当前位置:文档之家› 材料力学作业复习

材料力学作业复习

材料力学作业复习
材料力学作业复习

第一章绪论

1-1求图示构件在a-a和b-b截面上的内力,并指出构件AB发生何种基本变形。

图1-1a 图1-1b

1-2 四边形平板变形后为如图1-2所示的平行四边形,水平轴线在四边形AC边保持不变,求1)沿AB边的平均线应变;2)平板A点的剪应变。

图1-2

第二章拉伸压缩与剪切

2-1. 试绘制如下各杆轴力图。

图2-1 图2-2

2-2 图示试件宽50mm ,厚13mm ,求a -a 和b -b 截面内的拉应力和剪应力,并求试件内的最大拉

应力和最大剪应力。

图2-4

2-4 图示桁架。已知杆①的直径d 1=30mm,杆②的直径d 2=20mm,材料的许用应力][σ=160MPa,试

求此桁架的许用载荷[P]等于多少?

2-5 受轴向拉力P 作用的铬锰硅钢管,内外径尺寸为, 出现裂纹后需加套管修

理。若套管材料为20号钢,已知铬锰硅钢管的许用应力[]MPa 5001=σ,套管的许用应力为

[]MPa 1002=σ。求套管的外径D 0。

2-6 对于图示对称的汇交杆系,已知各杆许用应力][σ、材料比重ρ、距离D 与载荷P 。试确定

使结构重量W 为最小时的杆件方向角α,并给出相应的横截面面积A 。

图2-6

2-8 图示阶梯形杆,已知载荷P=5kN, 长L=400mm,截面面积A1=2A2=100mm2,弹性模量E=200GPa,试求此杆的轴向变形。

图2-8

2-9 图示桁架,P=50kN,杆①为钢杆,杆②为木质杆,已知E1=200GPa,E2=10GPa,A1=400mm2,A2=8000mm2,L=1.5m,试用Willot作图法求节点A的水平位移,并用卡氏定理求节点A的垂直位移和水平位移。

图2-9

2-10图示为建筑用受压方柱的截面,它由厚25mm的金属围成,中间则以混凝土填充。已知金属的弹性模量为E1=84GPa,许用应力σ1=40MPa,混凝土的弹性模量E2=14GPa,许用应力σ2=6MPa,试求作用在方柱上的最大载荷。

图2-10

2-12刚性梁由铰支座及两根等截面钢杆支承。已知均布载荷q = 30kN/m ,①杆横截面面积A 1 =

400mm 2,②杆的A 2 = 200mm 2,钢杆的许用应力[σ]=170MPa ,l 2=1.8l 1, 校核①、②钢杆的强度。

图2-12

2-13厚为13mm 宽150mm 的钢板,用直径为13mm 的螺栓与刚性支座相连,螺栓与孔为滑动配

合。若外载荷为53kN ,试确定(a )螺栓内的剪应力,(b )钢板内的最大拉应力,(c )螺栓与钢板之间的挤压应力。

图2-13

2-14图示铆接接头由中间两板和上、下两块盖板铆接而成,已知铆钉直径d=10mm ,中间板厚度

t=6mm ,上下盖板厚度δ=4mm ,b=50mm ,许用应力][τ=100MPa ,][bs σ =320MPa ,][σ

=160MPa ,试计算接头的最大载荷。

图2-13

第三章扭转

3-3图示阶梯薄壁圆轴,已知L=1m,[τ]=80MPa, M n=920N·m,m n=160N·m/m,AB段的平均半径R01=30mm,壁厚t1=3mm;BC段的平均半径R02=20mm,壁厚t2=2mm,试校核该轴的强度。

图3-3

3-5两段直径为D=100mm的圆轴,联轴节用位于D0=200mm圆周上的四个螺栓连接而成,已知圆轴受扭时的最大剪应力τmax=38MPa,而螺栓的许用剪应力[τ]=60MPa,求螺栓的直径d。

图3-5

3-6图示等截面圆轴,已知d=10cm,L=50cm,M1=8KN?m,M2=3KN?m,轴材料为钢,G=82GPa,试求:1)轴的最大剪应力;2)截面B和C的扭转角;3)若要求BC段的单位长度扭转角与AB段的相等,则在BC段钻孔的直径应为多大?

图3-6

3-8试确定图示变截面钢圆杆(a)距左端3m的横截面上的最大剪应力,(b)距左端3m的截面相对于固定端的扭转角。已知G = 80GPa。

3-9一刚性杆,被固定在直径20mm的铝轴末端,若加载前刚性杆与支座D的间隙为10mm,求加载后铝轴内的最大剪应力。已知G =28GN/m2。

附录I 平面图形的几何性质

I-1 求图示两截面的形心在参考坐标系yoz中的坐标。

图I-1a 图I-1b

I-2. 平面图形尺寸如图I-2所示,已知平面图形形心C的位置y c=210mm,试计算平面图形对形心轴z的惯性矩。

图I-2

第四章弯曲内力

4-1试计算图示梁截面A+、B-、C+和C-的剪力和弯矩。

图4-1a 图4-1b

4-3用微分、积分关系绘制各图示梁的Fs,M图。

图4-3a 图4-3b

4-5图示一有中间铰链的组合梁,试绘制Fs、M图。

图4-5

4-6绘制图示刚架的内力图,并求各类内力的最大值。

图4-6a 图4-6b

第五章弯曲应力

5-2图示梁,试求梁的最大正应力σmax及σmax所在截面上A点的正应力,已知P=100KN, L=4m, q=60N/mm。

图5-2 图5-3

5-3梁截面如图所示,已知Q=10KN,试计算该截面上的最大弯曲剪应力τmax以及A点处的剪应力τA。

5-5 图示T 字形截面外伸梁,腹板向下放置,已知P 1=9kN ,P 2=4kN ,材料为脆性的,其许用应力

为MPa 30][=+σ,MPa 60][=-σ,试校核梁的强度。

图5-5

5-6 图示外伸臂梁承受均布载荷作用和集中力作用,截面形状如图。已知P=100kN ,q=50N/mm ,

L=1m ,I z =101.7×106mm 4,][σ=160MPa , [τ]=80MPa ,试校核该梁的强度。

5-9 梁AB 为N 010工字钢,B 点用圆钢杆BC 悬挂,圆杆直径d =20mm ,梁和杆的许用应力均为

[σ]=160MPa ,试求许可均布载荷[q ]。

图5-9

第六章弯曲变形

6-1图示各梁,已知截面抗弯刚度EI为常数。

1)试用积分法求梁的最大挠度和最大转角;

2)绘制挠曲轴的大致形状。

图6-1

6-2用叠加法求图示梁B截面的挠度和转角;并用卡氏定理求B截面的挠度。

图6-2

6-3图示外伸梁受局部的均布载荷作用,试用迭加法和卡氏定理求截面C的挠度。已知EI为常数。

图6-3

6-7 图示结构,矩形截面梁AB, h=13cm ,b=6.5cm ,圆截面拉杆BC 直径d=10mm 。两者均为A3

钢,E=200GPa ,(1)判断静不定次数;(2)画出静定基;(3)求拉杆内的正应力。

图6-7

第七章 应力和应力分析 强度理论

7-3 求图示各应力状态中指定斜截面上的应力。

7-4 已知图示的应力状态,试用解析法和图解法确定(a )主应力的大小,主平面的方位;(b )画

主应力单元体;(c )求最大剪应力。

图7-4

7-5 扭矩T=25kN·m 作用在直径D=6cm 的钢轴上,求圆轴表面上任一点与母线成α=30o方向上的

正应力和剪应力。

h

图7-3b

图7-3a

7-7确定图中A 、B 两点的应力状态,并用单元体表示,求出单元体各侧面上应力的大小。

图7-7

7-9 图示梁的中性层上与横截面成45°角的侧表面上k 点处,贴一应变片,然后加上外力偶矩m ,

并测得应变值为ε45°,试求m 值,已知该梁材料弹性常数E 、μ,横截面及长度尺寸b 、h 、L 、a 、d 。

图7-9

7-10工字形截面简支梁,已知W X =141×103mm 3,[σ]=160MPa ,E=210GPa ,今在C 截面下缘测得

纵向线应变ε=4×10-4,求载荷P 的值,作Fs 、M 图,并校核梁的强度。

图7-10

7-11 圆杆受力如图所示,已知圆杆直径d=10mm, M =0.1Pd 。求下列两种情况下的许可载荷。(1)

