当前位置:文档之家› 选择阻尼器

选择阻尼器

选择阻尼器

旋转阻尼器根据回转速度的变化,扭矩也发生变化。其变化规律为:速度提高,扭矩也提高。速度放慢,扭矩也随之下降。起动时扭矩与标准扭矩不同。

旋转阻尼器根据使用环境温度的变化,扭矩也发生变化。其变化规律为:环境温度提高时扭矩下降,环境温度下降时扭矩升高。这是因为环境温度变化时,阻尼器中粘性油的粘度也随之变化的缘故。但是,当环境温度恢复到常温时,扭矩也会恢复到原来的数值。

广泛应用于礼堂椅阻尼器、汽车工程车阻尼器、马桶盖阻尼器、垃圾箱阻尼器、健身器材阻尼器

阻霸牌阻尼器,是我厂专注阻尼器的研发创新十余年的结晶,我们致力于打造国内旋转阻尼器第一品牌和最先进的旋转阻尼器生产基地,与高科技院校强强联手,不断更新产品,根据客户的需求,一心为客户着想,又增添了好几种型号可供用户选择。选择阻霸,是您理想的选择。

河北泊头专业生产座椅旋转阻尼器,20种型号可选,三道检测,耐高低温,阻力恒定,精确到0.1NM.寿命长,保五年,30家座椅厂口碑认定。根据客户的需求,不断创新,现我们又在原来外直径40、48、63、的基础上研发了直径为36的阻尼器,更方便客户安装,调试。我们还推出了内孔加铝芯的各种型号阻尼器,如图,这样使结构更牢固,使用寿命更长。

阻尼器设计

1.结构设计 2.工作原理 2.1磁流变液 磁流变液是在1948 年被Rabinow,J.发明的一种由非磁性基液(如矿物油、硅油等)、微小磁性颗粒、表面活性剂(也称稳定剂)等组合而成的智能型流体材料。在无磁场加入的条件下,磁流变液将表现为低粘度较强流动性的牛顿流体特性,加入磁场后,则会表现为高粘度低流动性的Bingham 流体特性。 非磁性基液是一种绝缘、耐腐蚀、化学性能稳定的有机液体。基液所拥有的特征是:粘度较低,磁流变液在没有磁场加入的条件下表现为低粘度状态,这样能够较好的降低磁流变液的零场粘度; 沸点高、凝固点较低,这样就可以确保磁流变液在温度变化波动较大的环境下工作依然可以保持较高的稳定性;较高的密度,能够保证磁流变液不会因沉降问题而无法正常使用; 无毒无味、廉价,保障其安全性的同时做到能够广泛使用。 微小磁性颗粒是一种可离散、可极化的软磁性固体颗粒,其单位是微米数量级的。其主要的特征有[5]: 低矫顽力,对于已经磁化过的液体,加较小的磁场就能够使其恢复零磁场状态,即拥有较高的保磁能力; 高磁导率,能够在弱磁场中获得较强的磁感应强度从而节约能量;磁滞回线狭窄、内聚力小; 磁性颗粒的体积应相对大一些,用于存贮更多的能量。 表面活性剂是可以增加溶液或混合物等稳定性的化学物质。在实际使用过程中,磁流变液比较容易出现沉降分层现象,所以需要在磁流变液中加入表面活性剂保证物理化学性能的平衡,减少分层、降低沉降。 2.2磁流变液的工作模式 磁流变液在外加磁场影响下出现磁流变效应现象,改变流体的表观粘度、流动状态,从而改变剪切屈服应力等参数,使输出的阻尼力能够实时变化,达到所期望的目的。现如今,磁路变液的一般工作模式有三类:流动式、剪切式及挤压式,如下图所示。 (a)流动式(b)剪切式(c)挤压式 图1-3 磁流变液工作模式 Fig. 1-3 MR fluid working mode 流动式:如图1-3(a)所示,在两块固定静止的磁极板中间具有充足的磁流变液,对磁流变液施加一个压力使其流过两磁极板,其中,两极板之间外加了与磁流变液运动方向垂直的磁场。当磁性液体经过磁场时,其流体特性与流动状态被改变从而产生剪切应力即阻尼力。改变线圈的输入电流强弱从而使磁场强度发生变化,阻尼力也会跟着变化,实现实时调节的效果。流动式多用于控制阀、阻尼器、电磁元件等的设计。

二阶弹簧-阻尼系统PID控制器参数整定

《控制系统仿真与CAD》大作业 二阶弹簧—阻尼系统的PID控制器设计及参数整定 学校:上海海事大学 学院:物流工程学院 专业:电气工程及其自动化 班级:电气173班 学号:************ 姓名:李** 老师:** 时间:2020年6月13日

1. 题目与要求 考虑弹簧-阻尼系统如图1所示,其被控对象为二阶环节,传递函数()G s 如下,参数为M=1kg ,b=2N.s/m ,k=25N/m ,()1F s =。设计要求:用.m 文件和simulink 模型完成。 图 1 弹簧--阻尼系统 (1)控制器为P 控制器时,改变比例系数大小,分析其对系统性能的影响并绘制相应曲线。 (2)控制器为PI 控制器时,改变积分系数大小,分析其对系统性能的影响并绘制相应曲线。(例如当Kp=50时,改变积分系数大小) (3)设计PID 控制器,选定合适的控制器参数,使闭环系统阶跃响应曲线的超调量σ%<20%,过渡过程时间Ts<2s, 并绘制相应曲线。 2. 分析: (1)根据受力分析可得系统合力与位移之间微分方程: F kx x b x M =++&&& (2)对上得微分方程进行拉普拉斯变换,转化后的系统开环传递函数: 25211)()()(22++= ++== s s k bs Ms s F s X s G (3)系统输入为力R(S)=F(S),系统输出C(S)为位移X(S),系统框图如下: 图 2 闭环控制系统结构图 3. 控制器为P 控制器时: 控制器的传递函数p p K s G =)(,分别取p K 为1,10,20,30,40,50,60,70,80, (1)simulink 构建仿真模型如图3,文件名为:P_ctrl ;

