当前位置:文档之家› 【完整版】年产3460万吨二甲醚装置分离精馏工段的设计_毕业论文设计

【完整版】年产3460万吨二甲醚装置分离精馏工段的设计_毕业论文设计

【完整版】年产3460万吨二甲醚装置分离精馏工段的设计_毕业论文设计
【完整版】年产3460万吨二甲醚装置分离精馏工段的设计_毕业论文设计

年产3.0万吨二甲醚装

置分离精馏工段的设计

学院:化学与生物工程学院

专业:化学工程与工艺

姓名:谢恒杰学号:200807011

指导老师:杨西职称:讲师

年产3.0万吨二甲醚装置分离精馏工段的设计

摘要

随着社会的发展,能源问题日益成为人们所关注的热门话题,二甲醚作为燃料可代替液化石油气成为可能。二甲醚的合成技术来源主要有甲醇脱水法和一步直接合成法,甲醇脱水法有甲醇液相脱水法和甲醇气相脱水法。相比于甲醇合成法,一步合成法具有流程短、投资省、能耗低且可获得较高的单程转化率的优点。

制取二甲醚的最新技术是从合成气直接制取,相比较甲醇脱水制二甲醚而言,一步法合成二甲醚因为体系存在有未反应完的合成气以及二氧化碳,要得到纯度较高的二甲醚,分离过程比较复杂。合成气法现多采用浆态床反应器,其结构简单,便于移出反应热,易实现恒温操作,它可直接利用CO含量高的煤基合成气,还可在线卸载催化剂。本设计主要针对分离中的精馏工序进行工艺设计,分离二甲醚、甲醇和水三元体系。一步反应后产物分为气液两相,气相产物二甲醚被吸收剂吸收后送入解吸装置,液相甲醇、水进入甲醇分离系统对甲醇进行提纯,以便甲醇的再循环,部分二甲醚根据要求的纯度,从第二精馏塔加入。在设计过程中涉及到二甲醚分离塔的工艺计算包括物料衡算、热量衡算、操作条件等;设备的计算包括塔板数、塔高、塔径等;还有附属设备主要是换热器和泵的设计与选型。最后再通过流体力学演算证明各指标数据是否符合标准。

关键词:二甲醚合成分离三元体系精馏

Annual output of 30,000 tons of dimethyl ether distillation section in the design of separation device

Abstract

With the development of society, the energy problem , two ether as fuel can replace liquefied petroleum gas become possible. Two ether synthesis technology the main source of methanol dehydration method and one-step direct synthesis, methanol dehydration of methanol liquid-phase dehydration and methanol gas dehydration. Compared to methanol synthesis, one step synthesis method and can obtain advantages. Preparation of two methyl ether of the latest technology is directly prepared from synthesis gas, methanol dehydration to dimethyl ether is two, one step synthesis of two methyl ether because the system synthesis gas and carbon dioxide, to obtain process is more complex. Synthesis gas method is now adopted a slurry bed reactor, which , it can be directly used in coal based syngas, also available online unloading catalyst. This design is mainly for the separation of distillation process for process design, separation of two methyl ether, methanol and water three element system of. One step reaction product is divided into gas-liquid two phase, gas phase product two ether is absorbent to desorption device, liquid phase methanol, water enters into a methanol separation system for methanol purification, so that recycling part two ether methanol, according to the requirements of the purity, from the second distillation column to join. In the design process involves two ether separation process calculation including material balance, condition of equipment; calculated including plate number, tower, tower diameter; and ancillary equipment is the main and design. Finally, through the fluid mechanics calculation of the index data are consistent with the standard of proof. Keywords: DME synthesis separation ternary system distillation

目录

第一章绪论

一、概述

(一)设计规模及设计要求

1、设计规模:年产3万吨的二甲醚分离精馏装置。

2、设计要求:操作压力0.2MPa(约两个大气压),饱和液体进料,连续进料操作,年开工时数8000小时。原料采用工业级甲醇(甲醇含量≥99.5wt%,水含量≤0.5wt%),二甲醚分离塔进料中含二甲醚49wt%,产品中二甲醚的含量≥99wt%。

(二)产品性质及用途

1、二甲醚性质

二甲醚是最简单的脂肪醚。它是二分子甲醇脱水缩合的衍生物。可以用作气雾剂的抛射剂、制冷剂、发泡剂。高浓度的二甲醚可用作麻醉剂。主要由合成甲醇生产中的副产获得。单独小规模生产时,可采用甲醇催化脱水方法。有液相法和气相法两种:液相法是加热硫酸与甲醇混合物;气相法是将甲醇蒸气通过氧化铝催化剂(也可用ZSM -5型分子筛作为催化剂)。二甲醚主要作为甲基化剂和生产二甲基苯胺、硫酸二甲酯等的原料,二甲醚(分子式:CH3OCH3,DME)又也可用于制取甲醛和合成汽油。是一种重要的有机化工产品和化学中间体。

(1)二甲醚的物理性质:二甲醚亦称甲醚,英文dimethylether,英文缩写DME,化学分子式(CH3OCH3),分子量为46.07,是重要的甲醇衍生物,沸点-24℃,凝固点

-140℃。二甲醚是一种含氧有机化合物,溶于水,在大气中可以降解,属于环境友好型物质。二甲醚在常温下是一种无色气体,具有轻微的醚香味。二甲醚无腐蚀性、无毒,在空气中长期暴露不会形成过氧化物,还具有优良的混溶性,能同大多数极性和非极性有机溶剂混溶。在100ml水中可溶解3.700ml二甲醚气体,且二甲醚易溶于汽油、四氯化碳、丙酮、氯苯和乙酸甲酯等多种有机溶剂,加入少量助剂后就可与水以任意比互溶。燃烧时火焰略带光亮。

(2)二甲醚的化学性质:作为一种重要的化学中间体,二甲醚在催化剂存在下与苯发生烷基化反应。与一氧化碳反应生成乙酸甲酯;同系化反应还可以生成乙酸乙酯、乙酸酐。与二氧化碳反应生成甲氧基乙酸。与发烟硫酸或三氧化硫反应生成硫酸二甲酯。与氰化氢反应生成乙腈。

表1-1 二甲醚的物理性质

2、二甲醚的用途

(1)用作燃料

二甲醚可替代液化石油气(LPG)作为燃料。它具有较高的十六烷值,液化后可以直接作为汽车燃料,其燃烧效果比甲醇燃料好。它不但具有甲醇燃料的所有优点,还克服了其低温启动性和加速性能差的缺点。由于二甲醚自身含氧,组分单一,碳链短,可实现无烟高效燃烧,并可降低噪音。汽车尾气不需要催化转化处理,就能满足美国加利福尼亚洲有关汽车超低排放尾气的标准。而且,现有的柴油车发动机只需略加改装就可燃用二甲醚燃料,且运行性能不会受到损害。二甲醚在常温常压下为无色无味气体,在一定压力下为液体,其液化气与LPG性能相似,贮存于液化气钢瓶中的压力为1.35M Pa,小于LPG压力(1.92M Pa),因而可以代替煤气、石油液化气用作民用燃料。

二甲醚液化气作为民用燃料有一系列优点:二甲醚自身含氧,碳链短,燃烧性能良好,燃烧过程中无黑烟,燃烧尾气符合国家标准,其热值比柴油和液化天然气低,但比甲醇高。

二甲醚液化气在室温下压力符合现有LPG要求,可用现有的LPG气罐集中统一盛装,储运安全,组成稳定,无残液,可完全利用;与LPG灶基本通用,使用方便,不需预热,随用随开。二甲醚可按一定比例掺入液化气中和液化气一起燃烧,可使液化气燃烧更加完全,降低析碳量,并降低尾气中的一氧化碳和碳氢化合物含量;二甲醚还可掺入城市煤气或天然气管道系统中作为民用燃料混烧,不仅可解决城市煤气高峰时气量不足的问题,而且还可以改善煤气质量,提高热值。总之,二甲醚在储存、运输、使用等方面比LPG更安全。因此二甲醚代替LPG作为优良的民用洁净燃料,具有广阔的前景。