材料为钢,[σ]=160MPa ;(2)材料为铸铁,[σ]=30MPa 。

单位:mm

第八章组合变形

8-1 图示悬臂梁,已知P=800N,M o=1.6KN.m,L=1m,[σ]=160MPa,试分别确定下列两种情况下的截面尺寸。1)矩形截面h=2b;2)圆截面。

图8-1

8-3 图示一边长为a的正方形截面杆,在凹槽处的面积减小了一半,试求在P作用下,m-m截面上的最大压应力和最大拉压力。

图8-3

8-5 图示等截面圆杆,已知F1=12kN,F2=0.8kN,直径d=40mm,L1=500mm,L2=700mm,[σ]=160MPa。

试求:1)圆杆的计算简图;2)确定危险截面和危险点,并以单元体画出危险点的应力状态;

3)用第三强度理论校核圆杆的强度。

X

图8-5

8-6图示薄壁圆截面折杆,在其自由端C处作用一力偶矩M0=8kN·m,而在B处作用一集中载荷P=5kN,若截面平均半径R0=100mm,壁厚t=10mm,L=1m,试校核折杆的强度。已知。

图8-6

8-11图示长1m,直径d=60mm的钢管,在水平面内弯成直角,其自由端面沿铅垂方向作用一集中力P1=2kN,沿水平方向作用一集中力P2=4kN,[]MPa

σ,试用第三强度理论校核强

=

120

度(略去弯曲剪力影响)。

图8-11

8-12 图示水平直角折杆受竖直力P作用,轴的直径d=100mm,a=400mm,弹性模量E=200GPa,在D截面顶点K测出轴向应变=2.75×10-4。求该折杆危险点的相当应力σr3。

第九章 压杆稳定

9-2 1、2杆均为圆截面,直径相同,d=8mm ,材料的E=120GPa ,适用欧拉公式的临界柔度为90,规定稳定性安全系数n st =1.8,求结构的许可载荷P 。

图9-2

9-3 图示结构由两根悬臂梁AB 、CD 与杆BC 组成,设两梁的截面相同,主惯性矩为I Z ,杆BC

是直径为d 的圆截面,稳定安全系数n w =3;梁和杆的材料相同,弹性模量为E ,当AB 梁作用均布载荷q 时,求:1)BC 杆的内力;2)若压杆BC 失稳,此时的载荷q 为多少?

9-4图示结构,尺寸如图所示,立柱CD 为圆截面,材料的E=200Gpa , p =200MPa 。若稳定安全

系数n st =2,试校核立柱的稳定性。

图9-4

9-5 图示支架,斜撑杆BC 是直径d =40mm 的A3钢,弹性模量E=200GPa ,比例极限=200MPa ,

稳定安全系数n w =2。试根据杆BC 的承载力,确定许用均布载荷〔q 〕。

图9-3

图9-5

第十三章能量方法

13-5 图示梁杆结构,已知杆截面的抗拉刚度为EA,梁截面的抗弯刚度为EI,试用单位载荷法求B点的挠度。

图13-5

13-7 开口刚架各段的EI相等为已知,试用图乘法求开口两侧截面由于P力引起的相对铅垂位移和相对角位移(不考虑轴力和剪力的影响)。

图13-7

13-8 图示刚架,在BC段承受均布载荷q,已知EI为常数(对于刚架而言略去剪切和拉压影响不计)。试用图乘法求支座A的水平位移。

图13-8

工程力学材料力学_知识点_及典型例题

作出图中AB杆的受力图。 A处固定铰支座 B处可动铰支座 作出图中AB、AC杆及整体的受力图。 B、C光滑面约束 A处铰链约束 DE柔性约束 作图示物系中各物体及整体的受力图。 AB杆:二力杆 E处固定端 C处铰链约束

(1)运动效应:力使物体的机械运动状态发生变化的效应。 (2)变形效应:力使物体的形状发生和尺寸改变的效应。 3、力的三要素:力的大小、方向、作用点。 4、力的表示方法: (1)力是矢量,在图示力时,常用一带箭头的线段来表示力;(注意表明力的方向和力的作用点!) (2)在书写力时,力矢量用加黑的字母或大写字母上打一横线表示,如F、G、F1等等。 5、约束的概念:对物体的运动起限制作用的装置。 6、约束力(约束反力):约束作用于被约束物体上的力。 约束力的方向总是与约束所能限制的运动方向相反。 约束力的作用点,在约束与被约束物体的接处 7、主动力:使物体产生运动或运动趋势的力。作用于被约束物体上的除约束力以外的其它力。 8、柔性约束:如绳索、链条、胶带等。 (1)约束的特点:只能限制物体原柔索伸长方向的运动。 (2)约束反力的特点:约束反力沿柔索的中心线作用,离开被约束物体。() 9、光滑接触面:物体放置在光滑的地面或搁置在光滑的槽体内。 (1)约束的特点:两物体的接触表面上的摩擦力忽略不计,视为光滑接触面约束。被约束的物体可以沿接触面滑动,但不能沿接触面的公法线方向压入接触面。 (2)约束反力的特点:光滑接触面的约束反力沿接触面的公法线,通过接触点,指向被约束物体。() 10、铰链约束:两个带有圆孔的物体,用光滑的圆柱型销钉相连接。 约束反力的特点:是方向未定的一个力;一般用一对正交的力来表示,指向假定。()11、固定铰支座 (1)约束的构造特点:把中间铰约束中的某一个构件换成支座,并与基础固定在一起,则构成了固定铰支座约束。

材料力学期末考试复习题及答案53154

材料力学 一、填空题: 1.受力后几何形状和尺寸均保持不变的物体称为。 2.构件抵抗的能力称为强度。 3.圆轴扭转时,横截面上各点的切应力与其到圆心的距离成比。 4.梁上作用着均布载荷,该段梁上的弯矩图为。 5.偏心压缩为的组合变形。 6.柔索的约束反力沿离开物体。 7.构件保持的能力称为稳定性。 8.力对轴之矩在情况下为零。 9.梁的中性层与横截面的交线称为。 10.图所示点的应力状态,其最大切应力是。 11.物体在外力作用下产生两种效应分别是。 12.外力解除后可消失的变形,称为。 13.力偶对任意点之矩都。 14.阶梯杆受力如图所示,设AB和BC段的横截面面积分别为2A和A,弹性模量为E,则杆中最大正应力为。 15.梁上作用集中力处,其剪力图在该位置有。 16.光滑接触面约束的约束力沿指向物体。 17.外力解除后不能消失的变形,称为。 18.平面任意力系平衡方程的三矩式,只有满足三个矩心的条件时,才能成为力系平衡的充要条件。 19.图所示,梁最大拉应力的位置在点处。 20.图所示点的应力状态,已知材料的许用正应力[σ],其第三强度理论的强度条件是。

