当前位置:文档之家› Cr12MoV钢不同热处理条件下的硬度和金相组织分析

Cr12MoV钢不同热处理条件下的硬度和金相组织分析

Cr12MoV钢不同热处理条件下的硬度和金相组织分析
Cr12MoV钢不同热处理条件下的硬度和金相组织分析

Cr12MoV钢不同热处理条件下的硬度和金相组织分析

摘要:研究了Cr12MoV钢在不同温度淬火和回火后的硬度变化,并对不同热处理条件下的金相组织进行了分析。

Cr12MoV钢是广泛用于模具行业的冷作模具钢,具有高淬透性,截面为300~400mm2以下者可以完全淬透。在300~400℃时仍可保持良好硬度和耐磨性,因此可用来制造断面较大、形状复杂、经受较大冲击负荷的各种模具和工具。由于该钢中存在大量碳化物,且偏析严重,因此不同的热处理工艺对钢的性能有很大的影响[1]。本文对Cr12MoV钢在不同热处理条件下的硬度和金相组织进行了分析,为业内人士提供参考。

1 实验条件

(1)试样材料:Cr12MoV钢,碳化物偏析较严重。

(2)试样规格:试棒为<100mm×200mm,在试棒的R/2处截取金相试样15mm×15mm×20mm。

(3)淬火前进行等温退火,850±10℃保温100~120min,740℃等温4h。

(4)淬火加热用盐浴炉,冷却介质为20号机油。

(5)金相组织用XJB-200型在线金相仪。

2 试验结果与分析

2.1 硬度

Cr12MoV钢经不同温度淬火和不同温度回火后的硬度实验数据见表1所示。

根据实验数据绘制其关系曲线如图1所示。

从表1和图1可以看出:

(1)Cr12MoV钢淬火后的硬度与淬火温度有极大关系,980~1040℃淬火获得的最高硬度为63~65HRC。

(2)Cr12MoV钢的回火稳定性高,980~1040℃淬火,200℃回火2次,每次2h,硬度为59.5~60.5HRC,250℃回火1h,硬度为58.5~59.5HRC。

(3)1100℃淬火,520℃回火2~3次,“二次硬化”硬度最高为60.5~61HRC。

(4)1130℃淬火,520℃回火3次,硬度仅提高到50HRC,在550℃回火1~2次,硬度提高到58HRC。1200℃淬火,520℃回火3次,硬度提高很少,经550℃2次回火,硬度提高到59HRC。

(5)Cr12MoV钢经1040℃淬火,500℃回火后硬度为57.5HRC,520℃回火2次,硬度为56~57.5HRC,看不出二次硬化现象。

2.2 金相组织

Cr12MoV钢热处理状态不同,显微组织变化很大,特别是1150℃以上温度淬火的组织比较特殊。

Cr12MoV钢不同热处理状态的金相组织图说明如下:

(1)800~880℃淬火,未回火的试样组织为:马氏体+屈氏体+碳化物。材料碳化物偏析比较严重,奥氏体成分不均匀,稳定性程度不同,硬度由低到高(见图2所示)。

图2 800~880℃淬火金相组织×400 图3 1040℃、1070℃淬火金相组织×400

(2)950℃、980℃、1010℃淬火,未回火的试样为正常淬火组织:马氏体+碳化物+残留奥氏体。

(3)1040℃、1070℃淬火,未回火的试样为正常组织:回火马氏体+碳化物+残留奥氏体(见图3所示)。

(4)1100℃~1160℃淬火,未回火的试样为粗针状马氏体+碳化物+残留奥氏体(见图4、图5所示)。

图4 1100℃~1160℃淬火金相组织×400图5 1100℃~1160℃淬火金相组织×400

(5)1200℃淬火,未回火的试样,组织为很粗的针状马氏体+少量碳化物+大量残留奥氏体(见图6、图7所示)。

(6)1230℃淬火,未回火和低温回火的试样,为针状马氏体+少量碳化物(带状)+大量残留奥氏体,晶粒很粗大,晶界上有淬火显微裂纹(见图8、图9、图10所示)。

(7)1280℃淬火,低温回火的试样,为粗针状马氏体+极少量碳化物+大量残留奥氏体(见图11所示)。

图6 1200℃淬火金相组织×400 图7 1200℃淬火金相组织×400

图8 1230℃淬火金相组织×250 图9 1230℃淬火金相组织×400

图10 1230℃淬火金相组织×400 图11 1280℃淬火金相组织×250

图12 1310℃淬火金相组织×250

(8)1310℃淬火,未回火的试样为严重过烧组织,晶界上有网状共晶莱氏体(见图12所示)。

(9)1160℃淬火,520℃、550℃多次回火后的金相组织与图6、图7相似。1230℃淬火,多次回火的金相组织与图8、图9、图10相似,仅马氏体及析出的弥散碳化物量增多。带状碳化物周围的残留奥氏体,因合金化程度很高,十分稳定,仍未完全转变。

3 结束语

(1)Cr12MoV钢的热处理工艺,有一次硬化法和二次硬化法2种。研究表明,一次硬化法淬火温度为1010~1040℃较好,回火温度一般为200℃回火两次。二次硬化法淬火温度为1100~1120℃较好,回火为520℃,2~3次较好。

(2)为了获得热硬性和高耐磨性,对Cr12MoV钢采用二次硬化处理法,因为含有较多合金元素和碳的残留奥氏体具有高的回火稳定性,只有经过多次回火才能使大部分残留奥氏体转变为马氏体。在提高淬火温度或回火温度偏低的情况下,要增多回火次数,实验表明,淬火温度提高到1150℃以上时,在520℃回火4~5次可能作用不显著,也不经济,不如提高回火温度效果好。

(3)采用冷处理可以减少回火次数。淬火后把工件冷却到-80℃左右,能使大部分残留奥氏体转变为马氏体。冷处理的温度-80℃足够,因为温度再低,残留奥氏体转变得非常缓慢,冷处理后还要进行一次520℃回火,以消除内应力和使冷处理后保留下来的大部分残留奥氏体发生转变。

常见金相组织

定义:碳与合金元素溶解在γ-Fe中的固溶体,仍保持γ-Fe的面心立方晶格 特征:奥氏体是一般钢在高温下的组织,其存在有一定的温度和成分范围。有些淬火钢能使部分奥氏体保留到室温,这种奥氏体称残留奥氏体。奥氏体一般由等轴状的多边形晶粒组成,晶粒内有孪晶。在加热转变刚刚结束时的奥氏体晶粒比较细小,晶粒边界呈不规则的弧形。经过一段时间加热或保温,晶粒将长大,晶粒边界可趋向平直化。铁碳相图中奥氏体是高温相,存在于临界点A1温度以上,是珠光体逆共析转变而成。当钢中加入足够多的扩大奥氏体相区的化学元素时,Ni,Mn等,则可使奥氏体稳定在室温,如奥氏体钢。