二甲醚液化后还可以直接用作汽车燃料,是柴油发动机的理想替代燃料。因为二甲醚燃料具有高的十六烷值(50~55),比甲醇燃料具有更好的燃烧效果,而且没有甲醇的低温启动性和加速性能差的缺点。二甲醚燃料高效率和低污染,可实现无烟燃烧,并可降低噪音和减少氮氧化物的排放。

(2)用作氯氟烃的替代品

二甲醚作为氯氟烃的替代物在气雾剂制品中显示出其良好性能。如:不污染环境,与各种树脂和溶剂具有良好的相溶性,毒性很微弱,可用水或氟制剂作阻燃剂等。二甲醚还具有使喷雾产品不易受潮的特点,并且其生产成本低、建设投资少、制造技术不太复杂,被人们认为是一种新一代理想气雾剂用推进剂。而且二甲醚对金属无腐蚀、易液化,特别是水溶性和醇溶性较好,作为气雾剂具有双重功能,作为推进剂和溶剂,还可降低气雾剂中乙醇及其它有机挥发物的含量,减少对环境的污染。目前在国外,二甲醚在民用气溶胶制品中已是必不可少的氯氟烃替代物。国内气雾剂产品有一半用二甲醚作抛射剂。(3)用作化工原料

二甲醚是一种重要的化工原料,可用来合成许多种化工产品或参与许多种化工产品的合成。二甲醚作烷基化剂,可以用来合成N,N-二甲基苯胺、硫酸二甲酯、烷基卤以及二甲基硫醚等。作为偶联剂,二甲醚可用于合成有机硅化合物、制作高纯度氮化铝二氧化铝二氧化硅陶瓷涂料。二甲醚与水、一氧化碳在适当条件下反应可生成乙酸,羰基

化后可制得乙酸甲酯,同系化后生成乙酸乙酯,另外还可用于醋酐的合成。二甲醚还可合成氢氰酸、甲醛等重要化学品。二甲醚与环氧乙烷反应,在卤素金属化合物和H3BO3的催化作用下,在50℃~55℃时生成乙二醇二甲醚、二乙二醇二甲醚、三乙二醇二甲醚、四乙二醇二甲醚的混合物,其主要产物乙二醇二甲醚是重要溶剂和有机合成的中间体。二甲醚也是一种有机中间体,它可以羰基化制乙酸甲酯、乙酐,也可作为甲基化试剂用于医药、农药与燃料合成,与发烟硫酸或三氧化硫反应生产硫酸二甲酯。此外,二甲醚还是一种优良的有机溶剂。二甲醚裂解生成乙烯,是天然气制乙烯三步法的主流工艺,属于费-托法合成燃料工艺路线。因此,它是未来乙烯工业的优良原料。

(4)用作化工产品

自喷式日化用品如气溶胶和喷发胶,大多数还是用氯氟烃作推进剂。而氯氟烃对臭氧层有破坏作用,所以要用对环境无害的推进剂来代替氯氟烃。由于二甲醚的溶解性能与氯氟烃相近,用二甲醚或其与丙烷或丁烷的混合物作推进剂取代氯氟烃势在必行。现在国内众多生产气雾杀虫剂、喷塑涂料的厂家已经在逐步改用二甲醚作为气雾抛射剂。

(四)技术来源

1、合成技术

DME的制备主要有甲醇脱水法和合成气一步法两种。与传统的甲醇合成二甲醚相比,一步法合成二甲醚工艺经济理加合理,在市场更具有竞争力,正在走向工业化。其中浆态床一步法合成二甲醚克服了传统固定床的缺点。

以下为各种方法的简单介绍:

(1) 甲醇脱水法

①甲醇液相脱水法(硫酸法工艺)

传统生产二甲醚的方法是以甲醇为原料,在浓硫酸的催化作用下,生成硫酸氢甲酯,硫酸氢甲酯再与甲醇反应生成二甲醚。

其反应式:CH3OH+H2SO4→CH3HSO4+H2O

CH3HSO4+CH3OH→CH3OCH3+H2O

该反应的特点是反应温度低(130~160℃),选择性及转化率均大于90%, 可间歇或连续生产,投资少,操作简单。但由于浓硫酸对甲醇的碳化作用较大,催化剂的使用周期短,同时脱除反应会产生大量的残酸和废水,对环境污染严重;中间体硫酸氢甲酯毒性较大,危害人体健康。传统工艺的生产规模都相对较小。上海石油化工研究院在传统的甲醇液相脱水装置上,通过将反应与分离操作合成一体,有效地抑制了有机物的碳化。同时,硫酸不受损耗而被封闭在反应器中供长期使用(首次使用时间达6年多),大大降低了生产成本,减少了污染。

②甲醇气相脱水法

用气相甲醇脱水法制取二甲醚的方法,其基本原理是在固定床催化反应器中使甲醇蒸汽通过固体酸性催化剂(氧化铝或结晶硅酸铝),发生非均相反应,甲醇脱水生成二甲醚,脱水后的混合物再进行分离、提纯,得到燃料级或气雾剂级的二甲醚。

反应式:2CH3OH→CH3OCH3+H2O

该工艺成熟简单,对设备材质无特殊要求,基本无三废及设备腐蚀问题,后处理简单。另外装置适应性广,可直接建在甲醇生产厂,也可建在其他公用设施好的非甲醇生产厂。用该工艺制得的DME产品纯度最高可达99%,该产品不存在硫酸氢甲酯的问题。但该方法要经过甲醇合成、甲醇精馏、甲醇脱水和二甲醚精馏等工艺,流程较长,因而设备投资大,产品成本较高,且受甲醇市场波动的影响比较大。以此法生产的二甲醚做燃料,在现有的液化天然气和柴油市场价格下,还不具有竞争力。但国内有专利报道,在较低温度(100~125℃)、常压(0~0.05MPa)和新的催化剂作用下进行脱水生产二甲醚气体,较好地解决了酯化脱水、催化剂再生和反应过程同步等技术问题。上海石油化工研究院采用自行开发的D-4型氧化铝催化剂也取得了成功,并建2000ta甲醇气相催化脱水制二甲醚的工业装置,并于1995年开车成功。该装置的甲醇转化率≥60%,二

甲醚选择性≥99%,催化剂使用寿命在6个月以上,产品规格可达到气雾剂级的高纯度

二甲醚。表2列出了国内外用气相甲醇脱水法合成二甲醚的进展情况。

表2 国内外用气相甲醇脱水法合成二甲醚的工艺对比

(2) 一步法直接合成DME

一步法是以合成气为原料,在甲醇合成和甲醇脱水的双功能催化剂上直接反应生成

DME。

二甲醚合成反应机理包括:

甲醇合成(CO氢化作用):CO + 2H2 ?CH3OH -90.4kJmol (1)

甲醇脱水:2CH3OH ?CH3OCH3 + H2O -23.0kJmol (2)

水煤气转换:CO + H2O ?CO2 + H2-41.0kJmol (3)

甲醇合成(CO2氢化作用):CO2 + 3H2 ?CH3OH + H2O -49.4kJmol (4)

总反应:3CO + 3H2 CH3OCH3 + CO2-258.312kJmol (5)反应式(1)中生成的CH3OH可以由反应式(2)立即转化为二甲醚;反应式(2)中生成的H2O又可被反应式(3)消耗;反应式(3)中生成的H2又作为原料参与到反应式(1)中,提高三个反应式之间的“协同作用”。三个反应相互促进,从而提高了CO的转化率。