赛弗粘滞阻尼器技术手册

赛弗 粘滞阻尼器 技术手册赛弗

CONTENT目录 P2 - P4 P5 - P6 P7 P8 - P9 P10 - P17上海赛弗工程减震技术有限公司 1. SF-VFD产品简介 …………… 产品构造及原理 技术参数 产品特点 SF-VFD 2. SF-VFD产品应用策略……… SF-VFD产品应用领域 国外案例 3. SF-VFD产品试验…………… 4. 工程案例 ……………………… 5. SF-VFD黏滞阻尼器参数表…

SF-VFD 支撑式黏滞阻尼器构造如右图所示,主要由高硬度缸筒、高精度活塞、活塞杆、特殊填充材料、关节耳环及大量高性能配件组成,当缸内的活塞进行往复运动时,填充材料从阻尼孔中高速流过从而产生剪切阻抗力。 SF-VFD 黏滞阻尼器阻尼力的大小与活塞运动速度非线性相关,可用下式表达: 1 SF-VFD 产品简介 1.1产品构造及原理 F=Csign(v)|v| α 1.2 技术参数 式中: C — 阻尼系数; v — 活塞与缸筒的相对运动速度; α — 速度指数,根据工程需求选取,选取范围为0.2~1.0。 (α为SF-VFD 的主要性能指标参数) 1)良好的耗能能力 试验表明,在简谐荷载作用下,黏滞阻尼器力-位移曲线如图1.2所示,阻尼器具有良好的耗能能力,且速度指数α越小,滞回曲线越饱满。 1.3 产品特点 图1.1 黏滞阻尼器构造 (a)斜撑型 (b)剪切连接型 (c)支撑型 图1.2 黏滞阻尼器滞回曲线图1.3 拟加速度反应谱图 1.4 拟速度反应谱 2)控制结构在地震中的振动响应 黏滞阻尼器应用于建筑中可改善结构阻尼特性,对结构在地震作用下的振动响应进行控制,有效降低结构层剪力及层间位移。 3)布置灵活安装方式多样性 根据结构特点及建筑需求可灵活布置黏滞阻尼器,同时提供多种阻尼器安装方式,如斜撑型、剪切连接型、墙 型、肘节型等,其中前三种安装方式较为常用。 4)小震作用下即可进入耗能 黏滞阻尼器滞回曲线由于不存在弹性段,因此在外部振动能量输入时能够即时的进入耗能状态。 黏滞阻尼器滞回曲线 SF-VFD

阻尼力可调液压减震器

阻尼力可调的液压缓冲调节背部的压力调节阀压力控制电磁阀阻尼[]的挑战,保持压力控制电磁阀黄油。救济是通过中间人连接水库56背压腔16 - 32 - 分辨率手段来调整背压调节阀30,控制了石油背压腔泄压流阻尼力的水库16-32阻尼力可调液压减震器10其中有一个压力控制电磁阀50,孔口56A它提供救济水库16压力控制电磁阀在救灾通道56 50。

在阻尼力可调的液压冲击在专利文献1所述吸收已经由压力控制电磁阀开启压力阀的电流值设置,背压调节阀阻尼力(背压腔)的压力控制电磁当阀门开阀压力设定值附近的黄油反复打开和压力控制电磁阀(浪涌现象)关闭生成。巴塔并采取压力控制电磁阀,背压腔压力变得不稳定,不稳定的阻尼力的阻尼力调整开放和黄油约收盘作为一个阻尼力调节阀阀产生的结果。 [0004] 本发明的目的是一个缓冲区,以调整与背压调节阀压力控制阻尼力可调的液压阻尼力电磁阀与黄油保持在压力控制电磁阀。 解决问题的手段] [0005] 权利要求1的发明包括一个圆柱体住房油和活塞杆进入气缸与活塞插杆提供与分区活塞腔室和活塞气缸内的活塞杆,石油和天然气填补和一个水库,一个通道的主要形式流动的一个油到从杆腔侧,并用单向阀通过反弹水库的方式让绘图允许进入会议厅只油流从水库活塞并通过高压侧有一个单向阀允许压力方只允许流油的有杆腔侧从活塞室的一面,以及分区的背压腔是要传达的试点通道和通道主要提供通过原发性和阻尼力控制阀或阀门的开闭座椅,飞行员口提供在试点连接的主要通道背压腔和阻尼力控制阀是在救灾通过中间人连接背压腔水库背压通过阻尼力可调的液压减震器,包括压力控制电磁阀和背压调节阀来调节,通过控制油流救济压力腔的水库,通过压力控制电磁救灾的阻尼力这是可提供救济阀口的水库。 [0006] 权利要求2,权利要求1进一步发明其中一个比试点孔孔直径,这是形成一个比的电磁阀压力控制流路的直径更小的直径直径较大的救济口以上孔径,发明。 [0007] 权利要求3,权利要求1或2进一步的发明,和阻尼力控制阀发明说滑阀,滑阀包括一个与阀座连接到主离苏茹通过试验和试点碟阀口通道这是可配备。 [0008] 权利要求4,任何索赔1-3,这是可在同一轴线上都与阀的情况下,压力控制电磁阀其中的阻尼力调节阀平行排列另一项发明的发明。 [0009] 该发明的权利要求5进一步在目前一个1,要求4,活塞,安全阀反弹流入油腔活塞的杆腔侧和超过一定室杆端液压阀打开提供关于圆柱体的底部,这是可提供一个安全阀,以水库油流由一个液压活塞及活塞超过一定限度阀室开了房间的压力方提供的分区为主。 [功效的发明 [0010] (索赔1) (一)提供救济口至水库压力控制电磁阀的救援通道。因此,在背压控制电磁阀的泄压孔造成不利,早在阻尼力控制阀(背压腔)的压力时,阀门开启压力接近设定压力控制电磁阀,压力控制它可以稳定的开放和电磁阀压力控制电磁阀关闭与黄油抑制。这使您可以稳定在阀门的开放压力控制电磁阀的压力设定值附近背压腔压力,阻尼力可以稳定阻尼力的阀门开度,因此截止阀,调节阻尼力产生。[0011]

