当前位置:文档之家› 第一讲 集合的概念与运算技巧

第一讲 集合的概念与运算技巧

第一讲  集合的概念与运算技巧
第一讲  集合的概念与运算技巧

第一讲 集合的概念与运算技巧

【命题趋向】

1.高考试题通过选择题和填空题,以及大题的解集,全面考查集合与简易逻辑的知识,题型新,分值稳定.一般占5---10分.

2.简易逻辑一部分的内容在近两年的高考试题有所出现,应引起注意. 【考点透视】

1.理解集合、子集、补集、交集、并集的概念. 2.了解空集和全集的意义.

3.了解属于、包含、相等关系的意义.掌握有关的术语和符号,并会用它们正确表示一些简单的集合. 4.解答集合问题,首先要正确理解集合有关概念,特别是集合中元素的三要素;对于用描述法给出的集合{x |x ∈P },要紧紧抓住竖线前面的代表元素x 以及它所具有的性质P ;要重视发挥图示法的作用,通过数形结合直观地解决问题.

5.注意空集?的特殊性,在解题中,若未能指明集合非空时,要考虑到空集的可能性,如A ?B ,则有A =?或A ≠?两种可能,此时应分类讨论. 【例题解析】

题型1. 正确理解和运用集合概念

理解集合的概念,正确应用集合的性质是解此类题目的关键.

例1.已知集合M={y|y=x 2

+1,x∈R},N={y|y=x+1,x∈R},则M∩N=( )

A .(0,1),(1,2)

B .{(0,1),(1,2)}

C .{y|y=1,或y=2}

D .{y|y≥1}

思路启迪:集合M 、N 是用描述法表示的,元素是实数y 而不是实数对(x,y),因此M 、N 分别表示函数y=x 2

+1(x∈R),y=x +1(x∈R)的值域,求M∩N 即求两函数值域的交集. 解:M={y|y=x 2

+1,x ∈R}={y|y ≥1}, N={y|y=x +1,x ∈R}={y|y ∈R}.

∴M∩N={y|y≥1}∩{y|y∈R}={y|y≥1},∴应选D .

点评:①本题求M∩N,经常发生解方程组21,1.y x y x ?=+?

=+?0,1,x y =??=?得 1,2.

x y =??=?或 从而选B 的错误,这是由于在集合概念的理解上,仅注意了构成集合元素的共同属性,而忽视了集合的元素是什么.事实上M 、N 的元素是数而不是点,因此M 、N 是数集而不是点集.②集合是由元素构成的,认识集合要从认识元素开始,要注意区分{x|y=x 2

+1}、{y|y=x 2

+1,x∈R}、{(x,y)|y=x 2

+1,x∈R},这三个集合是不同的.

例2.若P={y|y=x 2

,x∈R},Q={y|y=x 2

+1,x∈R},则P∩Q 等于( ) A .P B .Q C . D .不知道

思路启迪:类似上题知P 集合是y=x 2(x∈R)的值域集合,同样Q 集合是y= x 2

+1(x∈R)的值域集合,这样P∩Q 意义就明确了.

解:事实上,P 、Q 中的代表元素都是y ,它们分别表示函数y=x 2

,y= x 2

+1的值域,由P={y|y ≥0},Q={y|y

≥1},知Q P ,即P ∩Q=Q .∴应选B .

例3. 若P={y|y=x 2

,x∈R},Q={(x ,y)|y=x 2

,x∈R},则必有( ) A .P∩Q=? B .P

Q C .P=Q D .P

Q

思路启迪:有的同学一接触此题马上得到结论P=Q ,这是由于他们仅仅看到两集合中的y=x 2

,x ∈R 相同,而没有注意到构成两个集合的元素是不同的,P 集合是函数值域集合,Q 集合是y=x 2

,x ∈R 上的点的集合,

代表元素根本不是同一类事物.

解:正确解法应为: P 表示函数y=x 2

的值域,Q 表示抛物线y=x 2

上的点组成的点集,因此P ∩Q=?.∴应

选A .

例4(2007年安徽卷文)若}032|{}1|{22=--===x x x B x x A ,,则B A ?= ( )

A .{3}

B .{1}

C .?

D .{-1}

思路启迪:{}{|1,1}{|1,3},1.A x x x B x x x A B ==-===-=∴?=- , 解:应选D .

点评:解此类题应先确定已知集合. 题型2.集合元素的互异性

集合元素的互异性,是集合的重要属性,教学实践告诉我们,集合中元素的互异性常常被学生在解题中忽略,从而导致解题的失败,下面再结合例题进一步讲解以期强化对集合元素互异性的认识.

例5. 若A={2,4, a 3

-2a 2

-a +7},B={1, a +1, a 2

-2a +2,-12

(a 2

-3a -8), a 3

+a 2

+3a +7},且

A ∩B={2,5},则实数a 的值是________.

解答启迪:∵A ∩B={2,5},∴a 3

-2a 2

-a +7=5,由此求得a =2或a =±1. A={2,4,5},集合B 中的元素

是什么,它是否满足元素的互异性,有待于进一步考查.

当a =1时,a 2

-2a +2=1,与元素的互异性相违背,故应舍去a =1. 当a =-1时,B={1,0,5,2,4},与A∩B={2,5}相矛盾,故又舍去a =-1. 当a =2时,A={2,4,5},B={1,3,2,5,25},此时A∩B={2,5},满足题设. 故a =2为所求.

例6. 已知集合A={a ,a +b, a +2b},B={a ,a c, a c 2

}.若A=B ,则c 的值是______. 思路启迪:要解决c 的求值问题,关键是要有方程的数学思想,此题应根据相等的两个集合元素完全相同及集合中元素的确定性、互异性,无序性建立关系式.

解:分两种情况进行讨论.

(1)若a+b=a c且a+2b=a c2,消去b得:a+a c2-2a c=0,

a=0时,集合B中的三元素均为零,和元素的互异性相矛盾,故a≠0.

∴c2-2c+1=0,即c=1,但c=1时,B中的三元素又相同,此时无解.

(2)若a+b=a c2且a+2b=a c,消去b得:2a c2-a c-a=0,

∵a≠0,∴2c2-c-1=0,即(c-1)(2c+1)=0,又c≠1,故c=-1

2

点评:解决集合相等的问题易产生与互异性相矛盾的增解,这需要解题后进行检验和修正.

例7.已知集合A={x|x2-3x+2=0},B={x|x2-a x+a-1=0},且A∪B=A,则a的值为______.

思路启迪:由A∪B=A B A

??而推出B有四种可能,进而求出a的值.

解:∵ A∪B=A,,

∴?

B A

∵ A={1,2},∴ B=?或B={1}或B={2}或B={1,2}.

若B=?,则令△<0得a∈?;

若B={1},则令△=0得a=2,此时1是方程的根;

若B={2},则令△=0得a=2,此时2不是方程的根,∴a∈?;

若B={1,2}则令△>0得a∈R且a≠2,把x=1代入方程得a∈R,把x=2代入方程得a=3.

综上a的值为2或3.

点评:本题不能直接写出B={1,a-1},因为a-1可能等于1,与集合元素的互异性矛盾,另外还要考虑到集合B有可能是空集,还有可能是单元素集的情况.

题型3.要注意掌握好证明、判断两集合关系的方法

集合与集合之间的关系问题,是我们解答数学问题过程中经常遇到,并且必须解决的问题,因此应予以重视.反映集合与集合关系的一系列概念,都是用元素与集合的关系来定义的.因此,在证明(判断)两集合的关系时,应回到元素与集合的关系中去.

例8.设集合A={a|a=3n+2,n∈Z},集合B={b|b=3k-1,k∈Z},则集合A、B的关系是________.

解:任设a∈A,则a=3n+2=3(n+1)-1(n∈Z),

∴ n∈Z,∴n+1∈Z.∴ a∈B,故A B

?.①

又任设b∈B,则 b=3k-1=3(k-1)+2(k∈Z),

∵ k∈Z,∴k-1∈Z.∴ b∈A,故B A

?②

由①、②知A=B.

点评:这里说明a∈B或b∈A的过程中,关键是先要变(或凑)出形式,然后再推理.

