当前位置:文档之家› 燃烧热的测定

燃烧热的测定

燃烧热的测定
燃烧热的测定

燃烧热的测定

1. 简述燃烧热测定的实验原理。

答:1mol的物质完全燃烧时所放出的热量称为燃烧热。所谓完全燃烧是指该化合物中的C变为CO2(气),H变为H2O(液),S变为SO2(气),N变为N2(气),Cl成为HCl(水溶液),其它元素转变为氧

化物或游离态。

燃烧热可在恒压或恒容条件下测定。由热力学第一定律可知:

在不做非膨胀功情况下,恒容燃烧热Q v等于内能变化ΔU,恒压燃

烧热Q p等于焓变化ΔH。在氧弹式热量计中测得燃烧热为Q v,而一般热化学计算用的值为Q p,两者可通过下式进行换算:

Q p=Q v十ΔnRT

(1) 式中:Δn为燃烧反应前后生成物和反应物中气体的物质的量之差;R为摩尔气体常数;T为反应热力学温度。

测量燃烧热的仪器称为热量计。本实验采用氧弹式热量计,如

图71-1所示。在盛有定量水的容器中,放入内装有一定量样品和氧气的密闭氧弹

(图71-2),

然后使样品完

全燃烧,放出

的热量传给盛

水桶内的水和

氧弹,引起温

度上升。

氧弹热量

计的基本原理是能量守恒定律,样品完全燃烧所释放出的热量使氧

弹本身及其周围的介质(实验用水)和热量计有关的附件温度升高,测量介质在燃烧前后体系温度的变化值ΔT,就可求算出该样品的恒容燃烧热,其关系式如下:

m Q v + lQ点火丝+ qV = (C计+ C水m水) ΔT

(2) 式中:Q v为物质的恒容燃烧热(J·g-1);m为燃烧物质的质量(g);Q

点火丝为点火丝的燃烧热(J·g-1);l为燃烧了的点火丝的质量(g);q为

空气中的氮氧化为二氧化氮的生成热(用0.1mol/L NaOH滴定生成的硝酸时,每毫升碱相当于5.98J),V为滴定硝酸耗用的NaOH的体

积(mL);C计为氧弹、水桶、温度计、搅拌器的热容(J·k-1);C水为水的比热(J·g-1·k-1);m水为水的质量(g);ΔT为燃烧前后的水温的变化值(K)。

如在实验过程中,每次的用水量保持一定,把式(2)中的常数合并,即令

k = C计+ C水m水

则:m Q v + lQ点火丝+ qV = k ΔT (3) k为仪器常数。可以通过用已知燃烧热的标准物质(如苯甲酸)放在量热计中燃烧,测出燃烧前后温度变化,则:

k = (m Q v + lQ点火丝+ qv)/ΔT

(4)

用同样的方法把待测物质置于氧弹中燃烧,由温度的升高和仪

器的热容,即可测定待测物质的恒容燃烧热Q v,从(1)式计算恒压燃烧热Q p。实验中常忽略qV的影响,因为氧弹中的N2相对于高压O2而言可以忽略,其次因滴定HNO3而带来的误差可能会超过N2本身带来的误差,操作中可以采用高压O2先排除氧弹中的N2,这样既

快捷又准确。先由苯甲酸的理论恒压燃烧热根据公式算出恒容燃烧热,从而计算出仪器常数k,然后再测定恒容燃烧热根据公式转换

的实际恒压燃烧热。

2. 在使用氧气钢瓶及氧气减压阀时,应注意哪些事项?

答:在使用氧气钢瓶及氧气减压阀时,应注意以下几点:

(1) 氧气瓶及其专用工具严禁与油脂接触,操作人员不能穿用沾有各种油脂或油污的工作服、手套以免引起燃烧。

(2) 氧气钢瓶应直立放置要固定,远离火源,严禁阳光暴晒。

(3) 氧气减压阀要专用,安装时螺扣要上紧。

(4) 开启气瓶时,操作者应站在侧面,即不要面对减压阀出口,以免气流射伤人体。不许敲打气瓶如何部位。

(5) 用完气后先关闭气瓶气门,然后松掉气体流量螺杆。如果不松掉调节螺杆,将使弹簧长期压缩,就会疲劳失灵

(6) 气体将用完时,气瓶中的气体残余压力一般不应小于几个兆帕/平方厘米,不得用完。

(7) 气瓶必须进行定期技术检验,有问题时要及时处理,不能带病运行。

(8) 请仔细阅读气瓶及气体减压阀的使用说明书,以得到更详细的介绍。

3. 测定非挥发性可燃液体的热值时,能否直接放在氧弹中的不锈钢杯里测定?挥发性的可燃液体情况又怎样?

答:均不能直接放在氧弹中的不锈钢杯里测定,非挥发性或挥发性的可燃液体均应化装入胶囊或玻璃小球内点燃,这样才能保证样品完全燃烧。

4. 燃烧热的测定实验中,标定量热计热容后,测定试样时忘记换铁桶中的水对实验有无影响?为何要严格控制样品的称量范围?

答:有影响,因为热容是温度的函数,不同温度下量热计的热容严格来讲不等。样品质量太少了温差测量误差较大,样品质量太多了,不能保证燃烧完全。

5. 在燃烧热的测定实验中,为什么要测真实温差?怎样测定?

答:在燃烧热的测定实验中,实验成功的首要关键是保证样品完全燃烧;其次,还须使燃烧后放出的热量尽可能全部传递给热量计本身及其介质,而几乎不与周围环境发生热交换。为了做到这一点,热量计在设计制造上采取了几种措施,例如:在热量计外面设置一个套壳,此套壳有些是恒温的,有些是绝热的。因此,热量计又可分为主要包括恒温式热量计和绝热式热量计。另外,热量计壁高度抛光,这是为了减少热辐射。量热计和套壳间设置一层挡屏,以减少空气的对流。但是,热量的散失仍然无法完全避免,这可以是由于环境向热量计辐射热量而使其温度升高,也可以是由于热量计向环境辐射而使热量计的温度降低。因此,燃烧前后温度的变化值不能直接准确测量,而必须经过雷诺(Renolds)温度校正图进行校正。具体方法如下。

当适量待测物质燃烧后使热量计中的水温升高1.5-2.0℃。将燃烧前后历次观测到的水温记录下来,并作图,连成abcd线(图71-3)。图中b点相当于开始燃烧之点,c点为观测到的最高温度读数点,由于量热计和外界的热量交换,曲线ab及cd常常发生倾斜。取b点所对应的温度T1,c点对应的温度T2,其平均温度为T,经过T点作横坐标的平等线TO,与折线abcd相交于O点,然后过O 点作垂直线AB,此线与ab线和cd线的延长线交于E,F两点,则E点和F点所表示的温度差即为欲求温度的升高值ΔT。如图71-3所示,E E'表示环境辐射进来的热量所造成热量计温度的升高,这部分必须扣除;而F F'表示量热计向环境辐射出热量而造成热量计温度的降低,因此这部分必须加入。经过这样校正后的温差表示由于样品燃烧使热量计温度升高的数值。

图 71-3 绝热较差时的雷诺校正图图 71-4 绝热良好时的雷诺校正图

有时热量计的绝热情况良好,热量散失少,而搅拌器的功率又

比较大,这样往往不断引进少量热量,使得燃烧后的温度最高点不

明显出现,这种情况下ΔT仍然可以按照同法进行校正(图71-4)。

必须注意,应用这种作图法进行校正时,量热计的温度和外界

环境温度不宜相差太大(最好不超过2-3℃),否则会引起误差。

6. 燃烧热测定实验成败的关键是什么?怎样提高点火效率?

答:燃烧热测定实验成功的首要关键是保证样品完全燃烧;其次,还须使燃烧后放出的热量尽可能全部传递给热量计本身及其介质,而几乎不与周围环境发生热交换。压片不能压的太紧,点火丝

与药品要接触良好,不要短路,可提高点火效率。

7. 氧弹式量热计在中,哪些部件属于体系?哪些属于环境?实验过

程中有无热损耗?这些热损耗对实验结果有何影响?

