当前位置:文档之家› 哈密–郑州±800 kV直流输电工程换流站无功补偿研究

哈密–郑州±800 kV直流输电工程换流站无功补偿研究

哈密–郑州±800 kV直流输电工程换流站无功补偿研究
哈密–郑州±800 kV直流输电工程换流站无功补偿研究

换流站与变电站,为何采用高压直流输电

换流站与变电站,为何采用高压直流输电 1.总论 电厂的任务是发电,电厂要能正常发电就需要使用和维护设备,使用和维护设备就是电厂的主要工作内容。 变电站是将电厂发出的电能通过电力设备进行各种变换,然后输送出去。其主要工作任务是: 1、使用和维护电力设备,使之保证长期连续对外供电。 2、监控电力设备运行情况,作好各项监控记录,以便将来作为技术或故障 分析的原始资料。 3、有些变电站还具有监控线路运行状况的功能。 2.换流站 高压直流输电的一种特殊方式,将高压直流输电的整流站和逆变站合并在一个换流站内,在同一处完成将交流变直流,再由直流变交流的换流过程,其整流和逆变的结构、交流侧的设施与高压直流输电完全一样,具有常规高压直流输电的最基本的优点,可实现异步联网,较好地实现不同交流电压的电网互联,将2个交流同步电网隔离,能有效地隔断各互联的交流同步网间的相互影响,限制短路电流,且联络线功率控制简单,调度管理方便。与常规直流输电比较,其优点更突出: 1、没有直流线路,直流侧损耗小; 2、直流侧可选择低压大电流运行方式,以降低换流变压器、换流阀等有关 设备的绝缘水平,降低造价; 3、直流侧谐波可全部控制在阀厅内,不会产生对通信设备的干扰; 4、换流站不需要接地极,无需直流滤波器、直流避雷器、直流开关场、直 流载波等直流设备,因而比常规的高压直流输电节省投资。

换流站是直流输电工程中直流和交流进行相互能量转换的系统,除有交流场等与交流变电站相同的设备外,直流换流站还有以下特有设备:换流器、换流变压器、交直流滤波器和无功补偿设备、平波电抗器。 换流器主要功能是进行交直流转换,从最初的汞弧阀发展到现在的电控和光控晶闸管阀,换流器单位容量在不断增大。 换流变压器是直流换流站交直流转换的关键设备,其网侧与交流场相联,阀侧和换流器相联,因此其阀侧绕组需承受交流和直流复合应力。由于换流变压器运行与换流器的换向所造成的非线性密切相关,在漏抗、绝缘、谐波、直流偏磁、有载调压和试验方面与普通电力变压器有着不同的特点。交直流滤波器为换流器运行时产生的特征谐波提供入地通道。换流器运行中产生大量的谐波,消耗换流容量40%~60%的无功。交流滤波器在滤波的同时还提供无功功率。当交流滤波器提供的无功不够时,还需要采用专门的无功补偿设备。 平波电抗器能防止直流侧雷电和陡波进入阀厅,从而使换流阀免于遭受这些过电压的应力;能平滑直流电流中的纹波。另外,在直流短路时,平波电抗器还可通过限制电流快速变化来降低换向失败概率。 3.变电站 3.1简介 改变电压的场所。为了把发电厂发出来的电能输送到较远的地方,必须把电压升高,变为高压电,到用户附近再按需要把电压降低。这种升降电压的工作靠变电站来完成。变电站的主要设备是开关和变压器。按规模大小不同,称为变电所、配电室等。 3.2组成

_800kV直流换流站直流侧接线及设备配置方案探讨

2009年第3卷第6期南方电网技术特高压直流输电 2009,V ol. 3,No. 6 SOUTHERN POWER SYSTEM TECHNOLOGY UHVDC Transmission 文章编号:1674-0629(2009)06-0030-05 中图分类号:TM721.1 文献标志码:A ±800 kV直流换流站直流侧接线及 设备配置方案探讨 李学鹏1,方静2,李岩3,陈云1,申卫华1 (1. 西北电力设计院,西安710075;2. 中国电力工程顾问集团公司,北京100120; 3. 南方电网技术研究中心,广州 510623) 摘要:±800 kV直流输电工程的电压高、输送功率大,其直流换流站直流侧接线及设备配置需结合换流设备制造、运 输条件的限制,并综合考虑整个换流站的可靠性、可用率来确定。鉴此,对换流站直流侧接线及设备配置方案进行了研 究。研究结果为:特高压换流站换流器的接线推荐采用每极2个12脉动串联方案。对比电压,又可细分为(600 + 200) kV、(500 + 300)kV、(400 + 400)kV三种,其中(400 + 400)kV方案如分析所述经济性和可行性最好,所以阀组接 线推荐采用(400 + 400)kV方案。直流开关场接线方案采用典型双极直流接线方案比较合适。 关键词:特高压直流输电;换流站;换流变压器;换流站直流场 Discussion of DC Yard Connection and Equipment Configuration of ±800 kV DC Convert Station LI Xuepeng1, FANG Jing2, LI Yan3, CHEN Yun1, SHEN Weihua1 (1 Northwest Electric Power Design Institute, Xi’an 710075, China; 2. China Power Engineering Consulting Group Corporation, Beijing 100120, China; 3.CSG Technology Research Center, Guangzhou 510623, China) Abstract: The ±800 kV UHVDC transmission project has characteristics of high voltage and great power, and its main circuit and equipment configurations of DC yard should be considered according to the ability of the DC equipment manufacture and the transport limitation as well as the reliability and usability of the whole convert station. It is concluded in this paper that the recommended scheme for ±800 kV UHVDC station is that with two 12-pulse bridges in series per pole. In terms of voltage, three types of combination are possible, i.e.(600 + 200)kV、(500 + 300)kV and(400 + 400)kV. The (400 + 400)kV scheme is most economical and feasible as analyzed in this paper, so it is the best one. The scheme for the circuit configuration of DC yard is recommended as the typical two-pole DC scheme. Key words: UHVDC; converter station; converter transformer; DC yard 在我国建设的云广± 800 kV特高压直流输电工程,其额定直流电压为±800 kV,额定输送功率达到或超过5 000 MW,相应的直流侧设备耐受的过电压水平较± 500 kV直流输电工程明显提高,对直流运行的可靠性提出了更高要求。 本文对±800 kV换流站直流侧接线及设备配置方案进行了探讨,提出了可用于特高压直流工程建设的可行方案。 基金项目:“十一五”国家科技支撑计划特高压输变电系统开发与示范项目课题资助(2006BAA02A22)。 Foundation item: The Development and Demonstration Project of UHV Power Transmission and Substation System Supported by the Eleventh Five-Year Plan for National Science and Technology(2006BAA02A22). 1 ± 800 kV换流站换流阀组接线 特高压换流站主接线方案主要有3种:每极单个换流器方案、每极2个换流器串联方案和每极2个换流器并联方案。 特高压换流站每极2个换流器并联方案一次接线比较复杂、控制保护系统复杂、运行不方便。特高压直流输电主要应考虑如何升高直流电压,所以2个换流器并联的方案可行性差。在换流站主接线方案的研究中,需要重点对每极一个换流器方案和每极2个换流器方案进行论证。 由于特高压直流输电工程的额定电压和额定功率都较大,如果采用单极每极1个12脉动换流器的