例9(2006年江苏卷)若A、B、C为三个集合,C

?,则一定有()

=

A?

B

B

A . C A ?

B .A

C ? C .C A ≠

D . A =? [考查目的]本题主要考查集合间关系的运算.

解:由A B B C = 知,,A B B A B C A B C ??∴?? ,故选A.

(2007年福建卷文)已知全集{}12345U =,,,,,且{}234A =,,,{}12B =,,则B C A U ?等于 ( C )

A .{2}

B .{5}

C .{3,4}

D .{2,3,4,5}

例10.(2006年辽宁卷)设集合{1,2}A =,则满足{1,2,3}A B ?=的集合B 的个数是( )

A . 1

B .3

C .4

D . 8

[考查目的] 本题考查了并集运算以及集合的子集个数问题,同时考查了等价转化思想.

解:{1,2}A =,{1,2,3}A B ?=,则集合B 中必含有元素3,即此题可转化为求集合{1,2}A =的子集个数问题,所以满足题目条件的集合B 共有224=个.故选C. 例11.(2007年北京卷文)

记关于x 的不等式01

x a x -<+的解集为P ,不等式11x -≤的解集为Q .

(I )若3a =,求P ;

(II )若Q P ?,求正数a 的取值范围. 思路启迪:先解不等式求得集合P 和Q . 解:(I )由301

x x -<+,得{}13P x x =-<<.

(II ){}{}1102Q x x x x =-=≤≤≤.

由0a >,得{}1P x x a =-<<,又Q P ?,所以0a >, 即a 的取值范围是(2)+∞,.

题型4. 要注意空集的特殊性和特殊作用

空集是一个特殊的重要集合,它不含任何元素,是任何集合的子集,是任何非空集合的真子集.显然,空集与任何集合的交集为空集,与任何集合的并集仍等于这个集合.当题设中隐含有空集参与的集合关系时,其特殊性很容易被忽视的,从而引发解题失误.

例12. 已知A={x|x 2

-3x +2=0},B={x|a x -2=0}且A∪B=A,则实数a 组成的集合C 是________. 解:由x 2

-3x +2=0得x=1或2.当x=1时,a =2,当x=2时,a =1.

这个结果是不完整的,上述解答只注意了B 为非空集合,实际上,B=?时,仍满足A∪B=A,当a =0时,B=?,符合题设,应补上,故正确答案为C={0,1,2}.

例13.(2007年北京卷理)已知集合{}|1A x x a =-≤,{}

2540B x x x =-+≥.若A B =? ,则实数a 的取

值范围是 .

思路启迪:先确定已知集合A 和B .

解:{}{}|111,A x x a x a x a =-=-≤≤≤+{}

{}25404,1.B x x x x x x =-+=≤≥≥ 14,1 1.2 3.a a x ∴+<->∴<<故实数a 的取值范围是(23),

. 例14. 已知集合A={x|x 2

+(m +2)x +1=0,x∈R},若A∩R *=?,则实数m 的取值范围是_________. 思路启迪:从方程观点看,集合A 是关于x 的实系数一元二次方程x 2

+(m +2)x +1=0的解集,而x=0不是方程的解,所以由A∩R *=?可知该方程只有两个负根或无实数根,从而分别由判别式转化为关于m 的不等式,并解出m 的范围.

解:由A∩R *=?又方程x 2

+(m +2)x +1=0无零根,所以该方程只有两个负根或无实数根,

()()2

240,20,

m m ??=+-≥??-+-4. 点评:此题容易发生的错误是由A∩R *=?只片面地推出方程只有两个负根(因为两根之积为1,因为方程无零根),而把A=?漏掉,因此要全面准确理解和识别集合语言. 例15.已知集合A={x|x 2

-3x -10≤0},集合B={x|p +1≤x ≤2p -1}.若B

A ,则实数p 的取值范

围是________.

解:由x 2

-3x -10≤0得-2≤x≤5. 欲使B

A ,只须213 3.215

p p p -≤+??-≤≤?

-≤?∴ p 的取值范围是-3≤p≤3. 上述解答忽略了"空集是任何集合的子集"这一结论,即B=?时,符合题设. 应有:①当B≠?时,即p +1≤2p-1p≥2.

由B

A 得:-2≤p+1且2p -1≤5.由-3≤p≤3.∴ 2≤p≤3.

②当B=?时,即p +1>2p -1p <2.

由①、②得:p≤3.

点评:从以上解答应看到:解决有关A ∩B=?、A ∪B=?,A B 等集合问题易忽视空集的情况而出现漏解,

这需要在解题过程中要全方位、多角度审视问题. 题型5.要注意利用数形结合解集合问题

集合问题大都比较抽象,解题时要尽可能借助文氏图、数轴或直角坐标系等工具将抽象问题直观化、形象化、明朗化,然后利用数形结合的思想方法使问题灵活直观地获解.

例16.设全集U={x|0

},若A∩B={3},A∩C U B={1,5,7},C U A∩C U B={9},则集合A 、B 是________.

思路启迪:本题用推理的方法求解不如先画出文氏图,用填图的方法来得简捷,由图不难看出.

解:A={1,3,5,7},B={2,3,4,6,8}.

例17.集合A={x|x2+5x-6≤0},B={x|x2+3x>0},求A∪B和A∩B.

解:∵ A={x|x2-5x-6≤0}={x|-6≤x≤1},

B={x|x2+3x>0}={x|x<-3,或x>0}.如图所示,

∴ A∪B={x|-6≤x≤1}∪{x|x<-3,或x>0}=R.

A∩B={x|-6≤x≤1}∩{x|x<-3,或x>0}={x|-6≤x<-3,或0

点评:本题采用数轴表示法,根据数轴表示的范围,可直观、准确的写出问题的结果.

例18.设A={x|-21},B={x|x2+a x+b≤0},已知A∪B={x|x>-2},A∩B={x|1

求a、b的值.

思路启迪:可在数轴上画出图形,利用图形分析解答.

解:如图所示,设想集合B所表示的范围在数轴上移动,

显然当且仅当B覆盖住集合{x|-1-2},且A∩B={x|1

根据二次不等式与二次方程的关系,可知-1与3是方程x2+a x+b=0的两根,

∴ a=-(-1+3)=-2, b=(-1)×3=-3.

点评:类似本题多个集合问题,借助于数轴上的区间图形表示进行处理,采用数形结合的方法,会得到直观、明了的解题效果.

【专题训练与高考预测】

一.选择题:

1.设M={x|x2+x+2=0},a=lg(lg10),则{a}与M的关系是()

A、{a}=M

B、M≠?{a}

C、{a}≠?M

D、M?{a}

2.已知全集U=R,A={x|x-a|<2},B={x|x-1|≥3},且A∩B=?,则a的取值范围是()

A、[0,2]

B、(-2,2)

C、(0,2]

D、(0,2)

3.已知集合M={x|x=a2-3a+2,a∈R},N={x|x=b2-b,b∈R},则M,N的关系是()

A、M≠?N

B、M≠?N

C、M=N

D、不确定

4.设集合A={x|x∈Z且-10≤x≤-1},B={x|x∈Z,且|x|≤5},则A∪B中的元素个数是()

A 、11

B 、10

C 、16

D 、15 5.集合M={1,2,3,4,5}的子集是( )

A 、15

B 、16

C 、31

D 、32 6 集合M ={x |x =42π+kx ,k ∈Z },N ={x |x =42

k ππ+,k ∈Z },则( )

A M =N

B M N

C M N

D M ∩N =?

7. 已知集合A={x|x 2

-4mx +2m +6=0,x∈R},若A∩R -

≠?,求实数m 的取值范围.

8. 命题甲:方程x 2+mx +1=0有两个相异负根;命题乙:方程4x 2

+4(m -2)x +1=0无实根,这两个命题有且只有一个成立,求m 的取值范围.