答:氧弹热量计中氧弹、水桶、温度计、搅拌器、桶中的水属

于体系,除了体系外的其他的部分都是环境。

只要体系和环境间有温差就会有热损耗,当环境温度高于体系

温度时,环境就会向热量计辐射热量而使其温度升高;当体系温度

高于环境温度时,热量计就会向环境辐射而使热量计的温度降低,

从而使燃烧前后温度的变化不能直接准确测量,即直接测量的温差

不是测真实温差。

8. 氧弹充气后,用万用表检查两电极,导电不良应如何处理?

答:把氧弹里面氧气放掉,打开氧弹盖,检查点火丝是否与电极接好,重新装点火丝。

9. 在燃烧热的测定实验中,哪些因素容易造成误差?提高本实验的准确度应该从哪些方面考虑?

答:在燃烧热的测定实验中以下因素容易造成误差:(1)样品压片过程中混入污染物、称重后脱落、造成称重误差;(2)如果样品燃烧后残留了不易观测到的试样残留物、而又把它当作没有残留完全充分燃烧处理数据,势必造成较大误差;(3) 搅拌器功率较大,搅拌器不断引进的能量形成误差;(4)热量计的绝热性能应该良好,如果存在有热漏,漏入的热量造成误差;(5)数据处理中用直接测量的温差当成真实温差进行计算;

提高本实验的准确度应该从以下几方面考虑:(1)待测样品需干燥,受潮样品不易燃烧且称量有误差;(2)严格控制样品的称量范围;(3)压片机要专用,清洁干净;(4)将压片制成的样品放在干净的称量纸上,小心除掉易脱落部分,然后在分析天平上精确称量;(5)用用雷诺法校法得到真实温差。

11. 在燃烧热的测定实验中,所测温差值为什么要进行雷诺图的校正?

答:在燃烧热的测定实验中,只要体系和环境间有温差就会有热损耗,当环境温度高于体系温度时,环境就会向热量计辐射热量而使其温度升高;当体系温度高于环境温度时,热量计就会向环境辐射而使热量计的温度降低,从而使燃烧前后温度的变化不能直接准确测量,即直接测量的温差不是测真实温差,因此必须经过雷诺温度校正图进行校正。

有时热量计的绝热情况良好,热量散失少,而搅拌器的功率又

比较大,这样往往不断引进少量热量,使得燃烧后的温度最高点不

明显出现,这种情况下ΔT仍然可以按照同法进行校正(图71-4)。必须注意,应用这种作图法进行校正时,量热计的温度和外界环境

温度不宜相差太大(最好不超过2-3℃),否则会引起误差。

图 71-3 绝热较差时的雷诺校正图图 71-4 绝热良好时的雷诺校正图

15. 在燃烧热的测定实验中,使用定量的已知燃烧热的标准物质苯

甲酸做什么?

答:令k=m水C水+C计, k为仪器常数,可以通过用定量的已

知燃烧热的标准物质苯甲酸在热量计中燃烧,测出燃烧前后温度的

变化,求出k=(mQ v+lQ点火丝+qv)/△T。

17. 在量热测定中,还有哪些情况可能需要用到雷诺温度校正方法?

答:在量热测定实验中,如中和热的测定、溶解热的测定、稀

释热的测定等,热量计与周围环境的热交换无法完全避免,只要热

量计和环境间有温差就会有热损耗,当环境温度高于热量计温度时,环境就会向热量计辐射热量而使其温度升高;当热量计温度高于环

境温度时,热量计就会向环境辐射而使热量计的温度降低,从而使

测量前后温度的变化不能直接准确测量,即直接测量的温差不是测

真实温差,因此都可能需要用到雷诺温度校正方法进行校正。

必须注意,应用这种作图法进行校正时,量热计的温度和外界

环境温度不宜相差太大(最好不超过2-3℃),否则会引起误差。

物化实验报告燃烧热的测定

华南师范大学实验报告 一、实验目的 1、明确燃烧热的定义,了解定压燃烧热与定容燃烧热的差别。 2、掌握量热技术的基本原理;学会测定萘的燃烧热 3、了解氧弹量热计的主要组成及作用,掌握氧弹量热计的操作技术。 4、学会雷诺图解法校正温度改变值。 二、 实验原理 通常测定物质的燃烧热,是用氧弹量热计,测量的基本原理是能量守恒定律。一定量被测物质样品在氧弹中完全燃烧时,所释放的热量使氧弹本身及其周围的介质和量热计有关附件的温度升高,测量介质在燃烧前后温度的变化值T ?,就能计算出该样品的燃烧热。 ()p V Q Q RT n g =+? (1) ()V W W Q Q C W C M +=+样品21总铁丝铁丝水水(T -T ) (2) 用已知燃烧热的物质(本实验用苯甲酸)放在量热计中燃烧,测其始末温度,求出T ?。 便可据上式求出K ,再用求得的K 值作为已知数求出待测物(萘)的燃烧热。 三、仪器和试剂 1.仪器 SHR-15氧弹量热计1台;贝克曼温度计;压片机 2台;充氧器1台;氧气钢瓶1个;1/10℃温度计;万能电表一个;天平 2.试剂 铁丝;苯甲酸(AR);萘(AR );氧气 四、实验步骤 1、测定氧氮卡计和水的总热容量 (1)样品压片:压片前先检查压片用钢模,若发现钢模有铁锈油污或尘土等,必须擦净后,才能进行压片,用天平称取约0.8g 苯甲酸,再用分析天平准确称取一根铁丝质量,从模具的上面倒入己称好的苯甲酸样品,徐徐旋紧 压片机的螺杆,直到将样品压成片状为止。抽出模底的托板,再继续向下压,使模底和样品一起脱落,然后在分析天平上准确称重。 分别准确称量记录好数据,即可供燃烧热测定用。 (2)装置氧弹、充氧气:拧开氧弹盖,将氧弹内壁擦净,特别是电极下端的不锈钢接线柱更应擦十净,将点火丝的两端分别绑紧在氧弹中的两根电极上,选紧氧弹盖,用万用表欧姆档检查两电极是否通路,使用高压钢瓶时必须严格遵守操作规则。将氧弹放在充氧仪台架上,拉动板乎充入氧气。 (3)燃烧温度的测定:将充好氧气后,再用万用表检查两电极间是否通路,若通路将氧弹放入量热计内简。用量筒称3L 自来水,倒入水桶内,装好搅拌轴,盖好盖子,将贝克曼温度计探头插入水中,此时用普通温度计读出水外筒水温和水桶内的水温。接好电极,盖上盖了,打开搅拌开关。待温度温度稳定上升后,每个半分钟读取贝克曼温度计一次,连续记