21.物体相对于地球处于静止或匀速直线运动状态,称为。 22.在截面突变的位置存在集中现象。 23.梁上作用集中力偶位置处,其弯矩图在该位置有。 24.图所示点的应力状态,已知材料的许用正应力[σ],其第三强度理论的强度条件是。 25.临界应力的欧拉公式只适用于杆。 26.只受两个力作用而处于平衡状态的构件,称为。 27.作用力与反作用力的关系是。 28.平面任意力系向一点简化的结果的三种情形是。 29.阶梯杆受力如图所示,设AB和BC段的横截面面积分别为2A和A,弹性模量为E,则截面C的位移为 。 30.若一段梁上作用着均布载荷,则这段梁上的剪力图为。 二、计算题: 1.梁结构尺寸、受力如图所示,不计梁重,已知q=10kN/m,M=10kN·m,求A、B、C处的约束力。 2.铸铁T梁的载荷及横截面尺寸如图所示,C为截面形心。已知I z=60125000mm4,y C=157.5mm,材料许用压应力[σc]=160MPa,许用拉应力[σt]=40MPa。试求:①画梁的剪力图、弯矩图。②按正应力强度条件校核梁的强度。 3.传动轴如图所示。已知F r=2KN,F t=5KN,M=1KN·m,l=600mm,齿轮直径D=400mm,轴的[σ]=100MPa。试求:①力偶M的大小;②作AB轴各基本变形的内力图。③用第三强度理论设计轴AB

材料力学期末考试复习题及答案 2

材料力学期末考试复习题及答案 配高等教育出版社第五版 一、填空题: 1.受力后几何形状和尺寸均保持不变的物体称为。 2.构件抵抗的能力称为强度。 3.圆轴扭转时,横截面上各点的切应力与其到圆心的距离成比。 4.梁上作用着均布载荷,该段梁上的弯矩图为。 5.偏心压缩为的组合变形。 6.柔索的约束反力沿离开物体。 7.构件保持的能力称为稳定性。 8.力对轴之矩在情况下为零。 9.梁的中性层与横截面的交线称为。 10.图所示点的应力状态,其最大切应力是。 11.物体在外力作用下产生两种效应分别是。 12.外力解除后可消失的变形,称为。 13.力偶对任意点之矩都。 14.阶梯杆受力如图所示,设AB和BC段的横截面面积分别为2A和A,弹性模量为E,则杆中最大正应力 为。 15.梁上作用集中力处,其剪力图在该位置有。 16.光滑接触面约束的约束力沿指向物体。 17.外力解除后不能消失的变形,称为。 18.平面任意力系平衡方程的三矩式,只有满足三个矩心的条件时,才能成为力系平衡的 充要条件。 19.图所示,梁最大拉应力的位置在点处。

20.图所示点的应力状态,已知材料的许用正应力[σ],其第三强度理论的强度条件是。 21.物体相对于地球处于静止或匀速直线运动状态,称为。 22.在截面突变的位置存在集中现象。 23.梁上作用集中力偶位置处,其弯矩图在该位置有。 24.图所示点的应力状态,已知材料的许用正应力[σ],其第三强度理论的强度条件是。 25.临界应力的欧拉公式只适用于杆。 26.只受两个力作用而处于平衡状态的构件,称为。 27.作用力与反作用力的关系是。 28.平面任意力系向一点简化的结果的三种情形是。 29.阶梯杆受力如图所示,设AB和BC段的横截面面积分别为2A和A,弹性模量为E,则截面C的位移为 。 30.若一段梁上作用着均布载荷,则这段梁上的剪力图为。 二、计算题: 1.梁结构尺寸、受力如图所示,不计梁重,已知q=10kN/m,M=10kN·m,求A、B、C处的约束力。 2.铸铁T梁的载荷及横截面尺寸如图所示,C为截面形心。已知I z=60125000mm4,y C=157.5mm,材料许用压应力[σc]=160MPa,许用拉应力[σt]=40MPa。试求:①画梁的剪力图、弯矩图。②按正应力强度条件校核梁的强度。

材料力学性能考试题及答案

07 秋材料力学性能 一、填空:(每空1分,总分25分) 1.材料硬度的测定方法有、和。 2.在材料力学行为的研究中,经常采用三种典型的试样进行研究,即、和。 3.平均应力越高,疲劳寿命。 4.材料在扭转作用下,在圆杆横截面上无正应力而只有,中心处切 应力为,表面处。 5.脆性断裂的两种方式为和。 6.脆性材料切口根部裂纹形成准则遵循断裂准则;塑性材料切口根 部裂纹形成准则遵循断裂准则; 7.外力与裂纹面的取向关系不同,断裂模式不同,张开型中外加拉 应力与断裂面,而在滑开型中两者的取向关系则为。 8.蠕变断裂全过程大致由、和 三个阶段组成。 9.磨损目前比较常用的分类方法是按磨损的失效机制分为、和腐蚀磨损等。 10.深层剥落一般发生在表面强化材料的区域。

11.诱发材料脆断的三大因素分别是、和 。 二、选择:(每题1分,总分15分) ()1. 下列哪项不是陶瓷材料的优点 a)耐高温 b) 耐腐蚀 c) 耐磨损 d)塑性好 ()2. 对于脆性材料,其抗压强度一般比抗拉强度 a)高b)低c) 相等d) 不确定 ()3.用10mm直径淬火钢球,加压3000kg,保持30s,测得的布氏硬度值为150的正确表示应为 a) 150HBW10/3000/30 b) 150HRA3000/l0/ 30 c) 150HRC30/3000/10 d) 150HBSl0/3000/30 ()4.对同一种材料,δ5比δ10 a) 大 b) 小 c) 相同 d) 不确定 ()5.下列哪种材料用显微硬度方法测定其硬度。 a) 淬火钢件 b) 灰铸铁铸件 c) 退货态下的软钢 d) 陶瓷 ()6.下列哪种材料适合作为机床床身材料 a) 45钢 b) 40Cr钢 c) 35CrMo钢 d) 灰铸铁()7.下列哪种断裂模式的外加应力与裂纹面垂直,因而 它是最危险的一种断裂方式。

工程力学试题库材料力学

材料力学基本知识 复习要点 1. 材料力学的任务 材料力学的主要任务就是在满足刚度、强度和稳定性的基础上,以最经济的代价,为构件确定合理的截面形状和尺寸,选择合适的材料,为合理设计构件提供必要的理论基础和计算方法。 2. 变形固体及其基本假设 连续性假设:认为组成物体的物质密实地充满物体所在的空间,毫无空隙。 均匀性假设:认为物体内各处的力学性能完全相同。 各向同性假设:认为组成物体的材料沿各方向的力学性质完全相同。 小变形假设:认为构件在荷载作用下的变形与构件原始尺寸相比非常小。 3. 外力与内力的概念 外力:施加在结构上的外部荷载及支座反力。 内力:在外力作用下,构件内部各质点间相互作用力的改变量,即附加相互作用力。内力成对出现,等值、反向,分别作用在构件的两部分上。 4. 应力、正应力与切应力 应力:截面上任一点内力的集度。 正应力:垂直于截面的应力分量。 切应力:和截面相切的应力分量。 5. 截面法 分二留一,内力代替。可概括为四个字:截、弃、代、平。即:欲求某点处内力,假想用截面把构件截开为两部分,保留其中一部分,舍弃另一部分,用内力代替弃去部分对保留部分的作用力,并进行受力平衡分析,求出内力。 6. 变形与线应变切应变 变形:变形固体形状的改变。 线应变:单位长度的伸缩量。 练习题 一. 单选题 1、工程构件要正常安全的工作,必须满足一定的条件。下列除()项,