定义:碳与合金元素溶解在a-Fe中的固溶体 特征:亚共析钢中的慢冷铁素体呈块状,晶界比较圆滑,当碳含量接近共析成分时,铁素体沿晶粒边界析出。

定义:碳与铁形成的一种化合物 特征:渗碳体不易受硝酸酒精溶液的腐蚀,在显微镜下呈白亮色,但受碱性苦味酸钠的腐蚀,在显微镜下呈黑色。渗碳体的显微组织形态很多,在钢和铸铁中与其他相共存时呈片状、粒状、网状或板状。 ?在液态铁碳合金中,首先单独结晶的渗碳体(一次渗碳体)为块状,角不尖锐,共晶渗碳体呈骨骼状 ?过共析钢冷却时沿Acm线析出的碳化物(二次渗碳体)呈网结状,共析渗碳体呈片状 ?铁碳合金冷却到Ar1以下时,由铁素体中析出渗碳体(三次渗碳体),在二次渗碳体上或晶界处呈不连续薄片状

定义:铁碳合金中共析反应所形成的铁素体与渗碳体的机械混合物 特征:珠光体的片间距离取决于奥氏体分解时的过冷度。过冷度越大,所形成的珠光体片间距离越小。 ?在A1~650℃形成的珠光体片层较厚,在金相显微镜下放大400倍以上可分辨出平行的宽条铁素体和细条渗碳体,称为粗珠光体、片状珠光体,简称珠光体。 ?在650~600℃形成的珠光体用金相显微镜放大500倍,从珠光体的渗碳体上仅看到一条黑线,只有放大1000倍才能分辨的片层,称为索氏体。 ?在600~550℃形成的珠光体用金相显微镜放大500倍,不能分辨珠光体片层,仅看到黑色的球团状组织,只有用电子显微镜放大10000倍才能分辨的片层称为屈氏体

钢铁中常见的金相组织

钢铁中常见的金相组织区别简析 钢铁中常见的金相组织 1.奥氏体-碳与合金元素溶解在γ-fe中的固溶体,仍保持γ-fe的面心立方晶格。晶界比较直,呈规则多边形;淬火钢中残余奥氏体分布在马氏体间的空隙处 2.铁素体-碳与合金元素溶解在a-fe中的固溶体。亚共析钢中的慢冷铁素体呈块状,晶界比较圆滑,当碳含量接近共析成分时,铁素体沿晶粒边界析出。 3.渗碳体-碳与铁形成的一种化合物。在液态铁碳合金中,首先单独结晶的渗碳体(一次渗碳体)为块状,角不尖锐,共晶渗碳体呈骨骼状。过共析钢冷却时沿acm线析出的碳化物(二次渗碳体)呈网结状,共析渗碳体呈片状。铁碳合金冷却到ar1以下时,由铁素体中析出渗碳体(三次渗碳体),在二次渗碳体上或晶界处呈不连续薄片状。 4.珠光体-铁碳合金中共析反应所形成的铁素体与渗碳体的机械混合物。 珠光体的片间距离取决于奥氏体分解时的过冷度。过冷度越大,所形成的珠光体片间距离越小。在a1~650℃形成的珠光体片层较厚,在金相显微镜下放大400倍以上可分辨出平行的宽条铁素体和细条渗碳体,称为粗珠光体、片状珠光体,简称珠光体。在650~600℃形成的珠光体用金相显微镜放大500倍,从珠光体的渗碳体上仅看到一条黑线,只有放大1000倍才能分辨的片层,称为索氏体。在600~550℃形成的珠光体用金相显微镜放大500倍,不能分辨珠光体片层,仅看到黑色的球团状组织,只有用电子显微镜放大10000倍才能分辨的片层称为屈氏体。 5.上贝氏体-过饱和针状铁素体和渗碳体的混合物,渗碳体在铁素体针间。过冷奥氏体在中温(约350~550℃)的相变产物,其典型形态是一束大致平行位向差为6~8od铁素体板条,并在各板条间分布着沿板条长轴方向排列的碳化物短棒或小片;典型上贝氏体呈羽毛状,晶界为对称轴,由于方位不同,羽毛可对称或不对称,铁素体羽毛可呈针状、点状、块状。若是高碳高合金钢,看不清针状羽毛;中碳中合金钢,针状羽毛较清楚;低碳低合金钢,羽毛很清楚,针粗。转变时先在晶界处形成上贝氏体,往晶内长大,不穿晶。 6.下贝氏体-同上,但渗碳体在铁素体针内。过冷奥氏体在350℃~ms的转变产物。其典型形态是双凸透镜状含过饱和碳的铁素体,并在其内分布着单方向排列的碳化物小薄片;在晶内呈针状,针叶不交叉,但可交接。与回火马氏体不同,马氏体有层次之分,下贝氏体则颜色一致,下贝氏体的碳化物质点比回火马氏体粗,易受侵蚀变黑,回火马氏体颜色较浅,不易受侵蚀。高碳高合金钢的碳化物分散度比低碳低合金钢高,针叶比低碳低合金钢细。 7.粒状贝氏体-大块状或条状的铁素体内分布着众多小岛的复相组织。过冷奥氏体在贝氏体转变温度区的最上部的转变产物。刚形成时是由条状铁素体合并而成的块状铁素体和小岛状富碳奥氏体组成,富碳奥氏体在随后的冷却过程中,

金相组织观察报告

实验二金相常识简介和铁碳合金平衡组织观察 一、目地要求 1 、了解试样制备过程、金相显微镜基本构造和原理等金相常识。 2 、研究和了解铁碳合金在平衡状态下的显微组织。 3 、分析成分对铁碳合金显微组织的影响,从而加深理解成分、组织和性能之间的相互关系。 二、实验内容:将制好的样品放在显微镜上观察,注意显微镜的正确使用,并分析样品制备的质量好坏,初步认识显微镜下的组织特征并分析成分对铁碳合金显微组织的影响。 三、实验设备:金相显微镜,抛光机易耗品:吹风器、样品、不同号数的砂纸、玻璃板,抛光粉悬浮液、4%的硝酸酒精溶液、酒精、棉花等 四、实验步骤: 1.金相样品的制备方法。 2、样品硝酸酒精溶液腐蚀(即浸蚀)。

实验结论: 1画组织示意图 (1)画出下列试样的组织示意图 1)亚共析纲 2)过共析钢 3)亚共晶白口铸铁 4)过共晶白口铸铁 (2)画图方法要求如下 1)应画岩石记录表中的30—50直径的圆内,注明:材料名称、含碳量、 腐蚀剂和放大倍数。并将组织组成物用细线引出标明。如下图: 2.回答以下问题 (1)分析所画组织的形成原因。

(2)分析碳钢(任选一种成分)或白口铸铁(任选一种成分)凝固过程。

教学及实验方法: 1 、教师讲述和演示阶段: 用 1 5 分钟时间讲解试样制备、显微镜结构、反射原理和黑白成像等金相常识,用 2 0 分钟时间联系铁碳平衡图讲解、分析本次实验的 7 种铁碳合金在平衡状态下的显微组织,用电视显微镜向全体学生展示所有显微组织,用 5 分钟时间讲解绘制显微 组织的有关技巧。 2 、学生动手实验阶段: 学生用 5 0 分钟时间对 7 种铁碳合金平衡组织进行观察和分析,进一步建立成分和组织之间相互关系的概念,绘出所观察到的显微组织图,用箭头标明各显微组织,并在相应图下标出成分,确立组织和成分之间的关系。