燃烧焓的测定_物化实验

图1 量热氧弹 实验四 燃烧焓的测定 冷向星 2010011976 材03班(同组实验者:琦) 实验日期:2012-4-5 带实验的老师:春 1 引言 有机化合物的生成焓难以直接从实验中测定,然而有机化合物易于燃烧,含碳、氢和氧等三种元素的有机化合物完全燃烧时生成二氧化碳和水。从有机化合物燃烧的热效应数据也可以估算反应热效应。 通常燃烧焓在等容条件下测定(即称为“氧弹”的不锈钢容器中燃烧),所得数据为值,经换算后可得出值。 1.1实验目的 1.使用弹式量热计测定萘的燃烧焓。 2.了解量热计的原理和构造,掌握其使用方法。 3.掌握热敏电阻测温的实验技术。 1.2实验原理 当产物的温度与反应物的温度相同,在反应过程中只做体积功而不做其它功时,化学反应吸收或放出的热量,称为此过程的热效应,通常亦称为“反应热”。热化学中定义:在指定温度和压力下,一摩尔物质完全燃烧成指定产物的焓变,称为该物质在此温度下的摩尔燃烧焓,记作ΔC H m 。通常,C 、H 等元素的燃烧产物分别为CO 2(g)、H 2O(l)等。由于上述条件下ΔH=Q p ,因此ΔC H m 也就是该物质燃烧反应的等压热效应Q p 。 在实际测量中,燃烧反应常在恒容条件下进行(如在弹式量热计中进行),这样直接测得的是反应的恒容热效应Q V (即燃烧反应的摩尔燃烧能变ΔC U m )。若反应系统中的气体物质均可视为理想气体,根据热力学推导,ΔC H m 和ΔC U m 的关系为: p V Q Q nRT =+? (1) 测量热效应的仪器称作量热计,量热计的种类很多,一般测量燃烧焓用弹式量热计。本实验是用氧弹式量热计进行萘的燃烧焓的测定,结构如图1。实验过程中外水套保持恒温,水桶与外水套之间以空气隔热。同时,还把水桶的外表面进行了电抛光。这样,水桶连同其中的氧弹、测温器件、搅拌器和水便近似构成了一 个绝热系统。 将待测燃烧物质装入氧弹中,充入足够的氧气。氧弹放入装有一定量 水的桶中,盖好外桶盖。以电控部分各开关控制搅拌并实现燃烧点火,用 热敏电阻作为测温元件,用电子自动平衡记录仪连续记录桶水温度的变化。 当某样品连同辅助物质棉线、金属丝燃烧后,下式成立:

燃烧热的测定简答题

1、在氧弹里加10ml蒸馏水起什么作用? 在燃烧过程中,当氧弹内存在微量空气时,N2的氧化会产生热效应。生成NO、NO2等,NO+NO2+H2O=HNO2,而后利用NaOH溶液对其滴定,以扣除N2燃烧引起的放热,若不加入蒸馏水,灰烬落在氧弹内较难清洗,加入水后灰烬落入水中,也便于氧弹清洗。2、在实验中,哪些为体系?哪些为环境?实验过程中有无热损耗,如何降低热损耗? 在本实验装置中,氧弹的内部是被测物质的燃烧空间,也就是燃烧反应体系。氧弹壳及环境恒温式量热计及内外筒内的水为环境。盛水桶、3000ml水(刚好可以淹没氧弹)和氧弹三部分组成了测量体系,测量体系与环境之间有热量的交换,因为理想的绝热条件是不可能达到的,同时影响热量的交换量大小的因素也比较多,与体系、环境的材质有关;与体系、环境的接触界面积大小有关;与体系、环境的温差有关。所以要定量准确地测量出体系与环境交换的热量是比较困难的。如果有净的热量交换的话,将会增大实验的测量误差。在本实验过程中,样品点火燃烧以后体系的温度肯定将高于环境的温度,体系将热传递给环境,因此就必须在样品点火燃烧以前使体系的温度低于环境的温度,使体系从环境处获得热量,并使体系获得的热量与传出的热量尽量抵消,这样测量的效果就相当于绝热体系的结果。 3、在环境恒温式量热计中,为什么内筒温度要比外筒温度低?低多少合适? 无法避免体系与环境之间有热量的交换,就希望体系与环境之间交换的热量为零或尽可能的小。在本实验过程中,样品点火燃烧以后体系的温度肯定将高于环境的温度,体系将热传递给环境,因此就必须在样品点火燃烧以前使体系的温度低于环境的温度,使体系从环境处获得热量,并使体系获得的热量与传出的热量尽量抵消,这样测量的效果就相当于绝热体系的结果。根据称样量范围,升温变化应在1.5~2度之间,所以选择起始水温低于环境1度左右,以减少因未采用绝热式热量计而引起的热辐射误差。 4、欲测定液体样品的燃烧热,你能想出测定方法吗? 采用药用胶囊装取液体试样装入氧弹进行测量。(计算时扣除胶囊的燃烧热)。 采用脱脂棉吸附液体试样方法。(计算时扣除脱脂棉的燃烧热)。 思考题; 1.加入内筒中水的温度为什么要选择比外筒水温低?低多少合适?为什么? 2.在燃烧热测定实验中,哪些是体系?哪些是环境?有无热交换?这些热交换对实验结果有何影响? 3.在燃烧热测定的实验中,哪些因素容易造成实验误差?如何提高实验的准确度? ①检验多功能控制器数显读数是否稳定。熟习压片和氧弹装样操作,量热计安装注意探头不得碰弯,温度与温差的切换功能键钮,报时及灯闪烁提示功能等。

煤及其燃烧的介绍

.煤及其燃烧的介绍(资料) 煤的组成 煤由碳、氢、氧、氮、硫等元素组成,还含有一定水分,灰分和其它杂质。煤的燃烧部分:一是碳,二是挥发分。 碳是煤的主要成分,含碳量越高的,其发热量亦越高。由于碳的燃点较高(约700℃左右)故含碳量越高的煤越难点燃。 挥发分包括氢(H2)、氧(O2)、硫化氢(H2S)、甲烷(CH4)、乙烯(C 2H4)等。挥发分含量较高的煤燃点较低,容易点燃,但碳量相应减少,发热量也较低。 水分是煤的杂质之一,其含量以小于10%为好。 灰分是混入煤中的沙、石、灰土等杂质,一般应小于30%,其含量高的,将使炉渣增多,降低煤质,影响燃烧。但含量过少,在燃烧时又容易出现“流炉”漏炭。 2.煤的种类 煤有褐煤、烟煤、无烟煤、半无烟煤等几种。云南常用的是褐煤、烟煤、无烟煤三种。煤的种类不同,其成分组成与质量不同,发热量也不相同(表4-15)。单位重量燃料燃烧时放出的热量称为发热量,人为规定以每公斤发热量7000千卡的煤作为标准煤,并以此标准折算耗煤量。 (1)褐煤:多为块状,呈黑褐色,光泽暗,质地疏松;含挥发分40%左右,燃点低,容易着火,燃烧时上火快,火焰大,冒黑烟;含碳量与发热量较低(因产地煤级不同,发热量差异很大),燃烧时间短,需经常加煤。

(2)烟煤:一般为粒状、小块状,也有粉状的,多呈黑色而有光泽,质地细致,含挥发分30%以上,燃点不太高,较易点燃;含碳量与发热量较高,燃烧时上火快,火焰长,有大量黑烟,燃烧时间较长;大多数烟煤有粘性,燃烧时易结渣。 (3)无烟煤:有粉状和小块状两种,呈黑色有金属光泽而发亮。杂质少,质地紧密,固定碳含量高,可达80%以上;挥发分含量低,在10%以下,燃点高,不易着火;但发热量高,刚燃烧时上火慢,火上来后比较大,火力强,火焰短,冒烟少,燃烧时间长,粘结性弱,燃烧时不易结渣。应掺入适量煤土烧用,以减轻火力强度。 3.煤的燃烧 (1)煤燃烧需要的条件:煤的燃烧是碳和其它可燃物剧烈氧化的反应。为了把煤炭所含有的热量尽量释放出来,就应充分满足煤对燃烧的要求,以达到使煤尽可能完全燃烧的目的。煤的燃烧需要以下条件: ①维持足够的炉膛温度。煤只有加热到一定温度时才能着火燃烧,而且炉膛内温度越高,煤的燃烧越快,越充分。所以应防止炉膛温度降低,影响煤的燃烧。 ②供给充足的氧气。通风供氧不足,煤不能燃尽。通风供氧过多,导致炉膛温度下降。适当偏多的通风,是保证充分燃烧的条件。在烘烤时,可根据火焰颜色判断通风量进行调节。通常,火焰呈黑红色的表示通风供氧不足,火焰呈亮白色的表示通风供氧过多,火焰呈麦黄色的表示通风供氧适当。 ③需有足够的燃烧时间。煤的燃烧要经过蒸发、分解、碳燃烧、燃尽等阶段。各阶段都需要