二阶弹簧—阻尼系统,PID控制器设计,参数整定

二阶弹簧—阻尼系统的PID控制器设计及参数整定

一、PID 控制的应用研究现状综述 PID 控制器(按闭环系统误差的比例、积分和微分进行控制 的调节器)自20世纪30年代末期出现以来,在工业控制领域得到了很大的发展和广泛的应用。它的结构简单,参数易于调整,在长期应用中已积累了丰富的经验。特别是在工业过程控制中,由于被控制对象的精确的数学模型难以建立,系统的参数经常发生变化,运用控制理论分析综合不仅要耗费很大代价,而且难以得到预期的控制效果。在应用计算机实现控制的系统中,PID 很容易通过编制计算机语言实现。由于软件系统的灵活性,PID 算法可以得到修正和完善,从而使数字PID 具有很大的灵活性和适用性。 二、研究原理 比例控制器的传递函数为:()P P G s K = 积分控制器的传递函数为:11()PI P I G s K T s =+ ? 微分控制器的传递函数为:11 ()PID P D I G s K T s T s =+ ?+? 三、设计题目 设计控制器并给出每种控制器控制的仿真结果(被控对象为二阶环节,传递 函数()G S ,参数为M=1 kg, b=2 N.s/m, k=25 N/m, F(S)=1);系统示意图如图1所示。

图1 弹簧-阻尼系统示意图 弹簧-阻尼系统的微分方程和传递函数为: F kx x b x M =++ 25 21 1)()()(22++= ++== s s k bs Ms s F s X s G 四、设计要求 通过使用MATLAB 对二阶弹簧——阻尼系统的控制器(分别使用P 、PI 、PID 控制器)设计及其参数整定,定量分析比例系数、积分时间与微分时间对系统性能的影响。同时、掌握MATLAB 语言的基本知识进行控制系统仿真和辅助设计,学会运用SIMULINK 对系统进行仿真,掌握PID 控制器参数的设计。 (1)控制器为P 控制器时,改变比例带或比例系数大小,分析对系统性能的影响并绘制响应曲线。 (2)控制器为PI 控制器时,改变积分时间常数大小,分析对系统性能的影响并绘制相应曲线。(当kp=50时,改变积分时间常数)

脉冲阻尼器原理及选型

脉动阻尼器 脉动阻尼器是一种用于消除管道内液体压力脉动或者流量脉动的压力容器。可起到稳定流体压力和流量、消除管道振动、保护下游仪表和设备、增加泵容积效率等作用。 脉动阻尼器的原理主要有两种。 1.气囊式:利用气囊中惰性压缩气体的收缩和膨胀来吸收液体的压力或者流量脉动, 此类脉动阻尼器适用于脉动频率小于7Hz的应用,因为如果频率太高则膜片或气囊来不及响应,起不到消除脉动的效果; 2.无移动部件式:利用固体介质直接拦截流体从而达到缓冲压力脉动或流量脉动的效果,此类脉动阻尼器适用于高频脉动的应用。 脉动阻尼器分类: 1.按照缓冲介质分类: 分为压缩惰性气体缓冲式和无移动部件式,其中压缩惰性气体缓冲式又分为膜片式和气囊式等,无移动部件式分为金属结构式和陶瓷结构式等: 分为三元乙丙橡胶、丁纳橡胶、氟橡胶、聚四氟、金属、陶瓷等内部材质类型; 分为单孔式和双孔式; 分为直通式和非直通式; 消除管道振动;减小压力脉动;减小流量浮动;保护下游仪器和设备;装在泵的前端,增加泵的容积效率,提高输出功率。 选择适合的脉动阻尼器,应首先根据现场实际情况和工艺要求确定所需达到的脉动消除率指标,然后根据此技术指标进行定量选型。 准确的脉动阻尼器选型应根据流量、压力、泵类型、泵转速、泵缸数、泵相位差(多级泵)、脉动消除率、应用目的、管道流体成分、管道流体密度、管道流体粘度、管道流体温度等参数综合计算和分析后确定。 通过以上参数,关键需要计算出流体的脉冲量(即1次脉冲所输送的液体体积)和脉动频率。再结合脉动消除率指标,即可初步计算出所需要的脉动阻尼器类型和容积。

例如,要求残余脉动控制在10%以内、脉冲量为1升/次、脉动频率为2次/秒,则脉动阻尼器可选用膜片式或气囊式,容积至少为10升。 根据客户不同的实际应用,最高可以达到99.9%以上的脉动消除率,即残余脉动控制在0.1%以内。 例如:用于消除管道振动推荐残余压力脉动控制在3%以内; 用于保证涡街流量计精度则推荐残余流量脉动控制在0.75%以内。 脉动阻尼器是一种压力容器,由于材料、制造技术及实际应用的限制,脉动阻尼器一般承压在500公斤/平方厘米左右(特殊应用也可以更高),耐温大约数百摄氏度。

二阶弹簧阻尼系统ID控制器设计参数整定

二阶弹簧阻尼系统I D控制器设计参数整定 This model paper was revised by the Standardization Office on December 10, 2020

二阶弹簧—阻尼系统的PID 控制器设计及参数整定 一、PID 控制的应用研究现状综述 PID 控制器(按闭环系统误差的比例、积分和微分进行控制的调节器)自20世纪30年代末期出现以来,在工业控制领域得到了很大的发展和广泛的应用。它的结构简单,参数易于调整,在长期应用中已积累了丰富的经验。特别是在工业过程控制中,由于被控制对象的精确的数学模型难以建立,系统的参数经常发生变化,运用控制理论分析综合不仅要耗费很大代价,而且难以得到预期的控制效果。在应用计算机实现控制的系统中,PID 很容易通过编制计算机语言实现。由于软件系统的灵活性,PID 算法可以得到修正和完善,从而使数字PID 具有很大的灵活性和适用性。 二、研究原理 比例控制器的传递函数为: ()P P G s K = 积分控制器的传递函数为: 11()PI P I G s K T s =+? 微分控制器的传递函数为: 11()PID P D I G s K T s T s =+?+? 三、设计题目 设计控制器并给出每种控制器控制的仿真结果(被控对象为二阶环节,传递 函数()G S ,参数为M=1 kg, b=2 m, k=25 N/m, F(S)=1);系统示意图如图1所示。 图1 弹簧-阻尼系统示意图 弹簧-阻尼系统的微分方程和传递函数为: 四、设计要求

