当前位置:文档之家› 洛必达法则在极限运算中的应用

洛必达法则在极限运算中的应用

洛必达法则在极限运算中的应用

导数的应用洛必达法则

导数的应用洛必达法则 1.设函数21)(ax x e x f x ---=. (1) 若0=a ,求)(x f 的单调区间; (2) 若当0≥x 时,0)(≥x f ,求实数a 的取值范围. 解:(1) 定义域为R ,当0=a 时,有题知x e x f x --=1)(,则1)('-=x e x f . 令0)('>x f ,得e x >;令0)('x 时,当210)(x x e a x f x --≤?≥时,设)0(,1)(2>--=x x x e x g x ,则4 42]2)2[(2)1()1()('x x e x x x x x e x e x g x x x ++-=?----= 设)0(,2)2()(>++-=x x e x x h x ,显然)(x h 在),0(+∞为增函数,所以 0)0()(=>h x h ,所以0)('>x g ,所以)(x g 在),0(+∞上为增函数 由洛必达法则得 2122 211)(000200lim lim lim lim ===-=--=→→→→e e x e x x e x g x x x x x x x 所以2 1)(>x g 因为)(x g a ≤在),0(+∞恒成立,所以21≤ a . 即实数a 的取值范围为]21,(-∞ 2.设函数x e x f --=1)(. (1) 证明:当1->x 时,1)(+≥ x x x f ; (2) 设当0≥x 时,1 )(+≤ax x x f ,求实数a 的取值范围. 解:(1) 证明: 当1->x 时,011)(≥--?+≥ x e x x x f x . 设)1(,1)(->--=x x e x g x ,则1)('-=x e x g . 令0)('>x g ,得0>x ;令0)('

使用洛必达法则求极限的几点注意_图文(精)

硬闲洛密达法则求极限的儿点涅枣 口杨黎霞 (江南大学江苏?无锡214122 摘要如果当圹+口或r+*时,两个函数删与,M都趋于零或都趋于无穷大。那么极限l/m葡可能存在,也可能不存在。洛 ‘::, 必达法则是计算此类未定式极限行之有效的方法.然而。对于本科一年级的初学者来讲,若盲目使用此法则.会导致错误。本文就使用该法则解题过程中的几点注意作了分析与探讨。 关键词洛必达法则 极限未定式等价无穷小代换 变量代换 中图分类号:0172 文献标识码:A 在高等数学里.极限是大一新生一开始就要接触而且非常重要的内容。其中有一类未定式的极限不能用“商的极限等于极限的商”这一法则.而要用洛必达法则。洛必达法则内容很简单.使用起来也方便有效。但在具体使用过程中。一旦疏忽了以下几点.解题就可能出错。 首先,只有分子、分母都趋于零或都趋于无穷大时,才能直接使用洛必达法则。 其次,每次使用洛必达法则前都要检验是否满足次法则条件。只要满足此法则条件.就可连续使用此法则.直到求出结果或为无穷大。

例如:t/mx"。:坛,n.垡!;!j:以,n墨王翌::!.≥芝三:…:lira墨}==D(n仨z+ ,-.-e’r_? e’ Jr--JO e‘r_?e。 此题用了n次法则。 再者,使用洛必达法则求极限是应及时化简,主要指代数、三角恒等变形,约去公因子。具有极限不为零的因子分离出来,等价无穷小代换,变量代换等。下面通过例子说明。 土- 例:鲤【(J慨。7I叫】‘=塑【(J+÷eL÷】=纫型±笋=姆 号等力 此题先用了变量代换。当变量x趋于。时.t趋于0.这一点要注意。 例:矗。卑=f溉!堡:型Jim r.zim掣=f讹丝车堑 =lim S,ec气-I=li,n.]+co.sx-一2 本题用了多种方法:提出极限存在但不为零的因子。等价无穷小代换。洛必达法则,三角恒等变形约分等。 (J呵+{,一、/瓦芦 fJ目:lim———生—r_—一若直接使用洛必达法则,其分子