9 已知集合A ={x |-2≤x ≤7},B ={x |m +1

A -3≤m ≤4

B -3

C 2

D 2

10.集合M={}220,x x x a x R +-=∈,且M ??≠.则实数a 的取值范围是( )

A. a ≤-1

B. a ≤1

C. a ≥-1

D.a ≥1

11.满足{a ,b }U M={a ,b ,c ,d }的所有集合M 的个数是( ) A. 7 B. 6 C. 5 D. 4 12.若命题P :x ∈A B ,

?P 是( )

A. x ?A B

B. x ?A 或x ?B

C. x ?A 且x ?B

D. x ∈A B

13.已知集合M={2

a ,a }.P={-a ,2a -1};若card(M P)=3,则M P= ( ) A.{-1} B.{1} C.{0} D.{3}

14.设集合P={3,4,5}.Q={4,5,6,7}.令P*Q=(){},,a b a p b Q ∈∈,则P*Q 中元素的个数是 ( ) A. 3 B. 7 C. 10 D. 12 二.填空题:

15.已知M={Z 2

4m |m ∈-},N={x|}N 2

3x ∈+,则M ∩N=__________.

16.非空集合p 满足下列两个条件:(1)p ≠?{1,2,3,4,5},(2)若元素a ∈p ,则6-a ∈p ,则集合p 个数是__________.

17.设A={1,2},B={x |x ?A }若用列举法表示,则集合B 是 .

18.含有三个实数的集合可表示为{}2,,1,,0b a a a b a ??=+????

,则20072008a b

+= . 三.解答题:

19.设集合A={(x ,y)|y=a x+1},B={(x ,y)|y=|x|},若A ∩B 是单元素集合,求a 取值范围.

20.设A={x|x 2

+px+q=0}≠?,M={1,3,5,7,9},N={1,4,7,10},若A ∩M=?,A ∩N=A ,求p 、q 的值. 21.已知集合M={y|y=x 2

+1,x ∈R},N={y|y=x+1,x ∈R},求M ∩N .

22.已知集合A={x|x 2-3x+2=0},B={x|x 2

-mx+2=0},且A ∩B=B ,求实数m 范围. 23.已知全集U =R ,且{}{}

22120,450A x x x B x x x =--≤=-->,求()()U U C A C B . 24.已知集合{}{}

22230,0A x x x B x x ax b =-->=++≤,

且{},34A B R A B x x =<≤ ,{},34A B R A B x x ==<≤ ,求a ,b 的值.

【参考答案】

1. C 2. A 3. C 4. C 5. D

6. C 解析 对M 将k 分成两类 k =2n 或k =2n +1(n ∈Z ), M ={x |x =n π+4π,n ∈Z }∪{x |x =n π+4

3π,n ∈Z },

对N 将k 分成四类,k =4n 或k =4n +1,k =4n +2,k =4n +3(n ∈Z ),

N ={x |x =n π+2π,n ∈Z }∪{x |x =n π+4

3π,n ∈Z }∪{x |x =n π+π,n ∈Z }∪{x |x =n π+4

5π,n ∈Z }

7.解:设全集U ={m|△=(-4m)2

-4(2m +6)≥0}={m|m≤-1或m≥32

}.

若方程x 2

-4mx +2m +6=0的二根为x 1、x 2均非负,

1212

340,226

m U x x m m x x m ∈?

?

+=≥?≥??=+?则

因此,{m|m≥32

}关于U 补集{m|m≤-1}即为所求. 8.解:使命题甲成立的条件是:

2112

40,

2.0m m x x m ??=->?>?

+=-2}. 使命题乙成立的条件是:△2=16(m -2)2

-16<0,∴1<m <3.∴ 集合B={m|1

若为(1),则有:A∩C R B={m|m>2}∩{m|m≤1或m≥3}={m|m≥3}; 若为(2),则有:B∩C R A={m|1

∴??

?

??-<+≤--≥+1217122

1m m m m ,即

2<m ≤4

10.C 11.D 12.B 13.D 14.B 二.填空题:

15. ?; 16. 7 ; 17. {,{1},{2},{1,2}}?; 18.-1. 三.解答题:

19. a ≥1或a ≤-1,提示:画图.

20.8,16,

p q =-??=?或20,10,

p q =-??

=?或14,40.

p q =-??

=? 21.解:在集合运算之前,首先要识别集合,即认清集合中元素的特征.M 、N 均为数集,不能误认为是点集,从而解方程组。其次要化简集合,或者说使集合的特征明朗化.M={y|y=x 2

+1,x ∈R}={y|y ≥1},N={y|y=x+1,x ∈R}={y|y ∈R}.∴ M ∩N=M={y|y ≥1}. 22.解:化简条件得A={1,2},A ∩B=B ?B ?A .

根据集合中元素个数集合B 分类讨论,B=?,B={1}或{2},B={1,2}. 当B=?时,△=m 2

-8<0.∴ 22m 22

<<-.

当B={1}或{2}时,??

?=+-=+-=?0

2m 2402m 10或,m 无解.

当B={1,2}时,12,12 2.

m +=??

?=?∴ m=3. 综上所述,m=3或22m 22<<-.

{}{}{}{}{}:34,1,

34,15,()()45.

U U U U A x x B x x C A x x x C B x x C A C B x x =-≤≤=<-∴=<->=-≤≤∴=<≤ 23.解或>5或

24. 解:{}13A x x x =<>或, ∵A B R = . ∴{}13x x -≤≤中元素必是B 的元素. 又∵{}34A B x x =<≤ , ∴{}34x x <≤中的元素属于B, 故{}{}133414B x x x x x =-≤≤<≤=-≤≤或.

而{}

20B x x ax b =++≤. ∴-1,4是方程20x ax b ++=的两根, ∴a=-3,b=-4.

高三一轮复习1.1集合的概念与运算教案

§集合的概念与运算 【2014高考会这样考】 1.考查集合中元素的互异性,以集合中含参数的元素为背景,探求参数的值;2.求几个集合的交、并、补集;3.通过集合中的新定义问题考查创新能力. 【复习备考要这样做】 1.注意分类讨论,重视空集的特殊性;2.会利用Venn图、数轴等工具对集合进行运算;3.重视对集合中新定义问题的理解. 1.集合与元素 (1)集合元素的三个特征:确定性、互异性、无序性. (2)元素与集合的关系是属于或不属于关系,用符号∈或?表示. (3)集合的表示法:列举法、描述法、图示法. (4)常见数集的记法 2.

(1)子集:对任意的x∈A,都有x∈B,则A?B(或B?A). (2)真子集:若A?B,且A≠B,则A?B(或B?A). (3)空集:空集是任意一个集合的子集,是任何非空集合的真子集.即??A,??B(B≠?). (4)若A含有n个元素,则A的子集有2n个,A的非空子集有2n-1个. (5)集合相等:若A?B,且B?A,则A=B. 3.集合的运算 4. 并集的性质:A∪?=A;A∪A=A;A∪B=B∪A;A∪B=A?B?A. 交集的性质:A∩?=?;A∩A=A;A∩B=B∩A;A∩B=A?A?B. 补集的性质:A∪(?U A)=U;A∩(?U A)=?;?U(?U A)=A. [难点正本疑点清源] 1.正确理解集合的概念 正确理解集合的有关概念,特别是集合中元素的三个特征,尤其是“确定性和互异性”在解题中要注意运用.在解决含参数问题时,要注意检验,否则很可能会因为不满足“互异性”而导致结论错误. 2.注意空集的特殊性 空集是不含任何元素的集合,空集是任何集合的子集.在解题时,若未明确说明集合非空时,要考虑到集合为空集的可能性.例如:A?B,则需考虑A=?和A≠?两种可能的情况. 3.正确区分?,{0},{?} ?是不含任何元素的集合,即空集.{0}是含有一个元素0的集合,它不是空集,因为它有一个元素,这个元素是0.{?}是含有一个元素?的集合.??{0},??{?},?∈{?},{0}∩{?}=?.