通过使用MATLAB 对二阶弹簧——阻尼系统的控制器(分别使用P 、PI 、PID 控制器)设计及其参数整定,定量分析比例系数、积分时间与微分时间对系统性能的影响。同时、掌握MATLAB 语言的基本知识进行控制系统仿真和辅助设计,学会运用SIMULINK 对系统进行仿真,掌握PID 控制器参数的设计。 (1)控制器为P 控制器时,改变比例带或比例系数大小,分析对系统性能的影响并绘制响应曲线。 (2)控制器为PI 控制器时,改变积分时间常数大小,分析对系统性能的影响并绘制相应曲线。(当kp=50时,改变积分时间常数) (3)设计PID 控制器,选定合适的控制器参数,使阶跃响应曲线的超调量%20%σ<,过渡过程时间2s t s <,并绘制相应曲线。 图2 闭环控制系统结构图 五、设计内容 (1)P 控制器:P 控制器的传递函数为: ()P P G s K =(分别取比例系数K 等于1、10、30和50,得图所示) Scope 输出波形: 仿真结果表明:随着Kp 值的增大,系统响应超调量加大,动作灵敏,系统的响应速度加快。Kp 偏大,则振荡次数加多,调节时间加长。随着Kp 增大,系统的稳态误差减小,调节应精度越高,但是系统容易产生超调,并且加大Kp 只能减小稳态误差,却不能消除稳态误差。 (2)PI 控制器:PI 控制器的传递函数为: 11()PI P I G s K T s =+? (K=50, 分别取积分时间Ti 等于10、1和得图所示)

阻尼器参数示意

这里我们设置的阻尼器为横桥向减震支座: 1、 首先求得结构的基频Hz f 24.01=和地震荷载下支撑位置横梁整体横向变形Dy=205mm; 2、 根据求得的结构基频和横向位移Dy,查表得阻尼器活塞相对阻尼器外壳的相对速度 V=276mm/s 3、 假定阻尼指数,阻尼指数取值范围在0.2~1.0,阻尼指数越小,耗能效果越好,减震效果越好。这里我们取阻尼指数2.0=s ,给定义资料中阻尼指数以α表示; 4、 如选择阻尼器型号为“KZ-2000SX500X”,代表活塞最大行程500mm,最大阻尼力2000kN, 查得对应的阻尼常数C=650kN.s/mm 5、 有效刚度输入该阻尼器的线性弹性刚度。 综合以上数据在程序中的一般连接特性值数据如下图所示——

将此阻尼器安装在附件模型的塔梁连接处,计算得到的阻尼器的横向变形-横向内力时程图形如下图——

1、 阻尼器形式 2、 参数表1-查得阻尼器活塞滑动相对速度 3、 参数表2-根据阻尼指数和阻尼器行程、阻尼力、活塞速度,得到阻尼常数。 1) 阻尼力与阻尼器变形的往复曲线称为滞回环曲线。阻尼指数越小,曲线越饱满,说明耗 能效率越高。 2) 阻尼输出力与活塞速度关系:()α v v sign C F d ??=或α v C F ?=,这两个式子都称为 阻尼方程,C 为阻尼常数,单位是kN/(m/s ) v 为活塞的运动速度,α为阻尼指数,midas 中的取值范围在0.2~1之间。

阻尼器的种类较多,有铅压阻尼器、钢阻尼器、摩擦阻尼器以及粘滞阻尼器等。其中,较为成熟且适用于大跨度桥梁的主要是油阻尼器,也称粘滞阻尼器。 图4.3 液压阻尼器的工作机理 粘滞阻尼器的基本构造由活塞、油缸及节流孔组成,如图4.2所示。所谓节流孔是指具有比油缸截面面积小的流通通路。这类装置是利用活塞前后压力差使油流通过节流孔时产生压力差从而产生阻尼力。当阻尼力与相对变形的速度成比例时是线性的,不成比例时则是非线性的,其关系可表达为: F CV ξ= 其中F 为阻尼力,C 是阻尼常数,ξ是阻尼指数(其值范围在0.1-2.0,从抗震角度看,常用值一般在0.2-1.0范围内)。当液压阻尼器的阻尼力与相对速度成比例时,称为线性阻尼器,其恢复力特性如图4.3中 1.0ξ=的曲线所示,形状近似椭圆。当阻尼力与相对速度不成比例时,称为非线性阻尼器,其恢复力特性如图4.3中0.4ξ=的曲线所示,形状趋近于矩形。 图4.4 粘滞阻尼器滞回环 粘滞阻尼器产生的阻尼力主要与速度有关,在应用这类阻尼器时应给予注意。此外,油压的调整。漏油、灰尘的侵入等也需采用相应的措施,并进行必要的维护。由于阻尼器具有方向性,其安装设置需进行考虑,而且要求制作加工精密,体积较大时制作较为困难。阻尼器同其他减振隔震装置相比,其特点是: 粘滞阻尼器装置当阻尼器参数ξ=1时,因其反力与速度成比例,因此在他塔墩达到最大变形时,粘滞阻尼器的阻尼力反而最小,接近于零;在塔墩变形速度最大时,粘 粘滞阻尼力/k N 位移/m