洛必达法则在高考解答题中的应用

导数结合洛必达法则巧解高考压轴题 一.洛必达法则: 法则1.若函数)(x f 和)(x g 满足下列条件:(1) ()lim 0x a f x →= 及()lim 0x a g x →=; (2)在点a 的去心邻域内,)(x f 与)(x g 可导且0)('≠x g ; (3)()()lim x a f x l g x →'=',那么 ()()lim x a f x g x →=()() lim x a f x l g x →'='. 法则2.若函数)(x f 和)(x g 满足下列条件:(1) ()lim x a f x →=∞及()lim x a g x →=∞; (2)在点a 的去心邻域内,)(x f 与)(x g 可导且0)('≠x g ; (3)()()lim x a f x l g x →'=',那么 ()()lim x a f x g x →=()() lim x a f x l g x →'='. 利用洛必达法则求未定式的极限是微分学中的重点之一,在解题中应注意: ○ 1将上面公式中的a x →,∞→x 换成+∞→x ,-∞→x ,+→a x ,-→a x 洛必达法则也成立. ○2洛必达法则可处理00,∞ ∞,0?∞,∞1,0∞,00,∞-∞型. ○3在着手求极限以前,首先要检查是否满足00,∞∞ ,0?∞,∞1,0∞,00,∞-∞型定式,否则滥用洛必达法则会出错.当不满足三个前提条件时,就不能用洛必达法则,这时称洛必达法则不适用,应从另外途径求极限. ○ 4若条件符合,洛必达法则可连续多次使用,直到求出极限为止. 二.高考例题讲解 1. 函数2()1x f x e x ax =---. (Ⅰ)若0a =,求()f x 的单调区间; (Ⅱ)若当0x ≥时()0f x ≥,求实数a 的取值范围. 2. 已知函数x b x x a x f ++=1ln )(,曲线()y f x =在点))1(,1(f 处的切线方程为230x y +-=. (Ⅰ)求a 、b 的值; (Ⅱ)如果当0x >,且1x ≠时,ln ()1x k f x x x >+-,求k 的取值范围.

浅析洛必达法则求函数极限

本科学年论文论文题目:用洛必达法则求极限的方法 学生姓名:卫瑞娟 学号: 1004970232 专业:数学与应用数学 班级:数学1002班 指导教师:严惠云 完成日期: 2013 年 3月 8 日

用洛必达法则求未定式极限的方法 内容摘要 极限运算是微积分学的基础,在众多求极限方法中,洛必达法则是一种简单而又方便的求极限方法。但在具体使用过程中,一旦疏忽,解题就很可能出错。本文就针对利用此法则求极限的过程及解题过程中常见问题,对洛必达法则求函数极限的条件及范围、应用、何时失效做了整体分析与探讨,并举例说明。除此之外,还介绍了除洛必达法则之外其他求函数极限的方法以及同洛必达法则的比较,最后对洛必达法则进行小结。 关键词:洛必达法则函数极限无穷小量

目录 一、洛必达法则求极限的条件及适用范围 (1) (一)洛必达法则定理 (1) (二)洛必达法则使用条件 (2) 二、洛必达法则的应用 (2) (一)洛必达法则应用于基本不定型 (2) (二)洛必达法则应用于其他不定型 (3) 三、洛必达法则对于实值函数失效问题 (5) (一)使用洛必达法则后极限不存在 (5) (二)使用洛必达法则后函数出现循环 (6) (三)使用洛必达法则后函数越来越复杂 (6) (四)使用洛必达法则中求导出现零点 (6) 四、洛必达法则与其他求极限方法比较 (6) (一)洛必达法则与无穷小量替换求极限法 (7) (二)洛必达法则与利用极限运算和已知极限求极限 (8) (三)洛必达法则与夹逼定理求极限 (9) 五、洛必达法则求极限小结 (10) (一)洛必达法则条件不可逆 (10) (二)使用洛必达法则时及时化简 (11) (三)使用洛必达法则前不定型转化 (11) 参考文献 (13)