合成气法现多采用浆态床反应器,其结构简单,便于移出反应热,易实现恒温操作。它可直接利用CO含量高的煤基合成气,还可在线卸载催化剂。因此,浆态床合成气法制DME具有诱人的前景,将是煤炭洁净利用的重要途径之一。合成气法所用的合成气可由煤、重油、渣油气化及天然气转化制得,原料经济易得,因而该工艺可用于化肥和甲醇装置适当改造后生产DME,易形成较大规模生产;也可采用从化肥和甲醇生产装置侧线抽得合成气的方法,适当增加少量气化能力,或减少甲醇和氨的生产能力,用以生产DME。中科院大连化物所近年来在合成气一步法合成二甲醚方面研制出了性能良好的双功能催化剂,并在此基础上开发了固定床合成气一步法合成二甲醚的新工艺。该工艺采用固定床反应器,合成气原料H2CO比为1~2, COCO2比为15~25,操作压力2.5~4.0MPa,反应温度230~300℃,原料合成气进气空速700~1500h-1,所用催化剂为自制的金属沸石催化剂。另外, 还开展了甲烷化空气催化氧化部分氧化制合成气与含氮合成气制二甲醚技术的研究,希望通过廉价氧源生产廉价合成气,从而降低二甲醚合成的生产成本。一步法合成二甲醚,特别是浆态床一步法合成二甲醚是目前新开发的技术。与传统甲醇脱水工艺相比,工艺装置结构简单,便于移出反应热,易于实现恒温操作,可以使反应与传热过程耦合,从而达到最佳反应温度,防止催化剂失活。它可直接利用CO含量高的煤基合成气,还可在线装卸催化剂,具有较高的CO单程转化率和二甲醚产率,使二甲醚在成本上更具有优势。目前,该技术正处于小试及中试阶段。

2、分离技术

现阶段,制取二甲醚的最新技术是从合成气直接制取,即一步合成法。相比较甲醇脱水制二甲醚而言,一步法合成二甲醚因为体系存在有未反应完的合成气以及二氧化

碳,要得到纯度较高的二甲醚,分离过程比较复杂。开发中的分离工艺主要采用吸收和精馏等化工单元操作过程得到纯度较高的二甲醚产品。一种分离工艺是一步反应后产物分为气液两相,气相产物被吸收剂吸收后送入解吸装置,部分二甲醚根据要求的纯度,从第二精馏塔加入。另一种工艺主要是液相产物进入第一精馏塔,塔釜馏分进入第二精馏塔,塔顶的甲醇蒸气引入清洗系统来洗涤气相产物,将反应产物与从第一精馏塔顶得到的馏分混合,即为燃料级二甲醚。还有一种工艺是液相产物通过二步精馏,气相产物与闪蒸气一起被吸收剂洗涤除去其中的二甲醚,含有二甲醚的吸收剂被送入第一个精馏塔。

1.2二甲醚分离装置流程

图1-1 工艺流程简图

反应后的气体6在温度为200-300℃,压力为1.5-1.6MPa,经冷凝器1冷凝,冷凝温度为40℃,大部分二甲醚蒸气在此被冷凝,甲醇蒸气也被冷凝。含有不凝气体H2、CO、CO2和少量惰性气体和CH4及未冷凝的二甲醚气体的未凝气体16经减压到0.6-4.8MPa,进入吸收塔2下部,在2.0 MPa,在20-35℃下用软水吸收,冷凝器1的

底流产物粗二甲醚溶液7和吸收塔2的底流产物醚水溶液8进入闪蒸罐3,闪蒸罐的温度为40-100℃。闪蒸后的气体9送入吸收塔2底部;闪蒸罐3底流产物纯醚溶液10,进入二甲醚精馏塔4,塔顶产物为精二甲醚12;底流产物为粗甲醇溶液11。醚水溶液8进入闪蒸罐3的压力为0.1-0.9 MPa。闪蒸罐3底流产物纯醚溶液10进入二甲醚精馏塔4的温度为80-150℃。二甲醚精馏塔4的压力为0.15-2.2 MPa,塔顶温度为20-90℃,塔釜温度为100-200℃。二甲醚精馏塔4的底流产物粗甲醇溶液11进入甲醇回收塔5,其底流产物为软水13,塔侧线产物为精甲醇14。高级醇浓集于精馏塔顶部塔板上侧线采出。甲醇回收塔的压力为0.1-0.8MPa,塔釜温度为80-150℃,塔顶温度为40-90℃。

后,返回二甲醚合成单元做合吸收塔尾气15去变压吸附或膜分离提取有用成份CO、H

2

成原料。[12]

以下为分离过程中各产物质量分率的数据Array表

1-2

分离

过程

中各

物质

质量

分率

数据

(续上表)

2 精馏塔的工艺计算

2.1精馏塔的物料衡算

2.1.1基础数据

(一) 生产能力:3万吨年,年开工数8000h。

(二) 产品二甲醚的纯度:二甲醚≥99wt%。

(三) 计算基准(kgh):P=3×107÷8000=3.750×103(kgh)=81.40(kmolh)

2.1.2物料衡算

DME:0.999

D

醚水CH3OH:0.001

F

DME:8.140×10-5

W H2O:0.9921

CH3OH:0.007891

图2-1 物料衡算简图

(一) 质量分数转换为摩尔分数

M DME=46.07kgkmol M CH3OH=32.04 kgkmol M H2O=18.02 kgkmol 根据aiM i÷∑a i M i

其中a i—质量分数;M i—摩尔质量

(1)进料组分

表2-1 进料各组分所占比例

组分DME CH3OH H2O

质量分数0.03091 0.004299 0.9647

摩尔分数0.01235 0.002469 0.9852

(2)塔顶组分

表2-2 塔顶各组分所占比例

组分DME CH3OH

质量分数0.9990 0.00100

摩尔分数0.9985 0.001500

(3)塔釜组分

表2-3 塔釜各组分所占比例

组分DME CH3OH H2O

质量分数8.140×10-50.007818 0.9922

摩尔分数 3.194×10-50.004411 0.9955

(二) 清晰分割

以DME为轻关键组分,CH3OH为重关键组分,H2O为非重关键组分。

(三) 物料衡算

X W,DME= 3.194×10-5X D,CH3OH=0.001500

D=81.400.9985=81.52kmolh

表2-4 清晰分割法计算过程

组分进料馏出液釜液

DME 0.01235F 0.01235F-3.194×10-5W 3.194×10-5W

CH3OH 0.002469F 0.001500D 0.002469F-0.001500D

H2O 0.9852F 0 0.9852F

∑ F D W

联立0.01235F-3.194×10-5W+0.001500D+0=D

F=D+W

解得:F=6607 kmolh =1.252×105 kgh W=6525 kmolh=1.183 ×105kgh D=81.52kmolh=3754 kgh

M F=18.95kgkmol M W=18.13 kgkmol M D=46.056 kgkmol

(四)精馏工序物料衡算表

表2-5 精馏工序物料衡算表

2.2精馏塔工艺计算

2.2.1物料衡算(见2.1.2)

2.2.2操作条件的确定

(一) 进料温度的计算(泡点)—饱和液体进料

(1) 已知体系总压强P总=200kPa,即P总=1520mmHg

物料饱和液体进料,故进料的泡点温度为进料温度。

(2) 安托因公式

㏑P i s=A-B(T+C) (P i s::mmHg,T:K)

查《石油化工基础数据手册》

表2-6 安托因公式数据表

A B C

DME 16.8467 2361.44 -17.10

CH3OH 18.5875 3626.55 -34.29

H2O 18.3036 3816.44 -46.13

DME:㏑P i s,DME=16.8467-2361.44(T-17.10)

CH3OH:㏑P i s,CH3OH=18.5875-3626.55(T-34.29)

H2O:㏑P i s,H2O=18.3036-3816.44(T-46.13)

(3) 采用试差法计算

压力不太高,按完全理想系计算,K i=㏑P i s P

给定P Y T

设T K i=㏑P i s P ∑K i x i -1≤εy i结束

调整T N

图2-2 试差法结构图

试差过程见表2-7

表2-7 试差过程

结果:在392.70K,即119.55℃时,∑K i x i≈1,故进料温度为392.70K (二)塔顶露点温度计算

=1520mmHg

操作压力:P

给定P Y T

设T K i=㏑P i s P ∑(y i K i)-1≤εx i结束

调整T N

图2-3 试差法结构图

试差过程见表2-8

表2-8 试差过程

结果: 在332.25K,即59.10℃时,∑y i K i≈1,故塔顶温度为332.25K (三)塔釜泡点温度计算

操作压力:P

=1520mmHg

给定P Y T

设T K i=㏑P i s P ∑K i x i≤εy i结束

调整T N

图2-4 试差法结构图

试差过程见表2-9

表2-9 试差过程

结果: 在393.50K,即120.35℃时,∑K i x i≈1,故塔顶温度为393.50K 2.3精馏塔设备计算

2.3.1基础数据

(一) 塔压:1520mmHg

进料温度:T F=392.70K

塔温塔顶温度:T D=332.25K

塔釜温度:T W=393.50K

(二)密度(参考《化工单元设备的设计》)