金属材料常见金相组织的名称和特征

金属材料常见金相组织的名称和特征 名称定义特征 奥氏体 碳与合金元素溶解在γ-Fe中 的固溶体,仍保持γ-Fe的面心立 方晶格 晶界比较直,呈规则多边形;淬火钢中残余奥氏 体分布在马氏体针间的空隙处 铁素体碳与合金元素溶解在a-Fe中的固 溶体 亚共析钢中的慢冷铁素体呈块状,晶界比较圆 滑,当碳含量接近共析成分时,铁素体沿晶粒边界析 出 渗碳体碳与铁形成的一种化合物在液态铁碳合金中,首先单独结晶的渗碳体(一次渗碳体)为块状,角不尖锐,共晶渗碳体呈骨骼状过共析钢冷却时沿Acm线析出的碳化物(二次渗碳体)呈网结状,共析渗碳体呈片状铁碳合金冷却到Ar1以下时,由铁素体中析出渗碳体(三次渗碳体),在二次渗碳体上或晶界处呈不连续薄片状 珠光体 铁碳合金中共析反应所形成 的铁素体与渗碳体的机械混合 物 珠光体的片间距离取决于奥氏体分解时的过冷 度。过冷度越大,所形成的珠光体片间距离越小在 A1~650℃形成的珠光体片层较厚,在金相显微镜下放 大400倍以上可分辨出平行的宽条铁素体和细条渗碳 体,称为粗珠光体、片状珠光体,简称珠光体在 650~600℃形成的珠光体用金相显微镜放大500倍,从 珠光体的渗碳体上仅看到一条黑线,只有放大1000倍 才能分辨的片层,称为索氏体在600~550℃形成的珠 光体用金相显微镜放大500倍,不能分辨珠光体片层, 仅看到黑色的球团状组织,只有用电子显微镜放大 10000倍才能分辨的片层称为屈氏体 上贝氏体 过饱和针状铁素体和渗碳体 的混合物,渗碳体在铁素体针间 过冷奥氏体在中温(约350~550℃)的相变产物, 其典型形态是一束大致平行位向差为6~8od铁素体板 条,并在各板条间分布着沿板条长轴方向排列的碳化 物短棒或小片;典型上贝氏体呈羽毛状,晶界为对称 轴,由于方位不同,羽毛可对称或不对称,铁素体羽 毛可呈针状、点状、块状。若是高碳高合金钢,看不 清针状羽毛;中碳中合金钢,针状羽毛较清楚;低碳 低合金钢,羽毛很清楚,针粗。转变时先在晶界处形 成上贝氏体,往晶内长大,不穿晶 下贝氏体同上,但渗碳体在铁素体针内 过冷奥氏体在350℃~Ms的转变产物。其典型形态是双凸透镜状含过饱和碳的铁素体,并在其内分布着单方向排列的碳化物小薄片;在晶内呈针状,针叶不交叉,但可交接。与回火马氏体不同,马氏体有层次之分,下贝氏体则颜色一致,下贝氏体的碳化物质点比回火马氏体粗,易受侵蚀变黑,回火马氏体颜色较浅,不易受侵蚀。高碳高合金钢的碳化物分散度比低碳低合金钢高,针叶比低碳低合金钢细

调质钢的金相组织

调质钢的金相组织及检验 调质钢通常是指采用调质处理(淬火加高温回火)的中碳优质碳素结构钢和合金结构钢,如35、45、50、40Cr、 40MnB、40CrMn、30CrMnSi、38CrMoAlA、40CrNiMoA和40CrMnMo 等。 调质钢主要用于制造在动态载荷或各种复合应力下工作的零件(如机器中传动轴、连杆、齿轮等)。这类零件要求钢材具有较高的综合力学性能。 调质钢的热处理 (一)预先热处理 为了消除和改善前道工序(铸、锻、轧、拔)遗存的组织缺陷和内应力,并为后道工序(淬火、切削、拉拔)作好组织和性能上准备而进行退火或正火工序就是预先热处理。 关于调质钢在切削加工前进行的预先热处理,珠光体钢可在Ac3 以上进行一次正火或退火;合金元素含量高的马氏体钢则先在Ac3 以上进行一次空冷淬火,然后再在Ac1以下进行高温回火,使其形成回火索氏体。 (二)最终热处理 调质钢一般加热温度在Ac3以上30~50℃,保温淬火得到马氏体组织。淬火后应进行高温回火获得回火索氏体。回火温度根据调质件的性能要求,一般取500~600℃之间,具体范围视钢的化学成分和零件的技术条件而定。因为合金元素的加人会减缓马氏体的分解、碳化物的析出和聚集以及残余奥氏体的转变等过程,回火温度将移向更高。 二、调质钢的金相检验 (一)原材料组织检验调质工件在淬火前的理想组织应为细小均匀的铁素体加珠光体,这样才能保证在正常淬火工艺下获得良好的淬火组织---细小的马氏体。(二)脱碳层检验钢材在热加工或热处理时,表面因与炉气作用而形成脱碳层。脱碳层的特征是,表面铁素体量相对心部要多(半脱碳)或表面全部为铁素体(全脱碳),从而使工件淬火后出现铁素体或托氏体组织,回火后硬度不足,耐磨性和疲劳强度下降。因此调质工件淬火后不允许有超过加工余量的脱碳层。金相试样的磨面必须垂直脱碳面,边缘保持完整,不应有倒角。脱碳层的具体测量方法可按GB/T 224-1987标准进行。(三)锻造的过热和过烧检验 锻造加热时,由于加热温度高,不仅奥氏体晶粒粗大,而且有些夹杂物发生溶解而在锻后冷却时沿奥氏体晶界重新析出。一般过热时,仅出现粗大的奥氏体晶粒并产生魏氏组织。在一些低合金钢中还会出现粗大的贝氏体或马氏体组织。过热时沿奥氏体晶界析出的常为MnS 或FeS。用一般试剂无法侵蚀显示奥氏体晶界,最好方法用饱和的硝酸铵溶液进行电解侵蚀。侵蚀后试样的奥氏体晶界呈白色网状。由于过热锻件晶粒粗大,使得塑性和韧性下降,容易造成脆断。 当钢加热到更高温度,接近液相线时,会出现过烧现象。过烧特征是钢的粗大晶界被氧化和熔化,锻造时将产生沿晶裂纹,在锻件表面出现龟裂状裂纹。(四)调质钢的淬火回火组织 调质钢正常淬火组织为板条状马氏体和针片状马氏体,当含碳量较低时,如30CrMo等,形态特征趋向于低碳马氏体。当含碳量较高,如60Si2、50CrV等,形态特征趋向于高碳马氏体。 如果淬火加热温度过低,或保温不足,奥氏体未均匀化,或淬火前预先热处理不当,未使原始组织变得细匀一致,导致工件淬火后的组织为马氏体和未溶的铁素体,后者即使回火也不能消除(图5-1)。