燃烧焓的测定-2006030027

燃烧焓的测定 吴大维 2006030027 生64 同组实验者:王若蛟 实验日期:2008年3月7日提交报告日期:2008年3月21日 助教:卢晋 1引言 1.1 实验目的 1.使用弹式量热计测定萘的燃烧焓。 2.了解量热计的原理和构造,掌握其使用方法。 3.掌握热敏电阻测温的实验技术。 1.2 实验原理 当产物的温度与反应物的温度相同,在反应过程中只做体积功而不做其它功时,化学反应吸收或放出的热量,称为此过程的热效应,通常亦称为“反应热”。热化学中定义:在指定温度和压力下,一摩尔物质完全燃烧成指定产物的焓变,称为该物质在此温度下的摩尔燃烧焓,记作ΔC H m。通常,C、H等元素的燃烧产物分别为CO2(g)、H2O(l)等。由于上述条件下ΔH=Q p,因此ΔC H m也就是该物质燃烧反应的等压热效应Q p。 在实际测量中,燃烧反应常在恒容条件下进行(如在弹式量热计中进行),这样直接测得的是反应的恒容热效应Q V(即燃烧反应的摩尔燃烧内能变ΔC U m)。若反应系统中的气体物质均可视为理想气体,根据热力学推导,ΔC H m和ΔC U m的关系为: (1)式中,T为反应温度(K);ΔC H m为摩尔燃烧焓(J·mol-1);ΔC U m为摩尔燃烧内能变(J·mol-1);v B(g)为燃烧反应方程中各气体物质的化学计量数。产物取正值,反应物取负值。通过实验测得Q V值,根据上式就可计算出Q p,即燃烧焓的值ΔC H m。 测量热效应的仪器称作量热计,量热计的种类很多,一般测量燃烧焓用弹式量热计。本实验是用氧弹式量热计进行萘的燃烧焓的测定,结构如上图。

实验过程中外水套保持恒温,内水桶与外水套之间以空气隔热。同时,还把内水桶的外表面进行了电抛光。这样,内水桶连同其中的氧弹、测温器件、搅拌器和水便近似构成了一个绝热系统。 量热仪的外桶盖为提升式。将其向上提到限位高度,顺时针旋转约90度,便可停放住。点火电极的上电极触头、内水桶搅拌器及测温器件均固定在外桶盖上,当把桶盖旋转到适当位置降下时,它们便都处于预定位置。搅拌器的马达也固定在外桶盖上,其电源线及点火电极连线经桶盖内部与量热仪的电控部分连通。氧弹的另一极经弹杯、内水桶及外水套与电控部分连通。 将待测燃烧物质装入氧弹时,充入足够的氧气。氧弹放入装有一定量水的内桶中,盖好外桶盖。以电控部分各开关控制搅拌并实现燃烧点火,用热敏电阻作为测温元件,用电子自动平衡记录仪连续记录内桶水温度的变化。 当温度变化不大时,可以认为热敏电阻阻值变化与温度变化成正比;当阻值变化不大时,电桥的不平衡电势U 与阻值变化成正比。所以U ∞?T 由于U 与记录仪的记录曲线峰高?h 成正比,故 ?T=a ?h (2) 式中a 为比例常数。设系统(包括所有内水桶中的物质)的热容C 为常数,则当某样品连同辅助物质棉线、金属丝燃烧后,下式成立: B c B B m U C T Ca h K h M ??=?=?=?∑ (3) 式中:c B U ?--------物质B 的摩尔燃烧内能变,J ·mol -1 B m ---------物质B 的质量 ,kg B M ---------物质B 的摩尔质量 ,kg ·mol -1 C-----------系统热容,也称能当量或水当量 J ·K -1 K-----------仪器常数,J ·mm -1 h ?---------记录仪记录曲线峰高, mm 先燃烧已知燃烧焓的物质(如苯甲酸),标定仪器常数K ,再燃烧未知物质,便可由上式计算出摩尔燃烧内能变。 2 实验操作 2.1 实验药品、仪器型号及测试装置示意图 实验仪器: GR3500型弹式量热计1套; 热敏电阻1支(约2k Ω); 大学化学实验计算机接口; 温度计1支; 2000ml ,1000ml 容量瓶各1个; 3000ml 装水盆1个; 镊子1把。 压片机、镍丝、棉线、万用表、台秤、分析天平、剪刀、尺子、氧气瓶功用。

燃烧热的测定

内容提要:本实验利用氧弹式热量计,以苯甲酸为标准 物,测量物质燃烧时系统温度随时间的变化曲线,经过雷 诺校正和相关计算,得到16.3℃,102.20 kPa下,热量计 的水当量为(1.87±0.07)×103 J?K?1,进而得到蔗糖的 燃烧热为(?16.4±0.1) kJ?g?1,与文献值比较误差为- 0.6 %。对实验的讨论给出了可能引起误差的原因,并说明 了雷诺校正的原理及意义。 1 引言(略) 2 实验部分 2.1 仪器和药品 GR 3500Ⅱ型氧弹式热量计,氧气钢瓶,压片机,SWC-Ⅱ D型温差测量仪,RF-K1型控制箱,数字万用表,秒表,分析天平(万分之一),电子天平(百分之一),研钵,容量瓶(1000 mL,2000 mL)。 镍丝,棉线,苯甲酸(分析纯),蔗糖(分析纯)。 2.2实验步骤 2.2.1 水当量的测量 取一段镍丝,称量其质量m1,紧缠于氧弹两电极上。取一段棉线,称量其质量m2。称取约1.0 g研磨过的苯甲酸,用专用压片机压片。用棉线绑住压片,称量总质量m3后置于燃烧皿中,棉线两端缠绕在镍丝上。 旋紧氧弹盖,充入约1 MPa氧气,随即放气。重复三次,最后充入1.0 MPa氧气。用数字万用表测得两电极间的电阻为12~15 Ω,符合要求。将氧弹放入热量器中。 从实验室中的水箱内取3000.0 mL水加入热量器内筒,关上热量器盖,插入温差测量仪探头,启动控制箱开始搅拌。待水温稳定上升后,将温差测量仪采零,开始计时,每隔30 s记录一次温差。10 min后点火,每15 s记录一次温差。待温差基本保持不变后停止计时。 停止搅拌,取出温差测量仪探头,打开盖子,取出氧弹,泄去废气,打开氧弹,取出剩余镍丝并称量其质量m4。 2.2.2 蔗糖燃烧热的测量 擦干氧弹内外壁和热量器内筒,清理燃烧皿中的残渣。用 2.2.1所述方法测量蔗糖的温差-时间变化曲线,进而计算燃烧热。

燃烧热的测定实验报告

浙江万里学院生物与环境学院化学工程实验技术实验报告 实验名称:燃烧热的测定

一、 实验预习(30分) 1. 实验装置预习(10分)_____年____月____日 指导教师______(签字)成绩 2. 实验仿真预习(10分)_____年____月____日 指导教师______(签字)成绩 3. 预习报告(10分) 指导教师______(签字)成绩 (1) 实验目的 1.用氧弹量热计测定蔗糖的燃烧热。 2.掌握恒压燃烧热与恒容燃烧热的概念及两者关系。 3.了解氧弹量热计的主要结构功能与作用;掌握氧弹量热计的实验操作技术。 4.学会用雷诺图解法校正温度变化。 (2) 实验原理 标准燃烧热的定义是:在温度T 、参加反应各物质均处标准态下,一摩尔β相的物质B 在纯氧中完全燃烧时所放出的热量。所谓完全燃烧,即组成反应物的各元素,在经过燃烧反应后,必须呈显本元素的最高化合价。如C 经燃烧反应后,变成CO 不能认为是完全燃烧。只有在变成CO 2时,方可认为是完全燃烧。同时还必须指出,反应物和生成物在指定的温度下都属于标准态。如苯甲酸在298.15K 时的燃烧反应过程为: (液)(气)(气)(固)O H CO O COOH H C 22 256372 15 +?+ 由热力学第一定律,恒容过程的热效应Q v ,即ΔU 。恒压过程的热效应Q p ,即ΔH 。它们之间的相互关系如下: nRT Q Q V P ?+= (1) 或nRT U H ?+?=? (2) 其中Δn 为反前后气态物质的物质的量之差。R 为气体常数。T 为反应的绝对温度。本实验通过测定蔗糖完全燃烧时的恒容燃烧热,然后再计算出蔗糖的恒压燃烧ΔH 。在计算蔗糖的恒压