其他各项是必须满足的条件。 A、强度条件 B、刚度条件 C、稳定性条件 D、硬度条件 2、物体受力作用而发生变形,当外力去掉后又能恢复原来形状和尺寸的性质称 为() A.弹性B.塑性C.刚性D.稳定性 3、结构的超静定次数等于()。 A.未知力的数目B.未知力数目与独立平衡方程数目的差数 C.支座反力的数目D.支座反力数目与独立平衡方程数目的差数 4、各向同性假设认为,材料内部各点的()是相同的。 A.力学性质 B.外力 C.变形 D.位移 5、根据小变形条件,可以认为() A.构件不变形 B.结构不变形 C.构件仅发生弹性变形 D.构件变形远小于其原始尺寸 6、构件的强度、刚度和稳定性() A.只与材料的力学性质有关 B.只与构件的形状尺寸有关 C.与二者都有关 D. 与二者都无关7、 在下列各工程材料中,()不可应用各向同性假设。 A.铸铁 B.玻璃 C.松木 D.铸铜 二. 填空题 1. 变形固体的变形可分为和。 2. 构件安全工作的基本要求是:构件必须具有、和足够 的稳定性。(同:材料在使用过程中提出三方面的性能要求,即、、。) 3. 材料力学中杆件变形的基本形式有 。 4. 材料力学中,对变形固体做了 四个基本假设。 、、和、、、

(答案)材料力学复习考试题解析

材料力学复习题 第2章 1. 如图所示桁架结构,各杆的抗拉刚度均为EA ,则结点C 的竖向位移为:( ) (A ) αcos 2EA Fh (B )α2cos 2EA Fh (C )α3cos 2EA Fh (D )α 3 cos EA Fh 2. 如图所示正方形截面柱体不计自重,在压力F 作用下强度不足,差%20,(即F/A=1.2[σ])为消除这一过载现象(即F/A ‘= [σ]),则柱体的边长应增加约:( ) (A ) %5 (B )%10 (C )%15 (D )%20 3. 如图所示杆件的抗拉刚度kN 1083?=EA ,杆件总拉力kN 50=F ,若杆件总伸长为杆件长度的千分之五,则载荷1F 和2F 之比为:( ) (A ) 5.0 (B )1 (C )5.1 (D )2 4. 如图所示结构,AB 是刚性梁,当两杆只产生简单压缩时,载荷作用点的位置距左边杆件的距离x 为:( ) (A ) 4a (B )3a (C )2a (D )3 2a 5. 图示杆件的抗拉刚度为EA ,其自由端的水平位移为 3Fa/EA ,杆件中间截面的水平位移为 Fa/EA 。 F αα C 习题1 图 习题5图 F 2a F 2F a a 习题4图 F x EA A a B EA 习题3图 1 F 2 F F 习题2 图

6.图示桁架结构各杆的抗拉刚度均为EA ,则节点C 的水平位移为 F l cos45/EA ,竖向位移为 F l cos45/EA 。 7. 图示结构AB 为刚性梁,重物重量kN 20=W ,可自由地在AB 间移动,两杆均为实心圆形截面杆,1号杆的许用应力为MPa 80,2号杆的许用应力为MPa 100,不计刚性梁AB 的重量。试确定两杆的直径。 8. 某铣床工作台进油缸如图所示,油缸内压为MPa 2=p ,油缸内径mm 75=D ,活塞杆直径mm 18=d ,活塞杆材料的许用应力MPa 50][=σ,试校核活塞杆的强度。 9.如图所示结构,球体重量为F ,可在刚性梁AB 上自由移动,1号杆和2号杆的抗拉刚度分别为EA 和EA 2,长度均为l ,两杆距离为a 。不计刚性梁AB 的重量。(1)横梁中点C 的最大和最小竖向位移是多少?(2)球体放在何处,才不会使其沿AB 梁滚动? 10. 如图所示结构,AB 是刚性横梁,不计其重量。1,2号杆的直径均为mm 20=d ,两杆材料相同,许用应力为MPa 160][=σ,尺寸m 1=a 。求结构的许可载荷][F 。 11. 如图所示结构中的横梁为刚性梁,两圆形竖杆的长度和材料均相同,直径 mm 20=d ,材料的许用拉应力MPa 50][=t σ,不计刚性梁的重量,求结构能承受的最大 载荷m ax F 。 F a a a ① ② 习题11图 习题9图 A 12W B C a EA EA 2习题10图 a D 1F A B C a 2a a 习题7图 A 1 2 W B 习题8图 F d p D 习题6图 F 45l l 45C

材料力学性能期末考试[1]

第一章 1,静载荷下材料的力学性能包括材料的拉伸、压缩、扭转、弯曲及硬度等性能。2,在弹性变形阶段,大多数金属的应力与应变之间符合胡克定律的正比例关系,其比例系数称为弹性模量。 3,弹性比功为应力-应变曲线下弹性范围内所吸收的变形功。 4,金属材料经过预先加载产生少量塑性变形(残余应变小余1%~4%),而后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象,称为包辛格效应。 包辛格效应消除方法:(1) 预先进行较大的塑性变形; (2) 在第二次反向受力前先使金属材料于回复或再结晶 温度下退火,如钢在400-500℃,铜合金在250-270℃退 火。 5,屈服标准: (1),比利极限:应力-应变曲线上符合线性关系的最高应力。 (2),弹性极限:试样加载后再卸载,以不出现残留的永久变形为准则,材料能够完全弹性恢复的最高应力。 (3),屈服强度:以规定发生一定的残余变形为标准。 6,影响材料强度的内在因素有:结合键、组织、结构、原子本性。 影响材料强度的外在因素有:温度、应变速度、应力状态。 7,影响金属材料的屈服强度的四种强化机制: ①固溶强化;②形变强化;③沉淀强化和弥散强化;④晶界和亚晶强化。8,加工硬化的作用: (1) 加工硬化可使金属机件具有一定的抗偶然过载能力,保证机件安全。 (2) 加工硬化和塑性变形适当配合可使金属均匀塑性变形,保证冷变形工艺顺利实施。(如果没有加工硬化能力,任何冷加工成型的工艺都是无法进行。)(3) 可降低塑性,改善低碳钢的切削加工性能。 9,应力状态软性系数α: α值越大,表示应力状态越“软”,金属越易于产生塑性变形和韧性断裂。α值越小,表示应力状态越“硬”,金属越不易于产生塑性变形而易于产生脆性断裂。 10,冲击弯曲试验的作用:主要测定脆性或低塑性材料的抗弯强度。 第二章 1,由于缺口的存在,在静载荷作用下,缺口截面上的应力状态将会发生变化,产生所谓的“缺口效应”。 2,冲击韧性的定义是指材料在冲击载荷作用下吸收塑性变形功和断裂功的能力,用标准试样的冲击吸收功A k表示。 3,细化晶粒提高韧性的原因: (1) 晶界是裂纹扩展的阻力; (2) 晶界前塞积的位错数减少,有利于降低应力集中; (3) 晶界总面积增加,使晶界上杂质浓度减小,避免了产生沿晶脆性断裂。 4,断裂机理由微孔聚集型变为穿晶解理,断口特征由纤维状变为结晶状,这就是低温脆性。 5,韧脆转变温度:

工程力学材料力学部分习题答案

工程力学材料力学部分习题答案

b2.9 题图2.9所示中段开槽的杆件,两端受轴向载荷P 的作用,试计算截面1-1和2-2上的应力。已知:P = 140kN ,b = 200mm ,b 0 = 100mm ,t = 4mm 。 题图2.9 解:(1) 计算杆的轴力 kN 14021===P N N (2) 计算横截面的面积 21m m 8004200=?=?=t b A 202mm 4004)100200()(=?-=?-=t b b A (3) 计算正应力 MPa 1758001000140111=?== A N σ MPa 350400 1000 140222=?== A N σ (注:本题的目的是说明在一段轴力相同的杆件内,横截面面积小的截面为该段 的危险截面) 2.10 横截面面积A=2cm 2的杆受轴向拉伸,力P=10kN ,求其法线与轴向成30°的及45°斜截面上的应力ασ及ατ,并问m ax τ发生在哪一个截面? 解:(1) 计算杆的轴力 kN 10==P N (2) 计算横截面上的正应力 MPa 50100 2100010=??==A N σ (3) 计算斜截面上的应力 MPa 5.37235030cos 2 230 =??? ? ???==ο ο σσ

MPa 6.212 3250)302 sin(2 30=?= ?= οο σ τ MPa 25225045cos 2 245 =??? ? ???==οο σσ MPa 2512 50 )452 sin(2 45=?= ?= οο σ τ (4) m ax τ发生的截面 ∵ 0)2cos(==ασα τα d d 取得极值 ∴ 0)2cos(=α 因此:2 2π α= , ο454 == π α 故:m ax τ发生在其法线与轴向成45°的截面上。 (注:本题的结果告诉我们,如果拉压杆处横截面的正应力,就可以计算该处任意方向截面的正应力和剪应力。对于拉压杆而言,最大剪应力发生在其法线与轴向成45°的截面上,最大正应力发生在横截面上,横截面上剪应力为零) 2.17 题图2.17所示阶梯直杆AC ,P =10kN ,l 1=l 2=400mm ,A 1=2A 2=100mm 2,E =200GPa 。试计算杆AC 的轴向变形Δl 。 题图2.17 解:(1) 计算直杆各段的轴力及画轴力图 kN 101==P N (拉) kN 102-=-=P N (压)

材料力学期末考试复习题及答案

二、计算题: 1.梁结构尺寸、受力如图所示,不计梁重,已知q=10kN/m,M=10kN·m,求A、B、C处的约束力。 2.铸铁T梁的载荷及横截面尺寸如图所示,C为截面形心。已知I z=60125000mm4,y C=157.5mm,材料许用压应力[σc]=160MPa,许用拉应力[σt]=40MPa。试求:①画梁的剪力图、弯矩图。②按正应力强度条件校核梁的强度。 3.传动轴如图所示。已知F r=2KN,F t=5KN,M=1KN·m,l=600mm,齿轮直径D=400mm,轴的[σ]=100MPa。 试求:①力偶M的大小;②作AB轴各基本变形的内力图。③用第三强度理论设计轴AB的直径d。 4.图示外伸梁由铸铁制成,截面形状如图示。已知I z=4500cm4,y1=7.14cm,y2=12.86cm,材料许用压应力[σc]=120MPa,许用拉应力[σt]=35MPa,a=1m。试求:①画梁的剪力图、弯矩图。②按正应力强度条件确定梁截荷P。 5.如图6所示,钢制直角拐轴,已知铅垂力F1,水平力F2,实心轴AB的直径d,长度l,拐臂的长度a。 试求:①作AB轴各基本变形的内力图。②计算AB轴危险点的第三强度理论相当应力。

6.图所示结构,载荷P=50KkN,AB杆的直径d=40mm,长度l=1000mm,两端铰支。已知材料E=200GPa,σp=200MPa,σs=235MPa,a=304MPa,b=1.12MPa,稳定安全系数n st=2.0,[σ]=140MPa。试校核AB杆是否安全。 7.铸铁梁如图5,单位为mm,已知I z=10180cm4,材料许用压应力[σc]=160MPa,许用拉应力[σt]=40MPa, 试求:①画梁的剪力图、弯矩图。②按正应力强度条件确定梁截荷P。 8.图所示直径d=100mm的圆轴受轴向力F=700kN与力偶M=6kN·m的作用。已知M=200GPa,μ=0.3,[σ]=140MPa。试求:①作图示圆轴表面点的应力状态图。②求圆轴表面点图示方向的正应变。③按第四强度理论校核圆轴强度。 9.图所示结构中,q=20kN/m,柱的截面为圆形d=80mm,材料为Q235钢。已知材料E=200GPa,σp=200MPa,σs=235MPa,a=304MPa,b=1.12MPa,稳定安全系数n st=3.0,[σ]=140MPa。试校核柱BC是否安全。

《材料力学》考试复习题纲和复习题及答案

1.常见的金属晶格类型。 答:体心立方晶格,面心立方晶格,密 排立方晶格; 2.面心立方金属的滑移面为哪个面?共有 多少个滑移系? 面心立方金属的滑移面为{111},4个,滑移方向<110>,3个;滑移系数目 4X3=12个。 3.体心立方晶格金属与面心立方晶格金属 在塑性上的差别,主要是由于两者的什 么不同? 答:每个滑移面上的滑移方向数不同 4.组元 答:组成合金最基本的独立物质称为组 元,通常组元就是组成合金的元素。例 如,碳钢是铁与碳所组成的合金,铁和 碳即为组元。 5.固溶体 答:在固体合金中,在一种元素的晶格 结构中包含有其它元素的合金相称为固 溶体。(固溶体是指溶质原子溶入溶剂的 晶格中或取代了溶剂原子的位置,而仍

保持溶剂晶格类型的一种成分和性能均匀的固态合金,常用a,B,R表示,如铁素体(a),奥氏体(R等)。晶格与固溶体相同的组元为固溶体的溶剂,其他组元为溶质。) 6.相 答:金属或合金中凡成分相同,结构相同,并且与其它部分有界面分开的均匀组成部分。 7.固溶体的晶体结构 答:以某一组元为溶剂,在其晶体点阵中溶入其他组元原子(溶质原子)所形成的均匀混合的固态溶体,它保持着溶剂的晶体结构类型。 8.什么叫固溶强化?固溶强化的原因是什 么? 答:溶质原子的加入,将引起溶剂的晶格发生不同程度的畸变,这固溶体的强度、硬度提高(仍保持良好的塑性和较高的韧度)的现象称为固溶强化。原因:溶质原子的溶入,使固溶体的晶格发生畸变,晶格畸变增大位错运动的阻力,

使金属滑移变形变得更加困难,变形抗 力增大,从而提高合金的强度和硬度。 9.过冷度 答:理论结晶温度To与实际结晶温度 Tn之间的温度差称为过冷度,计为△ T=To-Tn,其大小除与金属的性质和纯 度有关外,主要取决于冷却速度,一般 冷却速度越大,实际结晶温度越低,过 冷度越大。 10.二元合金表达了合金的什么之间的关 系? 答:表达了合金在不同成分下组成物的 组分及结构的关系 11.常温下,金属单晶体的塑性变形方式为 哪两种? 答:金属的塑性变形主要以滑移和孪生 的方式进行。 12.在金属学中,冷加工和热加工的界限是 以什么温度来划分的? 答:再结晶温度 13.冷变形金属在完成结晶后,继续加热时, 晶粒会发生如何变化?

