + 怦=1。观察以上两个等式,发现A(“,儿)、 8(勺,〉,2)满足直线芳+沪=1,所以过两切点A、3两点的直线方程为 ^r+ —1。 cr b- 评注:因在椭圆二+二=1 (“>〃>0)上的位置(在椭圆上 或椭圆外)的不同,同一方程卑+卑=1表示直线的几何意义亦不同。 cr 联想二:(1)过双曲线一;——r = 1 (? > 0, /? > 0)上一点M( x0 , y())切 线方程为卑-卑=1 ; (2)当M(x。,儿)在双曲线4-4 = 1的外部时,cr lr c r 过M引切线有两条,过两切点的弦所在直线方程为:嚳—* = 1。(证明同 a b~上) 联想三:(1)过圆锥曲线Ax2+Cy2 + Dx+Ey+F = O(A, C不全为零)上的点M (兀,儿)的切线方程为Ar o x + Cy o y + D士也+ E三仏+ F = 0 ;(2) 2 2

求曲线的切线方程的几种方法

2017届高三数学二轮复习——求曲线)(x f y =的切线方程的 几种方法 课前预习 1、已知函数()ln (,)f x m x nx m n =+∈R ,曲线()y f x =在点(1,(1))f 处的切线方程为220x y --=,则m n += 2、若x 轴是曲线 3ln )(+-=kx x x f 的一条切线,则=k 3、已知曲线x y =与x y 8=的交点为P ,两曲线在点P 处的切线分别为21,l l ,则切线21,l l 与y 轴所围成的三角形的面积为 4、已知函数x x f =)(,x a x ln )(g =,R a ∈.若曲线)(x f y =与曲线)(x g y =相交,且在交点处有相同的切线,则切线方程为 5、在平面直角坐标系xOy 中,直线l 与曲线)0(2>=x x y 和)0(3>=x x y 均相切,切点分别为),(11y x A 和),(22y x B ,则=2 1x x 典型例题 例1、已知函数 x x x f 32)(3-=. (1)求)(x f 在点)1,1(-处的切线方程; (2)若过点)1(t P ,存在3条直线与曲线)(x f y =相切,求t 的取值范围.

例2、已知函数为常数)b a b ax x x x f ,(2 5)(23+++=,其图象是曲线C . (1)当2-=a 时,求函数 )(x f 的单调递减区间; (2)已知点A 为曲线C 上的动点,在点A 处作曲线C 的切线1l 与曲线C 交于另一个点B ,在点B 处作曲线C 的切线2l ,设切线21l l ,的斜率分别为21,k k .问:是否存在常数λ,使得12k k λ=?若存在,求出λ的值;若不存在,请说明理由. 例3、对于函数 )(x f ,)(g x ,如果它们的图象有公共点P ,且在点P 处的切线相同,则称函数)(x f 和)(g x 在点P 处相切,称点P 为这两个函数的切点.设函数)0()(2≠-=a bx ax x f ,()x x ln g =. (1)当0,1=-=b a 时,判断函数)(x f 和)(g x 是否相切,并说明理由; (2)已知0>=a b a ,,且函数)(x f 和)(g x 相切,求切点P 的坐标.

高中数学用导数方法求圆锥曲线的切线.doc

用导数方法求圆锥曲线的切线 求解函数图象上过某点的函数图象的切线的方程,是导数的一个重要应用。有心圆锥曲线一般情形下都不是函数图象,所以习惯上,一般我们不用导数方法求解圆锥曲线的切线问题,而是利用传统的方法,即判断直线和圆锥曲线方程所组成的方程组的解的情况来解决,但是有时候这种解法会比较烦琐,特别是含有参数的时候计算量较大。而我们可以将圆锥曲线分成“几个函数”来分别讨论,这样就可以实现用导数的方法来求曲线的切线了。本文将用导数的方法证明一个有心圆锥曲线的性质。 引理1:过椭圆)0(122 22>>=+b a b y a x 上任意一点),(00y x P 的该椭圆的切线方程为12020=+b y y a x x ; 证明:我们先考虑当的情形;0>y ,022x a a b y y -=>时,,22'x a a bx y --= ,20200|'x a a bx y x x --== b ay x a x a a b y 0202220,=--=所以而 ,,|'000 2020的斜率)的切线(即为椭圆过l y x P y a x b y x x -=∴= )(:00 2020x x y a x b y y l --=-∴切线 .1,20202202202020222 022020202=++=++=+b y y a x x b y a x b y y a x x b a y a x b y y a x x b ,即得 两边同除以化简得 当0