钢铁金相组织名称、定义及其特征

钢铁金相组织名称、定义及其特征碳与合金元素溶解在γ-Fe晶界比较直,呈规则多边形;淬火钢中残余奥氏体分布在马氏体针间的空隙处。 中的固溶体,仍保持γ-Fe 的面心立方晶格。 碳与合金元素溶解在a-Fe亚共析钢中的慢冷铁素体呈块状,晶界比较圆滑,当碳含量接近共析成分时,铁素体中的固溶体。沿晶粒边界析出。 碳与铁形成的一种化合物。在液态铁碳合金中,首先单独结晶的渗碳体(一次渗碳体)为块状,角不尖锐,共晶 渗碳体呈骨骼状。 过共析钢冷却时沿Acm线析出的碳化物(二次渗碳体)呈网结状,共析渗碳体呈片状。 铁碳合金冷却到Ar以下时,由铁素体中析出渗碳体(三次渗碳体),在二次渗碳体上1 或晶界处呈不连续薄片状。 铁碳合金中共析反应所形珠光体的片间距离取决于奥氏体分解时的过冷度。过冷度越大,所形成的珠光体片间 成的铁素体与渗碳体的机距离越小。 械混合物。在A~650?形成的珠光体片层较厚,在金相显微镜下放大400倍以上可分辨出平行1 的宽条铁素体和细条渗碳体,称为粗珠光体、片状珠光体,简称珠光体。在650~600?形成的珠光体用金相显微镜放大500倍,从珠光体的渗碳体上仅看到一条黑线,只有放大1000倍才能分辨的片层,称为索氏体。

在600~550?形成的珠光体用金相显微镜放大500倍,不能分辨珠光体片层,仅看到 黑色的球团状组织,只有用电子显微镜放大10000倍才能分辨的片层称为屈氏体。 过饱和针状铁素体和渗碳过冷奥氏体在中温(约350~550?)的相变产物,其典型形态是一束大致平行位向差 o体的混合物,渗碳体在铁素为6~8铁素体板条,并在各板条间分布着沿板条长轴方向排列的碳化物短棒或小片; 体针间。典型上贝氏体呈羽毛状,晶界为对称轴,由于方位不同,羽毛可对称或不对称,铁素体羽毛可呈针状、点状、块状。若是高碳高合金钢,看不清针状羽毛;中碳中合金钢, 针状羽毛较清楚;低碳低合金钢,羽毛很清楚,针粗。转变时先在晶界处形成上贝氏 体,往晶内长大,不穿晶。 同上,但渗碳体在铁素体针过冷奥氏体在350?~Ms的转变产物。其典型形态是双凸透镜状含过饱和碳的铁素体, 内。并在其内分布着单方向排列的碳化物小薄片;在晶内呈针状,针叶不交叉,但可交接。 与回火马氏体不同,马氏体有层次之分,下贝氏体则颜色一致,下贝氏体的碳化物质 点比回火马氏体粗,易受侵蚀变黑,回火马氏体颜色较浅,不易受侵蚀。高碳高合金

金相实验报告(成分组织观察分析)

金相综合实验报告 实验名称: 碳钢成分-工艺-组织-性能综合分析实验专业: 材料科学与工程 班级: 材料11(1) 指导老师:席生岐高圆 小组组长: 仇程希 小组成员:齐慧媛李敏朱婧王艳姿闫士琪陈长龙黄忠鹤郭晓波丁江蒋经国庞小通林乐 二〇一四年四月三日

一、实验目的 1.了解碳钢热处理工艺操作; 2.学会使用洛氏硬度计测量材料的硬度性能值; 3.利用数码显微镜获取金相组织图像,掌握热处理后钢的金相组织分析方法; 4.探讨淬火温度、淬火冷却速度、回火温度对45和T12钢的组织和性能(硬度)的影响; 5.巩固课堂教学所学相关专业知识,体会材料的成分—工艺—组织—性能之间关系。 二、实验内容 1.进行45和T12钢试样退火、正火、淬火、回火热处理,工艺规范参考相关资料; 2.用洛氏硬度计测定试样热处理试样前后的硬度; 3.制备所给表中样品的金相试样,观察并获取其显微组织图像; 4.对照金相图谱,分析探讨本次实验可能得到的典型组织:片状珠光体、片状马氏体、板条状马氏体、回火马氏体、回火托氏体、回火索氏体等的金相特征。三、实验原理 热处理是一种很重要的金属加工工艺方法。热处理的主要目的是改变钢的性能,热处理工艺的特点是将钢加热到一定温度,经一定时间保温,然后以某种速度冷却下来,从而达到改变钢的性能的目的。研究非平衡热处理组织,主要是根据过冷奥氏体等温转变曲线来确定。 热处理之所以能使钢的性能发生显著变化,主要是由于钢的内部组织结构发生了的一系列的变化。采用不同的热处理工艺,将会使钢得到不同的组织结构,从而获得所需要的性能。 钢的热处理基本工艺方法可分为退火、正火、淬火和回火等。 (一)碳钢热处理工艺 1.加热温度 亚共析钢加热温度一般为Ac3+30-50℃,过共析钢加热温度一般为Ac 1+30-50℃(淬火)或Acm+50-100℃(正火)。 淬火后回火温度有三种,即:低温回火(150-250℃)、中温回火(350-500℃)、

铜及铜合金的金相组织分析.

铜及铜合金的金相组织分析一)结晶过程的分析 结晶是以树枝状的方式生长,树枝状的结晶容易造成夹渣外,通常形成显微疏松。 取决于模壁的冷却速度外,还取决于合金成分、熔化与浇注温度等。 (二)宏观分析中常见缺陷 在浇注过程中往往产生缩孔、疏松、气孔、偏析等缺陷。 浇注温度和浇注方式的影响,铸锭、紫铜中容易出现气孔和皮下气孔。 由于合金元素的熔点、比重不一,熔炼工艺不当造成铸锭的成分偏析。 铸造时热应力可产生裂纹。 浇注工艺不当(浇注温度过低),浇注时金属液的中断会造成冷隔。 (三)微观分析 与铜相互作用的性质,杂质可分三类: 1. 溶解在固态铜中的元素(铝、铁、镍、锡、锌、银、金、呻、锑)。 2. 与铜形成脆性化合物的元素(硫、氧、磷等)。 3. 实际上不溶于固态铜中与铜形成易熔共晶的元素(铅、铋等)。 铋与铜形成共晶呈网状分布于铜的基体上,淡灰色。 铅含量很少时和铋一样呈网状分布于晶界,其颜色为黑色; 铅含量大时在铜的晶粒间界上呈单独的黑点。 暗场观察:铅点呈黑色,孔洞为亮点。 硫与氧的观察:均与铜形成化合物(Cu2S、Cu2O),又以共晶形式(Cu2S+ Cu、 Cu2O+ Cu)分布在铜的晶界上。 氯化高铁盐酸水溶液浸蚀:Cu2O变暗,Cu2S不浸蚀。 偏振光观察:Cu2O呈暗红色。 QJ 2337-92 铍青铜的金相试验方法 金相分析晶粒度检测金属显微组织分析,晶粒度分析,GB/T 6394-02 金属平均晶粒度测定方法 ASTM E 112-96(2004) 金属平均晶粒度测定方法