燃烧热的测定实验报告

实验二 燃烧热的测定 一、目的要求 1.用氧弹量热计测定萘的燃烧热。 2.了解氧弹量热计的原理、构造及使用方法。 二、实验原理 1摩尔物质完全氧化时的反应热称为燃烧热。所谓完全氧化是指C 变为CO 2(气),H 变为H 2O(液),S 变为SO 2(气),N 变为N 2(气),如银等金属都变成为游离状态。 例如:在25℃、1.01325×105Pa 下苯甲酸的燃烧热为-3226.9kJ/mol ,反应方程式为: 1.01325105165222225C H COOH()+7O ()7CO H O Pa s g g l ??????→℃ ()+3() 3226.9kJ/mol c m H O ?=- 对于有机化合物,通常利用燃烧热的基本数据求算反应热。燃烧热可在恒容或恒压条件下测定,由热力学第一定律可知:在不做非膨胀功的情况下,恒容燃烧热V Q U =?,恒压燃烧热p Q H =?。在体积恒定的氧弹式量热计中测得的燃烧热为Q V ,而通常从手册上查得的数据为Q p ,这两者可按下列公式进行换算 ()p V Q Q RT n g =+? (2-1) 式中,Δn(g)——反应前后生成物和反应物中气体的物质的量之差; R ——气体常数; T ——反应温度,用绝对温度表示。 通常测定物质的燃烧热,是用氧弹量热计,测量的基本原理是能量守恒定律。一定量被测物质样品在氧弹中完全燃烧时,所释放的热

量使氧弹本身及其周围的介质和量热计有关附件的温度升高,测量介质在燃烧前后温度的变化值T ?,就能计算出该样品的燃烧热。 ()V W W Q Q C W C M + =+样品 21总铁丝铁丝水水(T -T ) (2-2) 式中,W 样品,M ——分别为样品的质量和摩尔质量; Q V ——为样品的恒容燃烧热; W 铁丝,铁丝Q ——引燃用的铁丝的质量和单位质量的燃烧热 (-16.69kJ g Q =?铁丝); C W 水水,——分别为水的比热容和水的质量; C 总——是量热计的总热容(氧弹、水桶每升高1K ,所需的总 热量); 21T T -——即T ?,为样品燃烧前后水温的变化值。 若每次实验时水量相等,对同一台仪器C 总不变,则(C W C +总水水)可视为定值K ,称为量热计的水当量。 水当量K 的求法是:用已知燃烧热的物质(本实验用苯甲酸)放在量热计中燃烧,测其始末温度,求出T ?,便可据式2-2求出K 。 三、仪器和药品 1.仪器 SHR-15氧弹量热计1台;SWC-ⅡD 精密温度温差仪1台;压片机 1台;充氧器1台;氧气钢瓶1个。部分实验仪器如图2.1和图2.2所示。

燃烧热的测定

题目:燃烧热的测定学院名称:化学与环境工程学院专业:化学工程与工艺班级:14化工2 学号:2014333222 姓名:刘磊 指导老师:陈旭红 二〇一六年十一月

目录 一目的要求、实验原理·········3~4页二仪器试剂、实验步骤·········5~6页三数据处理、结果讨论·········6~9页四其他·········9~10页

燃烧热的测定 关键词:燃烧热、雷诺温度校正图 一目的要求 1、掌握燃烧热的定义,了解恒压燃烧热与恒容燃烧热的差别及相互关系; 2、熟悉热量计中主要部件的原理和作用,掌握氧弹热量计的实验技术; 3、用氧弹热量计测定苯甲酸和蔗糖的燃烧热; 4、学会雷诺图解法校正温度改变值。 二基本原理 1、燃烧与量热 根据热化学的定义,1mol物质完全氧化时的反应热称为燃烧热。所谓完全氧化,对燃烧产物有明确规定。如有机化合物中的碳氧化成一氧化碳不能认为是完全氧化,只有氧化成二氧化碳才是完全氧化。 燃烧热的测定,除了有其实际应用价值外,还可以用于求算化合物的生成热、键能等。 量热法是热力学的一种基本实验方法。在恒容或恒压条件下可以分别测得恒容燃烧热Qv和恒压燃烧热Qp。由热力学第一定律可知,Qv等于体积内能变化ΔU;Qp等于其焓变ΔH。若参加反应的气体和反应生成的气体都作为理想气体处理,则它们之间存在以下关系: ΔH=ΔU+Δ(PV) Qp=Qv+ΔnRT 式中Δn为反应前后反应物和生成物中气体的物质的量之差;R为摩尔气体常数;T为反应时的热力学温度。 热量计的种类很多,本实验所用的氧弹热量计是一种环境恒温式的热量计。氧弹热量计测量装置如图1所示,图2是氧弹的剖面图。

燃烧热的测定 实验报告

燃烧热的测定 一、实验目的 ●使用氧弹式量热计测定固体有机物质(萘)的恒容燃烧热,并 由此求算其摩尔燃烧热。 ●了解氧弹式量热计的结构及各部分作用,掌握氧弹式量热计的 使用方法,熟悉贝克曼温度计的调节和使用方法 ●掌握恒容燃烧热和恒压燃烧热的差异和相互换算 二、实验原理 摩尔燃烧焓?c H m 恒容燃烧热Q V ?r H m = Q p ?r U m = Q V 对于单位燃烧反应,气相视为理想气体 ?c H m = Q V +∑νB RT=Q V +△n(g)RT 氧弹中 放热(样品、点火丝)=吸热(水、氧弹、量热计、温度计) 待测物质 QV-摩尔恒容燃烧热Mx-摩尔质量 ε-点火丝热值bx-所耗点火丝质量q-助燃棉线热值cx-所耗棉线质量 K-氧弹量热计常数?Tx-体系温度改变值

三、仪器及设备 标准物质:苯甲酸待测物质:萘 氧弹式量热计 1-恒热夹套2-氧弹3-量热容器4-绝热垫片5-隔热盖盖板6-马达7,10-搅拌器8-伯克曼温度计9-读数放大镜11-振动器12-温度计

四、实验步骤 1.量热计常数K的测定 (1) 苯甲酸约1.0g,压片,中部系一已知质量棉线,称取洁净坩埚放置样片前后质量W1和W2 (2)把盛有苯甲酸片的坩埚放于氧弹内的坩埚架上,连接好点火丝和助燃棉线 (3) 盖好氧弹,与减压阀相连,充气到弹内压力为1.2MPa为止 (4)把氧弹放入量热容器中,加入3000ml水 (5) 调节贝克曼温度计,水银球应在氧弹高度约1/2处 (6) 接好电路,计时开关指向“1分”,点火开关到向“振动”,开启电源。约10min后,若温度变化均匀,开始读取温度。读数前5s振动器自动振动,两次振动间隔1min,每次振动结束读数。 (7)在第10min读数后按下“点火”开关,同时将计时开关倒向“半分”,点火指示灯亮。加大点火电流使点火指示灯熄灭,样品燃烧。灯灭时读取温度。 (8)温度变化率降为0.05°C·min-1后,改为1min计时,在记录温度读数至少10min,关闭电源。先取出贝克曼温度计,再取氧弹,旋松放气口排除废气。 (9)称量剩余点火丝质量。清洗氧弹内部及坩埚。 实验步骤 2. 萘的恒容燃烧热的测定 取萘0.6g压片,重复上述步骤进行实验,记录燃烧过程中温度