材料力学性能习题及解答库

第一章习题答案 一、解释下列名词 1、弹性比功:又称为弹性比能、应变比能,表示金属材料吸收弹性变形功的能力。 2、滞弹性:在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象。 3、循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力,称为金属的循环韧性。 4、包申格效应:先加载致少量塑变,卸载,然后在再次加载时,出现ζ e 升高或降低的现 象。 5、解理刻面:大致以晶粒大小为单位的解理面称为解理刻面。 6、塑性、脆性和韧性:塑性是指材料在断裂前发生不可逆永久(塑性)变形的能力。韧性:指材料断裂前吸收塑性变形功和断裂功的能力,或指材料抵抗裂纹扩展的能力 7、解理台阶:高度不同的相互平行的解理平面之间出现的台阶叫解理台阶; 8、河流花样:当一些小的台阶汇聚为在的台阶时,其表现为河流状花样。 9、解理面:晶体在外力作用下严格沿着一定晶体学平面破裂,这些平面称为解理面。 10、穿晶断裂和沿晶断裂:沿晶断裂:裂纹沿晶界扩展,一定是脆断,且较为严重,为最低级。穿晶断裂裂纹穿过晶内,可以是韧性断裂,也可能是脆性断裂。 11、韧脆转变:指金属材料的脆性和韧性是金属材料在不同条件下表现的力学行为或力学状态,在一定条件下,它们是可以互相转化的,这样的转化称为韧脆转变。 二、说明下列力学指标的意义 1、E(G): E(G)分别为拉伸杨氏模量和切变模量,统称为弹性模量,表示产生100%弹性变形所需的应力。 2、Z r 、Z 0.2、Z s: Z r :表示规定残余伸长应力,试样卸除拉伸力后,其标距部分的 残余伸长达到规定的原始标距百分比时的应力。ζ 0.2:表示规定残余伸长率为0.2%时的应力。 Z S:表征材料的屈服点。 3、Z b韧性金属试样在拉断过程中最大试验力所对应的应力称为抗拉强度。 4、n:应变硬化指数,它反映了金属材料抵抗继续塑性变形的能力,是表征金属材料应变硬 化行为的性能指标。 5、3、δ gt、ψ : δ是断后伸长率,它表征试样拉断后标距的伸长与原始标距的百分比。 Δgt 是最大试验力的总伸长率,指试样拉伸至最大试验力时标距的总伸长与原始标距的百

工程力学材料力学答案

4-1 试求题4-1图所示各梁支座的约束力。设力的单位为kN,力偶矩的单位为kN m,长度单位为m,分布载荷集度为kN/m。(提示:计算非均布载荷的投影和与力矩和时需应用积分)。 解: (b):(1) 整体受力分析,画出受力图(平面任意力系); (2) 选坐标系Axy,列出平衡方程; 约束力的方向如图所示。 (c):(1) 研究AB杆,受力分析,画出受力图(平面任意力系); (2) 选坐标系Axy,列出平衡方程; 约束力的方向如图所示。 (e):(1) 研究CABD杆,受力分析,画出受力图(平面任意力系); (2) 选坐标系Axy,列出平衡方程; 约束力的方向如图所示。 4-5 AB梁一端砌在墙内,在自由端装有滑轮用以匀速吊起重物D,设重物的重量为G,又AB长为b,斜绳与铅垂线成角,求固定端的约束力。 解:(1) 研究AB杆(带滑轮),受力分析,画出受力图(平面任意力系); (2) 选坐标系Bxy,列出平衡方程; 约束力的方向如图所示。 4-7 练钢炉的送料机由跑车A和可移动的桥B组成。跑车可沿桥上的轨道运动,两轮间距离为2 m,跑车与操作架、平臂OC以及料斗C相连,料斗每次装载物料重W=15 kN,平臂长OC=5 m。设跑车A,操作架D和所有附件总重为P。作用于操作架的轴线,问P至少应多大才能使料斗在满载时跑车不致翻倒? 解:(1) 研究跑车与操作架、平臂OC以及料斗C,受力分析,画出受力图(平面平行力系); (2) 选F点为矩心,列出平衡方程; (3) 不翻倒的条件; 4-13 活动梯子置于光滑水平面上,并在铅垂面内,梯子两部分AC和AB各重为Q,重心在A点,彼此用铰链A和绳子DE连接。一人重为P立于F处,试求绳子DE的拉力和B、C两点的约束力。 解:(1):研究整体,受力分析,画出受力图(平面平行力系); (2) 选坐标系Bxy,列出平衡方程; (3) 研究AB,受力分析,画出受力图(平面任意力系); (4) 选A点为矩心,列出平衡方程; 4-15 在齿条送料机构中杠杆AB=500 mm,AC=100 mm,齿条受到水平阻力FQ的作用。已知Q=5000 N,各零件自重不计,试求移动齿条时在点B的作用力F是多少? 解:(1) 研究齿条和插瓜(二力杆),受力分析,画出受力图(平面任意力系); (2) 选x轴为投影轴,列出平衡方程; (3) 研究杠杆AB,受力分析,画出受力图(平面任意力系); (4) 选C点为矩心,列出平衡方程; 4-16 由AC和CD构成的复合梁通过铰链C连接,它的支承和受力如题4-16图所示。已知均布载荷集度q=10 kN/m,力偶M=40 kN m,a=2 m,不计梁重,试求支座A、B、D的约束力和铰链C所受的力。 解:(1) 研究CD杆,受力分析,画出受力图(平面平行力系); (2) 选坐标系Cxy,列出平衡方程;

材料力学期末复习要点

第一章 绪论 1、 构件能够正常工作的性能要求: 1) 强度要求:指构件有足够的抵抗破坏的能力; 2) 刚度要求:指构件有足够的抵抗变形的能力; 3) 稳定性要求:指构件有足够的保持原有平衡形态的能力。 2、 变形固体的基本假设: 连续性假设;均匀性假设;各向同性假设 3、 截面法的基本步骤:截、留、平 4、 应变:线应变和切应变(角应变) 5、 杆件变形的基本形式:轴向拉伸或压缩、剪切、扭转、弯曲 第二章 拉压和剪切 1、 内力、应力计算及轴力图绘制 2、 低碳钢拉伸时的力学性能 弹性阶段、屈服阶段、强化阶段、局部变形阶段、伸长率和断面收缩率、卸载定律及冷作硬化 3、 轴向拉压的强度条件:[]N F A σσ= ≤ 4、 轴向拉压的变形:N F l l EA ?= 5、 拉压静不定问题: 解题步骤: 1) 静力平衡方程 2变形协调方程 3物力方程 4将物力方程代入变形协调方程,得补充方程 5联立求解静力平衡方程和补充方程,得结果。 6、 剪切和挤压 课后习题:2-1、2-12、2-45 第三章 扭转、 1、 扭矩的计算和扭矩图的绘制 2、 切应力互等定理