集合的概念与运算例题及答案

1 集合的概念与运算(一) 目标: 1.理解集合、子集的概念,能利用集合中元素的性质解决问题 2.理解交集、并集、全集、补集的概念,掌握集合的运算性质, 3.能利用数轴或文氏图进行集合的运算,掌握集合问题的常规处理方法. 重点: 1.集合中元素的3个性质,集合的3种表示方法,集合语言、集合思想的运用; 2.交集、并集、补集的求法,集合语言、集合思想的运用. 基本知识点: 知识点1、集合的概念 (1)集合:某些指定的对象集在一起就形成一个集合(简称集) (2)元素:集合中每个对象叫做这个集合的元素 知识点2、常用数集及记法 (1)非负整数集(自然数集):全体非负整数的集合记作N ,{}Λ,2,1,0=N (2)正整数集:非负整数集内排除0的集记作N * 或N + {}Λ,3,2,1*=N (3)整数集:全体整数的集合记作Z , {}Λ,,,210±±=Z (4)有理数集:全体有理数的集合记作Q , {} 整数与分数=Q (5)实数集:全体实数的集合记作R {} 数数轴上所有点所对应的=R 注:(1)自然数集与非负整数集是相同的,也就是说,自然数集包括数0 (2)非负整数集内排除0的集记作N * 或N + Q 、Z 、R 等其它数集内排除0的集,也是这样表示,例如,整数集内排除0的集,表示成Z * 知识点3、元素与集合关系(隶属) (1)属于:如果a 是集合A 的元素,就说a 属于A ,记作a ∈A (2)不属于:如果a 不是集合A 的元素,就说a 不属于A ,记作A a ? 注意:“∈”的开口方向,不能把a ∈A 颠倒过来写 知识点4、集合中元素的特性 (1)确定性:按照明确的判断标准给定一个元素或者在这个集合里, 或者不在,不能模棱两可 (2)互异性:集合中的元素没有重复 (3)无序性:集合中的元素没有一定的顺序(通常用正常的顺序写出)

集合的概念与运算教学讲义

集合的概念与运算教学讲义 1.集合与元素 一组对象的全体构成一个集合. (1)集合中元素的三大特征:确定性、互异性、无序性. (2)集合中元素与集合的关系:对于元素a与集合A,__a∈A__或__a?A__,二者必居其一. (3)常见集合的符号表示. 数集自然数集正整数集整数集有理数集实数集 符号N N*Z Q R (4)集合的表示法:列举法、描述法、Venn图法、区间表示法. (5)集合的分类:集合按元素个数的多少分为有限集、无限集,有限集常用列举法表示,无限集常用描述法表示. 2.集合之间的基本关系 关系定义表示 相等集合A与集合B中的所有元素都__相同__A__=__B 子集A中的任意一个元素都是__B中的元素__A__?__B 真子集A是B的子集,且B中至少有一个元素__不属于A__A____B 注意:(1)空集用__?__表示. (2)若集合A中含有n个元素,则其子集个数为__2n__,真子集个数为__2n-1__,非空真子集的个数为__2n-2__. (3)空集是任何集合的子集,是任何__非空集合__的真子集. (4)若A?B,B?C,则A__?__C. 3.集合的基本运算 符号 交集A∩B并集A∪B补集?U A 语言 图形 语言 意义A∩B={x|x∈A且x∈A∪B={x|x∈A或x∈?U A={x|x∈U且x?A}

B}B} 1.A∩A=A,A∩?=?. 2.A∪A=A,A∪?=A. 3.A∩(?U A)=?,A∪(?U A)=U,?U(?U A)=A. 4.A?B?A∩B=A?A∪B=B??U A??U B?A∩(?U B)=?. 1.已知集合A={x∈N|0≤x≤4},则下列表述正确的是(D) A.0?A B.1?A C.2?A D.3∈A [解析]集合A={x∈N|0≤x≤4},所以0∈A,1∈A,2?A,3∈A. 2.若A={x|x=4k-1,k∈Z},B={x=2k-1,k∈Z},则集合A与B的关系是(B) A.A=B B.A B C.A B D.A?B [解析]因为集合B={x|x=2k-1,k∈Z},A={x|x=4k-1,k∈Z}={x|x=2(2k)-1,k∈Z},集合B表示2与整数的积减1的集合,集合A表示2与偶数的积减1的集合,所以A B,故选B. 3.设集合M={2,4,6,8},N={1,2,3,5,6,7},则M∩N的子集的个数为(B) A.2B.4 C.7D.128 [解析]∵M={2,4,6,8},N={1,2,3,5,6,7},∴M∩N={2,6},即M∩N中元素的个数为2,子集22=4个,故选B. 4.已知集合A={x|x>0},B={x|-1≤x≤2},则A∪B=(A) A.{x|x≥-1}B.{x|x≤2} C.{x|0

集合的概念与运算练习题

集合的概念与运算训练 一、选择题 1.(07浙江)设全集U ={1,3,5,6,8},A ={1,6},B ={5,6,8},则(C U A )∩B =( ) A .{6} B .{5,8} C .{6,8} D .{3,5,6,8} 2.(09山东)集合{0,2,}A a =,2{1,}B a =,若{0,1,2,4,16}A B = ,则a 的值为( ) A .0 B .1 C .2 D .4 3.(10湖北)设集合M ={1,2,4,8},N ={x |x 是2的倍数},则M ∩N =( ) A .{2,4} B .{1,2,4} C .{2,4,8} D .{1,2,8} 4.(08安徽)若A 为全体正实数的集合,{2,1,1,2}B =--则下列结论中正确的是() A .{2,1}A B =-- B .()(,0)R C A B =-∞ C .(0,)A B =+∞ D .(){2,1}R C A B =-- 5.(06陕西)已知集合P ={x ∈N |1≤x ≤10},集合Q ={x ∈R |x 2+x -6=0}, 则P ∩Q 等于( ) A . {2} B .{1,2} C .{2,3} D .{1,2,3} 6.(07安徽)若22 {|1},{|230}A x x B x x x ===--=,则A B =( ) A .{3} B .{1} C .? D .{1}- 7.(08辽宁)已知集合{31}M x x =-<<,{3}N x x =≤-,则M N = () A .? B .{3}x x ≥- C .{1}x x ≥ D .{1}x x < 8.(06全国Ⅱ)已知集合2{|3},{|log 1}M x x N x x =<=>,则M N = ( ) A .? B .{|03}x x << C .{|13}x x << D .{|23}x x << 9.(09陕西)设不等式20x x -≤的解集为M ,函数()ln(1||)f x x =-的定义域为N ,则M N 为() A .[0,1) B .(0,1) C .[0,1] D .(-1,0] 10.(07山东)已知集合11{11}| 242x M N x x +??=-=<<∈????Z ,,,,则M N = () A .{11}-, B .{0} C .{1}- D .{10}-, 11.(11江西)已知集合{}? ?????≤-=≤+≤-=02,3121x x x B x x A ,则B A 等于() A .{10}x x -≤< B .{01}x x <≤ C .{02}x x ≤≤ D .{01}x x ≤≤ 12.(07广东)已知集合1{10{0}1M x x N x x =+>=>-,,则M N = () A .{11}x x -<≤ B .{1}x x > C .{11}x x -<< D .{1}x x -≥ 13.(08广东)届夏季奥林匹克运动会将于2008年8月8日在北京举行,若集合A={参加北京奥运会比赛的运动员},集合B={参加北京奥运会比赛的男运动员},集合C={参加北京奥运会比赛的女运动员},则下列关系正确的是() A. A B ? B. B C ? C. B ∪C = A D. A∩B = C 14.(09广东)已知全集U =R ,则正确表示集合M = {-1,0,1}和N = {x |x 2+x =0}关系的韦恩(Venn ) 图是() A . B . C . D .

第一章 1.1集合的概念与运算

§1.1集合的概念与运算

1.集合与元素 (1)集合元素的三个特征:确定性、互异性、无序性. (2)元素与集合的关系有属于或不属于两种,用符号∈或?表示. (3)集合的表示法:列举法、描述法、图示法. (4)常见数集的记法 A B(或 B A) 3. (1)若有限集A中有n个元素,则A的子集个数为2n个,非空子集个数为2n-1个,真子集有2n-1个. (2)A?B?A∩B=A?A∪B=B.