查《石油化工基础数据手册》

表2-10 密度数据表

经插值计算得

表2-11 插值计算后密度数据表

已知各组分在液相、气相所占的比例,如表2-12所示

表2-12 各组分所占比例

(1) 塔顶密度的计算 ①液相平均密度:

2

.762001400.0593.70.99861

1133,+=+=∑=

OH

CH OH CH DME

DME i i D L x x x ρ

ρρρ

园林景观设计毕业论文优秀

园林景观设计毕业论文 飞儿景观设计提供 居住区绿化是城市绿化的重要组成部分,最接近居民,与居民日常生活关系最为密切,它对提高居民生活环境质量,增进居民的身心健康至关重要。居住区的绿化水平,是体现城市现代化的一个重要标志。居住区绿地在城市园林绿地系统中分布最广,是普遍绿化的重要方面,是城市生态系统中重要的一环。随着城市现代化进程步伐的加快,居住区的绿化水平也应相应的提高,以更好地满足人们对环境质量的不同要求。因此,加强居住区绿化建设首要的任务是必须做好设计。提高设计水平应在尊重传统、尊重科学基础上摈弃原有落后的环境,着重注意生态及景观设计,才能使居住区绿化工作再上新台阶。下面从生态设计和景观设计来探讨设计的新思路。 1. 生态设计 居住区的绿化规划,必须以城市生态系统为基础,注重生态效益,以提高居民小区的环境质量,维护和保持城市的生态平衡。开阳县地处贵州省中部,位于云贵高原东侧梯状斜坡黔中隆起地带,总的地势特征是西南高,东北低,由西南向东北倾斜。地势起伏大,最高海拔1705.2米,最低海拔506.5米,山高谷深,沟壑纵横,切割剧烈,形成了开阳气候的多样性。年均气温12.8℃,极端最高气温35.4℃,极端最低气温-10.1℃,年均雨量1258.8毫米。总之,开阳气候温和,雨量充沛,冬无严寒,夏无酷暑,适宜于多种园林植物生长和繁衍。因此,根据开阳县生态现状,结合我县“打造山水园林城市”的主题,运用生态学原理对开阳县居住区绿地设计是我们面临的一个新问题。

1.1研究和学习生态园林观点是搞好开阳县居住区绿化设计的先决条件 生态园林是根据植物共生、循环、生态位、竞争、植物种群生态学、植物他感作用等生态学原理,因地制宜地将乔木、灌木、藤本、草本植物相互配置在一个群落中,有层次、厚度、色彩,使具有不同生物特性的植物各得其所,从而充分利用阳光、空气、土地、肥力,实行集约经营,构成一个和谐、有序、稳定、壮观而能长期共存的复层混交的立体植物群落,使我们的居住区绿化发挥更好的生态效益。 1.2努力提高开阳县居住区绿化的绿地率和绿视率 在居住区内不透水的部分(道路、建筑广场)比例较大,而绿地面积已经很少,设计时,应合理分配园林各要素,(植物、道路、建筑、山石、水体)的比例关系,重点突出植物造景,同时充分运用植物覆盖所有可以覆盖的黄土,努力提高单位面积的绿地率和绿视率。如同样是道路地坪,石板嵌草道路要比纯铺装的道路地坪好。同样是景墙透空,栽植攀援植物景墙要比无攀援植物透空景墙更能发挥生态效益。同样是休息、绿化功能的建筑小品,花架要比亭子更能提高绿视率。 1.3努力提高开阳县居住区绿地单位面积的叶面积系数 叶面积系数=叶面积/单位面积。园林绿地中的物流和能流数量的大小决定园林绿地生态效益大小的最具实质性的因素,改善植物的空间分布状况,是提高绿化水平的有效途径。运用生态园林原理,设计多层结构,乔木下加栽耐荫的灌木和地被植物,构成复层混交的人工植物群落以得到最大的叶面积总和。 1.4努力提高物质、能量的循环 生态园林是良性循环的园林,应用生态经济学原理,在多层次人工植物群落中,通过植物与微生物之间的代谢作用,实现无废物循环生产。在人工植物群落

化工分离过程课程设计

A B C 甲醇 23.4803 3626.55 34.29 乙醇 23.8047 3803.98 41.68 正丙醇 22.4367 3166.38 80.15 化工与制药学院 课程设计任务书 专业 化学工程与工艺 班级 学生姓名 发题时间: 2015 年 1 月 4 日 一、课题名称 用Willson 方程计算甲醇、乙醇、正丙醇三元物系相平衡常数和浮阀塔板结构设计 二、课题条件(文献资料、仪器设备、指导力量) 采用浮阀塔分离含甲醇0.60、乙醇0.30、正丙醇0.10(均为摩尔分数)的混合物,操作压力为101.3kPa ,气相看成理想气体,液相看成非理想溶液,假设100kmol/h 进料,塔顶采出为60kmol/h ,回流比为R=2.2。物料分配计算时,相对挥发度可取进料板值。用Willson 方程计算体系活度系数,描述相平衡方程计算式。对该塔进行塔板结构设计,进行水力学计算,绘出负荷性能图,找出该塔操作弹性。 三、设计任务(含实验、分析、计算、绘图、论述等内容) 1、查找基础数据(Willson 参数),计算活度系数,描述相平衡方程; 2、对该塔进行结构设计; 3、进行水力学计算,绘出负荷性能图,找出操作弹性; 4、对该塔结构设计进行讨论; 5、采用CAD 绘出精馏系统工艺流程图。 要求:提交设计说明书按论文格式书写,层次分明,书写工整,独立完成。 四、设计所需技术参数 1、题中各组分安托尼方程 ln S i B P A t C =- +(单位:t —K ;S i P —Pa)。 五、说明书参考内容 目录 中文摘要、关键词 英文摘要、关键词 前言(包括设计依据、主要内容、特点、意义等) 第1章 相平衡设计和塔板结构设计综述 第2章 相平衡方程计算

乙烯装置工艺流程

福炼乙烯装置利用炼厂直馏轻石脑油和直馏重石脑油(LVN/HVN)、加氢尾油(HVGO)、加氢裂化轻石脑油(HCN)、裂解汽油加氢装置C5循环组分、来自于芳烃抽提装置的C6提余油、炼厂饱和C3/C4液化气、循环乙烷、循环丙烷等原料,通过高温裂解,深冷分离产出主产品乙烯和丙烯以及付产品C3液化气(也可以切换到循环裂解丙烷)、丁二烯、MTBE/丁烯-1、甲烷、氢气、粗裂解汽油和裂解燃料油(由裂解柴油和裂解燃料油混合而成)。装置的乙烯、丙烯产品送至下游生产聚乙烯、聚丙烯产品。 乙烯联合装置主要由裂解、压缩、分离、低温罐区、汽油加氢、混合碳四处理等装置。乙烯联合装置工艺流程简述: 1、裂解工序 接收来自界外的炼厂C3/C4、粗混合C4、C5循环物流、分离部分返回的循环乙烷/循环丙烷、芳烃提余油、轻石脑油、重石脑油、以及加氢裂化石脑油(HCN),分别送入SL-1型及SL-2型炉内,加稀释蒸汽(DS)进行裂解,得到的裂解气(即:氢气、甲烷、乙烯、乙烷、丙烯、丙烷、丁二烯、裂解汽油、裂解燃料油等组分的混合物)经废热锅炉急冷,油冷、水冷至常温,回收部分热量,并把其中大部分油类产品分离后送入后续工序。负责接收从界外来的高压锅炉给水并将其转化为压力11.7Mpa、温度500~525℃的超高压蒸汽(VHS)。接收本装置分离工序返回的甲烷氢及从界外补充的碳三/碳四等物料经混合、汽化后做为裂解炉燃料气。 2、压缩工序 将来自裂解工序的裂解气,经五段压缩后,将压力提高到4.173 MPag,为深冷分离提供条件。裂解气在压缩过程中,逐段冷却和分离,除去重烃和水,并在三段出口设有碱洗,除去裂解气中的酸性气体,为分离系统提供合格的裂解气。 制冷系统由丙烯制冷系统和乙烯、甲烷二元制冷系统构成,为深冷分离提供-40℃,-27℃,-3℃、13℃四个级别的丙烯冷剂;-40℃~-135℃的二元冷剂。丙烯、二元制冷系统为多段压缩,多级节流的封闭循环系统。 3、分离工序 将压缩工序来的裂解气,经脱水、深冷、加氢和精馏等过程,获得高纯度的乙烯、丙烯,同时得到付产品H2、CH4、C3LPG、混合碳四馏份及裂解汽油。