高压直流输电与特高压交流输电的优缺点比较

高压直流输电与特高压交流输电的优缺点比较 从经济方面考虑,直流输电有如下优点: (1) 线路造价低。对于架空输电线,交流用三根导线,而直流一般用两根采用大地或海水作回路时只要一根,能节省大量的线路建设费用。对于电缆,由于绝缘介质的直流强度远高于交流强度,如通常的油浸纸电缆,直流的允许工作电压约为交流的3倍,直流电缆的投资少得多。 (2) 年电能损失小。直流架空输电线只用两根,导线电阻损耗比交流输电小;没有感抗和容抗的无功损耗;没有集肤效应,导线的截面利用充分。另外,直流架空线路的“空间电荷效应”使其电晕损耗和无线电干扰都比交流线路小。 所以,直流架空输电线路在线路建设初投资和年运行费用上均较交流经济。 直流输电在技术方面有如下优点: (1) 不存在系统稳定问题,可实现电网的非同期互联,而交流电力系统中所有的同步发电机都保持同步运行。直流输电的输送容量和距离不受同步运行稳定性的限制,还可连接两个不同频率的系统,实现非同期联网,提高系统的稳定性。 (2) 限制短路电流。如用交流输电线连接两个交流系统,短路容量增大,甚至需要更换断路器或增设限流装置。然而用直流输电线路连接两个交流系统,直流系统的“定电流控制”将快速把短路电流限制在额定功率附近,短路容量不因互联而增大。 (3) 调节快速,运行可靠。直流输电通过可控硅换流器能快速调整有功功率,实现“潮流翻转”(功率流动方向的改变),在正常时能保证稳定输出,在事故情况下,可实现健全系统对故障系统的紧急支援,也能实现振荡阻尼和次同步振荡的抑制。在交直流线路并列运行时,如果交流线路发生短路,可短暂增大直流输送功率以减少发电机转子加速,提高系统的可靠性。 (4) 没有电容充电电流。直流线路稳态时无电容电流,沿线电压分布平稳,无空、轻载时交流长线受端及中部发生电压异常升高的现象,也不需要并联电抗补偿。 (5) 节省线路走廊。按同电压500 kV考虑,一条直流输电线路的走廊~40 m,一条交流线路走廊~50 m,而前者输送容量约为后者2倍,即直流传输效率约为交流2倍。 下列因素限制了直流输电的应用范围: (1) 换流装置较昂贵。这是限制直流输电应用的最主要原因。在输送相同容量时,直流线路单位长度的造价比交流低;而直流输电两端换流设备造价比交流变电站贵很多。这就引起了所谓的“等价距离”问题。 (2) 消耗无功功率多。一般每端换流站消耗无功功率约为输送功率的40%~60%,需要无功补偿。 (3) 产生谐波影响。换流器在交流和直流侧都产生谐波电压和谐波电流,使电容器和发电机过热、换流器的控制不稳定,对通信系统产生干扰。 (4) 缺乏直流开关。直流无波形过零点,灭弧比较困难。目前把换流器的控制脉冲信号闭锁,能起到部分开关功能的作用,但在多端供电式,就不能单独切断事故线路,而要切断整个线路。 (5) 不能用变压器来改变电压等级。 直流输电主要用于长距离大容量输电、交流系统之间异步互联和海底电缆送电等。与直流输电比较,现有的交流500 kV输电(经济输送容量为1 000 kW、输送距离为300~500 km)已不能满足需要,只有提高电压等级,采用特高压输电方式,才能获得较高的经济效益。