YS/T 347-2004 铜及铜合金平均晶粒度测定方法 GB/T13298-91 金属显微组织检验方法 GB/T 13299-91 钢的显微组织评定方法 GB/T 10561-2005 钢中非金属夹杂物含量的测定标准评级图显微检验法 ASTM E45-05 钢中非金属夹杂物含量测定方法 GB/T 224-87 钢的脱碳层深度测定方法 ASTM E407-07 金属及其合金的显微腐蚀标准方法 GB/T 226-91 钢的低倍组织及缺陷酸蚀检验方法 GB/T 1979-2001 结构钢低倍组织缺陷评级图 GB/T 5168-85 两相钛合金高低倍组织 GB/T 9441-1988 球墨铸铁金相检验 ASTM A 247-06 铸件中石墨微结构评定试验方法 GB/T 7216-87 灰铸铁金相 EN ISO 945:1994 石墨显微结构 GB/T 13320-07 钢质模锻件金相组织评级图及评定方法 CB 1196-88 船舶螺旋桨用铜合金相含量金相测定方法 JB/T 7946.1-1999 铸造铝合金金相 铸造铝硅合金变质 JB/T 7946.2-1999 铸造铝合金金相 铸造铝硅合金过烧 JB/T 7946.3-1999 铸造铝合金金相铸造铝 氧是铜中最常见的杂质,可产生氢脆。所以含氧量应严格规定。 1、金属平均晶粒度【001】金属平均晶粒度测定… GB 6394-2002 自动评级【010】铸造铝铜合金晶粒度测定…GB 10852-89

45钢硬度

45号钢,是GB中的叫法,JIS中称为:S45C,ASTM中称为 1045,080M46,DIN称为:C45 45号钢为优质碳素结构用钢,硬度不高易切削加工,模具中常用来 做模板,梢子,导柱等,但须热处理。 45#钢广泛用于机械制造,这种钢的机械性能很好。但是这是一种中碳钢,淬火性能并不好,45号钢可以淬硬至HRC42~46。所以如果需要表面硬度,又希望发挥45#钢优越的机械性能,常将45#钢表面渗碳淬火,这样就能得到需要的表面硬度。 1. 45钢淬火后没有回火之前,硬度大于HRC55(最高可达HRC62)为合格。 实际应用的最高硬度为HRC55(高频淬火HRC58)。 2. 45钢不要采用渗碳淬火的热处理工艺。 调质处理后零件具有良好的综合机械性能,广泛应用于各种重要的结构零件,特别是那些在交变负荷下工作的连杆、螺栓、齿轮及轴类等。但表面硬度较低,不耐磨。可用调质+表面淬火提高零件表面硬度。 渗碳处理一般用于表面耐磨、芯部耐冲击的重载零件,其耐磨性比调质+表面淬火高。其表面含碳量0.8--1.2%,芯部一般在0.1--0.25%(特殊情况下采用0.35%)。经热处理后,表面可以获得很高的硬度(HRC58--62),芯部硬度低,耐冲击。

如果用45钢渗碳,淬火后芯部会出现硬脆的马氏体,失去渗碳处理的优点。现在采用渗碳工艺的材料,含碳量都不高,到0.30%芯部强度已经可以达到很高,应用上不多见。0.35%从来没见过实例,只在教科书里有介绍。可以采用调质+高频表面淬火的工艺,耐磨性较渗碳略差。 GB/T699-1999标准规定的45钢推荐热处理制度为850℃正火、840℃淬火、600℃回火,达到的性能为屈服强度≥355MPa GB/T699-1999标准规定45钢抗拉强度为600MPa,屈服强度为355MPa,伸长率为16%,断面收缩率为40%,冲击功为39J 45号钢不淬火硬度小于HRC28,比较软,不耐磨。淬火后硬度可以(注意是可以)大于HRC55,耐磨性较好, 45号钢淬火后硬度可以(注意是可以)大于HRC55。但这是小截面的,截面稍大,得到的硬度就会降低。而且冬天淬裂的可能也是有的。这些方面都要注意。 不要采用表面氮化处理,虽然表面硬度可以提高很多,但基体材料会硬度很低。虽然耐磨了,但会压出小坑来。 45表淬50~55HRC通常可以达到. 参考资料 表淬件回火温度与硬度的关系℃±10℃

钢铁金相图谱

钢铁金相图谱 第一章钢铁典型金相组织 材料:纯铁 工艺情况:退火状态 浸蚀方法:苦味酸酒精溶液浸蚀————————————————————1 材料:10钢 工艺情况:退火状态 浸蚀方法:4%硝酸酒精溶液浸蚀————————————————————2 材料:16Mn 工艺情况:热轧状态 浸蚀方法:4%硝酸酒精溶液浸蚀————————————————————3 材料:1Cr18Ni9Ti 工艺情况:固溶处理 浸蚀方法:盐酸、硝酸、甘油混合溶液浸蚀———————————————4 材料:T8 工艺情况:退火 浸蚀方法:4%硝酸酒精溶液浸蚀————————————————————5 材料:50钢 工艺情况:正火处理 浸蚀方法:4%硝酸酒精溶液浸蚀————————————————————6 材料:GCr15 工艺情况:球化退火 浸蚀方法:4%硝酸酒精溶液浸蚀————————————————————7 材料:T10 工艺情况:加热至860℃保温后炉冷 浸蚀方法:4%硝酸酒精溶液浸蚀————————————————————8 材料:20CrMnMo 工艺情况:1000℃过热渗碳后空冷 浸蚀方法:4%硝酸酒精溶液浸蚀————————————————————9

工艺情况:铸态 浸蚀方法:三氯化铁盐酸水溶液浸蚀——————————————————10 材料:T10 工艺情况:高温淬火后 浸蚀方法:4%硝酸酒精溶液浸蚀———————————————————11 材料:W18Cr4V 工艺情况:1270℃淬火,560℃三次回火 浸蚀方法:4%硝酸酒精溶液浸蚀———————————————————12 材料:GCr15 工艺情况:850℃淬火后回火处理 浸蚀方法:4%硝酸酒精溶液浸蚀———————————————————13 材料:40Cr 工艺情况:淬火,回火 浸蚀方法:4%硝酸酒精溶液浸蚀———————————————————14 材料:15MnB 工艺情况:920℃渗碳淬火 浸蚀方法:4%硝酸酒精溶液浸蚀———————————————————15 材料:20Cr 工艺情况:渗碳后淬火和回火处理 浸蚀方法:4%硝酸酒精溶液浸蚀———————————————————16 材料:20CrMnMo 工艺情况:1000℃渗碳后空冷 浸蚀方法:4%硝酸酒精溶液浸蚀———————————————————17 材料:70Si3MnA(弹簧钢) 工艺情况:加热保温,在400℃盐浴中等温冷却后空冷 浸蚀方法:4%硝酸酒精溶液浸蚀———————————————————18 材料:70Si3Mn 工艺情况:加热至1200℃保温,在400℃盐浴中等温3min后空冷 浸蚀方法:4%硝酸酒精溶液浸蚀———————————————————19 材料:35钢 工艺情况:加热至870℃,保温30min,淬火 浸蚀方法:4%硝酸酒精溶液浸蚀———————————————————20