3、 切应变:r l ?γ= 4、 剪切胡克定律:G τγ= 5、 横截面上距圆心为ρ的任意一点的切应力:p T I ρτ=,最大切应力:max p t TR T I W τ== 6、 实心圆截面:432p D I π= 316t D W π= 空心圆截面:()()4 44413232p D I D d ππα=-=- ,()()3 444 11616t D W D d d D π π=-=- 7、 扭转强度条件:[]max max t T W ττ= ≤ 8、 相对扭转角:1n i i i p Tl GI ?==∑ 单位长度扭转角:'p d T dx GI ??== 9、 扭转刚度条件:[]max max ''p T GI ??= ≤ 课后习题:3-2、单元测试:6、7 第四章 弯曲内力 1、 弯曲内力的计算 2、 剪力图和弯矩图的绘制 课后习题:4-1、4-4 第五章:弯曲应力 1、纯弯曲时正应力的计算公式:z My I σ= 2、横力弯曲最大正应力:max max max max z M y M I W σ== 3、抗弯截面系数: 矩形:26bh W = 实心圆:332 d W π= 4、弯曲的强度条件:[]max max M W σσ=≤ 5、矩形截面梁弯曲切应力:*S z z F S I b τ= 工字形截面梁弯曲切应力:*0 S z z F S I b τ= 6、提高弯曲强度的措施: 1)合理安排梁的受力情况:

材料力学性能考试答案

《工程材料力学性能》课后答案 机械工业出版社 2008第2版 第一章 单向静拉伸力学性能 1、 试述退火低碳钢、中碳钢和高碳钢的屈服现象在拉伸力-伸长曲线图上的区别?为什 么? 2、 决定金属屈服强度的因素有哪些?【P12】 答:内在因素:金属本性及晶格类型、晶粒大小和亚结构、溶质元素、第二相。 外在因素:温度、应变速率和应力状态。 3、 试述韧性断裂与脆性断裂的区别。为什么脆性断裂最危险?【P21】 答:韧性断裂是金属材料断裂前产生明显的宏观塑性变形的断裂,这种断裂有一个缓慢的撕裂过程,在裂纹扩展过程中不断地消耗能量;而脆性断裂是突然发生的断裂,断裂前基本上不发生塑性变形,没有明显征兆,因而危害性很大。 4、 剪切断裂与解理断裂都是穿晶断裂,为什么断裂性质完全不同?【P23】 答:剪切断裂是在切应力作用下沿滑移面分离而造成的滑移面分离,一般是韧性断裂,而解理断裂是在正应力作用以极快的速率沿一定晶体学平面产生的穿晶断裂,解理断裂通常是脆性断裂。 5、 何谓拉伸断口三要素?影响宏观拉伸断口性态的因素有哪些? 答:宏观断口呈杯锥形,由纤维区、放射区和剪切唇三个区域组成,即所谓的断口特征三要素。上述断口三区域的形态、大小和相对位置,因试样形状、尺寸和金属材料的性能以及试验温度、加载速率和受力状态不同而变化。 6、 论述格雷菲斯裂纹理论分析问题的思路,推导格雷菲斯方程,并指出该理论的局限性。 【P32】 答: 212?? ? ??=a E s c πγσ,只适用于脆性固体,也就是只适用于那些裂纹尖端塑性变形可以忽略的情况。 第二章 金属在其他静载荷下的力学性能 一、解释下列名词: (1)应力状态软性系数—— 材料或工件所承受的最大切应力τ max 和最大正应力σmax 比值,即: () 32131max max 5.02σσσσσστα+--== 【新书P39 旧书P46】 (2)缺口效应—— 绝大多数机件的横截面都不是均匀而无变化的光滑体,往往存在截面的急剧变化,如键槽、油孔、轴肩、螺纹、退刀槽及焊缝等,这种截面变化的部分可视为“缺口”,由于缺口的存在,在载荷作用下缺口截面上的应力状态将发生变化,产生所谓的缺口效应。【P44 P53】 (3)缺口敏感度——缺口试样的抗拉强度σbn 的与等截面尺寸光滑试样的抗拉强度σ b 的比值,称为缺口敏感度,即: 【P47 P55 】 (4)布氏硬度——用钢球或硬质合金球作为压头,采用单位面积所承受的试验力计算而得的硬度。【P49 P58】 (5)洛氏硬度——采用金刚石圆锥体或小淬火钢球作压头,以测量压痕深度所表示的硬度【P51 P60】。 (6)维氏硬度——以两相对面夹角为136。的金刚石四棱锥作压头,采用单位面积所承

最新工程力学(静力学与材料力学)第四版习题答案

静力学部分 第一章基本概念受力图

2-1 解:由解析法, 23cos 80RX F X P P N θ==+=∑ 12sin 140RY F Y P P N θ==+=∑ 故: 22161.2R RX RY F F F N =+= 1(,)arccos 2944RY R R F F P F '∠==

2-2 解:即求此力系的合力,沿OB 建立x 坐标,由解析法,有 123cos45cos453RX F X P P P KN ==++=∑ 13sin 45sin 450 RY F Y P P ==-=∑ 故: 223R RX RY F F F KN =+= 方向沿OB 。 2-3 解:所有杆件均为二力杆件,受力沿直杆轴线。 (a ) 由平衡方程有: 0X =∑ sin 300 AC AB F F -= 0Y =∑ cos300 AC F W -= 0.577AB F W =(拉力) 1.155AC F W =(压力) (b ) 由平衡方程有:

0X =∑ cos 700 AC AB F F -= 0Y =∑ sin 700 AB F W -= 1.064AB F W =(拉力) 0.364AC F W =(压力) (c ) 由平衡方程有: 0X =∑ cos 60cos300 AC AB F F -= 0Y =∑ sin 30sin 600 AB AC F F W +-= 0.5AB F W = (拉力) 0.866AC F W =(压力) (d ) 由平衡方程有: 0X =∑ sin 30sin 300 AB AC F F -= 0Y =∑ cos30cos300 AB AC F F W +-= 0.577AB F W = (拉力) 0.577AC F W = (拉力)

材料力学重点及公式(期末复习)

1、材料力学的任务: 强度、刚度和稳定性; 应力单位面积上的内力。 平均应力()全应力() 正应力垂直于截面的应力分量,用符号表示。 切应力相切于截面的应力分量,用符号表示。 应力的量纲: 线应变单位长度上的变形量,无量纲,其物理意义是构件上一点沿某一方向变形量的大小。 外力偶矩 传动轴所受的外力偶矩通常不是直接给出,而是根据轴的转速n与传递的功率P 来计算。 当功率P单位为千瓦(kW),转速为n(r/min)时,外力偶矩为

当功率P单位为马力(PS),转速为n(r/min)时,外力偶矩为 拉(压)杆横截面上的正应力 拉压杆件横截面上只有正应力,且为平均分布,其计算公式 为(3-1) 式中为该横截面的轴力,A为横截面面积。 正负号规定拉应力为正,压应力为负。 公式(3-1)的适用条件: (1)杆端外力的合力作用线与杆轴线重合,即只适于轴向拉(压)杆件; (2)适用于离杆件受力区域稍远处的横截面; (3)杆件上有孔洞或凹槽时,该处将产生局部应力集中现象,横截面上应力分布很不均匀; (4)截面连续变化的直杆,杆件两侧棱边的夹角时 拉压杆件任意斜截面(a图)上的应力为平均分布,其计算公式为 全应力(3-2) 正应力(3-3) 切应力(3-4) 式中为横截面上的应力。 正负号规定:

由横截面外法线转至斜截面的外法线,逆时针转向为正,反之为负。 拉应力为正,压应力为负。 对脱离体内一点产生顺时针力矩的为正,反之为负。 两点结论: (1)当时,即横截面上,达到最大值,即。当=时,即纵截面上,==0。 (2)当时,即与杆轴成的斜截面上,达到最大值,即 1.2 拉(压)杆的应变和胡克定律 (1)变形及应变 杆件受到轴向拉力时,轴向伸长,横向缩短;受到轴向压力时,轴向缩短,横向伸长。如图3-2。 图3-2 轴向变形轴向线应变横向变形 横向线应变正负号规定伸长为正,缩短为负。 (2)胡克定律