阀控式可调阻尼减振器与阻尼特性探究

龙源期刊网 https://www.doczj.com/doc/5b7995156.html, 阀控式可调阻尼减振器与阻尼特性探究 作者:付喜 来源:《环球市场信息导报》2016年第19期 减振器是汽车悬挂系统中不可或缺的部分,能有效的化解从地面传导过来的路面的颠簸,确保汽车行驶过程中的安全、可靠与舒适。阀控式可调阻尼减振器的减振档位是可调的。在汽车驾驶员驾驶的过程中可以根据路面的状况来切换减振档位,由于路面情况复杂多变因而这种行驶的减振器具有非常好的市场前景,对于阀控式可调阻尼减振器的研究具有非常现实的意义。 通过Pro/Engineer可以较好的展示可调式阻尼减振器的结构,其结构与双桶充气式液压减振装置类似,与之不同之处在于,在其储油桶的外部增加了一套阀控可调节的阻尼减振器,在阻尼调节阀中的单向板阀和单向节流阀的作用下实现减振档位的调节。阀控可调式阻尼减振器的组成包括活塞杆、导向密封、主筒、活塞总成、底阀总成、储油筒、浮动活塞、安装支座和阻尼调节阀总成等部分。 在阀控可调式阻尼减振器起作用的过程中,可以控制电磁板阀处于不同的组合开关状态,由于每个开关都可以有两种状态因而这两种开关总共有4中状态,形成四种不同的过油通道。这4种不同的组合所形成的减振能力是不同的,可以根据不同的路面的情况来选择不同的组合形式以获得安全、良好的驾驶感受。 阀门形变对阻尼的影响 如果减振器中的减震杆运动时速度较快的话,弹性阀片会在油压的作用下产生形变进而发生漏油的情况,通过阀口端面的过流信息,会产生一定程度的阻力。在这种情况下油会在圆环槽内运动。如果运动速度过快则很可能会溢出。 假设圆环的外径和内径分别为r1、r2,流经圆环缝隙的前后所形成的压力分别为p1、 P2,那么可以计算得到圆环缝隙的宽度。如果液体的流量保持不变,那么阀口的缝隙数值与所形成的压力是成反比的关系。缝隙大则形成的压力差下;而缝隙小则形成的压力差大。因而可以知道,在减振器工作的过程中,如果在其他参数不变的情况下,阀门开口大的话,阀口两端的压差就小,那么减振阻尼力就越小;而如果阀口开值较小,那么阀口两端的压差就会越大,那么减振阻尼力就会相应的增大。 阀门形变量影响因素 本研究与阀控可调式阻尼减振器为例,对弹性阀片弯曲形变的影响因素进行了分析。一般将阀口半径处的形变量称为阀口开值。通过对弹性阀片的微分方程的解析可以发现,法开口值

弹簧-质量-阻尼系统的建模与控制系统设计

分数: ___________ 任课教师签字:___________ 华北电力大学研究生结课作业 学年学期:第一学年第一学期 课程名称:线性系统理论 学生姓名: 学号: 提交时间:2014.11.27

目录 目录 (2) 1 研究背景及意义 (3) 2 弹簧-质量-阻尼模型 (3) 2.1 系统的建立 (4) 2.1.1 系统传递函数的计算 (5) 2.2 系统的能控能观性分析 (7) 2.2.1 系统能控性分析 (8) 2.2.2 系统能观性分析 (9) 2.3 系统的稳定性分析 (10) 2.3.1 反馈控制理论中的稳定性分析方法 (10) 2.3.2 利用Matlab分析系统稳定性 (10) 2.3.3 Simulink仿真结果 (12) 2.4 系统的极点配置 (15) 2.4.1 状态反馈法 (15) 2.4.2 输出反馈法 (16) 2.4.2 系统极点配置 (16) 2.5系统的状态观测器 (18) 2.6 利用离散的方法研究系统的特性 (20) 2.6.1 离散化定义和方法 (20) 2.6.2 零阶保持器 (22) 2.6.3 一阶保持器 (24) 2.6.4 双线性变换法 (26) 3.总结 (28) 4.参考文献 (28)

弹簧-质量-阻尼系统的建模与控制系统设计 1 研究背景及意义 弹簧、阻尼器、质量块是组成机械系统的理想元件。由它们组成的弹簧-质量-阻尼系统是最常见的机械振动系统,在生活中具有相当广泛的用途,缓冲器就是其中的一种。缓冲装置是吸收和耗散过程产生能量的主要部件,其吸收耗散能量的能力大小直接关系到系统的安全与稳定。缓冲器在生活中处处可见,例如我们的汽车减震装置和用来消耗碰撞能量的缓冲器,其缓冲系统的性能直接影响着汽车的稳定与驾驶员安全;另外,天宫一号在太空实现交会对接时缓冲系统的稳定与否直接影响着交会对接的成功。因此,对弹簧-质量-阻尼系统的研究有着非常深的现实意义。 2 弹簧-质量-阻尼模型 数学模型是定量地描述系统的动态特性,揭示系统的结构、参数与动态特性之间关系的数学表达式。其中,微分方程是基本的数学模型,不论是机械的、液压的、电气的或热力学的系统等都可以用微分方程来描述。微分方程的解就是系统在输入作用下的输出响应。所以,建立数学模型是研究系统、预测其动态响应的前提。通常情况下,列写机械振动系统的微分方程都是应用力学中的牛顿定律、质量守恒定律等。 弹簧-质量-阻尼系统是最常见的机械振动系统。机械系统如图2.1所示, 图2-1弹簧-质量-阻尼系统机械结构简图 其中错误!未找到引用源。、错误!未找到引用源。表示小车的质量,错误!

二阶弹簧—阻尼系统,PID控制器设计,参数整定

*** 二阶弹簧—阻尼系统的PID控制器设计及参数整定

一、PID 控制的应用研究现状综述 PID 控制器(按闭环系统误差的比例、积分和微分进行控制的调节器)自20 世纪30 年代末期出现以来,在工业控制领域得到了很大的发展和广泛的应用。它的结构简单,参数易于调整, 在长期应用中已积累了丰富的经验。特别是在工业过程控制中, 由于被控制对象的精确的数学模型难以建立,系统的参数经常发生变化,运用控制理论分析综合不仅要耗费很大代价,而且难以得到预期的控制效果。在应用计算机实现控制的系统中,PID 很容易通过编制计算机语言实现。由于软件系统的灵活性,PID 算法可以得到修正和完善,从而使数字PID 具有很大的灵活性和适用性。 二、研究原理 比例控制器的传递函数为:G (s) K P P G (s) K PI P 1 1 T s I 积分控制器的传递函数为: 1 1 G (s) K T s PID P D T s I 微分控制器的传递函数为: 三、设计题目 设计控制器并给出每种控制器控制的仿真结果(被控对象为二阶环节,传递函数G S ,参数为M=1 kg, b=2 N.s/m, k=25 N/m, F(S)=1 );系统示意图如图 1 所示。