常用钢材热处理工艺参数

热处理工艺规程B/Z61.012-95 (工艺参数)

2012年10月15日

目录 1.主题内容与适用范围 (1) 2.常用钢淬火、回火温度 (1) 2.1要求综合性能的钢种 (1) 2.2要求淬硬的钢种 (4) 2.3要求渗碳的钢种 (6) 2.4几点说明 (6) 3.常用钢正火、回火及退火温度 (7) 3.1要求综合性能的钢种 (7) 3.2其它钢种 (8) 3.3几点说明 (8) 4.常用钢去应力温度 (10) 5.各种热处理工序加热、冷却范围 (12) 5.1淬火……………………………………………………………………………………………1 2 5.2 正火及退火 (14) 5.3回火、时效及去应力 (15) 5.4工艺规范的几点说明 (16) 6.化学热处理工艺规范 (17) 6.1氮化 (17) 6.2渗碳 (20) 7.锻模热处理工艺规范 (22) 7.1锻模及胎模 (22) 7.2切边模 (24) 7.3锻模热处理注意事项 (25) 8.有色金属热处理工艺规范 (26) 8.1铝合金的热处理 (26) 8.2铜及铜合金 (26) 9.几种钢锻后防白点工艺规范 (27) 9.1第Ⅰ组钢 (27) 9.2第Ⅱ组钢 (28)

热处理工艺规程(工艺参数) 1.主题内容与适用范围 本标准为“热处理工艺规程”(工艺参数),它主要以企业标准《金属材料技术条件》B/HJ-93年版所涉及的金属材料和技术要求为依据(不包括高温合金),并收集了我公司生产常用的工具、模具及工艺装备用的金属材料。 本标准适用于汽轮机、燃气轮机产品零件的热处理生产。 2.常用钢淬火、回火温度 2.1 要求综合性能的钢种: 表1

金相组织分析 可下载 可修改 优质文档

实验三碳钢的非平衡组织及常用金属材料 显微组织观察 实验目的概述实验内容实验方法实验报告思 考题 一、实验目的 1. 观察碳钢经不同热处理后的显微组织。 2. 熟悉碳钢几种典型热处理组织——M、T、S、M回火、T回火、S回火等组织的形态及特征。 3. 熟悉铸铁和几种常用合金钢、有色金属的显微组织。 4. 了解上述材料的组织特征、性能特点及其主要应用。 TOP 二、概述 1. 碳钢热处理后的显微组织 碳钢经退火、正火可得到平衡或接近平衡组织,经淬火得到的是不平衡组织。因此,研究热处理后的组织时,不仅要参考铁碳相图,而且更主要的是参考钢的等温转变曲线(C曲线)。 为了简便起见,用C曲线来分析共析钢过冷奥氏体在不同温度等温转变的组织及性能(见表3-1)。在缓慢冷时(相当于炉冷,见图2-3中的V1)应得到100%的珠光体;当冷却速度增大到V2。时(相当于空冷),得到的是较细的珠光体,即索氏体或屈氏体;当冷却速度增大到V3时(相当于油冷),得到的为屈氏体和马氏体;当冷却速度增大至V4、V5,(相当于水冷),很大的过冷度使奥氏体骤冷到马氏体转变开始点(Ms)后,瞬时转变成马氏体。其中与C曲线鼻尖相切的冷却速度(V4)称为淬火的临界冷却速度。 转变类型组织名称形成温度范围/℃显微组织特征硬度(HRC) 珠光体型相 变珠光体 (P) >650 在400~500X金相显微镜下可以观察到 铁索体和渗碳体的片层状组织 ~20 (HBl80~200)索氏体 (S) 600~650 在800一]000X以上的显微镜下才能分 清片层状特征,在低倍下片层模糊不清 25~35 屈氏体 (T) 550~600 用光学显微镜观察时呈黑色团状组织, 只有在电子显徽镜(5000~15000X)下 才能看出片层状 35—40 贝氏体型相 变上贝氏体 (B上) 350~550 在金相显微镜下呈暗灰色的羽毛状特 征 40—48 下贝氏体 (BT) 230~350在金相显微镜下呈黑色针叶状特征48~58

常见材料热处理方式及目的

常见材料热处理 1、45(S45C)常见热处理 基本资料:45号钢为优质碳素结构钢(也叫油钢),硬度不高易切削加工。 ⑴调质处理(淬火+高温回火) 淬火:淬火温度840±10℃,水冷(55~58HRC,极限62HRC); 回火:回火温度600±10℃,出炉空冷(20~30HRC)。 硬度:20~30HRC 用途:模具中常用来做45号钢管模板,梢子,导柱等,但须热处理 (调质处理后零件具有良好的综合机械性能,广泛应用于各种重要的结构零件,特别是那些在交变负荷下工作的连杆、螺栓、齿轮及轴类等。 但表面硬度较低,不耐磨。可用调质+表面淬火提高零件表面硬度) *实际应用的最高硬度为HRC55(高频淬火HRC58)。 2、40Cr(SCr440)常见热处理 基本资料:40Cr为优质碳素合金钢。40Cr钢属于低淬透性调质钢,具有很高的强度,良好的塑性和韧性,即具有良好的综合机械性能(Cr能增加钢的淬透性,提高钢的强度和回火稳定性) ⑴调质处理 淬火:淬火温度850℃±10℃,油冷。(硬度45~52HRC) 回火:回火温度520℃±10℃,水、油冷。 硬度:32~36HRC 用途:用于制造汽车的连杆、螺栓、传动轴及机床的主轴等零件 ⑵不同回火温度 淬火:加热至830~860℃,油淬。(硬度55HRC以上) 回火:150℃——55 HRC 200℃——53 HRC 300℃——51 HRC 400℃——43 HRC 500℃——34 HRC 550℃——32 HRC 600℃——28 HRC 650℃——24 HRC 3、T10(SK4)常见热处理 基本资料:T10碳素工具钢,强度及耐磨性均较T8和T9高,但热硬性低,淬透性不高且淬火变形大,晶粒细,在淬火加热时不易过热,仍能保持细晶粒组织;淬火后钢中有未溶的过剩碳化物,所以耐磨性高,用于制造具有锋利刀口和有少许韧性的工具。 ⑴淬火+低温回火 淬火:淬火温度780±10℃,保温50min左右(视工件薄厚而定)或淬透。先淬如20~40℃的水或5%盐水,冷至250~300℃,转入20~40℃油中冷却至温热。(得到硬度62~65HRC) 回火:加热温度160~180℃,保温~2h。(回火后硬度60~62HRC) 用途:适于制造切削条件较差、耐磨性要求较高且不受突然和剧烈冲击振动而需要一定的韧性及具有锋利刃口的各种工具,也可用作不受较大冲击的耐磨零件。 ⑵调质处理(淬火+高温回火)----(一般不调至处理) 淬火温度780~800℃,油冷至温热。 回火温度(640~680℃),炉冷或空冷。(回火后硬度183~207HBS) 4、9CrWMn (SKS3) 常见热处理 基本资料:9CrWMn钢是油淬硬化的低合金泠作模具钢(俗称油钢)。该钢具有?定的淬透性和耐磨性,淬?变形较?,碳化物分布均匀且颗粒细?。该钢的塑性、韧性较好,耐磨性?CrWMn钢低。 优点:硬度、强度较高;耐磨性较高;淬透性较高;机械性能好(尺寸稳定,变形小)。 缺点:韧性、塑性较差;有较明显的回火脆性现象;对过热较敏感;耐腐蚀性能较差。 ⑴淬火+低温回火 退火(预先热处理):加热至750~800℃,,≤30℃/h控温冷却至550℃出炉空冷(约停留1~3h)。 (作用:改善或消除应力,防止工件变形、开裂。为最终热处理做准备) 淬火:先预热至550℃~650℃,再加热至800~850℃,保温,油冷至室温(硬度64~66HRC),组织为高碳片状马氏体。 回火:加热至150℃~200℃,保温2h,炉冷(硬度61~65HRC)。 硬度:HRC60℃以上