二次曲线的切线方程及应用

二次曲线的切线方程及应用 摘要] 本文主要利用隐函数求导的方法推导常见二次曲线(圆、椭圆、双曲线、 抛物线)上某点处的切线方程,并得出一般二次曲线的切线方程及切点弦方程, 再将相应结论进行应用。 [关键词] 二次曲线切线方程切点弦方程 有关二次曲线的切线方程及其应用问题,近年来在各类考试中出现的频率颇高,为更好地解决此专题的问题,笔者将常见二次曲线的切线方程及切点弦方程 的有关结论及推导过程整理一遍,并简述其应用,以供广大教师及学生参考. 1 几个常见结论及推导 1.在圆上一点处的切线方程为:. (注:为与求其它二次曲线的切线方程所用方法一致,这里利用涉及隐函数 求导的方法来推导.) 由结论6,将曲线方程特殊化为高中常见的二次曲线方程,即可得到关于圆、椭圆、双曲线和抛物线的切点弦方程的相应结论. 2 应用 有关切线方程及切点弦方程的考题,近几年均是热点,比如广州市2013届普通高中毕业班综合测试(一)数学(理科)(简称“广州市一模”)第20题,2013年普通高等学校招生全国统一考试(广东卷)数学(文科/理科)第20题,2014 年清华等七校自主招生考试(简称“华约卷”)第5题等. 2013年广东高考的解析几何题虽和当年广州市一模的解析几何题有较大相似度,但考试结果仍不理想,文[1]指出,2013年的解析几何题“不仅加大了计算量,而且对计算的技巧性的要求大大增强,与压轴题的难度接近(第20题得分2.85分,第21题得分2.13).”因此,有必要对切线方程及切点弦方程这一专题内容 做一个梳理. 现将2013年普通高等学校招生全国统一考试(广东卷)数学第20题展示如下: . 解法一与解法二虽具体利用的知识不同,但其求解思路是一致的,关键的一 步在于写出直线PQ的方程,而在自主招生或竞赛类考试中,直接写出二次曲线 的切线方程或切点弦方程是允许的.因此,教师可将有关二次曲线的切线方程及 切点弦方程问题形成一个小专题,根据学生水平及实际需要,适当讲解以上结论 作为拓展,为学生获得更佳成绩打好基础. 3 小结 由于高中阶段没有涉及到隐函数求导的内容,因此高考题在考纲范围内只能 考查形如的抛物线的切点弦方程,对于一般水平的学生,教师只需讲透高中常见 的解法即可. 而第1部分的结论是常见二次曲线的有关切线方程和切点弦方程的结论,结 论5、结论6将常见二次曲线的切线方程、切点弦方程统一起来,得到一般二次 曲线的切线方程、切点弦方程.实践表明,对于能力较强的学生,是可以理解第

过圆锥曲线上一点的切线方程的另一种初等求法

过圆锥曲线上一点的切线方程的另一种初等求法 先看一个具体问题: 求过椭圆13422=+y x 上一点)23,1(P 的切线方程. 在中学阶段解决此类问题,一般采用?方法,即设切线方程为)1(23-=-x k y ,代入13 42 2=+y x ,整理得关于x 的一元二次方程: 03124)128()43(2222=--++-++k k x k k x k , 通过判别式?=0)3124)(43(4)128(2222=--+-+-k k k k k ,解得2 1-=k ,故所求切线方程为042=-+y x . 这种方法思路直,用到知识少,学生容易掌握,不足之处是运算量偏大,出错率高.那么能否给出一种求解思路简单,而运算量又较小的方法呢? 命题:),(00y x P 为圆锥曲线0),(:=y x f C 上一点,则曲线C 上过P 点的切线方程为0)2,2(),(00=---y y x x f y x f (*) 证明:因0),(=y x f 为二次曲线方程,知方程(*)代表的是一条直线,记为l .假设直线l 与曲线C 除了点),(00y x P 外还有一个公共点),(111y x P ,则有0),(11=y x f 和0)2,2(),(101011=---y y x x f y x f 同时成立,从而0)2,2(1010=--y y x x f ,这表明),(111y x P 关于点),(00y x P 的对称点)2,2(10102y y x x P --也在曲线C 上,因1,P P 点在直线l 上,故2P 点也在直线l 上,可见直线l 与曲线C 有三个公共点,这与直线与二次曲线最多只有两个公共点矛盾,从而证明了直线l 与曲线C 有且只有一个公共点. (1)当0),(=y x f 表示椭圆时,由于椭圆是封闭曲线,直线l 就是切线,方程(*)即为切线方程. (2)当0),(=y x f 表示双曲线时,只要断定直线l 与双曲线的渐近线不平行,就能证明直线l 就是切线,方程(*)为其切线方程. 设双曲线C 方程:)0,0(122 22>>=-b a b y a x ,则方程(*): 020********=-+-x b y a y y a x x b . 当00≠y 时,其斜率0202y a x b k =,因渐近线斜率为a b ±,若a b y a x b =0202 或 a b y a x b -=0 202,则,000=-ay bx 或,000=+ay bx 从而0202202=-y a x b ,与

相关主题
文本预览
相关文档 最新文档