800KV 特高压直流换流站控保系统功能测试

800KV 特高压直流换流站控保系统功能测试 摘要:为确保特高压直流换流站控保系统及设备的安全、稳定和可靠运行,需定期对控保系统的功能和性能进行全面的测试和验证。为此对某特高压直流换流站控保系统的总体构架和功能组成进行了介绍,并对控保系统的主要测试项目、测试内容及测试方法进行了说明,以期为从事换流站控保系统测试的人员提供参考。 关键词:直流换流站;控保系统;功能;测试 控保系统是特高压直流输电系统独有的系统配置,既能对换流站内的交流开关设备、交流滤波器及交流无功补偿装置、换流变压器、换流阀、平波电抗器、直流开关设备、直流滤波器等运行设备状态进行监视,又能对换流站的一次设备、母线电压和功率进行实时控制。与常规交流系统的保护配置方式的区别在于,控保系统内所有保护逻辑能按照设备运行的需要在控制系统后台内进行灵活编制。显然,控保系统是整个换流站控制与保护的核心,其功能与性能的好坏将直接影响换流站有功、无功和电压的正常转换及换流站一次设备的正常运行,因此在换流站检修期间需对控保系统的功能、性能进行定期测试和验证。本文以某特高压直流± 800kV换流站控保系统的定检测试为例,介绍了换流站控保系统的构架和功能组成,并阐述了其测试内容和方法。 一、控保系统主要功能组成 控保系统是换流站安全运行的重要保障,负责发送和执行换流站正常的操作指令,并完成换流站设备故障或系统异常时的报警与处理,不仅具备全站事件顺序记录、事件报警、全站控保装置同步对时功能,还具有控制参数动态调整、数据存储及培训等功能。控保系统的主要功能组成如下。(1)直流场控制,主要包括自动直流场配置顺序、高压直流开关设备控制和监视、极连接和接地极操作顺序等。(2)无功功率控制,主要包括交流母线电压和无功功率测量、交流滤波器开关设备控制与监视、根据无功状况决定小组的投切、根据母线电压决定小组的投切、根据交流过电压决定小组的投切等。(3)常规功能,主要包括与对站的站间通信、与本站控制保护系统的LAN网通信、与测控单元现场总线通信等。(4)冗余功能,主要包括硬件监视功能、软件监视功能、系统切换逻辑等。(5)顺序事件记录功能,主要包括测控单元事件处理、软件事件处理、发送事件到运行人员工作站和远动工作站等。(6)换流器保护,主要包括换流器短路保护、交直流过流保护、桥差保护、换相失败保护、组差保护、直流过压开路保护、换流器零序过压保护、交流过电压保护、交流低电压保护、换流变中性点直流饱和保护、直流差动保护、50Hz保护、100Hz保护、直流低电压保护、交直流碰线保护等。(7)直流极母线、中性母线保护,主要包括极母线差动保护、中性母线差动保护、直流后备差动保护等。(8)直流线路保护,主要包括直流线路行波保护、直流线路电压突变量保护、直流线路纵联差保护、金属回线横差保护、金属回线纵差保护、直流线路低电压保护等。(9)双极和金属中线保护区,主要包括接地极母线差动保护、接地极电流不平衡保护、接地极线路过流保护、接地极开路保护、站内接地网过流保护、接地系统保护等。 (10)开关保护,主要包括金属回线转换开关保护、金属回线开关保护、中性母线开关保护、高速接地开关保护等。 二、主要测试内容 控保装置规范配置

高压直流输电会不会取代交流输电

一、首先我们来看高压直流输电的特点: 换流器控制复杂,造价高; 直流输电线路造价低,输电距离越远越经济; 没有交流输电系统的功角稳定问题,适合远距离输电; 适合海底电缆(海岛供电、海上风电)和城市地下电缆输电; 能够非同步(同频不同相位,或不同频)连接两个交流电网,且不增加短路容量; 传输功率的可控性强,控制速度快,可有效支援交流系统; 换流器大量消耗无功(注意这是对LCC-HVDC而言,VSC-HCDC整流侧和逆变侧均可独立灵活控制无功,两种系统差别下文将单独说明。),且产生谐波; 双极不对称大地回线运行时存在直流偏磁问题和电化学腐蚀问题(地电流危害); 不能向无源系统供电(依然是对LCC-HVDC系统而言),构成多端直流系统困难(由于直流没有过零点,难以熄弧,所以现在缺少大容量直流断路器,无法切除输电线路的短路故障,从而限制了多端直流输电的发展。最近ABB貌似把这个东西搞出来了,不明觉厉。)。 二、经济问题: 高压直流输电主要是两头换流站贵,线路便宜。所以相较于交流输电,距离越远越经济。 架空线路等价距离约在640~960km 地下电缆线路的等价距离为56~90km 海底电缆线路的等价距离为24~48km

*交流输电时电缆线路会与周边介质(海水、土壤)形成一个较大的电容,影响电网的经济稳定,直流输电不存在这个问题。 三、电能质量: 直流输电系统的主要缺点是存在谐波,特别是低次谐波(主要是LCC-HVDC,而VSC-HVDC最低次谐波频率较高,滤波器可以有效消除这种高次谐波)。另一个不太突出的缺点是地电流。 谐波的危害: 对铁磁设备的影响。谐波造成额外的铁耗导致发热、振动和噪声,降低了设备出力、效率及寿命; 对旋转电机的影响:谐波造成转矩脉动,转速不稳; 对电力电容器的影响:谐波可能引起谐振过电压; 对电力系统测控的影响:谐波使测量误差增加,可能导致控制失灵,保护误动; 三次谐波电流过大可能使中性线过流; 谐波叠加在基波上,使电气应力增加,对各种电气设备尤其是电容器的绝缘造成威胁; 谐波对通信线路造成干扰。 HVDC引起的变压器直流偏磁(地电流) : 现象:直流输电系统接地极流过较大电流时(如单极大地运行)会导致中性点接地变压器产生直流偏磁现象。 后果:导致铁芯饱和,产生谐波,引起振动和噪声,引起发热,严重时损坏变压器,引起保护误动等。 四、电网安全: 直流输电对电网稳定的贡献: 紧急功率支援:如交流电网出现大幅度功率缺额(联络线跳开、某些大电厂跳开等),HVDC 可以快速增加输送功率或者快速潮流反转。HVDC快速有效的潮流控制能力对于所连交流系统的稳定控制,交流系统正常运行过程中应对负荷随机波动的频率控制及故障状态下的频率变动控制都能发挥重要作用。 直流输电对电网的不利影响:

《直流输电原理》题库

《直流输电原理》题库 一、填空题 1.直流输电工程的系统可分为两端(或端对端)直流输电系统和多端直流输电系统两大类。 2.两端直流输电系统的构成主要有整流站、逆变站和直流输电线路三部分。 3.两端直流输电系统可分为单极系统、双极系统和背靠背直流输电系统三种类型。 4.单极系统的接线方式有单极大地回线方式和单极金属回线方式两种。 5.双极系统的接线方式可分为双极两端中性点接地接线方式、双极一端中性点接地接线方 式和双极金属中线接线方式三种类型。 6.背靠背直流系统是输电线路长度为零的两端直流输电系统。 7.直流输电不存在交流输电的稳定性问题,有利于远距离大容量送电。 8.目前工程上所采用的基本换流单元有6脉动换流单元和12脉动换流单元两种。 9.12脉动换流器由两个交流侧电压相位差30°的6脉动换流器所组成。 10.6脉动换流器在交流侧和直流侧分别产生6K±1次和6K次特征谐波。12脉动换流器在 交流侧和直流侧分别产生12K±1次和12K次特征谐波。 11.为了得到换流变压器阀侧绕组的电压相位差30°,其阀侧绕组的接线方式必须一个为 星形接线,另一个为三角形接线。 12.中国第一项直流输电工程是舟山直流输电工程。 13.整流器α角可能的工作范围是0<α<90°,α角的最小值为5°。 14.α<90°时,直流输出电压为正值,换流器工作在整流工况; α=90°时, 直流输出电为 零,称为零功率工况; α>90°时,直流输出电压为负值,换流器则工作在逆变工况。15.直流输电控制系统的六个等级是:换流阀控制级、单独控制级、换流器控制级、极控制 级、双极控制级和系统控制级。 16.换流器触发相位控制有等触发角控制和等相位间隔控制两种控制方式。 17.直流输电的换流器是采用一个或多个三相桥式换流电路(也称6脉动换流器)串联构 成。其中,6脉动换流器的直流电压,在一个工频周期内有6段正弦波电压,每段60°。

特高压交直流输电系统技术经济分析

特高压交直流输电系统技术经济分析 摘要:随着我国电力事业的快速发展,我国特高压输电工程建设正处于稳步上 升阶段。特高压输电技术的广泛应用,很好地解决了当前输电技术存在的经济性 较低以及无法实现或者实现难度较大的更远距离输电问题,进一步提高了输电系 统供电的稳定性、安全性以及经济性。对于当前特高压输电网而言,1000kV以及±800kV输电系统的技术经济性是重中之重。基于此,研究特高压交直流输电系统 技术经济性具有重要的现实意义。 关键词:特高压交直流水电系统;技术经济性 引言: 1000kV与±800kV输电系统的技术经济性是发展特高压输电网的重要基础。从我国特高压交直流输电示范工程成功运行经验讨论1000kV与±800kV输电的技术 经济性对推进特高压输电网的规划建设具有重要现实意义。 1 1000kV和±800kV输电系统建设成本阐述 1.1 1000kV输电系统的建设成本 一般来说,都是使用单位输电建设成本来表示1000kV与±800kV输电系统的 建设成本。同时,参照示范工程投资决算实对其施估算。以2009年投入运行的1000kV特高压交流试验示范工程为例来看,其最初建设成本为56.9亿元。根据 试验示范工程相关元器件成本以及建设成本的实际情况,使用工程成本计算方法 对其建设成本进行估算,拟使用1000kV、4410MW、1500km特高压输电系统, 其单位输电建设成本预期估算成本为1900元/km?MW。若将500kV输电系统建 设成本按照2500元/km?MW的价格来看,那么此1000kV特高压输电系统的单位 建设成本则近似为500kV输电系统的8成左右。 1.2 ±800kV输电系统的建设成本 对于±800kV直流输电系统而言,首先需要把各发电单元机组通过电站500kV 母线汇集在一起,接着借助500kV输电线路连通到直流输电的整流站中,从而把 三相交流电更换成直流电,再使用两条正负极输电线路将其配送到逆变站中,再 把直流电转变为三相交流电,最后输送到有电压作为保障的500kV枢纽变电站中。和其余输电系统相同,±800kV直流输电系统在进行长距离、大规模输电的过程中,也需要两个电厂作为支撑,拟将其发电机组定位6×600MW以及5×600MW,线路 总长度为1500km,通过±800kV特高压直流输电示范工程数据对其输电建设成本 实施估算。某±800kV特高压直流输电示范工程的直流输电线路总长度为1891km,额定直流电流为4kA,额定换流功率为6400MW,分裂导线的规格为6×720mm2,开工建设的时间为2007年,不断对系统进行调试,最终于2010年正式投入使用。根据系统调试以及投入运行的实际结果来看,自助研发的±800kV特高压直流输电 系统及其相关设备具有较高的运行性能。该±800kV直流输电示范工程建设成本为190亿元,其中换流站与相关线路的成本均占总成本的一半。根据示范工程建设 成本进行估算,±800kV、6400MW、1500km直流输电系统的单位输电建设成本应为1780元/km?MW。 1.3 1000kV和±800kV输电系统建设成本对比分析 一般来说,通过逆变站的输出功率对交流输电进行估算,而直流输电的估算 亦是如此;1000kV交流输电系统的单位建设成本与±800kV直流输电系统的单位 建设成本基本一致,都为1900元/km?MW,处于相同等级。1000kV交流输电系 统的对地电压为578kV和±800kV直流输电系统极线的对地电压相匹配。±800kV