常见金相组织要点

1 工业纯铁退火铁素体白色等轴多边形晶粒为铁素体,深色线为晶界。 2 20钢退火低碳钢平衡组织白色晶粒为铁素体,深色块状为珠光体,高倍可 见珠光体中的层状结构。 3 45钢退火中碳钢平衡组织同上,但珠光体增多。 4 65钢退火高碳钢平衡组织占大部分的深色组织为珠光体,白色为铁素体。 5 T8钢退火共析钢平衡组织组织全部为层状珠光体,它是铁素体和渗碳体的 共析组织。 6 T12钢退火过共析钢平衡组织基体为层状珠光体,晶界上的白色为二次渗碳 体。 7 亚共晶白口铁铸态变态莱氏体+珠光体基体为黑白相间分布的变态莱氏 体,黑色树枝状为初晶奥氏体转变成的珠光体。 8 共晶白口铁铸态变态莱氏体白色为渗碳体(包括共晶渗碳体和二次渗碳 体),黑色圆粒及条状为珠光体。 9 过共晶白口铁铸态变态莱氏体+渗碳体基体为黑白相间分布的变态莱氏 体,白色板条状为一渗碳体 10 T8钢正火索氏体索氏体是细珠光体,片层间距小 11 T8钢快冷正火屈氏体屈氏体为极细珠光体,光学显微镜下难以分辨其层状 结构,灰白色块状、针状为淬火马氏体。 12 65Mn 等温淬火上贝氏体羽毛球为上贝氏体,基体为索氏体或淬火马氏体 和残余奥氏体。 13 65Mn 等温淬火下贝氏体黑色针状为下贝氏体,白色基体为淬火马氏体和 残余奥氏体。 14 20钢淬火低碳马氏体成束的板条状为低碳马氏体 15 T12 淬火高碳马氏体深色针片状组织为马氏体,白色为残余奥氏体 16 45钢淬火中碳马氏体黑色针叶状互成120度夹角的针状马氏体,其余为板 条状马氏体 17 T10钢球化退火球化体基体为铁素体,白色颗粒状为渗碳体。 18 T12 正火正火组织白色呈针状、细网络状分布的为渗碳体,其余为片层状 珠光体。 19 15钢渗碳后退火渗碳组织表层为过共析组织(网状渗碳体+珠光体),由表 向内含碳量逐渐减少,铁素体增多。 20 45钢渗硼渗硼组织表层为硼化物层(呈锯齿状)和过渡层,心部为45钢基 体组织。 21 40Cr 软氮化软氮化组织表层为白亮色的氮化合物和含氮的扩散层,心部为 40Cr基体组织 22 高速钢铸态共晶莱氏体+屈氏体+马氏体骨骼状组织为共晶莱氏体,基体

铝合金金相组织观察

铝合金金相组织观察 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

北京工业大学 实验报告 模块(课程)名称:材料工程基础综合实验 实验名称:铝合金金相组织观察 学号:08090206 姓名:左迎雪

一、实验目的 ⒈了解铸造、固溶处理、轧制及时效处理4种加工条件对铝合金的组织特征的影响; ⒉分析不同材料加工工艺对铝合金力学性能的影响; 3. 深入了解材料四要素之间的内在联系。 二、实验内容 1. 铝合金铸造、固溶处理、轧制及时效处理后金相组织的观察; 2. 不同工艺处理后铝合金静态拉伸实验; 3. 实验报告撰写。 三、实验过程 1. 制样 每一位同学根据名单选取相应工艺的样品,根据《光学技术实验平台》中对于金相样品制备的学习,按照金相样品制备的一般要求进行。磨光过程经历200、400、600、800等四种牌号的水砂纸,然后抛光、腐蚀。 制样的要点: A 缩短在砂纸上停留的时间(包括全过程及每次接触) B 挡水盘距离盘面1cm,请节约用水 C 样品抛光前必须在粗砂纸上修出倒角 D 抛光膏的使用原则是微量、多次;注水少量、恰当 E 抛光时,用力避免过大,应当适中,可以任意方向抛光 2. 组织观察

3. 结果分析 (1)请同学写出自己制备样品(铸造、固溶、轧制或轧制时效处理)的简要生产工艺过程; (2)观察图片,分析铸造、固溶处理、轧制、轧制时效工艺处理后,形成的组织的特点、原因(注意放大倍数的影响); (3)分析自己制备样品的质量。 图中所示为铝合金铸态组织,主要由α-Al固溶体 与晶界上和枝晶间的低熔点共晶组成。晶粒基本 呈等轴状,在晶界处和晶内均分布有大量的第二 相颗粒,并且在晶界上还能看到存在一些显微疏松组织,可能是由于铸造过程中的收缩或气体含量过高造成的。此外, 由于铸造过程中的过冷度很大,成分偏析十分严重,这种偏析在会在晶 界处富铸造组织50× 集,越靠近晶界附近合金元素含量越高区域偏析越严重。晶粒细小。 图中所示为铝合金固溶处理组织,可以明显看出合 金晶粒粗化,再结晶组织增多,粗大的第二相组织 基本溶解。同时成分偏析得到一定消除,组织趋于 均匀。