【思考辨析】 判断下面结论是否正确(请在括号中打“√”或“×”) (1){x|y=x2+1}={y|y=x2+1}={(x,y)|y=x2+1}.(×) (2)若{x2,1}={0,1},则x=0,1.(×) (3)对于任意两个集合A,B,关系(A∩B)?(A∪B)恒成立.(√) (4)若A∩B=A∩C,则B=C.(×) (5)已知集合M={1,2,3,4},N={2,3},则M∩N=N.(√) (6)若全集U={-1,0,1,2},P={x∈Z|x2<4},则?U P={2}.(√) 1.(2014·课标全国Ⅰ)已知集合A={x|x2-2x-3≥0},B={x|-2≤x<2},则A∩B等于() A.[-2,-1]B.[-1,2) C.[-1,1]D.[1,2) 答案 A 解析∵A={x|x≥3或x≤-1},B={x|-2≤x<2}, ∴A∩B={x|-2≤x≤-1}=[-2,-1],故选A. 2.(2014·四川)已知集合A={x|x2-x-2≤0},集合B为整数集,则A∩B等于() A.{-1,0,1,2} B.{-2,-1,0,1} C.{0,1} D.{-1,0} 答案 A 解析因为A={x|x2-x-2≤0}={x|-1≤x≤2},又因为集合B为整数集,所以集合A∩B ={-1,0,1,2},故选A. 3.(2013·山东)已知集合A={0,1,2},则集合B={x-y|x∈A,y∈A}中元素的个数是() A.1 B.3 C.5 D.9 答案 C

集合的概念及其运算

第一节 集合 一.考试要求: 理解集合,子集,补集,交集,并集的概念,了解空集和全集的意义,了解属于、包含、相等关系的意义,掌握有关的术语和符号,并用它们正确表示一些简单的集合。 二.基本概念和性质 1.集合的基本概念: 某些指定的对象集在一起成为一个集合。其中每一个对象叫做集合的_______,集合中的元素具有________、_________、________三个特性。 2.集合的三种表示方法:_________、________、_________,它们各有优点,用什么方法来 表示集合要具体问题具体分析。 3.集合中元素与集合的关系分为__________或_________,它们用符号___或____表示。 4.集合间的关系及运算 子集:___________________________________称A 为B 的子集,记作为_____; 真子集:___________________________________称A 为B 的真子集,记为_____; 空集:____________________,记为_____ 补集:如果已知全集U ,集合A U ?,则U C A =_________________; 交集:A B =___________________;并集:A B =_____________________ 5.集合中常用运算性质 若,A B B A ??则______,若,A B B C ??则_______, ___A ?, 若,A ≠?则___A ?,___,__,__,__A A A A A A =?==?= __U A C A = __,()__,()__U U U A C A C A B C A B === ____A B A B A B ??=?= 6.熟练掌握描述法表示集合的方法,理解下列五个常见集合: {}{}{}{}{}(1)|()0,:______________(2)|()0,:_________________ (3)|():____________________(4)|(),:________________(5)(,)|(),:__________________________ x f x x R x f x x R x y f x y y f x x M x y y f x x M =∈>∈==∈=∈ 7.特别注意: (1)空集和全集是集合中的特殊集合,应引起重视,特别是空集,避免误解或漏解。 (2)为了直观表示集合之间的关系,常用韦恩图来解决问题,另外要充分利用数轴和平面 直角坐标系来反映集合及其关系。 (3)解决有关集合问题,关键在于集合语言的转化。 三、例题选讲

第01讲 集合的概念与运算(原卷版)

第 1 讲:集合的概念与运算 一、课程标准 1、通过实例,了解集合的含义,体会元素与集合的“属于”关系. 2、.理解集合之间包含与相等的含义,能识别给定集合的子集.了解全集与空集的含义. 3、.理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集. 4、.理解在给定集合中一个子集的补集的含义,会求给定子集的补集. 二、基础知识回顾 1、元素与集合 (1)集合中元素的三个特性:确定性、互异性、无序性。 (2)元素与集合的关系是属于或不属于,表示符号分别为∈和?。 2、集合间的基本关系 (1)子集:若对任意x∈A,都有x∈B,则A?B或B?A。 (2)真子集:若A?B,且集合B中至少有一个元素不属于集合A,则A B或B A。 (3)相等:若A?B,且B?A,则A=B。 (4)空集的性质:?是任何集合的子集,是任何非空集合的真子集。 3、集合的基本运算 (1)交集:一般地,由属于集合A且属于集合B的所有元素组成的集合,称为A与B的交集,记作A∩B,即A∩B={x|x∈A,且x∈B}. (2)并集:一般地,由所有属于集合A或属于集合B的元素组成的集合,称为A与B的并集,记作A∪B,即A∪B={x|x∈A,或x∈B}. (3)补集:对于一个集合A,由全集U中不属于集合A的所有元素组成的集合称为集合A相对于全集U的补集,简称为集合A的补集,记作?U A,即?U A={x|x∈U,且x?A}. 4、集合的运算性质 (1)A∩A=A,A∩?=?,A∩B=B∩A。 (2)A∪A=A,A∪?=A,A∪B=B∪A。A?B?A∩B=A?A∪B=B??U A??U B (3)A∩(?U A)=?,A∪(?U A)=U,?U(?U A)=A。 (4)?U(A∩B)=(?U A)∪(?U B),?U(A∪B)=(?U A)∩(?U B)。

2019-2020学年高中数学 1.1 集合的概念与运算教案 新人教版必修1.doc

2019-2020学年高中数学 1.1 集合的概念与运算教案新人教版必 修1 【考点透视】 1.理解集合、子集、补集、交集、并集的概念. 2.了解空集和全集的意义. 3.了解属于、包含、相等关系的意义.掌握有关的术语和符号,并会用它们正确表示一些简单的集合. 4.解答集合问题,首先要正确理解集合有关概念,特别是集合中元素的三要素;对于用描述法给出的集合{x|x∈P},要紧紧抓住竖线前面的代表元素x以及它所具有的性质P;要重视发挥图示法的作用,通过数形结合直观地解决问题. 5.注意空集?的特殊性,在解题中,若未能指明集合非空时,要考虑到空集的可能性,如 A?B,则有A=?或A≠?两种可能,此时应分类讨论. 【例题解析】 题型1.正确理解和运用集合概念 理解集合的概念,正确应用集合的性质是解此类题目的关键. 例1.已知集合M={y|y=x2+1,x∈R},N={y|y=x+1,x∈R},则M∩N=() A.(0,1),(1,2) B.{(0,1),(1,2)}C.{y|y=1,或y=2} D.{y|y≥1} 思路启迪:集合M、N是用描述法表示的,元素是实数y而不是实数对(x,y),因此M、N分别表示函数y=x2+1(x∈R),y=x+1(x∈R)的值域,求M∩N即求两函数值域的交集. 解:M={y|y=x2+1,x∈R}={y|y≥1}, N={y|y=x+1,x∈R}={y|y∈R}. ∴M∩N={y|y≥1}∩{y|y∈R}={y|y≥1},∴应选D. 点评:①本题求M∩N,经常发生解方程组 21, 1. y x y x ?=+ ? =+ ? 0, 1, x y = ? ? = ? 得 1, 2. x y = ? ? = ? 或 从而选B的错误,这是由于在集合概念的理解上,仅注意了构成集合元素的共同属性,而忽视了集合的元素是什么.事实上M、N的元素是数而不是点,因此M、N是数集而不是点集.②集合是由元素构成的,认识集合要从认识元素开始,要注意区分{x|y=x2+1}、{y|y=x2+1,x ∈R}、{(x,y)|y=x2+1,x∈R},这三个集合是不同的. 例2.若P={y|y=x2,x∈R},Q={y|y=x2+1,x∈R},则P∩Q等于() A.P B.Q C. D.不知道 思路启迪:类似上题知P集合是y=x2(x∈R)的值域集合,同样Q集合是y= x2+1(x∈R)的值域集合,这样P∩Q意义就明确了. 解:事实上,P、Q中的代表元素都是y,它们分别表示函数y=x2,y= x2+1的值域,由P={y|y ≥0},Q={y|y≥1},知Q P,即P∩Q=Q.∴应选B. 例3. 若P={y|y=x2,x∈R},Q={(x,y)|y=x2,x∈R},则必有() A.P∩Q=? B.P Q C.P=Q D.P Q