4731.±800kV特高压换流站换流变高压电气试验

±800kV特高压换流站换流变高压电气试验 摘要:本文详细介绍了±800kV特高压换流站中换流变的高压电气试验。 关键词:±800kV特高压换流站、换流变、高压电气试验 1引言 向家坝—上海±800kV特高压直流示范工程是“十一五”国家电网规划建设的金沙江一期送电华东直流输电工程,工程的建设符合国家能源战略,是进一步落实国家“西部大开发”战略,实现国家电网西电东送总体规划目标,促进资源优化配置的一项重要举措。也是“十一五”期间扩大川电外送规模,满足华东、华中用电需要的一项工程。向家坝-上海特高压直流示范工程是世界直流输电发展史上的里程碑工程,也是我国特高压输电技术的开创性工程。 ±800kV奉贤换流站工程换流部分采用双极、每极两个十二脉动换流器串联接线,电压配置为“400kV+400kV”,双极共安装24台工作换流变(4个换流器单元,每极高、低端各1组),4台备用换流变(每极高、低端各备用1台),共28台。每极安装Yo-Y-12接线及Yo- -11接线的换流变各2组,每组换流变均由3台容量为297.1MVA的单相油浸式双绕组换流变压器组成,换流变压器采用BOX-IN的封闭安装形式,阀侧套管直接插入阀厅。 2换流变主要高压电气试验项目及方法 2.1 绕组连同套管的直流电阻测量 2.1.1 试验仪器:变压器直流电阻测试仪,测试电流40A。 2.1.2 试验接线: 2.1.3 试验步骤: 被测绕组 a. 检查试验接线。 变压器直流电阻测试仪 测试直流电阻接线图

b. 测量高压绕组在各分接位置的直流电阻。 c. 测量低压绕组直流电阻。 d. 记录数据同时记录变压器的上层油温。 2.1.4 数据分析: a. 相间的最大不平衡率小于2%。 b. 换算到同一温度下,与出厂值比较相应变化小于2%。 c. 最大不平衡率计算公式:(%)=(Rmax-Rmin)/Rave。 d. 温度换算公式:R1=(235+t1)R2/(235+t2) 2.1.5 安全注意事项: a. 测试导线应有足够的截面; b. 测量过程中不得操作变压器的分接开关; c. 测量时应认真记录绕组温度; d. 更换试验接线时,一定要先断开试验电源; e. 变压器本体及高、低压侧出线上禁止有人工作。 2.2 检查所有分接头的电压比 2.2.1 试验仪器:数字式变压器变比测试仪。 2.2.2 试验接线: 将变压器高低压绕组对应接入变比电桥的相应接线端子。 2.2.3 试验步骤: a. 检查试验接线。 b. 按变比测试仪的使用说明书正确操作。 c. 测量各分接位置的变比误差。 2.2.4 数据分析: 实测变比与制造厂铭牌数据相比无明显差别,且应符合电压比的规律;电压比的允许误差在额定分接头位置时为±5% 。 2.2.5 安全注意事项: a. 变压器高、低压侧测试线不能接反; b. 变压器变比测试仪应接地; c. 更换试验接线时,一定要先断开试验电源;

±800kV奉贤换流站的结构与功能特点

±800kV奉贤换流站的结构与功能特点 我国宜宾向家坝至上海奉贤送电距离达1900 km的±800 kV特高压直流输电工程于2010年7月8日正式投运。这是目前世界上运行线路最长、输电容量最大、损耗最低(线损仅4%)、信价比最高的特高压直流输电工程。上海奉贤换流站是向家坝-上海±800千伏特高压直流输电工程的受端换流站,位于上海奉贤区境内,站址总用地面积17.48hm2,围墙内用地面积15.06hm2,换流站容量为6400MW,直流额定电压为±800kV。奉贤换流站也是目前世界上最大容量的特高压换流站,从建设到运行共创下18项电力工业技术的世界纪录,把主要集中在金沙江、大渡河、雅砻江三江流域的四川丰富的水电资源,同中国经济最发达地区之一的上海联结在一起。奉贤换流站的结构是:每极两个12脉冲阀组串联接线方式;换流变压器(单相双绕组)28台(4台备用),每台容量297.1MV A;交流滤波器4大组,15小组,总容量3746Mvar。1回±800kV高压直流输电线路,1回接地极线路。交流出线本期3回,远景4回。 1.主接线方式 直流换流站的主接线设计主要有两个方面,即直流侧主接线和交流侧主接线。 奉贤换流站直流侧主接线采用(400 +400)kV 换流器接线方案,参见图1。每极高、低端12 脉动换流器两端设计电压相同,12 脉动换流器两端连接直流旁路断路器,通过直流旁路断路器操作可以投入或者推出该12 脉动换流器,因此,运行方式非常灵活,可根据实际情况合理组合。其正送和反送功率传输方向下的直流输电系统运行方式如下: 1)完整双极运行方式;2)1/2 双极运行方式;3)完整单极大地返回运行方式;4)1/2 单极大地返回运行方式;5)完整单极金属回路运行方式;6)1/2 单极金属回路运行方式;7)3/4 双极运行方式。 平波电抗器采用 2 台串连的型式,分别配置在直流极线和中性线母线上,降低了平波电抗器的制造难度。每一个12 脉动换流器两端并接有旁路断路器以及隔离开关,用于旁路或者投入此12 脉动换流器。换流变压器的型式为单相双绕组。 由于直流系统电压从±500 kV 提高到了±800kV,特高压直流输电工程换流器接线从传统的单12脉动换流器改为采用双12 脉动换流器结构。采用双12 脉动换流器结构,使主回路有更多的运行方式,提高了整个系统运行的灵活性和可用率。