洛必达法则的一些应用

1 引言 18世纪数学本身的发展,以及这个世纪后期数学研究活动的扩和数学教育的改革都为19世纪数学的发展准备了条件.微积分学的深人发展,才有了后面的洛比达法则,而且在英国和欧洲大陆是循着不同的路线进行的.在欧洲大陆,新分析正在莱布尼茨的继承者们的推动下蓬勃发展起来.伯努利家族的数学家们首先继承并推广莱布尼茨的学说. 雅各布·伯努利运用莱布尼茨引用的符号,并称之为积分,莱布尼茨采用他的建议,并列使用微分学与积分学两个术语.雅各布·伯努利的弟弟约. 翰·伯努利在莱布尼茨的协助之下发展和完善了微积分学. 他借助于常量和变量,用解析表达式来定义函数,这比在此之前对函数的几何解释有明显的进步. 他在求“0/0”型不定式的值时,发现了现称为洛必达法则的方法,即用以寻找满足一定条件的两函数之商的极限. 约翰·伯努利的学生、法国数学家洛必达的《无限小分析》(1696)一书是微积分学方面最早的教科书,在十八世纪时为一模著作,他在书中规了这一种算法即洛必达法则,之后洛必达法则的也得到了广泛应用,这对传播微分学起到很大的作用. 从极限概念的产生到现在已经经历了两千五百多年的发展,漫漫的历史长河,人类在寻求真理和科学的过程中不断探索和总结,对于数学的探索给了人类科学发展以强大的动力.我们应当对任何知识都认真的学习、研究及做出总结.不仅踏寻前人的路迹,同时也要从中开创新的空间. 极限是数学分析的基石,是微积分学的基础.不定式极限是一种常见和重要的极限类型,其求法多种多样,变化无穷.本文先介绍了洛必达法则的定义,然后对洛必达法则使用条件及其常见误区进行了详细分析,阐述了该法则适用于解决函数极限的类型并举例说明其应用,总结了洛必达法则的各种形式及使用围,并介绍了洛必达法则的基本应用,以及在使用洛必达法则解题时应注意的问题.文章还将法则的适用围推广至求数列极限,然后分析法则的使用过程中容易出现的错误;最后通过具体实例说明了可以将法则和其他求极限方法结合起来使用,使我们对法则有了更深入的理解,进而提高了应用洛必达法则解决问题的能力. 2 洛必达法则及使用条件 在计算一个分式函数的极限时,常常会遇到分子分母同时趋向于零或无穷大的情况,由于这时无法使用“商的极限等于极限的商”的法则,运算将遇到很大的困难,事实上,这时极限可能存在,也可能不存在,当极限存在时,极限的值也会有各种各样的可能,如当a x →(或∞→x )时,两个函数)(x f 与)(x g 都趋于零或都趋于无穷大,那么极限

第一讲:数列的极限函数的极限与洛必达法则的练习题答案

第一讲:数列的极限函数的极限与洛必达法则的练习题答案 一、单项选择题(每小题4分,共24分) 3. 若()0lim x x f x →=∞,()0 lim x x g x →=∞,则下列正确的是 ( ) A . ()()0lim x x f x g x →+=∞??? ? B . ()()0lim x x f x g x →-=∞??? ? C . ()() 01lim 0x x f x g x →=+ D . ()()0 lim 0x x kf x k →=∞≠ 解: ()()000lim lim x x x x k kf x k f x k →→≠==?∞∞ ∴选D 6.当n →∞时, 1k n 与1k n 为等价无穷小,则k=( ) A .12 B .1 C .2 D .-2 解:2 211sin lim lim 1,21 1n n k k n n k n n →∞→∞=== 选C 二 、填空题(每小题4分,共24分) 8.2112lim 11x x x →??-= ?--? ? 解:原式()()()112lim 11x x x x →∞-∞+--+ 111lim 12 x x →==+ 10 .n =

解:原式n ≡有理化 32n ==无穷大分裂法 11.1201arcsin lim sin x x x e x x -→??+= ?? ? 解:11220011sin 1,lim 0lim sin 0x x x x e e x x -→→≤=∴=又00arcsin lim lim 1x x x x x x →→== 故 原式=1 12.若()220ln 1lim 0sin n x x x x →+= 且0sin lim 01cos n x x x →=-,则正整数n = 解: ()222200ln 1lim lim sin n n x x x x x x x x →→+?= 20420,lim 02 n x n x n x →<>2,4,n n ∴>< 故3n = 三、计算题(每小题8分,共64分) 14.求0 x → 解:原式有理化 0x →0tan (1cos )1lim (1cos )2 x x x x x →-=?- 0tan 111lim lim 222 x x x x x x →∞→=?==