最新版集合问题的解题方法和技巧

集合问题解题方法和技巧 一、集合间的包含与运算关系问题 解题技巧:解答集合间的包含与运算关系问题的思路:先正确理解各个集合的含义,认清集合元素的属性;再依据元素的不同属性采用不同的方法对集合进行化简求解,一般的规律为: (1)若给定的集合是不等式的解集,用数轴来解; (2)若给定的集合是点集,用数形结合法求解; (3)若给定的集合是抽象集合, 用Venn 图求解。 例1、(2012高考真题北京理1)已知集合A={x ∈R|3x+2>0} B={x ∈R|(x+1)(x-3)>0} 则A ∩B= ( ) A (-∞,-1) B (-1,- 23) C (-23,3)D (3,+∞) 【答案】D 【解析】因为3 2}023|{->?>+∈=x x R x A ,利用二次不等式可得1|{-<=x x B 或}3>x 画出数轴易得:}3|{>=x x B A I .故选D . 例2、(2011年高考广东卷理科2)已知集合A={ (x ,y)|x ,y 为实数,且x 2+y 2=l},B={(x ,y) |x ,y 为实数,且y=x}, 则A ∩ B 的元素个数为( ) A .0 B . 1 C .2 D .3 答案:D 解析:作出圆x 2+y 2=l 和直线y=x,观察两曲线有2个交点 例3(2012年高考全国卷)已知集合{}|A x x =是平行四边形,{}|B x x =是矩形,{}|C x x =是正方形,{}|D x x =是菱形,则 ( ) A .A B ? B . C B ? C . D C ? D .A D ? 答案:B 【命题意图】本试题主要考查了集合的概念,集合的包含关系的运用. 【解析】由正方形是特殊的菱形、特殊的矩形、特殊的平行四边形,矩形是特殊的平行四边形,作出Venn 图,可知集合C 是最小,集合A 是最大的,故选答案B. 二、以集合语言为背景的新信息题

高三一轮复习1.1集合的概念与运算教案(教师版)电子教案

§1.1集合的概念与运算 【2014高考会这样考】 1.考查集合中元素的互异性,以集合中含参数的元素为背景,探求参数的值;2.求几个集合的交、并、补集;3.通过集合中的新定义问题考查创新能力. 【复习备考要这样做】 1.注意分类讨论,重视空集的特殊性;2.会利用Venn图、数轴等工具对集合进行运算;3.重视对集合中新定义问题的理解.

1.集合与元素 (1)集合元素的三个特征:确定性、互异性、无序性. (2)元素与集合的关系是属于或不属于关系,用符号∈或?表示. (3)集合的表示法:列举法、描述法、图示法. (4)常见数集的记法 2. (1)子集:对任意的x∈A,都有x∈B,则A?B(或B?A). (2)真子集:若A?B,且A≠B,则A?B(或B?A). (3)空集:空集是任意一个集合的子集,是任何非空集合的真子集.即??A,??B(B≠?). (4)若A含有n个元素,则A的子集有2n个,A的非空子集有2n-1个. (5)集合相等:若A?B,且B?A,则A=B. 3.集合的运算 4. 并集的性质:A∪?=A;A∪A=A;A∪B=B∪A;A∪B=A?B?A.

交集的性质:A∩?=?;A∩A=A;A∩B=B∩A;A∩B=A?A?B. 补集的性质:A∪(?U A)=U;A∩(?U A)=?;?U(?U A)=A. [难点正本疑点清源] 1.正确理解集合的概念 正确理解集合的有关概念,特别是集合中元素的三个特征,尤其是“确定性和互异性”在解题中要注意运用.在解决含参数问题时,要注意检验,否则很可能会因为不满足“互异性”而导致结论错误. 2.注意空集的特殊性 空集是不含任何元素的集合,空集是任何集合的子集.在解题时,若未明确说明集合非空时,要考虑到集合为空集的可能性.例如:A?B,则需考虑A=?和A≠?两种可能的情况. 3.正确区分?,{0},{?} ?是不含任何元素的集合,即空集.{0}是含有一个元素0的集合,它不是空集,因为它有一个元素,这个元素是0.{?}是含有一个元素?的集合.??{0},??{?},?∈{?},{0}∩{?}=?. 题型一集合的基本概念 例1(1)下列集合中表示同一集合的是(B)

第1讲 集合的概念与运算

第1讲集合的概念与运算 一、知识梳理 1.集合与元素 (1)集合元素的三个特征:确定性、互异性、无序性. (2)元素与集合的关系是属于或不属于关系,用符号∈或?表示. (3)集合的表示法:列举法、描述法、图示法. (4)常见数集的记法 集合自然数集正整数集整数集有理数集实数集符号N N*(或N+)Z Q R [注意]N为自然数集(即非负整数集),包含0,而N*和N+的含义是一样的,表示正整数集,不包含0. 2.集合间的基本关系 表示 关系 自然语言符号语言Venn图 子集集合A中所有元素都在集合B中(即 若x∈A,则x∈B) A?B(或B?A) 真子集集合A是集合B的子集,且集合B 中至少有一个元素不在集合A中 A B(或 B A) 集合相等集合A,B中元素相同A=B 集合的并集集合的交集集合的补集 图形语言 符号语言A∪B={x|x∈A或x∈B}A∩B={x|x∈A且x∈}B ?U A={x|x∈U且x?A}

常用结论|三种集合运用的性质 (1)并集的性质:A∪?=A;A∪A=A;A∪B=B∪A;A∪B=A?B?A. (2)交集的性质:A∩?=?;A∩A=A;A∩B=B∩A;A∩B=A?A?B. (3)补集的性质:A∪(?U A)=U;A∩(?U A)=?;?U(?U A)=A;?U(A∩B)=(?U A)∪(?U B);?U(A∪B)=(?U A)∩(?U B). 二、教材衍化 1.若集合P={x∈N|x≤ 2 021},a=22,则() A.a∈P B.{a}∈P C.{a}?P D.a?P 解析:选D.因为a=22不是自然数,而集合P是不大于 2 021的自然数构成的集合,所以a?P.故选D. 2.设集合A={x|-2≤x≤2},Z为整数集,则集合A∩Z中元素的个数是() A.3 B.4 C.5 D.6 解析:选C.A中包含的整数元素有-2,-1,0,1,2,共5个,所以A∩Z中的元素个数为5. 一、思考辨析 判断正误(正确的打“√”,错误的打“×”) (1)若集合A={x|y=x2},B={y|y=x2},C={(x,y)|y=x2},则A,B,C表示同一个集合.() (2)若a在集合A中,则可用符号表示为a?A.() (3)若A B,则A?B且A≠B.() (4)N*N Z.() (5)若A∩B=A∩C,则B=C.() 答案:(1)×(2)×(3)√(4)√(5)× 二、易错纠偏 常见误区|(1)忽视集合中元素的互异性致错; (2)集合运算中端点取值致错; (3)忘记空集的情况导致出错.

专题1.1 集合的概念与运算(解析版)

第一篇集合与常用逻辑用语 专题1.1 集合的概念与运算 【考纲要求】 1. 了解集合的含义、元素与集合的属于关系. 2.能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题. 3.理解集合之间包含与相等的含义,能识别给定集合的子集. 4.在具体情境中,了解全集与空集的含义. 5.理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集. 6.理解在给定集合中一个子集的补集的含义,会求给定子集的补集. 7.能使用韦恩(Venn)图表达集合的关系及运算. 【命题趋势】 1. 利用集合的含义与表示求集合的元素或元素的个数. 2.根据集合间的关系求集合子集的个数、参数的取值或范围. 3.考查数集的交集、并集、补集的基本运算. 4.常运用数轴或韦恩图及数形结合思想来求解含未知参数的集合问题. 5.以集合为载体结合其他数学知识考查新概念、新性质、新法则的创新问题的应用.1.元素与集合【核心素养】 本讲内容主要考查数学抽象和数学运算的核心素养. 【素养清单?基础知识】 1.集合的有关概念 (1) 集合元素的三个特性:确定性、无序性、互异性. 元素互异性,即集合中不能出现相同的元素,此性质常用于求解含参数的集合问题中. (2) 集合的三种表示方法:列举法、描述法、图示法. (3) 元素与集合的两种关系:属于,记为∈;不属于,记为?. (4) 五个特定的集合及其关系图: N*或N+表示正整数集,N表示自然数集,Z表示整数集,Q表示有理数集,R表示实数集.2.集合间的基本关系