各种金相组织的定义和区分

金相组织 金相组织,用金相方法观察到的金属及合金的内部组织.可以分为:1.宏观组织.2.显微组织. 金相即金相学,就是研究金属或合金内部结构的科学。不仅如此,它还研究当外界条件或内在因素改变时,对金属或合金内部结构的影响。所谓外部条件就是指温度、加工变形、浇注情况等。所谓内在因素主要指金属或合金的化学成分。金相组织是反映金属金相的具体形态,如马氏体,奥氏体,铁素体,珠光体等等。 1.奥氏体-碳与合金元素溶解在γ-fe中的固溶体,仍保持γ-fe的面心立方晶格。晶界比较直,呈规则多边形;淬火钢中残余奥氏体分布在马氏体间的空隙处 2.铁素体-碳与合金元素溶解在a-fe中的固溶体。亚共析钢中的慢冷铁素体呈块状,晶界比较圆滑,当碳含量接近共析成分时,铁素体沿晶粒边界析出。 3.渗碳体-碳与铁形成的一种化合物。在液态铁碳合金中,首先单独结晶的渗碳体(一次渗碳体)为块状,角不尖锐,共晶渗碳体呈骨骼状。过共析钢冷却时沿acm线析出的碳化物(二次渗碳体)呈网结状,共析渗碳体呈片状。铁碳合金冷却到ar1以下时,由铁素体中析出渗碳体(三次渗碳体),在二次渗碳体上或晶界处呈不连续薄片状。 4.珠光体-铁碳合金中共析反应所形成的铁素体与渗碳体的机械混合物。 珠光体的片间距离取决于奥氏体分解时的过冷度。过冷度越大,所形成的珠光体片间距离越小。在a1~650℃形成的珠光体片层较厚,在金相显微镜下放大400倍以上可分辨出平行的宽条铁素体和细条渗碳体,称为粗珠光体、片状珠光体,简称珠光体。在650~600℃形成的珠光体用金相显微镜放大500倍,从珠光体的渗碳体上仅看到一条黑线,只有放大1000倍才能分辨的片层,称为索氏体。在600~550℃形成的珠光体用金相显微镜放大500倍,不能分辨珠光体片层,仅看到黑色的球团状组织,只有用电子显微镜放大10000倍才能分辨的片层称为屈氏体。 5.上贝氏体-过饱和针状铁素体和渗碳体的混合物,渗碳体在铁素体针间。过冷奥氏体在中温(约350~550℃)的相变产物,其典型形态是一束大致平行位向差为6~8od铁素体板条,并在各板条间分布着沿板条长轴方向排列的碳化物短棒或小片;典型上贝氏体呈羽毛状,晶界为对称轴,由于方位不同,羽毛可对称或不对称,铁素体羽毛可呈针状、点状、块状。若是高碳高合金钢,看不清针状羽毛;中碳中合金钢,针状羽毛较清楚;低碳低合金钢,羽毛很清楚,针粗。转变时先在晶界处形成上贝氏体,往晶内长大,不穿晶。 6.下贝氏体-同上,但渗碳体在铁素体针内。过冷奥氏体在350℃~ms的转变产物。其典型形态是双凸透镜状含过饱和碳的铁素体,并在其内分布着单方向排列的碳化物小薄片;在晶内呈针状,针叶不交叉,但可交接。与回火马氏体不同,马氏体有层次之分,下贝氏体则颜色一致,下贝氏体的碳化物质点比回火马氏体粗,易受侵蚀变黑,回火马氏体颜色较浅,不易受侵蚀。高碳高合金钢的碳化物分散度比低碳低合金钢高,针叶比低碳低合金钢细。 7.粒状贝氏体-大块状或条状的铁素体内分布着众多小岛的复相组织。过冷奥氏体在贝氏体转变温度区的最上部的转变产物。刚形成时是由条状铁素体合并而成的块状铁素体和小岛状富碳奥氏体组成,富碳奥氏体在随后的冷却过程中,可能全部保留成为残余奥氏体;也可能部分或全部分解为铁素体和渗碳体的

金相组织分析

实验三碳钢的非平衡组织及常用金属材料显微组织观察 实验目的概述实验内容实验方法实验报告思考题 一、实验目的 1. 观察碳钢经不同热处理后的显微组织。 2. 熟悉碳钢几种典型热处理组织——M、T、S、M回火、T回火、S回火等组织的形态及特征。 3. 熟悉铸铁和几种常用合金钢、有色金属的显微组织。 4. 了解上述材料的组织特征、性能特点及其主要应用。 TOP 二、概述 1. 碳钢热处理后的显微组织 碳钢经退火、正火可得到平衡或接近平衡组织,经淬火得到的是不平衡组织。因此,研究热处理后的组织时,不仅要参考铁碳相图,而且更主要的是参考钢的等温转变曲线(C曲线)。 为了简便起见,用C曲线来分析共析钢过冷奥氏体在不同温度等温转变的组织及性能(见表3-1)。 在缓慢冷时(相当于炉冷,见图2-3中的V 1)应得到100%的珠光体;当冷却速度增大到V 2 。时(相当于空冷), 得到的是较细的珠光体,即索氏体或屈氏体;当冷却速度增大到V3时(相当于油冷),得到的为屈氏体和马 氏体;当冷却速度增大至V 4、V 5 ,(相当于水冷),很大的过冷度使奥氏体骤冷到马氏体转变开始点(Ms)后, 瞬时转变成马氏体。其中与C曲线鼻尖相切的冷却速度(V 4 )称为淬火的临界冷却速度。

亚共析钢的C 曲线与共析钢相比,只是在其上部多了一条铁素体先析出线,当奥氏体缓慢冷却时(相当于炉冷,如图2-3中V 1:),转变产物接近平衡组织,即珠光体和铁素体。随着冷却速度的增大,即V 3>V 2>V ,时,奥氏体的过冷度逐渐增大,析出的铁素体越来越少,而珠光体的量逐渐增加,组织变得更细,此时析出的少量铁素体多分布在晶粒的边界上。因此,V 1的组织为铁素体+珠光体;V 2的组织为铁素体+索氏体; V 3,的组织为铁素体+屈氏体。当冷却速度为V 4,时,析出很少量的网状铁素体和屈氏体(有时可见到少量贝氏体),奥氏体则主要转变为马氏体和屈氏体(如图3-3);当冷却速度V 5,超过临界冷却速度时,钢全部 转变为马氏体组织(如图3-6,3-7)。 过共析钢的转变与亚共析钢相似,不同之处是后者先析出的是铁素体,而前者先析出的是渗碳体。 ① 珠光体(P ) 珠光体的组织形态主要有两种:片状珠光体和颗粒状珠光体。片状珠光体由一片片相互交错排列的铁素体和渗碳体所组成形成珠光体的先行条件是事先形成均匀的奥氏体,而后缓慢冷却在A1以下附近温度形成。片状珠光体似手指纹的层状结构,它是一层铁素体和一层渗碳体的机械混合物(见图3-1)。颗粒状珠光体是在铁素体的基体上分布着细小颗粒状的渗碳体的球化组织(见图3-2)。 图3-1片状珠光体500×4%硝酸酒精 图3-2 颗粒状珠光体500×4%硝酸酒精 ② 索氏体(s) 是铁素体与渗碳体的机械混合物。其片层比珠光体更细密,在高倍(700倍以上)显微放大时才能分辨(见图3-3)。 ③ 屈氏体(T) 也是铁素体与渗碳体的机械混合物,片层比索氏体还细密,在一般光学显微镜下也无法分辨,只能看到如墨菊状的黑色形态。当其少量析出时,沿晶界分布,呈黑色网状,包围着马氏体;当析出量较多时,呈大块黑色团状,只有在电子显微镜下才能分辨其中的片层(见图3-4)。 图3-3 索氏体500×4%硝酸酒精 图3-4 屈氏体+马氏体500×4%硝酸酒精

相关主题
文本预览
相关文档 最新文档