洛必达法则求极限教学

洛必达法则求极限教学 摘要:本文结合教学实际对洛必达法则及其在求未定式极限方面的应用进行了分析,同时还分析了学生易错的洛必达法则求函数极限失效的情况。 关键词:洛必达法则;未定式;极限 求极限是微积分中的一项非常基础和重要的工作。教学中发现对于普通的求极限问题,学生解决起来问题不大,但是对于形如:■,■,∞-∞,0·∞,∞0,1∞,00的7种未定式,学生虽然能联系到洛必达法则,但是经常出错。 一、洛必达法则及应用 (一)洛必达法则 若函数f(x)与函数g(x)满足下列条件: 1. (或∞),(或∞); 2.f(x)与g(x)在x=a点的某个去心邻域内可导; 3. (或∞)。则 洛必达法则所述极限结果对下述六类极限过程均适用: 。 (二)洛必达法则的应用 1. 基本类型:未定式直接应用法则求极限 解:这是■型未定式。直接运用洛必达法则有 解:这个极限是■型未定式,于是 2. 未定式的其他類型:0·∞、∞-∞、00、∞0、1∞型极限的

求解 除了■型或■这两种未定式外,还可以通过转化,来解其他未定式。 解:这是∞-∞型,设法化为■型: 解:这是1∞未定式 解:这是∞0未定式,经变形得, 故 例6 求 解:这是0·∞型未定式,可变形为,成了■ 型未定式,于是 解:这是00型未定式,由对数恒等式知,xx=exInx,运用例8可得 二、洛必达法则对于实值函数的失效问题 洛必达法则可谓是在求不定式极限中作用最为显赫的一种方法,当然,它也有失效的时候。“失效”的原因则是因为题目本身不满足可以使用洛必达法则的几个条件。所以,在要使用洛必达法则时,要检验该题目是否符合洛必达法则条件,洛必达法则失效的基本原因有以下几种。 (一)使用洛必达法则后,极限不存在(非∞),也就是不符合洛必达法则的条件(3) 例8 计算 解:,而不存在,

洛必达法则在高考中的应用

高考数学专题突破:用洛必达法则求参数取值范围 洛必达法则简介: 若函数f(x) 和g(x)满足下列条件:(1) ()lim 0x a f x →= 及()lim 0x a g x →=; (2)在点a 的去心邻域内,f(x) 与g(x) 可导且g '(x)≠0; (3)() () lim x a f x l g x →'=', 那么 ()() lim x a f x g x →=() () lim x a f x l g x →'=' 。 若函数f(x) 和g(x)满足下列条件:(1)()lim 0x f x →∞ = 及()lim 0x g x →∞ =; (2)0A ?f ,f(x) 和g(x)在(),A -∞与(),A +∞上可导,且g '(x)≠0; (3)() ()lim x f x l g x →∞'=', 那么 () ()lim x f x g x →∞=() () lim x f x l g x →∞'='。 若函数f(x) 和g(x)满足下列条件:(1) ()lim x a f x →=∞及()lim x a g x →=∞; (2)在点a 的去心邻域内,f(x) 与g(x) 可导且g '(x)≠0; (3)() () lim x a f x l g x →'=', 那么 ()() lim x a f x g x →=() () lim x a f x l g x →'='。 利用洛必达法则求未定式的极限是微分学中的重点之一,在解题中应注意: ○ 1将上面公式中的x→a,x→∞换成x→+∞,x→-∞,x a + →,x a - → 洛必达法则也成立。 ○ 2洛必达法则可处理00,∞∞ ,0?∞,1∞,0 ∞,00,∞-∞型。 ○ 3在着手求极限以前,首先要检查是否满足00,∞∞ ,0?∞,1∞,0 ∞,00,∞-∞型定式,否则滥用洛必达法则会出错。当不满足三个前提条件时,就不能用洛必达法则,这时称洛必达法则不适用,应从另外途径求极限。 ○ 4若条件符合,洛必达法则可连续多次使用,直到求出极限为止。 ⑤若无法判定 () () f x g x ''的极限状态,或能判定它的极限振荡而不存在,则洛必达法则失效,此时,需要用其