图1 弹簧-阻尼系统示意图弹簧-阻尼系统的微分方程和传递函数为:M x bx kx F G( s) X F ( ( s) s) Ms 1 1 2 bs k s2 s 2 25 四、设计要求 通过使用MATLAB 对二阶弹簧——阻尼系统的控制器(分别使用P、PI、PID 控制器)设计及其参数整定,定量 分析比例系数、积分时间与微分时间对系统性能的影响。同 时、掌握MATLAB 语言的基本知识进行控制系统仿真和辅 助设计,学会运用SIMULINK 对系统进行仿真,掌握PID 控制器参数的设计。 (1)控制器为P 控制器时,改变比例带或比例系数大小,分析对系统性能的影响并绘制响应曲线。 (2)控制器为PI 控制器时,改变积分时间常数大小, 分析对系统性能的影响并绘制相应曲线。(当kp=50 时,改变积分时间常数)

减振器基础知识

减振器基础知识 减振器的结构是带有活塞的活塞杆插入筒内,在筒中充满油。活塞上有节流孔,使得被活塞分隔出来的两部分空间中的油可以互相补充。阻尼就是在具有粘性的油通过节流孔时产生的,节流孔越小,阻尼力越大,油的黏度越大,阻尼力越大。如果节流孔大小不变,当减振器工作速度快时,阻尼过大会影响对冲击的吸收。因此,在节流孔的出口处设置一个圆盘状的板簧阀门,当压力变大时,阀门被顶开,节流孔开度变大,阻尼变小。由于活塞是双向运动的,所以在活塞的两侧都装有板簧阀门,分别叫做压缩阀和伸张阀。减振器按其结构可分为双筒式和单筒式。双筒式是指减振器有内外两个筒,活塞在内筒中运动,由于活塞杆的进入与抽出,内筒中油的体积随之增大与收缩,因此要通过与外筒进行交换来维持内筒中油的平衡。所以双筒减振器中要有四个阀,即除了上面提到的活塞上的两个节流阀外,还有装在内外筒之间的完成交换作用的流通阀和补偿阀。与双筒式相比,单筒式减振器结构简单,减少了一套阀门系统。它在缸筒的下部装有一个浮动活塞, (所谓浮动即指没有活塞杆控制其运动),在浮动活塞的下面形成一个密闭的气室,充有高压氮气。上面提到的由于活塞杆进出油液而造成的液面高度变化就通过浮动活塞的浮动来自动适应之。除了上面所述两种减振器外,还有阻力可调式减振器。它可通过外部操作来改变节流孔的大小。最近的汽车将电子控制式减振器作为标准装备,通过传感器检测行驶状态,由计算机计算出最佳阻尼力,使减振器上的阻尼力调整机构自动工作。减振器类型为加速车架与车身振动的衰减,以改善汽车的行驶平顺性(舒适性),在大多数汽车的悬架系统内部装有减震器。减震器从产生阻尼的材料这个角度划分主要有液压和充气两种,还有一种可变阻尼的减震器。液压汽车悬架系统中广泛采用液力减震器。其原理是,当车架与车桥做往复相对运动儿活塞在减震器的缸筒内往复移动时,减震器壳体内的油液便反复地从内腔通过一些窄小的孔隙流入另一内腔。此时,液体与内壁的摩擦及液体分子的内摩擦便形成对振动的阻尼力。充气式减震器充气式减震器是60年代以来发展起来的一种新型减震器。其结构特点是在缸筒的下部装有一个浮动活塞,在浮动活塞与缸筒一端形成的一个密闭气室种充有高压氮气。在浮动活塞上装有大断面的O 型密封圈,它把油和气完全分开。工作活塞上装有随其运动速度大小而改变通道截面积的压缩阀和伸张阀。当车轮上下跳动时,减震器的工作活塞在油液种做往复运动,使工作活塞的上腔和下腔之间产生油压差,压力油便推开压缩阀和伸张阀而来回流动。由于阀对压力油产生较大的阻尼力,使振动衰减。阻力可调式减震器装有阻力可调式减震器的汽车的悬架一般用刚度可变的空气弹簧作为弹性元件。其原理是,空气弹簧若气压升高,则减震器气室内的压力也升高,由于压力的改变而使油液的节流孔径发生改变,从而达到改变阻尼刚度的目

粘滞阻尼器工作原理及组成

粘滞阻尼器的工作组成及原理 传统抗震方法是依靠构件的弹塑性变形并吸收地震能量来实现的。这种传统设计方法在很多时候是有效的,但也存在着一些问题。随着建筑技术的发展,房屋高度越来越高结构跨度越来越大,而构件端面却越来越小,已经无法按照传统的加大构件截面或加强结构刚度的抗震方法来满足结构抗震和抗风的要求。 粘滞阻尼器是一种速度相关型的耗能装置,它是利用液体的粘性提供阻尼来耗散振动能量,以粘滞材料为阻尼介质的,被动速度型耗能减震(振)装置。主要用于结构振动(包括风、地震、移动荷载和动力设备等引起的结构振动)的能量吸收与耗散、适用于各种地震烈度区的建筑结构、设备基础工程等,安装、维护及更换都简单方便。 粘滞阻尼器由缸筒、活塞、粘滞流体和导杆等组成缸筒内充满粘滞流体,活塞可在缸筒内进行往复运动,活塞上开有适量的小孔或活塞

与缸筒留有空隙。当结构因变形使缸筒和活塞产生相对运动时,迫使粘滞流体从小孔或间隙流过,从而产生阻尼力,将振动能量通过粘滞耗能消掉,达到减震的目的。 粘滞阻尼器的特点是对结构只提供附加阻尼,而不提供附加刚度,因而不会改变结构的自振周期。其优点是1.经济性好,可减少剪力墙、梁柱配筋的使用数量和构件的截面尺寸。2.适用性好,不仅能用于新建土木工程结构的抗震抗风,而且能广泛应用于已有土木工程结构的抗震加固或震后修复工程。3.安装了粘滞性耗能器的支撑不会在柱端弯矩最大时给柱附加轴力。4维护费用低。缺点是暂无。粘滞性阻尼器的最新进展是与磁流变体智能材料的联合使用,通过联合拓宽了粘滞性耗能器的发展空间。 粘滞阻尼器通常和支撑串连后布置于结构中,不同的安装形式直接影响到阻尼器的工作效率。到目前为止,实际工程的应用中多采用斜向型和人字型安装方式,这是由于其构造简单、易于装配。剪刀型和肘节型安装方式能把阻尼器两端的位移放大,即起到把阻尼器的效果放大的作用,具有更好的消能能力,但因受到安装机构造型和施工工艺复杂的限制,运用较少。