5万吨年炼厂气体分离工艺设计(参考)

淮海工学院专业设计报告书 题目: 50000吨/年炼厂液化气分离 工艺初步设计 系(院):化学工程学院 专业:化学工程与工艺 班级: 姓名: 学号: 2013年12月20 日

设计任务书 班级:姓名:学号: 一、设计题目: 50000吨/年炼厂液化气分离工艺设计。 二、设计条件: 液化石油气 组分 wt% 乙烷 0.31 乙烯 0.02 丙烯 35.58 丙烷 8.46 正丁烷 7.51 异丁烷 14.66 异丁烯 12.08 丁烯-1 5.01 反丁烯-2 9.81 顺丁烯-2 6.55 异戊烷 0.01 总硫量 20~50ppm 水分饱和水 合计 100 丙烯: 分子式: C 3H 6 熔点(℃): -191.2 沸点(℃): -47.72 相对密度(水=1): 0.5 相对蒸气密度(空气=1): 1.48 饱和蒸气压(kPa): 602.88(0℃) 性能: 主要成分:乙烯、乙烷、丙烷、丙烯、丁烷、丁烯等。 外观与性状:无色气体或黄棕色油状液体, 有特殊臭味。 闪点(℃): -74 引燃温度(℃): 426~537 爆炸上限%(V/V): 33 爆炸下限%(V/V): 5 健康危害:本品有麻醉作用。急性中毒:有头晕、头痛、兴奋或嗜睡、恶心、呕吐、脉缓等;重症者可突然倒下,尿失禁,意识丧失,甚至呼吸停止。可致皮肤冻伤。慢

性影响:长期接触低浓度者,可出现头痛、头晕、睡眠不佳、易疲劳、情绪不稳以及植物神经功能紊乱等。 环境危害:对环境有危害,对水体、土壤和大气可造成污染。 燃爆危险:本品易燃,具麻醉性。 危险特性:极易燃,与空气混合能形成爆炸性混合物。遇热源和明火有燃烧爆炸的危险。与氟、氯等接触会发生剧烈的化学反应。其蒸气比空气重,能在较低处扩散到相当远的地方,遇火源会着火回燃。 特点: ①污染少。②发热量高。③易于运输。④压力稳定。⑤储存设备简单,供应方式灵活。

分离工程脱乙烷塔课程设计报告书

一综述 1.1塔设备简述 在化学工业和石油工业中广泛应用的诸如吸收、解吸、精馏、萃取等单元操作中,气液传质设备必不可少。塔设备就是使气液成两相通过精密接触达到相际传质和传热目的的气液传质设备之一。 塔设备一般分为级间接触式和连续接触式两大类。前者的代表是板式塔,后者的代表则为填料塔,在各种塔型中,当前应用最广泛的是筛板塔与浮阀塔。 筛板塔在十九世纪初已应用与工业装置上,但由于对筛板的流体力学研究很少,被认为操作不易掌握,没有被广泛采用。五十年代来,由于工业生产实践,对筛板塔作了较充分的研究并且经过了大量的工业生产实践,形成了较完善的设计方法。筛板塔和泡罩塔相比较具有下列特点:生产能力大于10.5%,板效率提高产量15%左右;而压降可降低30%左右;另外筛板塔结构简单,消耗金属少,塔板的造价可减少40%左右;安装容易,也便于清理检修。 当前各炼厂的气体分离装置大部分仍然采用精馏分离。化工生产中所处理的原料中间产物和粗产品等几乎都是由若干组分组成的混合物,蒸馏是分离液体混合物的典型单元操作。低沸点烃类混合物是利用精馏方法使混合物得到分离的,其基本原理是利用被分离的各组分具有不同的挥发度,即各组分在同一压力下具有不同的沸点将其分离的。其实质是不平衡的汽液两相在塔盘上多次逆向接触,多次进行部分汽化和部分冷凝,传质、传热,使气相中轻组分浓度不断提高,液相中重组分浓度不断提高,从而使混合物得到分离。 塔设备是能够实现蒸馏的气液传质设备,广泛应用于化工、石油化工、石油等工业中,其结构形式基本上可以分为板式塔和填料塔两大类。板式塔用途较广,它是逐级接触式的气液传质设备。浮阀塔于50年代初期在工业上开始推广使用,由于它兼有泡罩塔和筛板塔的优点,已成为国应用最广泛的塔型,特别是在石油、化学工业中使用最普遍,对其性能研究也较充分。 浮阀塔板的结构特点是在塔板上开有若干大孔,每个孔上装有一个可以上、下浮动的阀片,浮阀的型式很多,目前国最常用型式的为F 型和V-4 1

园林景观设计毕业论文

园林景观设计毕业论文 简介:居住区绿化是城市绿化的重要组成部分,最接近居民,与居民日常生活关系最为密切,它对提高居民生活环境质量,增进居民的身心健康至关重要。居住区的绿化水平,是体现城市现代化的一个重要标志。居住区绿地在城市园林绿地系统中分布最广,是普遍绿化的重要方面,是城市生态系统中重要的一环。随着城市现代化进程步伐的加快,居住区的绿化水平也应相应的提高,以更好地满足人们对环境质量的不同要求。因此,加强居住区绿化建设首要的任务是必须做好设计。提高设计水平应在尊重传统、尊重科学基础上摈弃原有落后的环境,着重注意生态及景观设计,才能使居住区绿化工作再上新台阶。下面从生态设计和景观设计来探讨设计的新思路。 关键字:园林,景观设计,毕业,论文 居住区绿化是城市绿化的重要组成部分,最接近居民,与居民日常生活关系最为密切,它对提高居民生活环境质量,增进居民的身心健康至关重要。居住区的绿化水平,是体现城市现代化的一个重要标志。居住区绿地在城市园林绿地系统中分布最广,是普遍绿化的重要方面,是城市生态系统中重要的一环。随着城市现代化进程步伐的加快,居住区的绿化水平也应相应的提高,以更好地满足人们对环境质量的不同要求。因此,加强居住区绿化建设首要的任务是必须做好设计。提高设计水平应在尊重传统、尊重科学基础上摈弃原有落后的环境,着重注意生态及景观设计,才能使居住区绿化工作再上新台阶。下面从生态设计和景观设计来探讨设计的新思路。

1. 生态设计 居住区的绿化规划,必须以城市生态系统为基础,注重生态效益,以提高居民小区的环境质量,维护和保持城市的生态平衡。开阳县地处贵州省中部,位于云贵高原东侧梯状斜坡黔中隆起地带,总的地势特征是西南高,东北低,由西南向东北倾斜。地势起伏大,最高海拔1705.2米,最低海拔506.5米,山高谷深,沟壑纵横,切割剧烈,形成了开阳气候的多样性。年均气温12.8℃,极端最高气温35.4℃,极端最低气温-10.1℃,年均雨量1258.8毫米。总之,开阳气候温和,雨量充沛,冬无严寒,夏无酷暑,适宜于多种园林植物生长和繁衍。因此,根据开阳县生态现状,结合我县“打造山水园林城市”的主题,运用生态学原理对开阳县居住区绿地设计是我们面临的一个新问题。 1.1研究和学习生态园林观点是搞好开阳县居住区绿化设计的先决条件 生态园林是根据植物共生、循环、生态位、竞争、植物种群生态学、植物他感作用等生态学原理,因地制宜地将乔木、灌木、藤本、草本植物相互配置在一个群落中,有层次、厚度、色彩,使具有不同生物特性的植物各得其所,从而充分利用阳光、空气、土地、肥力,实行集约经营,构成一个和谐、有序、稳定、壮观而能长期共存的复层混交的立体植物群落,使我们的居住区绿化发挥更好的生态效益。 1.2努力提高开阳县居住区绿化的绿地率和绿视率 在居住区内不透水的部分(道路、建筑广场)比例较大,而绿地面积已经很少,设计时,应合理分配园林各要素,(植物、道路、建筑、