材料力学性能》复习资料

《材料力学性能》复习资料 第一章 1塑性--材料在外力作用下发生不可逆的永久变形的能力 2穿晶断裂和沿晶断裂---穿晶断裂,裂纹穿过晶界。沿晶断裂,裂纹沿晶扩展。 3包申格效应——金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。 4E---应变为一个单位时,E即等于弹性应力,即E是产生100%弹性变形所需的应力 5ζs----屈服强度,一般将ζ0.2定为屈服强度 6n—应变硬化指数 Hollomon关系式: S=ken (真应力S与真应变e之间的关系) n—应变硬化指数;k—硬化系数 应变硬化指数n反映了金属材料抵抗继续塑性变形的能力。分析:n=1,理想弹性体;n=0材料无硬化能力。大多数金属材料的n值在0.1~0.5之间。 7δ10---长比例试样断后延伸率 L0=5d0 或 L0=10d0 L0标注长度 d0名义截面直径) 8静力韧度:静拉伸时,单位体积材料断裂所吸收的功(是强度和塑性的综合指标)。J/m3 9脆性断裂(1)断裂特点断裂前基本不发生塑性变形,无明显前兆;断口与正应力垂直。(2)断口特征平齐光亮,常呈放射状或结晶状;人字纹花样的放射方向与裂纹扩展方向平行。通常,脆断前也产生微量的塑性变形,一般规定Ψ<5%为脆性断裂;大于5%时为韧性断裂。 11屈服在金属塑性变形的开始阶段,外力不增加、甚至下降的情况下,变形继续进行的现象,称为屈服。 12低碳钢在室温条件下单向拉伸应力—应变曲线的特点p1-2 13解理断裂以极快速率沿一定晶体学平面产生的穿晶断裂。 解理面一般是指低指数晶面或表面能量低的晶面。 14韧性是金属材料塑性变形和断裂全过程吸收能量的能力,它是强度和塑性的综合表现,因而在特定条件下,能量、强度和塑性都可用来表示韧性。 15弹性比功αe(弹性比能、应变比能) 物理意义:吸收弹性变形功的能力。 几何意义:应力-应变曲线上弹性阶段下的面积。αe = (1/2) ζe*ε e

工程力学材料力学答案-第十一章解析

11-6 图示悬臂梁,横截面为矩形,承受载荷F 1与F 2作用,且F 1=2F 2=5 kN ,试计算梁内的 最大弯曲正应力,及该应力所在截面上K 点处的弯曲正应力。 解:(1) 画梁的弯矩图 (2) 最大弯矩(位于固定端): max 7.5 M kN = (3) 计算应力: 最大应力: K 点的应力: 11-7 图示梁,由No22槽钢制成,弯矩M =80 N.m ,并位于纵向对称面(即x-y 平面)内。 试求梁内的最大弯曲拉应力与最大弯曲压应力。 解:(1) 查表得截面的几何性质: 4020.3 79 176 z y mm b mm I cm === (2) 最大弯曲拉应力(发生在下边缘点处) ()30max 8 80(7920.3)10 2.67 17610x M b y MPa I σ -+-?-?-?===? 6max max max 22 7.510176 408066 Z M M MPa bh W σ?====?6max max 33 7.51030 132 ******** K Z M y M y MPa bh I σ????====? x M 1 z M M z

(3) 最大弯曲压应力(发生在上边缘点处) 30max 8 8020.3100.92 17610 x M y MPa I σ ---???===? 11-8 图示简支梁,由No28工字钢制成,在集度为q 的均布载荷作用下,测得横截面C 底 边的纵向正应变ε=3.0×10-4,试计算梁内的最大弯曲正应力,已知钢的弹性模量E =200 Gpa ,a =1 m 。 解:(1) 求支反力 31 44 A B R qa R qa = = (2) 画内力图 (3) 由胡克定律求得截面C 下边缘点的拉应力为: 49max 3.010******* C E MPa σε+-=?=???= 也可以表达为: 2 max 4C C z z qa M W W σ+== (4) 梁内的最大弯曲正应力: 2 max max max 993267.5 8 C z z qa M MPa W W σσ+ = === q x x F S M

材料力学期末复习材料

材料力学期末复习材料内部编号:(YUUT-TBBY-MMUT-URRUY-UOOY-DBUYI-0128)

复 习题 一、填空题 1. 杆件的四种基本受力和变形形式为: 轴向拉伸(压缩) 、 剪切 、 扭转 和 弯曲。 2.在所有方向上均有相同的物理和力学性能的材料,称为 各向同性材料 。 3.应用假想截面将弹性体截开,分成两部分,考虑其中任意一部分平衡,从而确定横截面上内力的方法,称为 截面法 。 4.作用线垂直于截面的应力称为 正应力 ;作用线位于截面内的应力称为 剪应力 。 5.在平面弯曲的情形下,垂直于梁轴线方向的位移称为 挠度 ,横截面绕中性轴的转动称为 转角 。 6.小挠度微分方程的公式是__。 7.小挠度微分方程微分方程只有在 小挠度 、 弹性 范围内才能使用。 8.过一点所有方向面上应力的集合,称为这一点的 应力状态 。 9.对于没有明显屈服阶段的塑性材料,通常产生取产生%_塑性变形所对应的应力值作为屈服应力,称为 条件屈服应力 ,用以_σ 表示。 10.设计构件时,不但要满足__强度__,刚度和__稳定性__要求,还必须尽可能 地合理选择材料和降低材料的消耗量。 11.大量实验结果表明,无论应力状态多么复杂,材料在常温、静载作用下主要 发生两种形式的强度失效:一种是 屈服 ,另一种是 断裂 。 12.结构构件、机器的零件或部件在压缩载荷或其他载荷作用下,在某一位置保 持平衡,这一平衡位置称为 平衡构形 或 平衡状态 。 EI M dx w d ±=22

13.GI p 称为圆轴的__扭转刚度__,它反映圆轴的__抗扭转__能力。 14.根据长细比的大小可将压杆分为 细长杆 、 中长杆 和 粗短杆 。 15.图示梁在CD 段的变形称为__纯弯曲__,此段内力情况为 _弯矩__。 16.为使图示梁在自由端C 处的转角为零,则m =____________,自由端挠度ωC =____________。 17.某点的应力状态如图,则主应力为:σ1=____________,σ3=____________。 18.判断一根压杆属于细长杆、中长杆还是短粗杆时,须全面考虑压杆的___ ___、 ___ __、___ ___、__ ___。 19.设单元体的主应力为321σσσ、、,则单元体只有体积改变而无形状改变的条件是( ) ;单元体只有形状改变而无体积改变的条件是( ) 且 321,,σσσ不同时为( )。 20.低碳钢圆截面试件受扭时,沿( ) 截面破坏;铸铁圆截面试件受扭时,沿( ) 面破坏。 21.任意平面图形对其形心轴的静矩等于___________。 二、选择题 1.一点的应力状态如右图所示,则其主应力σ1, σ 2 ,σ3 分别为( ) A. 30Mpa ,50Mpa ,100MPa B. 50Mpa ,30Mpa ,-50MPa C. 50Mpa ,0,-50MPa D. -50Mpa ,30Mpa , 50MPa 2.下面有关强度理论的几种叙述,正确的是( )

相关主题
文本预览
相关文档 最新文档