减震器工作原理详解

汽车悬架知识专题:减震器工作原理详解 悬架系统中由于弹性元件受冲击产生振动,为改善汽车行驶平顺性,悬架中与弹性元件并联安装减振器,为衰减振动,汽车悬架系统中采用减振器多是液力减振器,其工作原理是当车架(或车身)和车桥间受振动出现相对运动时,减振器内的活塞上下移动,减振器腔内的油液便反复地从一个腔经过不同的孔隙流入另一个腔内。此时孔壁与油液间的摩擦和油液分子间的内摩擦对振动形成阻尼力,使汽车振动能量转化为油液热能,再由减振器吸收散发到大气中。在油液通道截面和等因素不变时,阻尼力随车架与车桥(或车轮)之间的相对运动速度增减,并与油液粘度有关。 减振器与弹性元件承担着缓冲击和减振的任务,阻尼力过大,将使悬架弹性变坏,甚至使减振器连接件损坏。因面要调节弹性元件和减振器这一矛盾。 (1) 在压缩行程(车桥和车架相互靠近),减振器阻尼力较小,以便充分发挥弹性元件的弹性作用,缓和冲击。这时,弹性元件起主要作用。 (2) 在悬架伸张行程中(车桥和车架相互远离),减振器阻尼力应大,迅速减振。 (3) 当车桥(或车轮)与车桥间的相对速度过大时,要求减振器能自动加大液流量,使阻尼力始终保持在一定限度之内,以避免承受过大的冲击载荷。 在汽车悬架系统中广泛采用的是筒式减振器,且在压缩和伸张行程中均能起减振作用叫双向作用式减振器,还有采用新式减振器,它包括充气式减振器和阻力可调式减振器。

1. 活塞杆; 2. 工作缸筒; 3. 活塞; 4. 伸张 阀;5. 储油缸筒; 6. 压缩阀;7. 补偿阀; 8. 流通阀;9. 导向座;10. 防尘罩;11. 油 封 双向作用筒式减振器示意图 双向作用筒式减振器工作原理说明。在压缩行程时,指汽车车轮移近车身,减振器受压缩,此时减振器内活塞3向下移动。活塞下腔室的容积减少,油压升高,油液流经流通阀8流到活塞上面的腔室(上腔)。上腔被活塞杆1占去了一部分空间,因而上腔增加的容积小于下腔减小的容积,一部分油液于是就推开压缩阀6,流回贮油缸5。这些阀对油的节约形成悬架受压缩运动的阻尼力。减振器在伸张行程时,车轮相当于远离车身,减振器受拉伸。这时减振器的活塞向上移动。活塞上腔油压升高,流通阀8关闭,上腔内的油液推开伸张阀4流入下腔。由于活塞杆的存在,自上腔流来的油液不足以充满下腔增加的容积,主使下腔产生一真空度,这时储油缸中的油液推开补偿阀7流进下腔进行补充。由于这些阀的节流作用对悬架

弹簧_质量_阻尼系统的建模及控制系统设计说明书

word文档整理分享 分数: ___________ 任课教师签字:___________ 华北电力大学研究生结课作业 学年学期:第一学年第一学期 课程名称:线性系统理论 学生姓名: 学号: 提交时间:2014.11.27

目录 目录 (2) 1 研究背景及意义 (4) 2 弹簧-质量-阻尼模型 (4) 2.1 系统的建立 (5) 2.1.1 系统传递函数的计算 (7) 2.2 系统的能控能观性分析 (9) 2.2.1 系统能控性分析 (10) 2.2.2 系统能观性分析 (11) 2.3 系统的稳定性分析 (12) 2.3.1 反馈控制理论中的稳定性分析方法 (12) 2.3.2 利用Matlab分析系统稳定性 (13) 2.3.3 Simulink仿真结果 (15) 2.4 系统的极点配置 (18) 2.4.1 状态反馈法 (18) 2.4.2 输出反馈法 (19) 2.4.2 系统极点配置 (20) 2.5系统的状态观测器 (22) 2.6 利用离散的方法研究系统的特性 (24) 2.6.1 离散化定义和方法 (24)

2.6.2 零阶保持器 (26) 2.6.3 一阶保持器 (29) 2.6.4 双线性变换法 (31) 3.总结 (33) 4.参考文献 (33)

弹簧-质量-阻尼系统的建模与控制系统设计 1 研究背景及意义 弹簧、阻尼器、质量块是组成机械系统的理想元件。由它们组成的弹簧-质量-阻尼系统是最常见的机械振动系统,在生活中具有相当广泛的用途,缓冲器就是其中的一种。缓冲装置是吸收和耗散过程产生能量的主要部件,其吸收耗散能量的能力大小直接关系到系统的安全与稳定。缓冲器在生活中处处可见,例如我们的汽车减震装置和用来消耗碰撞能量的缓冲器,其缓冲系统的性能直接影响着汽车的稳定与驾驶员安全;另外,天宫一号在太空实现交会对接时缓冲系统的稳定与否直接影响着交会对接的成功。因此,对弹簧-质量-阻尼系统的研究有着非常深的现实意义。 2 弹簧-质量-阻尼模型 数学模型是定量地描述系统的动态特性,揭示系统的结构、参数与动态特性之间关系的数学表达式。其中,微分方程是基本的数学模型,不论是机械的、液压的、电气的或热力学的系统等都可以用微分方程来描述。微分方程的解就是系统在输入作用下的输出响应。所以,建立数学模型是研究系统、预测其动态响应的前提。通常情况下,列写机械振动系统的微分方程都是应用力学中的牛顿定律、质量守恒定律等。 弹簧-质量-阻尼系统是最常见的机械振动系统。机械系统如图2.1所示,

二阶弹簧—阻尼系统PID控制器设计参数整定

二阶弹簧—阻尼系统P I D控制器设计参数整 定 内部编号:(YUUT-TBBY-MMUT-URRUY-UOOY-DBUYI-0128)