高压聚乙烯装置(LDPE)工艺说明

高压聚乙烯装置(LDPE)工艺说明 高压聚乙烯装置由调聚剂储存、乙烯压缩、引发剂配制及加料、聚合反应、聚合物分离及气体循环、挤压造粒和颗粒干燥、批量掺混等单元组成。 装置设计可生产54个牌号,熔融指数范围为0.2~65克/10分,密度范围为918~926kg/m3的高压聚乙烯产品。 装置控制系统采用H0NNYWELL公司的TPS—502系统。 装置具有工艺流程短、反应温度低、单点进料、反应物料流速快、四点纯过氧化物引发单和转化率高、单线生产能力大、控制先进合理、操作安全等特点。 化学反应 LDPE是通过乙烯的自由基聚合合成的,在高温、高压和引发剂的作用下,使乙烯形成乙烯自由基,Stamicarbon 工艺应用过氧化物作为聚合的引发剂,这些自由基与其它乙烯单体聚合生成带有长链分支的链状聚合物,加入少量的a—烯烃,可产生少量的短链分支,丙烯和丙烷则用来终止聚合反应。 乙烯自由基聚合的基本反应如下: 引发: 引发剂分解生成能够引发聚合反应的自由基: 1→2R’(引发剂分解) 引发剂基团 使用的引发剂如下: 过氧化双叔丁基(引发剂A) 过氧化苯甲酸叔丁酯(引发剂C) 过氧化—2—乙基已酸叔丁酯(引发剂S) R’*十CH2=CH2→R’,—CH2—CH3 基团乙烯基团 链增长: 基团与乙烯连续反应生成分子链 R’—CH2+CH2 *+n CH2=CH2→R—CH2—CH2 * 基团乙烯聚合基团 链终止:

活性聚合物基团并非无限增长下去,而是通过基团的偶合或歧化来终止反应。 a,偶合终止 2R—CH2—CH2 *→R—CH2—CH2—CH2—CH2—R 聚合基团聚合物 b.歧化终止 2R—CH2—CH2*→R—CH= CH2十R—CH2—CH3 聚合基团聚合物聚合物 链转移: 乙稀自由基聚合,可发生下列链转移: a。向单体的链转移: R一CH2一CH2* + CH2 = CH2→R一CH=CH2十CH3一CH2*或 R一CH2一CH2* + CH2 = CH2→R CH2一CH3+CH2=CH* 聚合基团乙烯聚合物基团 b.向链转移剂的链转移: R一CH2一CH2*+CH3一CH2一CH3→R—CH2一CH3+ CH3—CH*—CH3或聚合基团丙烷聚合物基团 R一CH2一CH2*+CH2=CH一CH3→R一CH2一CH3+CH2=C·一cH9 聚合基团丙烯聚合物基团 c,分子间链转移: 这种与其它分子间的链转移,可生成长链分支: R一CH2一CH=+It’一CH2一R”一R一CH2一CH3十R。0H。一R” 聚合基团聚合物聚合协聚合基团 6.分子内链转移: 这种在同一分子内的链转移,可生成短链分支: R一CH2一CH2一CH。一CH2。c痴~R一CH”一CH2一CH2一cH2一cH。 聚合基团聚合基团 生产过程中控制的聚合物特性有: 一密度 一分子量 一分子量分布(MWD)

TUE-12-利用LNG冷能的轻烃分离高压流程

利用 LNG 冷能的轻烃分离高压流程
高婷,林文胜,顾安忠
(上海交通大学制冷与低温工程研究所,上海,200240) 摘要:利用 LNG 冷能能以较低的能耗分离回收其中高附加值的 C2+轻烃资源,同时实现 LNG 气化,是 LNG 冷能 利用的有效方式。本文提出一种新型的利用 LNG 冷能的轻烃分离流程,脱甲烷塔在较高的压力下运行,从而分 离出的富甲烷天然气能以较低能耗压缩到管输压力;脱乙烷塔在常压下运行,可以直接得到常压液态乙烷及 LPG 产品,方便产品的储运。脱甲烷塔中再沸器的热耗由燃气提供,经计算只需消耗 1 %左右的天然气;脱乙烷塔中 冷凝器所需的冷量由 LNG 提供。该流程轻烃回收率可达 90 %以上,其中乙烷回收率可达 85 %左右。以某气源组 分为基础,考察了乙烷含量和乙烷价格变化对装置经济性的影响,结果表明,使用该流程进行轻烃回收效益可观。 关键词:液化天然气(LNG) ;冷能利用;轻烃分离;高压流程;经济性分析 中图分类号:TQ 028; TE64 文献标识码:A 文章编号:
Light hydrocarbons separation at high pressure from liquefied natural gas with its cryogenic energy utilized
Gao Ting, Lin Wensheng, Gu Anzhong
(Institute of Refrigeration and Cryogenics, Shanghai Jiaotong University, Shanghai 200240)
Abstract: C2+ light hydrocarbons, which are resources with high additional values, can be separated from LNG with low power
consumption by efficiently utilizing its cryogenic energy, and LNG is gasified meanwhile. A novel light hydrocarbons separation process is proposed in this paper: the demethanizer works at higher pressure, thus the methane-rich natural gas can be compressed to pipeline pressure with low power consumption; the deethanizer works at atmosphere pressure, consequently liquefied ethane and LPG (liquefied petroleum gas, i.e. C3+) at atmosphere pressure can be product directly, which are easy to be stored and transported. The heat consumption of the reboiler in the demethanizer is provided by the combustion of the separated natural gas, which account for about 1 % of the total amount; the cold energy of the condenser in the deethanizer is provided by the cryogenic energy of LNG. The recovery rate is more than 90 % for light hydrocarbons, and about 85% for ethane. On the basis of one typical feed gas composition, the effects of the ethane content and the ethane price to the economics of the process is studied. The results show that, recovering light hydrocarbons from LNG by this process can gain great profits.
Keywords: liquefied natural gas (LNG); cryogenic energy utilization; light hydrocarbons separation; high pressure process; economic analysis 都是湿气 (乙烷、 丙烷等C2+轻烃的摩尔含量在10 % 以上) 湿气中的C2+轻烃是优质清洁的乙烯裂解原 , 料,用其代替石脑油生产乙烯,装置投资可节省30 %,能耗降低30 %,综合成本降低10 %。利用LNG 的冷能分离出其中的轻烃资源, 还可以省去制冷设 备,以很低的能耗获得高附加值的乙烷和由C3+组
Corresponding author: Lin Wensheng, E-mail:linwsh@https://www.doczj.com/doc/5c13374198.html,.
引 言
LNG是在低温下以液态形式存在的天然气, 通 常需要重新气化才能获得利用。 LNG气化时释放的 -1 冷能大约为840 kJ·kg ,回收这部分能源具有可观 的经济和社会效益[1-2]。目前世界贸易中许多LNG
联系人:林文胜。第一作者:高婷(1985—) ,女,博士研究生。

化工原理课程设计

《化工原理》课程设计 水吸收氨气填料吸收塔设计 学院河南城建学院 专业化学工程与工艺 指导教师王要令 班级 1014112 姓名喻宏兴 学号 101411252 2013年 12月24日

附:设计任务书 (1) 设计题目 年处理量为吨氨气吸收塔设计 试设计一座填料吸收塔,用于脱除混于空气中的氨气。混合气体的处理量为2600m3/h,其中含空气为94%,氨气为6%(体积分数,下同)。要求塔顶排放气体中含氨低于0.02%,采用清水进行吸收,吸收塔的用量为最小用量的 1.5 倍【20℃氨在水中的溶解度系数为H=0.725kmol/(m3·kPa)】 (2) 工艺操作条件 ①操作平均压力:常压; ②操作温度:t=20℃; ③每年生产时间:7200h; ④填料类型选用:聚丙烯阶梯环填料; 规格:DN50 (3)设计任务 1.填料吸收塔的物料衡算; 2.填料吸收塔的工艺尺寸设计与计算; 3.填料吸收塔有关附属设备的设计和选型; 4.绘制吸收系统的工艺流程图; 5.编写设计说明书; 6.对设计过程的评述和有关问题的讨论。