煤的燃烧过程及燃烧条件讲课讲稿

煤的燃烧过程及燃烧 条件

煤的燃烧过程及燃烧条件 煤的燃烧是复杂的物理化学过程,煤进入炉内,收到高温烟气的加热,温度逐渐升高,在此期间经历干燥、干馏、挥发分着火燃烧、焦炭燃烧、焦炭燃尽等各个阶段。 1、干燥: 煤被加热时,首先是水分不断蒸发,煤被干燥,显然,煤中水分多,干燥多消耗的热量也多,时间也长。 2、干馏: 煤被干燥后,继续被加热,达到一定温度就开始析出挥发分,同时生成焦炭,即是煤的干馏过程,每种挥发分越多,开始析出挥发分的温度越低,加热的温度越高,时间越长,析出的挥发分越多,因此,测定挥发分时规定了加热的温度和时间。 挥发分多,其中碳氢化合物也越多,重碳氢化合物在高温、缺氧的条件下,会进行热分解,形成微笑的碳粒,称为炭黑。由于碳粒很小很轻,在炉内不易烧掉而随烟排走,形成黑烟,为了使燃烧充分,不冒黑烟,必须保证挥发分燃烧所需足够高的温度和充足的空气,例如加装二次风。 只有当挥发分达一定浓度,而且到一定温度时,才能着火燃烧,干馏阶段为燃烧前的准备阶段。 煤在燃烧的准备阶段中,非但不放热而且要吸收热量,所以必须组织好热量供应,其热源来自炉膛火焰或高温烟气、炽热的炉墙和炉拱等。热量供应情况就决定了准备阶段的时间长短。 3、挥发分着火燃烧:

煤继续被加热,挥发分不断析出,而且温度也随之提高,挥发分中可燃物质与氧气的化学反应也在逐渐加快,当挥发分达到一定温度和浓度时,化学反应速度急速加快,着火燃烧,形成明亮的黄色火焰,这里,挥发分要加热到一定的温度时个重要条件。 不同的煤的挥发分着火温度时不一样的,通常我们将挥发分着火温度看成煤的着火温度,挥发分燃烧时放出热量,将焦炭加热到赤红程度(已达到能够着火的温度),但是焦炭并不会立刻燃烧,因为挥发分包围了焦炭,挥发分首先遇氧将氧耗掉了,氧气不能扩散到焦炭的表面,焦炭只能被加热而不能燃烧。 挥发分多,着火温度低,着火容易;挥发分少,着火温度高,着火困难。 4、焦炭的燃烧: 当挥发分基本烧完以后,氧气不能扩散到焦炭表面上,焦炭开始着火燃烧,并发出较短的蓝色火焰。 焦炭时煤的主要可燃物,燃烧时能发出很多热量,例如:无烟煤的焦炭燃烧发热量占总发热量的95%左右,挥发分很多,碳含量较小的褐煤,其焦炭燃烧发热量也占总发热量的一半以上。 焦炭的燃烧时固体(焦炭)与气体(氧气)之间的反应,化学反应速度很慢,因此燃烧时间较长,所以组织好焦炭的燃烧往往煤燃烧的关键。 5、焦炭燃尽: 焦炭燃烧时,在其表面形成灰壳,阻碍空气与焦炭接触,同时焦炭被燃烧形成的二氧化碳和一氧化碳所包围,又妨碍空气向焦炭表面的扩散。因此,焦炭燃尽往往需要很长的时间,为了及时排掉燃烧产生的气体,还应保证空气有适当的速度,但也应注意供应太多的空气量,不利于保证一定的炉膛温度。

有机物燃烧焓的测定。实验报告

有机物燃烧焓的测定 一.实验目的 1.明确燃烧焓的定义,了解恒压热效应与恒容热效应的关系。 2.掌握有关热化学实验的一般知识和技术。 3.用氧弹式量热计测定有机物的燃烧焓。 二.实验原理 热化学中定义:在指定温度和压力下,一摩尔物质完全燃烧成指定产物的焓变,称为该物质在此温度下的摩尔燃烧焓,记作ΔC H m 。通常,C 、H 等元素的燃烧产物分别为CO 2(g)、H 2O(l)等。由于上述条件下ΔH=Q p ,因此ΔC H m 也就是该物质燃烧反应的等压热效应Q p,m 。 在适当的条件下,许多有机物都能迅速而完全地进行氧化反应,这就为准确测定它们的燃烧焓创造了有利条件。 在实际测量中,燃烧反应常在恒容条件下进行,如在弹式量热计中进行,这样直接测得的是反应的恒容热效应Q V (即燃烧反应的热力学能变ΔC U )。若将应系统中的气体物质视为理想气体,根据热力学推导可得ΔC H m 和ΔC U m 的关系为: )(g RT U H B B m c m c ν∑+?=? 或 )(,,g RT Q Q B B m v m p ν∑== (1) 式中,T 为反应温度(K);ΔC H m 为摩尔燃烧焓(J·mol -1);ΔC U m 为摩尔燃烧热力学能变(J·mol -1 );v B (g)为燃烧反应方程中各气体物质的化学计量数,规定生产物取正值,反应物取负值。 通过实验测得Q V,m (J·mol -1 )值,根据上式就可计算出Q p,m (J·mol -1 ),即燃烧焓的值ΔC H m 。 本实验是用氧弹式量热计进行萘的燃烧焓的测定。量热计结构如图1所示,氧弹结构如图2所示。 实 验中,设质量为m a (g )的待测物质(恒容燃烧热为Q v,m )和质量为m b (g )的点火丝(恒容燃烧热为q ,J·g -1 )在氧弹中燃烧,放出的热可使质量为w m 的水(比热容为c w ,J·K -1 ·g -1 )及量热器本身(热容为C m ,J·K -1)的温度由T 1升高到T 2,则根据能量守恒定律可得到热平衡关系 )()]().[(1212,T T K T T w c C m q M m Q m w m b a m -?=-?+-=?+? ν (2) 式中,M 为该待测物的摩尔质量;规定系统放热时Q 取负数;K= -( C m +c w · w m ),同一套仪器、当内筒中的水量一定时,K 值恒定,称K 为仪器常数或水当量(J·K -1 ),常用已知燃烧热值Q v 的苯甲酸来测定。求

燃烧热的测定

燃烧热的测定 预习题: 1. 什么是燃烧热?其终极产物是什么? 2. 实验测仪器常数采用什么样的办法?水当量是什么含义? 3. 氧弹式热量计测燃烧热的简单原理?主要测量误差是什么?如何求Q p ? 4. 为什么说高精度的燃烧热数据较之生成热数据更显得必要? 一、实验目的 1.明确燃烧热的定义,了解恒压燃烧热与恒容燃烧热的相互关系。 2. 熟悉氧弹量热计的构造、工作原理及测量方法。 3.学会应用雷诺图解法校正温度改变值。 二、实验原理 燃烧热是指1摩尔物质在等温、等压下与氧气进行完全氧化时的焓变。“完全氧化”的意思是指化合物中的元素生成较稳定的氧化物,如碳被氧化成CO 2(气),氢被氧化成H 2O(液)等。燃烧焓是热化学中重要的基本数据,因为许多有机化合物的标准摩尔生成焓都可通过盖斯定律由它的标准摩尔燃烧焓及二氧化碳和水的标准摩尔生成焓求得。通过燃烧焓的测定,还可以判断工业用燃料的质量等。 在非体积功为 零的情况下,物质的燃烧焓以物质燃烧时的热效应(燃烧热)来表示:即△C H m =Q P ,m ,因此,测定物质的燃烧焓实际就是测定物质在等温、等压下的燃烧热。 量热法是热力学实验的一个基本方法。测定燃烧热可以在等容条件下,亦可以在等压条件下进行。等压燃烧热(Q P )与等容燃烧热(Q V )之间的关系为: RT V n Q Q g g V p ∑??+=ξ (2-1)