为什么采用高压直流输电

问题63:为什么采用高压直流输电? 发布时间:2007-07-23 点击次数: 追溯历史,最初采用的输电方式是直流输电,于1874年出现于俄国。当时输电电压仅100V。随着直流发电机制造技术的提高,到1885年,直流输电电压已提高到6000V。但要进一步提高大功率直流发电机的额定电压,存在着绝缘等一系列技术困难。由于不能直接给直流电升压,输电距离受到极大的限制,不能满足输送容量增长和输电距离增加的要求。19世纪80年代末,人类发明了三相交流发电机和变压器。1891年,世界上第一个三相交流发电站在德国竣工。此后,交流输电普遍代替了直流输电。随着电力系统的迅速扩大,输电功率和输电距离的进一步增加,交流输电遇到了一系列技术困难。大功率换流器(整流和逆变)的研究成功,为高压直流输电突破了技术上的障碍,直流输电重新受到人们的重视。1933年,美国通用电器公司为布尔德坝枢纽工程设计出高压直流输电装置;1954年,建起了世界上第一条远距离高压直流输电工程。之后,直流输电在世界上得到了较快发展,现在直流输电工程的电压等级大多为±275~±500kV,投入商业运营的直流工程最高电压等级为 ±600kV(巴西伊泰普工程),我国计划在西南水电送出的直流工程中采用±800kV电压等级。 在现代直流输电系统中,只有输电环节是直流电,发电系统和用电系统仍然是交流电。在输电线路的送端,交流系统的交流电经换流站内的换流变压器送到整流器,将高压交流电变为高压直流电后送入直流输电线路。直流电通过输电线路送到受端换流站内的逆变器,将高压直流电又变为高压交流电,再经过换流变压器将电能输送到交流系统。在直流输电系统中,通过控制换流器,可以使其工作于整流或逆变状态。 我国目前建成的高压直流输电工程均为两端直流输电系统。两端直流输电系统主要由整流站、逆变站和输电线路三部分组成,如图5-1所示。

三大特高压直流输电线路背景资料

三大特高压直流输电线路背景资料 一、特高压直流线路基本情况 ±800kV复奉直流线路四川段起于复龙换流站,止于377#塔位,投运时间2009年12月,长度187.275km,铁塔378基,途径四川省宜宾市宜宾县、高县、长宁县、翠屏区、江安县、泸州市纳溪区、江阳区、合江县共8个区县,在合江县出境进入重庆境内。线路全部处于公司供区,途径地市公司供电所35个。接地极线路79公里,铁塔189基。±800kV 复奉线输送容量6400MW。 ±800kV锦苏直流线路四川段起于锦屏换流站,止于987#塔位,投运时间2012年12月,长度484.034km,铁塔988基,自复龙换流站起与复奉线同一通道走线,途径四川省凉山州西昌市、普格县、昭觉县、美姑县、雷波县、云南省昭通市绥江县、水富县、宜宾市屏山县、宜宾县、高县、长宁县、翠屏区、江安县、泸州市纳溪区、江阳区、合江县共16个区县,在合江县出境进入重庆境内。线路处于公司供区长度268.297公里、铁塔563基,途径地市公司供电所44个;另有0036#-0344#、0474#-0493#区段(长度153.268公里、铁塔320基)处于地方电力供区,0494#-0598#区段(长度62.469公里、铁塔105基)处于南方电网供区。接地极线路74公里,铁塔207基。±800kV锦苏线输送容量7200MW。

±800kV宾金直流线路工程四川段起于宜宾换流站,止于365#塔位,试运行时间2014年03月,长度182.703km,铁塔366基,途径四川省宜宾市宜宾县、珙县、兴文县、泸州市叙永县、古蔺县共5个区县,在古蔺县出境进入贵州境内。线路全部处于公司供区,途径地市公司供电所22个。接地极线路101公里,铁塔292基。±800kV宾金线输送容量8000MW。 线路名称线路长度 (km) 杆塔数量投运时间 途径区县数 量 途径属地公 司供电所 ±800kV 复奉直流 187.275 378 2009.12 8 35 复龙换流站 接地极线路 79.106 189 ±800kV 锦苏直流 484.034 988 2012.12 16 44 锦屏换流站 接地极线路 74.147 207 ±800kV 宾金直流 182.703 366 2014.03(试 运行)5 22 宜宾换流站 接地极线路 101.174 292