目录 0. 前言 (5) 1. 设计方案简述 (5) 1.1 设计任务的意义 (5) 1.2 设计结果 (5) 2. 工艺流程简图及说明 (7) 3. 工艺计算及主体设备设计 (8) 3.1 液相物性数据 (8) 3.2 气相物性数据 (8) 3.3 物料计算 (8) 3.4 平衡曲线方程及吸收剂用量的选择 (9) 3.5 塔径的计算 (10) 3.6 填料层高度的计算 (11) 3.7 填料层压降计算 (14) 4. 附属设备计算及选型 (15) 4.1 液体分布器简要设计 (15) 4.2 填料支承装置 (15) 4.3 填料压紧装置 (15) 4.4 液体再分布装置 (16) 4.5 塔顶除沫装置 (16) 4.6 塔附属高度及塔总高的计算 (16)

景观园林毕业论文15篇

景观园林毕业论文15篇 景观园林毕业论文 摘要:我们当前所处的文化环境应该超越物质层面的需要,达到与周围景观的融合。作为特定文化场景的一个延伸,园林文化设计更要彰显人性化的文化特征。人性化的文化设计景观本着以人为本的原则,在倡导生态园林设计的过程中,也要追求人性化的艺术需求,使得园林景观能够朝着形式多样的方向发展,在满足人们在视觉享受的基础之上能够带给人们更多的精神享受,从而也使得整个城市焕发出新的面貌。 关键词 景观园林毕业园林论文园林 景观园林毕业论文:园林景观端景设计探究 一、城市园林景观端景设计的意义 第一,端景设计在改善城市空气质量上能发挥作用。近两年来频频出现的雾霾天气,已经让生活在城市的居民深受空气污染之苦,增加绿地建设面积,积极构建绿色城市,已经成为越来越多市民的心声。园林景观端景设计中使用的大量绿色植物,可以高效吸附散布在城市空气中的有害物质以及灰尘,通过表面绒毛将细小灰尘牢牢粘附在其叶片上,等到下雨的时候随着雨水流落大地变成土壤,通过绿色植物这种吸附作用,空气中浮游灰尘的含量大量减少,空气质量也得到了极大改善。第二,城市园林景观端景设计能够有效减少城市噪声。园林景观端景设计中所用到的绿色植物带能够有效阻挡声波的传递,起到一种抵消作用,使得城市中轰鸣的机器声、汽车鸣笛声分贝减少,为广大市民提供一个相对安宁的生活环境,提高市民生活质量。第三,城市园林景观端景具有得天独厚的观赏性与娱乐性。生活在城市的人们往往节奏快、压力大,闲暇时间相对较少,城市居民比生活在农村的人们更加渴望通过亲近大自然、接触大自然来缓解疲劳。园林景观端景则为这类群体提供了一抹自然之绿,人们在欣赏景观的同时,紧张的心情也得以放松。此外,马路旁景观端景的设置能够很大程度上缓解驾驶员的疲劳状态,从一定层面上能够降低城市道路交通事故的发生率。第四,就城市现代化水平而言,园林景观端景设计还可以显著增加城市的格调,作为城市的一张时尚名片,其设计水平往往代表着一个城市的审美与价值取向,这为城市招商引资、提供了软实力上的保证,优雅、大气的城市更加容易获得投资商的青睐。 二、当前园林景观端景设计存在的问题

苯-氯苯分离过程板式精馏塔设计说明

课程设计说明书 题目: 苯-氯苯分离过程板式精馏塔设计 院(系): 化学化工学院 专业年级: 化学2012级 姓名: 王*** 学号: 121****** 指导教师: **副教授 2015年10月

目录 1绪论 (1) 2 设计方案确定与说明 (1) 2.1设计方案的选择 (1) 2.2工艺流程说明 (2) 3 精馏塔的工艺计算 (2) 3.2精馏塔的操作工艺条件和相关物性数据的计算 (3) 3.2.1精馏塔平均温度 (4) 3.2.2气、液相的密度的计算 (4) 3.2.3混合液体表面力 (6) 3.2.4混合物的黏度 (7) 3.2.5相对挥发度 (8) 3.2.6 气液相体积流量计算 (8) 3.3塔板的计算 (9) 3.3.1操作线方程的计算 (9) 3.3.2实际塔板的确定 (10) 3.4塔和塔板主要工艺结构尺寸计算 (11) 3.4.1塔径的计算 (11) 3.4.2溢流装置 (13) 3.4.3 塔板布置及浮阀数目与排列 (15) 3.5 精馏塔塔板的流体力学计算 (17) 3.5.1精馏塔塔板的压降计算 (17) 3.5.2淹塔 (18) 3.6 塔板负荷性能计算 (18) 3.6.1 雾沫夹带线 (18) 3.6.2 液泛线 (19) 3.6.3 液相负荷上限 (20) 3.6.4 漏液线 (20) 3.6.5 液相负荷下限 (21) 3.6.6塔板负荷性能图 (21) 4 设计结果汇总表 (23) 5工艺流程图及精馏塔工艺条件图 (24) 6设计评述 (25)

1绪论 精馏塔作为石油化工行业最常用的化工设备之一,在当今工业中发挥了极其重要的作用。精馏塔通过物质的传质传热,将塔的进料中的物质分离,从而在塔顶和塔底分别获得人们需要的高浓度物质。苯与氯苯的分离,必须经过各种加工过程,炼制成多种在质量上符合使用要求的产品工业上最早出现的板式塔是筛板塔和泡罩塔。筛板塔出现于1830年,很长一段时间被认为难以操作而未得到重视。泡罩塔结构复杂,但容易操作,自1854年应用于工业生产以后,很快得到推广,直到20世纪50年代初,它始终处于主导地位。第二次世界大战后,炼油和化学工业发展迅速,泡罩塔结构复杂、造价高的缺点日益突出,而结构简单的筛板塔重新受到重视。50年代起,筛板塔迅速发展成为工业上广泛应用的塔型。与此同时,还出现了浮阀塔,它操作容易,结构也比较简单,同样得到了广泛应用。而泡罩塔的应用则日益减少,除特殊场合外,已不再新建。60年代以后,石油化工的生产规模不断扩大,大型塔的直径已超过 10m。为满足设备大型化及有关分离操作所提出的各种要求,新型塔板不断出现,已有数十种。 工业生产对塔板的要求主要是:①通过能力要大,即单位塔截面能处理的气液流量大。②塔板效率要高。③塔板压力降要低。④操作弹性要大。⑤结构简单,易于制造。在这些要求中,对于要求产品纯度高的分离操作,首先应考虑高效率;对于处理量大的一般性分离(如原油蒸馏等),主要是考虑通过能力大。为了满足上述要求,近30年来,在塔板结构方面进行了大量研究,从而认识到雾沫夹带通常是限制气体通过能力的主要因素。在泡罩塔、筛板塔和浮阀塔中,气体垂直向上流动,雾沫夹带量较大,针对这种缺点,并为适应各种特殊要求,开发了多种新型塔板。 本文的主要设计容可以概括如下:1.设计方案的选择及流程;2.工艺计算; 3.浮阀塔工艺尺寸计算;4.设计结果汇总;5.工艺流程图及精馏塔工艺条件图 2 设计方案确定与说明 2.1设计方案的选择