式中∑νg 为气体物质化学计量数的代数和;Δξ为反应进度增量,Q P 或Q V 为反应物质的量为Δξ时的反应热,Δn(g)为该反应前后气体物质的物质的量变化,T 为反应的绝对温度。 测量原理是能量守恒定律,样品完全燃烧放出的能量使量热计本身及周围介质温度升高,测量出介质燃烧前后温度的变化,就可以求算该样品的恒容燃烧热。 其关系如下: T C Q V V ?-= (2-2) 式中负号是指系统放出热量,放热时系统内能降低,C V 、T 均为正值。 系统除样品燃烧放出热量引起系统温度升高以外,其他因素:燃烧丝的燃烧,氧弹内N 2和O 2化合并溶于水中形成硝酸等都会引起系统温度变化,因此在计算水当量及发热量时,这些因素必须进行校正,校正值如下: (1) 燃烧丝的校正:Cu-Ni 合金丝:-3.138J·cm -1 (2) 酸形成的校正:(本实验此因素忽略) 校正后的关系式为:Q V -W-3.138L= -K △T (2-3) Q V :样品恒容燃烧热(J·g -1) W :样品的质量(g ) L :燃烧丝的长度(cm ) K :量热计的水当量 量热计的水当量K 一般用纯净苯甲酸的燃烧热来标定,苯甲酸的燃烧热Q V =-26460 J·g -1 为了保证样品燃烧完全,氧弹中必须充足高压氧气。因此要求氧弹密封、耐高压、耐腐蚀。同时,粉末样品必须压成片状,以免冲气时冲散样品使燃烧不完全,而引起实验误差,完全燃烧是实验成功的第一步,第二步还必须使燃烧后放出的的热量不散失,不与周围环境发生热交换,全部传递给量热计本身和其中的盛水,使量热计和水的温度升高,为了减少量热计与环境的热交换,量热计放在一恒温的套壳中,故称环境恒温或外壳恒温量热计。量热计须高度抛光,也是为了减少热辐射,量热计和套壳中间有一层挡屏,以减少空气的对流。虽然如此,热漏还是无法避免,因此燃烧前后温度变化的测量值必须经过雷诺作图法校正。其校正方法如下: 称适量待测物质,使燃烧后水温升高1.5-2.0℃,预先调节水温低于环境温度0.5-1.0℃,然后将燃烧前后历次观察的水温对时间作图,连成FHID 折线,见图10-3, J 温度 J 温度 时间 图10-3 图10-4 图中H 相当于开始燃烧之点,D 为观察到的最高温度读数点,作一平行线JI 交折线于I ,过I 点作垂线ab ,然后将FH 线和GD 线外延交ab 于A 、C 两点。A 点与C 点所表示的温度差即为欲求温度的升高△T 。图中AA′为开始燃烧到温度上升至室温这一段时间△t 1内,由环境辐射和搅拌引进的能量而造成量热计温度的升高,必须扣除。CC′为温度由室温升高到最高点D 这一段时间△t 2内量热计向环境辐射出能量而造成量热计温度的降低,因此需要添加上。由此可见,AC 两点的温度差较客观地表示了由于样品燃烧促使温度计升高的数值,有时量热计的绝热情况良好,热漏小,而搅拌器功率大,不断稍微引进能量使的燃烧后的最高点不出现,这种情况下△T 仍然可以按照同法校正,见图10-4。

燃烧热的测定实验报告

燃烧热实验报告 一、实验目的 1、明确燃烧热的定义,了解恒压燃烧热与恒容燃烧热的区别。 2、掌握量热技术的基本原理,学会测定奈的燃烧热。 3、了解氧弹卡计主要部件的作用,掌握氧弹量热计的实验技术。 4、学会雷诺图解法校正温度改变值。 二、实验原理 燃烧热是指1摩尔物质完全燃烧时所放出的热量。在恒容条件下测得的燃烧 热称为恒容燃烧热(Q v,m ),恒容燃烧热这个过程的内能变化(Δ r U m )。在恒压条 件下测得的燃烧热称为恒压燃烧热(Q p,m ),恒压燃烧热等于这个过程的热焓变化 (Δ r H m )。若把参加反应的气体和反应生成的气体作为理想气体处理,则有下列 关系式: c H m = Q p,m =Q v,m +ΔnRT (1) 本实验采用氧弹式量热计测量萘的燃烧热。测量的基本原理是将一定量待测物质样品在氧弹中完全燃烧,燃烧时放出的热量使卡计本身及氧弹周围介质(本实验用水)的温度升高。 氧弹是一个特制的不锈钢容器。为了保证化妆品在若完全燃烧,氧弹中应充以高压氧气(或者其他氧化剂),还必须使燃烧后放出的热量尽可能全部传递给量热计本身和其中盛放的水,而几乎不与周围环境发生热交换。 但是,热量的散失仍然无法完全避免,这可以是同于环境向量热计辐射进热量而使其温度升高,也可以是由于量热计向环境辐射出热量而使量热计的温度降低。因此燃烧前后温度的变化值不能直接准确测量,而必须经过雷诺矫正作图法进行校正。 放出热(样品+点火丝)=吸收热 (水、氧弹、量热计、温度计) 量热原理—能量守恒定律 在盛有定水的容器中,样品物质的量为n摩尔,放入密闭氧弹充氧,使样品完全燃烧,放出的热量传给水及仪器各部件,引起温度上升。设系统(包括内水桶,氧弹本身、测温器件、搅拌器和水)的总热容为C(通常称为仪器的水当量,

燃烧焓的测定

华南师范大学实验报告 学生姓名学号 专业年级、班级 课程名称物理化学实验实验项目燃烧焓的测定 实验类型□验证□设计□综合试验时间2019 年 4 月23 日 实验指导老师实验评分 一、实验目的 (1)明确燃烧热的定义,了解恒压燃烧热与恒容燃烧烧热的差别与联系。(2)掌握量热技术基本原理,测定萘的燃烧热。 (3)了解氧弹卡计的基本原理,掌握氧弹卡计的基本实验技术。 (4)利用雷诺校正法对温度进行校正。 二、实验原理 2.1基本概念 物质的标准摩尔燃烧焓是指1mol物质在标准压力下完全燃烧所放出的热量。若在恒容条件下测得的1mol物质的燃烧热称为恒容摩尔燃烧热Q V ,m 数值上等于这个燃烧反应过程的热力学能变Δr U m;恒压条件下测得的1mol物质的燃 烧热成为恒压摩尔燃烧热Q p ,m ,数值上等于这个燃烧反应过程的摩尔焓变Δr H m。化学反应的热效应通常用恒压热效应Δr H m来表示。若参加燃烧反应的是标准压力下的1mol物质,则恒压热效应即为该有机物的标准摩尔燃烧热。 把燃烧反应中涉及的气体看做是理想气体,遵循以下关系式: Q p,m=Q V,m+(ΣV B)RT ① ΣV B 为生成物中气体物质的计量系数减去反应物中气体物质的计量系数;R 为气体常数;T为反应的绝对温度;Q p ,m 、Q V ,m 的量纲为J/mol。 2.2氧弹量热计 本实验采用外槽恒温式量热计为高度抛光刚性容器,耐高压,密封性好。量热计的内筒,包括其内部的水、氧弹及其搅拌棒等近似构成一个绝热体系。为了尽可能将热量全部传递给体系,而不与内筒以外的部分发生热交换,量热计在设计上采取了一系列措施。为了减少热传导,在量热计外面设置一个套壳。内筒与外筒空气层绝热,并且设置了挡板以减少空气对流。量热计壁高度抛光,以减少热辐射。为了保证样品在氧弹内燃烧完全,必须往氧弹中充入高压氧气,这就要求要把粉末状样品压成片状,以免充气时或燃烧时冲散样品。 2.3量热反应测量的基本原理 量热反应测量的基本原理是能量守恒定律。热是一个很难测定的物理量,热量的传递往往表现为温度的改变。而温度却很容易测量。在盛有定量水的容器中,样品的物质的量为nmol,放入密闭氢弹,充氧,使样品完全燃烧,放出的热量