特高压交流和高压直流输电系统运行损耗及经济性分析

特高压交流和高压直流输电系统运行损耗及经济性分析 发表时间:2018-04-12T10:36:46.213Z 来源:《电力设备》2017年第32期作者:常彦 [导读] 摘要:特高压交流和高压直流输电系统的运行损耗对于输电系统运行的经济性具有直接重要的影响,对于提高输电系统设备的运行效率和使用寿命,促进电力资源优化合理配置都有着积极的促进作用。 (国网山西省电力公司检修分公司山西省太原市 030031) 摘要:特高压交流和高压直流输电系统的运行损耗对于输电系统运行的经济性具有直接重要的影响,对于提高输电系统设备的运行效率和使用寿命,促进电力资源优化合理配置都有着积极的促进作用。 关键词:特高压交流;高压直流;输电系统;运行损耗分析;经济分析 在我国覆盖全国电网的整体输电系统中,输电系统运行损耗都是不可避免的重要问题,运行损耗的大小直接影响到输电系统的经济效益和经济性。其中,关于特高压交流和高压直流输电系统,这一在整个电网中占有重要比重的输电系统的运行损耗和相关经济性分析研究具有十分重要的意义。 1特高压交流和高压直流输电系统及其经济性概述 中国是世界上国土面积第四大的国家,幅员辽阔,人口众多,地形复杂多样,并且由于地形地势气候等多方面的原因,中国的人口规模、经济发展状况以及资源能源需求量呈现西低东高的阶梯式分布。与其相反的是,我国的能源资源分布却是西高东低,具体到与电力相关的资源能源来说,我国目前有超过百分之七十的水力资源在西南,有大约百分之七十五的煤炭资源储存西北,风电和太阳能等能够用于发电的可再生能源也主要分布在西部、北部。因此,这种电力资源能源分布和电力资源需求的极不平衡性,决定着我国能源分配面对的巨大压力,以及通过多种方式优化电力资源配置的迫切性和重要性,其中,特高压交流和高压直流输电系统就是当前技术成熟,应用较为普及的两种主流输电方式,它们为我国电力资源的合理配置的大好局面,提供了重要的助力。所以,不断地分析和研究特高压交流和高压直流输电系统,也是提高电力资源配置效率和质量的必然要求。 分析输电系统经济性的重要内容,就是分析输电系统的运行损耗。对于本文的研究对象来说,特高压交流和直流输电系统经济性分析主要集中在前期建设投资、中期的输电网络运性维修、输电运行中不可避免的输电损耗和以及停电造成的损失费用四个方面。 2特高压交流和直流输电系统经济性分析 本文主要运用对比法分析特高压交流和直流系统的经济性,其中涉及二者经济性比较,主要从投资、运维、输电损耗和停电损失费用四个方面来进行比较,最后再进行综合汇总。 在对比分析法中,我们需要设定一个恒量,为了便于比较和计算,设置特高压交流和高压直流两种输电系统中,输电距离相同,在500-2000千米范围内,分为500千米、1000千米、1500千米和2000千米四个固定值。然后在此基础上,根据输电能力的大小、额定输送量和负载率对两种输电系统的影响大小。 采用的研究对象中,两种输电系统的具体参数分别为:特高压交流输电系统2个1000千伏变电站和多个中间开关站以及1回输电线路组成,线路规格为8×500平方毫米,并且每400千米一个间距设置一个开关站。高压直流输电系统无变电站及中间开关,但需架设1台换流站,同时采用的是6×900平方毫米的线路。 2.1投资费用分析 特高压交流输电系统中,需要建设变电站,变电站的建设费用为430元/千伏,8×500平方毫米规格的线路为425万元/千米。所以,变电站的建设费用为86亿元,线路的费用为500千米21.25亿元,1000千米42.5亿元,1500千米6 3.75亿元、2000千米85亿元。 高压直流输电系统中,不需要建设变电站,但是需要投资建设换流站,一台换流站单价为65亿元,6×900平方毫米规格的线路单价为397万元/ 千米,因此,线路的费用为500千米19.85亿元,1000千米39.7亿元,1500千米59.55亿元、2000千米79.4亿元。 因此,经过对比,在不考虑其他任何因素的情况下,在特高压交流电输电网络的前期站设投资要远远大于高压直流电的输电网络。直到输电距离达到6000千米,高压直流输电网络才更加具有经济价值。 2.2运维费用分析 输电网络的运维就是指输电网络硬件设备的元件耗损率和故障维修的费用。通过对比,我们不难发现,高压直流换流站设备和阀组众多,系统的运行状态比交流系统多,类似换流变压器和阀组这部分元件故障频率较多,维修更新的时间较长,特高压交流变电站的元件较少且故障持续时间短。因此,可以说在各个距离高压直流输电网络的运维费用都要大于特高压交流输电网络,在运维费用方面,特高压交流输电网络更具经济性。 2.3输电损耗费用分析 特高压和超高压交流输电系统的运行损耗主要包括变电站损耗和输电线路损耗两部分。一方面变电站损耗包括变压器、电抗器、电容器等设备损耗等硬件和变电站日常运行用电造成的损耗,这种损耗鱼输电系统的随输送容量基本成正比,随着输送容量的变化成比例调整。另一方面,输电线路损耗主要包括电阻损耗、电晕损耗和泄漏损耗,其中电阻损耗属于硬件损耗的一种,电阻损耗量同样随输送容量的变化成比例变化,电晕损耗的变化则基本受电压等级、导线结构和天气情况等因素影响,泄漏损耗通常并不计入记录分析中。 2.3.1电阻损耗 通常情况下,电路损耗是理论意义上的损耗,是指线路在满负荷运行时造成的功率损耗。然而在实际电力输送中,输电系统不可能不间断地满负荷运行。 计算公式如下:线路电阻损耗值=线路电阻×额定电流×损耗小时数 计算结果可由两种输电系统的具体参数估算到。 2.3.2电晕损耗 交流线路电晕损耗很容易受到线路电压、导线结构和气候条件的影响,经过研究发现,在雨雪天起电晕平均损耗可以达到为晴朗天气平均损耗的37-50倍。电晕损耗年平均值计算公式为 电晕损耗年平均值=(好天气小时数损耗+雪天小时数损耗+雨天小时数损耗)/全年日历小时数” 2.4停电损失费用分析