(1) 子集:一般地,对于两个集合A ,B ,如果集合A 中任意一个元素都是集合B 中的元素,则称A 是B 的子集,记作A ?B (或B ?A ). (2) 真子集:如果集合A 是集合B 的子集,但集合B 中至少有一个元素不属于A ,则称A 是B 的真子集,记作A ?B 或B ùA . A ? B ? ? ???? A ? B , A ≠ B .既要说明A 中任何一个元素都属于B ,也要说明B 中存在一个元素不属于A . (3) 集合相等:如果A ?B ,并且B ?A ,则A =B . 两集合相等:A =B ?? ??? ? A ? B ,A ?B .A 中任意一个元素都符合B 中元素的特性,B 中任意一个元素也符合A 中元 素的特性. (4) 空集:不含任何元素的集合.空集是任何集合A 的子集,是任何非空集合B 的真子集.记作?. ?∈{?},??{?},0??,0?{?},0∈{0},??{0}. 3.集合间的基本运算 (1) 交集:一般地,由属于集合A 且属于集合B 的所有元素组成的集合,称为A 与B 的交集,记作A ∩B ,即A ∩B ={x |x ∈A ,且x ∈B }. (2) 并集:一般地,由所有属于集合A 或属于集合B 的元素组成的集合,称为A 与B 的并集,记作A ∪B ,即A ∪B ={x |x ∈A ,或x ∈B }. (3) 补集:对于一个集合A ,由全集U 中不属于集合A 的所有元素组成的集合称为集合A 相对于全集U 的补集,简称为集合A 的补集,记作?U A ,即?U A ={x |x ∈U ,且x ?A }. 求集合A 的补集的前提是“A 是全集U 的子集”,集合A 其实是给定的条件.从全集U 中取出集合A 的全部元素,剩下的元素构成的集合即为?U A . 【素养清单?常用结论】 (1) 子集的性质:A ?A ,??A ,A ∩B ?A ,A ∩B ?B . (2) 交集的性质:A ∩A =A ,A ∩?=?,A ∩B =B ∩A . (3) 并集的性质:A ∪B =B ∪A ,A ∪B ?A ,A ∪B ?B ,A ∪A =A ,A ∪?=?∪A =A . (4) 补集的性质:A ∪?U A =U ,A ∩?U A =?,?U (?U A )=A ,?A A =?,?A ?=A . (5) 含有n 个元素的集合共有2n 个子集,其中有2n -1个真子集,2n -1个非空子集. (6) 等价关系:A ∩B =A ?A ?B ;A ∪B =A ?A ?B . 【真题体验】

集合的概念与运算教案

集合的概念与运算 适用学科咼中数学适用年级高中一年级 适用区域通用课时(分钟)2课时 知识点 集合的概念,兀素与集合的关系及表示,集合的表示方法相等关系,包含关系,不 包含关系 教学目标 了解集合的含义,体会兀素与集合的属于关系; 能用自然语言、图形语言、集合语言描述不同的具体冋题;理解集合之间包含与相 等的含义,能识别给定集合的子集;在具体情境中,了解全集与空集的含义?教学重点兀素与集合的关系,集合兀素的特性;集合之间包含与相等的含义 教学难点集合之间包含与相等的含义,集合兀素的特性 主要以一元二次不等式,函数的定义域(特别是对数函数的定义域与带根号的函数的定义域) 与值域为背景进行考察,求解时,掌握一元二次不等式的解法及函数定义域值域的求法时正 确求解的关键 (2 )本部分在高考中的题型以选择题为主,几乎历年一道必考送分,各位同学要抓住这个'相关知识 集合 q概念、一组对象的全体? x^A,x老A。兀素特点:互异性、无序性、确定性。 关系 子集x^A= B二A匸B。0匸A; A匸B, BG C= AG C n个兀 素集合子集数2n。 真子集x^ Aa x E B, Ex。E B,x o 更A二 A U B 相等A匸B,B匸A二A = B 运算 交集 A"B ={x|x^ A,且B}C U(A U B)=(C U A)D(C U B) C U(A D B)=(C U A)U(C U B) C u (C U A) = A 并集 AUB ={x|x^ A,或B} 补集 Cu A = {x|x^U 且x 更A 三、知识讲解 1?集合的含义 集合的交并补运算在高考中几乎是每年必考,

2013高考数学一轮复习 第一篇集合与常用逻辑用语第1讲 集合的概念与运算教案 理.doc

第1讲集合的概念与运算 【2013年高考会这样考】 1.考查集合中元素的互异性. 2.求几个集合的交、并、补集. 3.通过给的新材料考查阅读理解能力和创新解题的能力. 【复习指导】 1.主要掌握集合的含义、集合间的关系、集合的基本运算,立足基础,抓好双基. 2.练习题的难度多数控制在低中档即可,适当增加一些情境新颖的实际应用问题或新定义题目,但数量不宜过多. 基础梳理 1.集合与元素 (1)集合元素的三个特征:确定性、互异性、无序性. (2)元素与集合的关系是属于或不属于关系,用符号∈或?表示. (3)集合的表示法:列举法、描述法、图示法、区间法. (4)常用数集:自然数集N;正整数集N*(或N+);整数集Z;有理数集Q;实数集R. (5)集合的分类:按集合中元素个数划分,集合可以分为有限集、无限集、空集. 2.集合间的基本关系 (1)子集:对任意的x∈A,都有x∈B,则A?B(或B?A). (2)真子集:若A?B,且A≠B,则A B(或B A). (3)空集:空集是任意一个集合的子集,是任何非空集合的真子集.即??A,?B(B≠?). (4)若A含有n个元素,则A的子集有2n个,A的非空子集有2n-1个. (5)集合相等:若A?B,且B?A,则A=B. 3.集合的基本运算 (1)并集:A∪B={x|x∈A,或x∈B}. (2)交集:A∩B={x|x∈A,且x∈B}. (3)补集:?U A={x|x∈U,且x?A}. (4)集合的运算性质 ①A∪B=A?B?A,A∩B=A?A?B; ②A∩A=A,A∩?=?; ③A∪A=A,A∪?=A; ④A∩?U A=?,A∪?U A=U,?U(?U A)=A.

集合的概念与运算复习资料

集合与常用逻辑用语 §1.1 集合的概念与运算 1.集合与元素 (1)集合中元素的三个特征:确定性、互异性、无序性. (2)元素与集合的关系是属于或不属于两种,用符号∈或?表示. (3)集合的表示法:列举法、描述法. (4)常见数集的记法 集合 自然数集 正整数集 整数集 有理数集 实数集 符号 N N +(或N *) Z Q R 2.集合间的基本关系 关系 自然语言 符号语言 Venn 图 子集 集合A 中所有元素都在集合B 中(即若x ∈A ,则x ∈B ) A ?B (或 B=A ) 真子集 集合A 是集合B 的子集,且集合B 中至少有一个元素不在集合A 中 A ?B 集合 相等 集合A ,B 中元素相同或集合A ,B 互为子集 A =B 3.集合的运算 集合的并集 集合的交集 集合的补集 图形 符号 A ∪ B ={x |x ∈A ,或x ∈B } A ∩B ={x |x ∈A ,且x ∈B } ?U A ={x |x ∈U ,且x ?A } (1)若有限集A 中有n 个元素,则A 的子集个数为2n 个,非空子集个数为2n -1个,真子集有2n -1个. (2)A ?B ?A ∩B =A ?A ∪B =B . 易错警示系列 1.遗忘空集致误 ={x |x 2+2(a +1)x +a 2-1=0,x ∈R }.若B ?A ,则实数a 的取值范围是________. 易错分析 集合B 为方程x 2+2(a +1)x +a 2-1=0的实数根所构成的集合,由B ?A ,可知集合B 中的元素都在集合A 中,在解题中容易忽视方程无解,即B =?的情况,导致漏解. 解析 因为A ={0,-4},所以B ?A 分以下三种情况: ①当B =A 时,B ={0,-4},由此知0和-4是方程x 2+2(a +1)x +a 2-1=0的两个根,由根与系数的关系,得 ??? Δ=4(a +1)2-4(a 2-1)>0, -2(a +1)=-4,a 2-1=0, 解得a =1; ②当B ≠?且B A 时,B ={0}或B ={-4},