一、燃烧焓的测定实验报告

物理化学实验报告 实验名称: ________________ 燃烧焓的测定 __________ 学 院: _________ 化学工程学院 __________ 专 业: 化学工程与工艺 __________ 班 级: ________________________________ 姓 名: _______ 学号: __________________ 指导教师: _______________________________________ 日 期: ________________________________

、实验目的 1、用氧弹式量热计测定萘的燃烧焓。 2、明确燃烧焓的定义,了解恒压燃烧热与恒容燃烧热的差别。 3、了解氧弹式量热计中主要部分的作用,掌握氧弹式量热计的实验技术。 4、学会用雷诺作图法校正温度变化值。 二、实验原理 1、燃烧焓是热化学中重要的基本数据,在非体积功为零的情况下,物质的燃烧焓 常以物质燃烧时的燃烧热来表示,即厶c Hm=Qp,m。测定物质的燃烧焓实际就是测定 物质在等温、等压下的燃烧热。 2、量热法是热力学实验的一个基本方法。等压燃烧热(Qp)与等容燃烧热 (Q v)之间的关系为:Qp,m =Q v,m + E(g)RT 3、氧弹式量热计属于一个等容系统,且热力学能变厶U =0o 即厶 c U B+A c U 引燃丝+ △ U 量热计=0 ; 可化作:m B Q v,B+IQ B+K △ T=0 三、实验准备 1、主要药品:萘约0.6g,苯甲酸约0.8g。 2、主要仪器:氧弹式量热计、压片机、贝克曼温度计、温度计 (丝(15 cm)、量筒(2000ml)、氧气钢瓶及减压阀等。 四、实验装置图 四、实验步骤 1、热容量K的测定 (1)截取15cm引燃丝,将其中部绕成环状。 (2)称取苯甲酸约0.8g,压成片状,并放桌上敲击2次,去除没压紧的部分,再次称量。 100C)、弓|燃 I…込:2—幡抻膿钏I: 3:呻左潘=4绝盘 皿in乳竝*?内桶:&丹套内壁;齐醮量计夕 卜臺+ 8- 灘水=9-辄邨=10 水惶钉飞 I l \ Mi立垦册虚$卜小囤噩:

燃烧热的测定实验

实验四 燃烧热(焓)的测定 【实验目的】 1. 通过萘的燃烧热测定,了解氧弹量热计各主要部件的作用,掌握燃烧热的测定技术。 2. 明确燃烧焓的定义,了解恒压燃烧热与恒容燃烧热的差别及相互关系。 3. 学会雷诺图解法,校正温度改变值 【实验原理】 燃烧焓是指1mol 物质在等温、等压下与氧进行完全氧化反应时的焓变。“完全氧化”的意思是化合物中的元素生成较高级的稳定氧化物,如碳被氧化成CO 2(气),氢被氧化成H 2O(液),硫被氧化成SO 2(气)等。燃烧焓是热化学中重要的基本数据,因为许多有机化合物的标准摩尔生成焓都可通过盖斯定律由它的标准摩尔燃烧焓及二氧化碳和水的标准摩尔生成焓求得。通过燃烧焓的测定,还可以判断工业用燃料的质量等。 由上述燃烧焓的定义可知,在非体积功为零的情况下,物质的燃烧焓常以物质燃烧时的热效应(燃烧热)来表示,即p Q H =?因此,测定物质的燃烧焓实际就是测定物质在等温、等压下的燃烧热。 量热法是热力学实验的一个基本方法。测定燃烧热可以在等容条件下,亦可以在等压条件下进行。等压燃烧热(Q P )与等容燃烧热(Q V )之间的关系为: nRT Q Q V P ?+= 式中,△n 为产物与反应物中气体物质的量之差,R 为气体常数,T 为反应的绝对温度。 例如:对萘: )(4)(10)(12)(222810l O H g CO g O s H C +→+ RT Q RT Q RT Q Q m V m V B g B m V m P 2)1210(,,)(,,-=-+=+=∑ν 2. 测量 氧弹量热计是一种环境恒温式的量热计 。 氧弹量热计的基本原理是能量守恒定律。样品完全燃烧所释放的能量使得氧弹本身及其周围的介质(本实验中为水)以及和量热计有关附件的温度升高。测量介质在燃烧前后温度的变化值,就可求算该样品的恒容燃烧热。 V r m Q W T Q m M =?-点火丝点火丝卡 W 卡称为量热计的水当量,即除水之外,量热计升高1℃所需的热量;?T 为样品燃烧前后水温的变化值。量热计和周围环境之间的热交换是无法完全避免的,它对温差测量值的影响可用雷诺温

实验一煤燃烧特性的热重分析

实验一燃烧特性的热重分析 一、实验目的 1.了解热重分析仪的基本结构,掌握仪器操作; 2.学会应用热重法分析煤/生物质的燃烧特性。 二、实验内容及要求 1.熟悉热重分析工作原理; 2.学会处理煤/生物质燃烧热失重曲线,求解典型燃烧特性参数,并分析燃烧特性。 三、实验步骤 1.试样、气体准备,如预先干燥、磨制、筛分、称量试样等,罐装所需浓度和纯度的保护气体和反应气体。检查仪器放置平稳、管路气密性及电源连接完好等。 2.开启系统:(1)打开恒温水浴槽(温度设定:22℃);(2)接通气体(氮气流量:30ml/min;空气流量:100ml/min);(3)待恒温水浴槽达到设定温度 和气流稳定后,打开TGA 主机;(4)打开计算机进入Windows NT,双击“STAR e” 图标打开STAR e软件。 3.根据软件建立试验方法,设置升温速率10℃~30℃/min、最大温度900℃,完毕后按提示放置样品,按提示开始、结束(重新开始)试验。 4.根据随机软件进行数据处理。 5.关闭系统:(1)须在TGA 主机的炉温低于300℃后关闭恒温水浴槽;(2)关闭TGA 主机;(3)关闭气体;(4)关闭计算机。 四、实验报告 1.热重燃烧特性指标的含义和求解方法; 2.热重燃烧条件下各燃烧特性参数代表的意义; 3.求解煤/生物质燃烧特性参数; 4.结合所得数据分析燃烧特性。

瑞士Mettler-Toledo公司的TGA/SDTA851e热分析系统 图1、图2为热分析系统原理图。该系统包括热重/差热同步分析仪,热重天平和高温恒温浴槽。 具体参数如下:型号:TGA/SDTA851e;温度范围:室温~1600℃;大测试炉:直径12mm,容积900μl;温度准确度:±0.25℃;温度重复性:±0.15℃;线性升温速率:0.01~100℃/min;SDTA分辨率:0.005℃。 图1中,天平和测试炉组成的测试单元是热重/差热同步分析的核心,采用平行支架微量/超微量天平,称量不受样品支架长度变化(如热胀冷缩效应)的影响;内置砝码全自动校准;称量部件处于恒温室内(22.0±0.1℃),不受环境因素的影响。其中的测试炉采用水平结构,可最大限度地消除可能产生的气体紊流的影响,克服热气体对流上升容易产生的“烟囱效应”。该系统采用单坩埚结构,使样品处于测试炉的几何对称中心,在升温室得到均匀加热。测量样品的温度传感器直接安装于坩埚底部,能准确测取样品温度。加热炉内可通入需要的各种反应气体,同时为了保护天平免受反应气体的腐蚀,需要通入保护气体。 图1 热分析系统示意图 图2 TGA/SDTA851e原理图 1—隔热挡板;2—反应性气体毛细管;3—石英护套;4—气体排出阀门(偶联接口);5—样品温度传感器;6—加热炉;7—炉温传感器;8—电源接点;9—真空和清洁气体管;10—恒温天平室;11—平行导向超微量天平;12—样品室开启装置;13—冷却水管道;14—保护气体入口;15—反应气体入口;16—真空连接和清洁气体入口

相关主题
文本预览
相关文档 最新文档