二阶弹簧—阻尼系统的PID控制器设计及参数整定 一、PID控制的应用研究现状综述 PID控制器(按闭环系统误差的比例、积分和微分进行控制的调节器)自20世纪30年代末期出现以来,在工业控制领域得到了很大的发展和广泛的应用。它的结构简单,参数易于调整,在长期应用中已积累了丰富的经验。特别是在工业过程控制中,由于被控制对象的精确的数学模型难以建立,系统的参数经常发生变化,运用控制理论分析综合不仅要耗费很大代价,而且难以得到预期的控制效果。在应用计算机实现控制的系统中,PID很容易通过编制计算机语言实现。由于软件系统的灵活性,PID算法可以得到修正和完善,从而使数字PID具有很大的灵活性和适用性。 二、研究原理 比例控制器的传递函数为: () P P G s K = 积分控制器的传递函数为: 11 () PI P I G s K T s =+? 微分控制器的传递函数为: 11 () PID P D I G s K T s T s =+?+? 三、设计题目 设计控制器并给出每种控制器控制的仿真结果(被控对象为二阶环节,传递函数() G S,参数为M=1 kg, b=2 N.s/m, k=25 N/m, F(S)=1);系统示意图如图1所示。 图1 弹簧-阻尼系统示意图 弹簧-阻尼系统的微分方程和传递函数为: 四、设计要求

通过使用MATLAB 对二阶弹簧——阻尼系统的控制器(分别使用P 、PI 、PID 控制器)设计及其参数整定,定量分析比例系数、积分时间与微分时间对系统性能的影响。同时、掌握MATLAB 语言的基本知识进行控制系统仿真和辅助设计,学会运用SIMULINK 对系统进行仿真,掌握PID 控制器参数的设计。 (1)控制器为P 控制器时,改变比例带或比例系数大小,分析对系统性能的影响并绘制响应曲线。 (2)控制器为PI 控制器时,改变积分时间常数大小,分析对系统性能的影响并绘制相应曲线。(当kp=50时,改变积分时间常数) (3)设计PID 控制器,选定合适的控制器参数,使阶跃响应曲线的超调量%20%σ<,过渡过程时间2s t s <,并绘制相应曲线。 图2 闭环控制系统结构图 五、设计内容 (1)P 控制器:P 控制器的传递函数为: ()P P G s K =(分别取比例系数K 等于 1、10、30和50,得图所示) Scope 输出波形: 仿真结果表明:随着Kp 值的增大,系统响应超调量加大,动作灵敏,系统的响应速度加快。Kp 偏大,则振荡次数加多,调节时间加长。随着Kp 增大,系统的稳态误差减小,调节应精度越高,但是系统容易产生超调,并且加大Kp 只能减小稳态误差,却不能消除稳态误差。 (2)PI 控制器:PI 控制器的传递函数为: 11()PI P I G s K T s =+? (K=50, 分别取积分时间Ti 等于10、1和0.1得图所示) Scope 输出波形:

阻尼器测试精度控制

高速阻尼器试验系统及试验精度控制研究 鲁亮1 翁大根1 曹文清1 朱晓兵2 支晓阳2 陈亮2 (1 同济大学结构工程与防灾研究所,上海200092;2 无锡市海航电液伺服系统股份有限公司,江苏 214027) 摘要:本文对2000KN 高速阻尼器试验系统的组成、特点、功能进行了介绍,特别是试验台架结构。分析了在进行粘滞阻尼器试验时影响试验数据精度的因素,这些因素包括液压系统加载能力、加载台架的刚度、试件安装间隙和数据通道之间的采集时差等,并对这些因素进行了数值模拟,提出解决措施。 关键词:电液伺服,阻尼器,试验精度,试验台架,试验精度 High-speed Damper Testing System and Research on the Test Precision Control L. Lu 1 D. G. Weng 1 W. Q. Cao 1 X. B. Zhu 2 X. Y. Zhi 2 L. Chen 2 ( 1 Research Institute of Structural Engineering and Disaster Reduction, Tongji University, Shanghai 200092, China; 2 Wuxi Haihang Electro-hydraulic Servo system Co. Ltd., Jiangsu 214027, China) Abstract: Mechanical composing, features and main function of a 2000kN high-speed damper testing system are introduced, especially the structure of the loading frame. This testing system is an Electro-hydraulic Servo Load System. Various factors influenced the test precision are analyzed, which include the capacity of power supply, stiffness of the loading frame, installation gaps of specimen and the time gap of DAS channels, etc. Some factors affect the data precision are numerically simulated while doing a viscous damper, and several solutions about precision control are proposed. Keywords :Electro-hydraulic Servo Test; Damper; Precision Control; Loading Frame 收稿日期: 基金项目:国家自然科学基金资助项目(51178354) 联系作者,E-mail :luloes@https://www.doczj.com/doc/5b7995156.html, 引言 随着结构控制技术在建筑和桥梁工程中的应用,各类阻尼器的使用越来越多,技术越来越成熟。大吨位的速度型阻尼器的应用范围也随之扩大,为了对各种材料大吨位阻尼器性能进行测试就必须研究相应的大出力、大速度阻尼器试验系统[1-3]。 国内高校、科研机构和生产厂家已建有多套阻尼器试验系统,各具特点。本套2000kN 高速阻尼器试验系统主要在加载台架结构上与现有系统相比有一定特色。加载台架是用于安装2000kN 高速电液伺服作动器,并与之构成对阻尼器进行试验的一个完整试验台。本套系统利用同济大学已建成的泵源系统(600L/min 泵源、工作压力28MPa 、780L 蓄能器组)、2000kN 高速电液伺服作动器、MOOG 控制器等,构建一套完整的2000kN 阻尼器性能试验系统,见图1。 图1 试验台架外观图 Fig. 1 Layout of the damper test frame 1系统主体机械结构和主要参数 本系统中2000KN 高速阻尼器试验系统由液压部分(包括液压泵站、蓄能器组、伺服作动器、伺服阀、连接管路)、机械部分 (主要是试验台架)、控制系统三部分组成。系统原理如图2所示。

相关主题
文本预览
相关文档 最新文档