(完整版)洛必达法则巧解高考压轴题

洛必达法则巧解高考压轴题 洛必达法则: 法则1 若函数f(x) 和g(x)满足下列条件: (1) ()lim 0x a f x →= 及()lim 0x a g x →=; (2)在点a 的去心邻域内,f(x) 与g(x) 可导且g '(x)≠0; (3)()() lim x a f x l g x →'=', 那么 ()()lim x a f x g x →=()()lim x a f x l g x →'='。 00 型 法则2 若函数f(x) 和g(x)满足下列条件: (1) ()lim x a f x →=∞及()lim x a g x →=∞; (2)在点a 的去心邻域内,f(x) 与g(x) 可导且g '(x)≠0; (3)()() lim x a f x l g x →'=', 那么 ()()lim x a f x g x →=()()lim x a f x l g x →'='。 ∞∞ 型 注意: ○1将上面公式中的x→a,x→∞换成x→+∞,x→-∞,x a +→,x a -→洛必达法则 也成立。 ○ 2若条件符合,洛必达法则可连续多次使用,直到求出极限为止。 典例剖析 例题1。 求极限 (1)x x x 1ln lim 0 +→ (∞∞型) (2)lim x ?p 2 sin x -1cos x (00型) (3) 20 cos ln lim x x x → (00 型) (4)x x x ln lim +∞→ (∞∞型) 变式练习: 求极限(1)x x x )1ln(lim 0+→ (2)a x a x a x --→sin sin lim (3)x e e x x x sin lim 0-→- (4)22 )2(sin ln lim x x x -→ππ 例题2。 已知函数R m x e x m x f x ∈+-=,)1()(2

用洛必达法则求下列极限

习题 3 2
1 用洛必达法则求下列极限 (1) lim ln(1 x)
x0 x (2) lim e x ex
x0 sin x (3) lim sin x sin a
xa x a (4) lim sin 3x
x tan5x
(5) lim ln sin x x ( 2x)2
2
(6) lim xm am xa x n a n
(7) lim ln tan 7x x0 ln tan 2x
(8) lim tan x x tan 3x
2
1
ln(1 )
(9) lim
x
x arc cot x
(10) lim ln(1 x2 ) x0 sec x cos x
(11) lim x cot 2x
x0
1
(12) lim x 2e x2 x0
(13) lim x 1
2 x2 1
1 x 1
(14) lim (1 a ) x x x
(15) lim xsin x x0
(16) lim ( 1 )tan x
x0 x

1
解 (1) lim ln(1 x) lim 1 x lim 1 1
x0 x
x0 1
x0 1 x
(2) lim e x ex lim e x ex 2 x0 sin x x0 cos x
(3) lim sin x sin a lim cos x cos a
xa x a
xa 1
(4) lim sin 3x lim 3cos 3x 3 x tan 5x x 5sec2 5x 5
(5) lim ln sin x lim
cot x
1 lim csc2 x 1
x ( 2x)2 x 2( 2x) (2) 4 x 2
8
2
2
2
(6) lim x m a m lim mxm1 mxm1 m a mn xa x n a n xa nx n1 na n1 n
(7) lim
ln tan 7x
lim
1 tan 7x
sec2
7x 7
7
lim
tan 2x 7
lim
sec2 2x 2 1
x0 ln tan 2x x0 1 sec2 2x 2 2 x0 tan 7x 2 x0 sec2 7x 7
tan 2x
(8) lim tan x lim sec2 x 1 lim cos2 3x 1 lim 2 cos 3x( sin 3x) 3
x tan 3x x sec2 3x 3 3 x cos2 x 3 x 2 cos x( sin x)
2
2
2
2
lim cos 3x lim 3sin 3x 3
x cos x
x sin x
2
2
1 ( 1 )
ln(1 1 )
1 1
(9) lim
x lim x
x2 lim 1 x2 lim 2x lim 2 1
x arc cot x x
1
x x x 2 x 1 2x x 2
1 x2
(10) lim ln(1 x2 ) lim cos x ln(1 x2 ) lim x2 (注
x0 sec x cos x x0 1 cos2 x
x0 1 cos2 x
lim
2x
lim x 1
x0 2 cos x( sin x) x0 sin x
cosx ln(1 x2)~x2)
(11) lim x cot 2x lim x lim 1 1
x 0
x0 tan 2x x0 sec2 2x 2 2
(12)
1
1
lim x 2e x2
e x2 lim
lim
et
lim
et