高三数学:集合的概念与运算技巧教学设计

新修订高中阶段原创精品配套教材 集合的概念与运算技巧教材定制 / 提高课堂效率 /内容可修改 Collection concepts and calculation skills 教师:风老师 风顺第二中学 编订:FoonShion教育

集合的概念与运算技巧 【命题趋向】 1.高考试题通过选择题和填空题,以及大题的解集,全面考查集合与简易逻辑的知识,题型新,分值稳定.一般占5---10分. 2.简易逻辑一部分的内容在近两年的高考试题有所出现,应引起注意. 【考点透视】 1.理解集合、子集、补集、交集、并集的概念. 2.了解空集和全集的意义. 3.了解属于、包含、相等关系的意义.掌握有关的术语和符号,并会用它们正确表示一些简单的集合. 4.解答集合问题,首先要正确理解集合有关概念,特别是集合中元素的三要素;对于用描述法给出的集合{x|x∈p},要紧紧抓住竖线前面的代表元素x以及它所具有的性质p;要重视发挥图示法的作用,通过数形结合直观地解决问题. 5.注意空集的特殊性,在解题中,若未能指明集合非

空时,要考虑到空集的可能性,如a b,则有a= 或a≠ 两种可能,此时应分类讨论. 【例题解析】 题型1. 正确理解和运用集合概念 理解集合的概念,正确应用集合的性质是解此类题目的关键. 例 1.已知集合m={y|y=x2 1,x∈r},n={y|y=x 1,x∈r},则m∩n=( ) a.(0,1),(1,2) b.{(0,1),(1,2)} c.{y|y=1,或y=2} d.{y|y≥1} 思路启迪:集合m、n是用描述法表示的,元素是实数y而不是实数对(x,y),因此m、n分别表示函数y=x2 1(x∈r),y=x 1(x∈r)的值域,求m∩n即求两函数值域的交集. 解:m={y|y=x2 1,x∈r}={y|y≥1}, n={y|y=x 1,x∈r}={y|y∈r}. ∈m∩n={y|y≥1}∩{y|y∈r}={y|y≥1},∈应选d. 点评:①本题求m∩n,经常发生解方程组 从而选b的错误,这是由于在集合概念的理解上,仅注意了构成集合元素的共同属性,而忽视了集合的元素是什么.事实上m、n的元素是数而不是点,因此m、n是数集而不是点集.②集合是由元素构成的,认识集合要从认识元素开始,要注意区分{x|y=x2 1}、{y|y=x2 1,x∈r}、{(x,y)|y=x2 1,x∈r},这三个集合是不同的.

1.1集合的概念与运算

§1.1集合的概念与运算 1.集合与元素 (1)集合元素的三个特征:_,_,_ (2)元素与集合的关系是_或_关系,用符号或表示. (3)集合的表示法:、 (4)常见数集的记法 (1)子集:. (2)真子集: (3)空集

(4)若A含有n个元素,则A的子集有个,A的非空子集有个. (5)集合相等:若A?B,且B?A,则 3.集合的运算 并集的性质: A∪?=A;A∪A=A;A∪B=B∪A;A∪B=A?. 交集的性质: A∩?=?;A∩A=A;A∩B=B∩A;A∩B=A? 补集的性质: A∪(?U A)=;A∩(?U A)=;?U(?U A)= 1.判断下面结论是否正确(请在括号中打“√”或“×”) (1)A={x|y=x2+1}={y|y=x2+1}={(x,y)|y=x2+1}.() (2){1,2,3}={3,2,1}.() (3)?={0} () (4)若A∩B=A∩C,则B=C. () (5)已知集合M={1,2,3,4},N={2,3},则M∩N=N. () (6)若全集U={-1,0,1,2},P={x∈Z|x2<4},则?U P={2}.() 2.(2013·北京)已知集合A={-1,0,1},B={x|-1≤x<1},则A∩B等于 () A.{0} B.{-1,0} C.{0,1} D.{-1,0,1} 3.(2013·山东)已知集合A={0,1,2},则集合B={x-y|x∈A,y∈A}中元素的个数是()

A .1 B .3 C .5 D .9 4. (2013·课标全国Ⅱ)已知集合M ={x |(x -1)2<4,x ∈R },N ={-1,0,1,2,3},则M ∩N 等于( ) A .{0,1,2} B .{-1,0,1,2} C .{-1,0,2,3} D .{0,1,2,3} 5. 设集合A ={x |x 2+2x -3>0},集合B ={x |x 2-2ax -1≤0,a >0}.若A ∩B 中恰 含有一个整数,则实数a 的取值范围是________. 题型一 集合的基本概念 例1 (1)已知集合A ={1,2,3,4,5},B ={(x ,y )|x ∈A ,y ∈A ,x -y ∈A },则B 中所 含元素的个数为 ( ) A .3 B .6 C .8 D .10 (2)设a ,b ∈R ,集合{1,a +b ,a }=? ?? ? ??0,b a ,b ,则b -a =________. 思维启迪 解决集合问题首先要理解集合的含义,明确元素的特征,抓住集合的“三性”. 思维升华 (1)用描述法表示集合,首先要搞清楚集合中代表元素的含义,再看元素的限制条件,明白集合的类型,是数集、点集还是其他类型集合;(2)集合中元素的互异性常常容易忽略,求解问题时要特别注意.分类讨论的思

1 集合的概念与运算(练习+详细答案)

提能拔高限时训练1 集合的概念与运算 一、选择题 1.若集合M={0,1,2},N={(x,y)|x-2y+1≥0且x-2y-1≤0,x,y∈M},则N中元素的个数为( ) A.9 B.6 C.4 D.2 解析:由x-2y+1≥0且x-2y-1≤0,得2y-1≤x≤2y+1,于是集合{(x,y)|x,y∈M}中共有4个元素,分别为(0,0)、(1,0)、(1,1)、(2,1). 答案:C 2.若A、B、C为三个集合,A∪B=B∩C,则一定有…( ) A.A?C B.C?A C.A≠C D.A=?解析:由A∪B=B∩C,知A∪B?B,A∪B?C, ∴A?B?C.故选A. 答案:A 3.设P、Q为两个非空实数集合,定义集合P+Q={a+b|a∈P,b∈Q},若P={0,2,5},Q={1,2,6},则P+Q中元素的个数是( ) A.9 B.8 C.7 D.6 解析:本题考查集合的表示及元素的互异性.P+Q中元素分别是1,2,6,3,4,8,7,11. 答案:B 4.若集合A={1,2,x,4},B={x2,1},A∩B={1,4},则满足条件的实数x的值为() A.4 B.2或-2 C.-2 D.2 解析:由A∩B={1,4},B={x2,1},得x2=4,得x=±2. 又由于集合元素互异,∴x=-2. 答案:C 5.设集合S={-2,-1,0,1,2},T={x∈R|x+1≤2},则(S∩T)等于() A.? B.{2} C.{1,2} D.{0,1,2} 解析:由题意,知T={x|x≤1},∴S∩T={-2,-1,0,1}. ∴(S∩T)={2}. 答案:B 6设U为全集,M、P是U的两个子集,且(M)∩P=P,则M∩P等于() A.M B.P C.P D.? 解析:由(M)∩P=P,知P?M,于是P∩M=?.故选D. 答案:D 7.设集合M={x|x∈R且-1<x<2},N={x|x∈R且|x|≥a,a>0}.若M∩N=?,那么实数a的取值范围是() A.a<1 B.a≤-1 C.a>2 D.a≥2 解析:M={x|-1<x<2},N={x|x≤-a或x≥a}. 若M∩N=?,则-a≤-1且a≥2,即a≥1且a≥2. 综上a≥2. 答案:D

相关主题
文本预览
相关文档 最新文档