炼油及乙烯装置主要用泵介绍

炼油及乙烯装置典型工艺及主流程泵简介 一、综述 1.石油和化工工业装置主要涉及的领域如下:以石油与天然气为原料,生产石油产品和石油化工产品的石油石化加工工业,其产品链如图3-1所示。 2.石油和化工行业用泵有以下特点: 1)泵的种类多。包括离心泵(含轴封 离心泵、无密封离心泵、高速离心泵、 皮托管离心泵等)、轴流泵、混流泵、 旋涡泵、柱塞泵、隔膜泵、计量泵、螺 杆泵、齿轮泵、凸轮泵、滑片泵、液环 泵、喷射泵等。 2)作为装置的心脏,泵在石油和化工 行业中被大量使用。资料显示,在石油 和化工装置中,泵配套电机的功率占全 厂用电的26%~59%。据专家估计,全国 泵类产品平均耗电量约占全国总发电 量的20%。也就是说,在石油和化工行 业,泵所占的用电比例为平均值的 1.3~3倍。例如,一个大型的千万吨/ 年的炼油及其配套装置(常减压蒸馏、催化裂化、焦化、加氢等)需要各类泵400台左右,其中离心泵占83%,往复泵占6%,齿轮泵和螺杆泵占3%,其他占8%。一个百万吨/年的乙烯及其配套装置(包括乙烯、丁二烯、汽油加氢、聚乙烯、丙烯腈、苯乙烯和聚苯乙烯、罐区、公用工程等)需要各类泵大约1000台,其中离心泵(包括无密封离心泵)占82%,往复泵和计量泵占8%、齿轮泵和螺旋泵占5%,其他占5%. 3)泵的工业条件比较苛刻。如:输送的介质比较恶劣,如高温、高压、腐蚀性、易燃危险或毒性介质等;所在的环境比较恶劣,如爆炸和火灾危险性区域,气体腐蚀性区域,存在化学、机械、热源、霉菌及风沙等环境条件的区域等。 二、炼油装置用泵 炼油装置,通常通过常减压蒸馏、加氢脱硫、催化裂化、加氢裂化、催化重整、延

20000吨乙胺装置分离系统工艺毕业设计

20000吨乙胺装置分离系统工艺设计 辛清炜1,李强2 (1.东北电力大学化学工程学院,吉林吉林132012; 2.东北电力大学化学工程学院,吉林吉林 132012) 摘要:本设计的内容是年产20000吨乙胺装置分离系统装置工艺设计,工艺采用连续精馏的方式,使用四个精馏塔,将乙醇和液氨混合加氢精馏成纯度大于99.5%的乙胺产品。本设计主要对T103塔所给的各个组分的质量分数并经过ASPEN软件模拟,得出各个塔的理论板数和回流比以及工艺条件,得出本套工艺装置的初步数据。同时完成物料衡算、热量衡算、并对乙胺精馏塔进行严格设备计算。对塔的冷凝器、再沸器、回流罐、接塔管和进料泵进行了详细计算和选型。 关键词:乙胺;精馏;ASPEN软件;工艺设计 Process Design of Separation System of 20000t Ethylamine Plant XIN Qing-wei1 ,LI Qiang2 (1.Chemical Engineering College, Northeast Dianli University, Jilin Jilin 132012;2.Chemical Engineering College, Northeast Dianli University, Jilin Jilin 132012) Abstract;The present design is 20000 tons per year ethylamine separation system means plant process design, continuous distillation process using manner, using four distillation column, ethanol and ammonia mixing hydrogenation rectification into purity of more than 99.5% of amine products. The design of the main T103 tower to the various components of the quality score and through the ASPEN software simulation, the theoretical plate of each column and reflux ratio and process conditions, the set of process equipment, the preliminary data. At the same time to complete the material balance, heat balance, and the rectification of the column for strict equipment calculation. The calculation and selection of the condenser, the re boiling device, the reflux tank, the connecting pipe and the feed pump of the tower are calculated in detail. And draw the process flow chart of the control point, the material map, equipment layout and piping layout. Key Words:Ethylamine;Distillation;ASPEN;Process planning 1绪论

课程设计教学大纲

课程设计教学大纲 “生物工程设备及机械设计原理课程设计”教学大纲 Bioengineering Equipment and Machine Design Principle Curriculum Design 课程编号;学时/学分:2周/2 一、大纲说明 本大纲根据长沙理工大学2006年版生物工程专业培养计划制定。 (一)教学对象 非机械类生物工程专业本科学生。 (二)课程性质及教学目的与要求 生物工程设备及机械设计原理是生物工程专业的专业基础课,通过本课程学习掌握好氧、厌氧生物反应器的结构、计算及放大原则,掌握工业规模生物反应物料的处理及培养基制备过程设备,了解生物工业的相应辅助系统,空气净化除菌,生物用水及制冷的工程原理、设备结构;掌握工程中常用机械传动装置及化工容器的设计计算等方面的知识,要求学生能完成对常用生物反应器——机械搅拌通风生物反应器的设计,使学生具备一定的生物反应器的计算设计能力,为毕业设计打下坚实的基础。 (三)主要先修课程和后续课程 1.主要先修课程: 工程制图,有机化学,物理学,化工原理,工程力学。 2.主要后续课程: 工厂设计,生物分离工程,毕业设计。 (四)教学方式与重点和难点 1.教学方式:课堂讲授、讨论及案例教学。 2.重点内容:好氧、厌氧生物反应器结构及比拟放大;培养基制备过程设备;空气净化过程设备;生物工程供水与制冷系统;搅拌器、容器的计算设计,零部件及材料的选用。 3.难点内容:生物反应器质量传递对反应器比拟放大的影响;空气除菌、生物供水系统;搅拌器、容器的计算及结构设计、装配图的绘制。

(五)考核方式 对设计计算、结构及图纸的绘制评出成绩。 二、课程设计内容(二选一) (一)年产10万吨啤酒厂糖化车间设计 设计内容: 1.工艺方案的确定;工艺计算(物料衡算);CAD绘制工艺流程图并附设计和计算说明书一份。 2.糖化锅的设计:确定糖化锅的几何尺寸;选择材料;计算强度或稳定性;选用零部件;提出技术要求;手工绘制设备装配图一张并附设计说明书一份。 (二)年产50吨红霉素厂发酵车间设计 设计内容: 1.工艺方案的确定;工艺计算(物料衡算);CAD绘制车间平面布置图并附设计和计算说明书一份。 2.机械搅拌通风式生物反应器的设计:确定生物反应器的几何尺寸;选择材料;计算强度或稳定性;选用零部件;提出技术要求;手工绘制设备装配图一张并附设计和计算说明书一份。三、课程设计环节及学时 本课程设计学时为2周,设计程序为:任务布置、设计计算、工艺方案确定、设备结构确定、绘制工艺流程图及设备装配图。 四、主要参考书 1.选用教材: 梁世中.生物工程设备.中国轻工业出版社,2002 潘永亮.化工设备机械设计基础.科学出版社,2003 2.参考书: [1] 张元兴.生物反应器工程.华东理工大学出版社,2001 [2] 高孔荣.发酵设备.中国轻工业出版社,1991 [3] 俞俊棠.抗生素生产设备.化学工业出版社,982 [4] 刘国诠.生物工程下游技术.化学工业出版社,1993 [5] 管敦仪.啤酒工业手册.轻工业出版社,1985 [6] 朱思明.化工设备机械基础.东理工大学出版社,2003.1 [7] 胡建生.化工制图.高等教育出版社,2004 [8] 成大先.机械设计手册.化学工业出版社,1999 [9] 王专文.人工容器设计.化学工业出版社,1991

(完整版)年产45万吨乙醇精馏工段工艺设计毕业设计

年产45万吨乙醇精馏工段工艺设 计 The Process Design of Ethanol Refining Section of 450 kt/a

目录 摘要 ....................................................................................................................... Abstract ................................................................................................................引言 .......................................................................................................................第一章绪论....................................................................................................... 1.1 国内乙醇工业的发展现状 ....................................................................................... 1.2 精馏塔的相关概述 ................................................................................................... 1.2.1精馏原理及其在化工生产上的应用..................................................................... 1.2.2精馏塔对塔设备的要求......................................................................................... 1.2.3常用板式塔类型及本设计的选型......................................................................... 1.2.4本设计所选塔的特性.............................................................................................第二章工艺流程选择与原材料的计算............................................................. 2.1 乙醇精馏工艺流程的概述 ....................................................................................... 2.2 乙醇原料的计算 ..................................................................................................... 2.2.1理论玉米秸秆葡萄糖消耗量................................................................................. 2.2.2实际玉米秸秆耗量 .................................................................................................第三章精馏设备的设计内容............................................................................. 3.1 塔板的工艺设计 ....................................................................................................... 3.1.1精馏塔全塔物料衡算............................................................................................. 3.1.2理论塔板数的确定 ................................................................................................. 3.1.3精馏塔操作工艺条件及相关物性数据的计算..................................................... 3.1.4塔板主要工艺结构尺寸的计算.............................................................................

相关主题
文本预览
相关文档 最新文档