安全工作总结(800kV换流站)讲课讲稿

工作总结 本人于2009年参加监理工作,一直参与220kV及以上变电站工程建设,其中包括特高压2个项目福州1000kV变电站、±800kV灵州换流站工程建设的现场监理工作。在参与以上几个项目的过程中,我充分认识到监理工作的核心内容;运用策划、组织、协调、审核、检查、见证、签证等手段,纠正负偏差,科学加艺术,贯穿全过程有效的控制承包商,由具备能力和资格的人,使用合格材料和设备,利用合适合格的机械和计量器具,按正确的方法和程序。实施项目建设组织管理活动和施工作业活动的重要性。所以在以上几个项目建设过程中积累了一些看法和做法。 一、工作做法 那就是一心、二懂、三勤、四审、五查;(一心:责任心; 二懂:懂业务、懂协调; 三勤:脚勤、手勤、嘴勤;四审:审策划文件、审制度、审资质、审施工(专项)方案;五查:查人员精神面貌、查作业环境、查防护、查交底、查措施落实)。 一、责任心;在我参与的工程建设中,大多数项目建设目标高、工期紧、任务重,无疑增大了监理工作压力,对监理人员综合素质能力要求更高。所以监理人员一定要强大的责任心,做到爱岗敬业,忠于职守,牢固树立安全生产思想,坚持问题导向,善于发现问题、敢于触及问题、紧紧扭住问题、切实解决问题,不断消除矛盾隐患。我们就能把好我们的安全关。 二、懂业务、懂协调;1、监理人员专业知识不能单一,各专业不仅要懂得本专业的工作流程、规范、标准,同时要掌握其它专业知识。

安全专业必须知道常规土建专业知识及电气专业知识,、如土方开挖,模板安装、钢筋绑扎、混凝土浇筑、装修等各工序工种在施工过程存在的安全风险和安全隐患。同样土建、电气也要懂得安全知识。所以每个监理人员要认真学习。2、做好业主与施工单位的桥梁作用,使业主相关要求能够顺利落实到位。协调施工单位之间的各项工作,使每项工作能做到和谐安全文明施工。 三、脚勤、手勤、嘴勤;监理人员要想做好本职工作,1、脚勤,去施工现场巡视、巡查,走遍每个角落,走遍每个作业点,查找存在的问题。2、手勤,写好监理日志,记好旁站记录,在巡视过程中发现问题要记录,提出整改要求,写好整改总结。3、嘴勤;看到违章、违规的人和事,必须要去提醒对方,并正确告诉对方应该怎么去做。要不厌其烦,耐心说教。 四、审策划文件、审制度、审资质、审施工(专项)方案; 1、审策划文件,如施工单位报审的《施工安全管理及风险控制方案》这是施工单位安全纲领性文件,(1)审查该文件编制依据是否有过期文件。(2)审查该文件编制目标是否符合工程建设目标。(3)管理机构和职责是否完善。(4)安全管理措施是否有针对性、实用性、有效性。(5)风险管理,工程施工安全风险识别、评估和预控清册是否是识别全面,评估正确,预控措施是否得当等。2、审制度,相关制度是否齐全,制度的编制是否符合国家、行业规范和标准。3、审资质,审查项目管理人员资质,审查特殊工种人员资质,如特高压项目经理的资质是否满足本工程任职条件(330kV以上一级建造师证,省级颁发项目负责人安全生产考核合格证书和国网或省级公司颁发的安全

高压直流输电课后习题答案

《高压直流输电技术》思考题及答案 一.高压直流输电发展三个阶段的特点? 答:1 1954年以前——试验阶段; 参数低;采用低参数汞弧阀;发展速度慢。 2 1954年~1972年——发展阶段; 技术提高很大;直流输电具有多方面的目的(如水下传输;系统互联;远距离、大容量传输)。 3 1972年~现在——大力发展阶段; 采用可控硅阀;几乎全是超高压;单回线路的输电能力比前一阶段有了很大的增加;发展速度快。 二.高压直流输电的基本原理是什么? 答:直流输电线路的基本原理图见图1.3所示。从交流系统 向系统 输电能时,换流站CS1把送 端系统送来的三相交流电流换成直流电流,通过直流输电线路把直流电流(功率)输送到换流站CS2,再由CS2把直流电流变换成三相交流电流 三.高压直流输电如何分类? 答:分两大类: 1 单极线路方式; A.单极线路方式; 采用一根导线或电缆线,以大地或海水作为返回线路组成的直流输电系统。 B.单极两线制线路方式; 将返回线路用一根导线代替的单极线路方式。 2 双极线路方式; A. 双极两线中性点两端接地方式; B. 双极两线中性点单端接地方式; C. 双极中性点线方式; D. “背靠背”(back- to- back)换流方式。 四.高压直流输电的优缺点有哪些? 答:优点:1 输送相同功率时,线路造价低; 2 线路有功损耗小; 3 适宜海下输电; 4 没有系统的稳定问题; 5 能限制系统的短路电流; 6 调节速度快,运行可靠 缺点:1 换流站的设备较昂贵; 2 换流装置要消耗大量的无功; 3 换流装置是一个谐波源,在运行中要产生谐波,影响系统运行,所以需在直流系统的交流侧和直 流侧分别装设交流滤波器和直流滤波器,从而使直流输电的投资增大; 4换流装置几乎没有过载能力,所以对直流系统的运行不利。 5 由于目前高压直流断路器还处于研制阶段,所以阻碍了多端直流系统的发展。 6 以大地作为回路的直流系统,运行时会对沿途的金属构件和管道有腐蚀作用;以海水作为回路时, 会对航海导航仪产生影响。 五.为什么输送相同功率时,直流输电线路比交流输电线路造价低? 答:因为(1)对于架空线路,交流输电通常采用了三根导线而直流只需一根或二根导线,在输送

相关主题
文本预览
相关文档 最新文档