x0
x0 1 t t t 1
x2
(注
当 x0 时

用洛必达法则求下列极限

1 用洛必达法则求下列极限 (1) lim ln(1 x)
x0 x (2) lim e x ex
x0 sin x (3) lim sin x sin a
xa x a (4) lim sin 3x
x tan5x
(5) lim ln sin x x ( 2x)2
2
(6) lim xm am xa x n a n
(7) lim ln tan 7x x0 ln tan 2x
(8) lim tan x
x
tan 3x
2
ln(1 1 )
(9) lim
x
x arc cot x
(10) lim ln(1 x2 ) x0 sec x cos x
(11) lim x cot 2x
x0
1
(12) lim x 2e x2 x0
(13) lim x 1
2 x2 1
1 x 1
(14) lim (1 a ) x x x
(15) lim xsin x x0
(16) lim ( 1 )tan x
x0 x

1
解 (1) lim ln(1 x) lim 1 x lim 1 1
x0 x
x0 1
x0 1 x
(2) lim e x ex lim e x ex 2 x0 sin x x0 cos x
(3) lim sin x sin a lim cos x cos a
xa x a
xa 1
(4) lim sin 3x lim 3cos 3x 3 x tan 5x x 5sec2 5x 5
(5) lim ln sin x lim
cot x
1 lim csc2 x 1
x ( 2x)2 x 2( 2x) (2) 4 x 2
8
2
2
2
(6) lim x m a m lim mxm1 mxm1 m a mn xa x n a n xa nx n1 na n1 n
(7) lim
ln tan 7x
lim
1 tan 7x
sec2
7x 7
7
lim
tan 2x 7
lim
sec2 2x 2 1
x0 ln tan 2x x0 1 sec2 2x 2 2 x0 tan 7x 2 x0 sec2 7x 7
tan 2x
(8) lim tan x lim sec2 x 1 lim cos2 3x 1 lim 2 cos 3x( sin 3x) 3
x tan 3x x sec2 3x 3 3 x cos2 x 3 x 2 cos x( sin x)
2
2
2
2
lim cos 3x lim 3sin 3x 3
x cos x
x sin x
2
2
1 ( 1 )
ln(1 1 )
1 1
(9) lim
x lim x
x2 lim 1 x2 lim 2x lim 2 1
x arc cot x x
1
x x x 2 x 1 2x x 2
1 x2
(10) lim ln(1 x2 ) lim cos x ln(1 x2 ) lim x2 (注
x0 sec x cos x x0 1 cos2 x
x0 1 cos2 x
lim
2x
lim x 1
x0 2 cos x( sin x) x0 sin x
cosx ln(1 x2)~x2)
(11) lim x cot 2x lim x lim 1 1
x 0
x0 tan 2x x0 sec2 2x 2 2
(12)
1
1
lim x 2e x2
e x2 lim
lim
et
lim
et

x0
x0 1 t t t 1
x2
(注
当 x0 时

运用洛必达法则解高考数学问题

运用洛必达法则解高考 数学问题 文件排版存档编号:[UYTR-OUPT28-KBNTL98-UYNN208]

运用洛必达法则解高考数学问题 【摘要】高考数学试题常与大学数学知识有机接轨,以高等数学为背景的命题形式成了热点,洛必达法则是利用导数来计算具有不定型的极限的方法. 【关键词】中学数学;高等数学;法则 近年来的高考数学试题逐步做到科学化,规范化,坚持了稳中求改、稳中创新的原则,充分发挥数学作为基础学科的作用,既重视考查中学数学基础知识的掌握程度,又注重考查进入高校继续学习的潜能。为此,高考数学试题常与大学数学知识有机接轨,以高等数学为背景的命题形式成了热点。 许多省市的高考试卷的压轴题都是导数应用问题,其中求参数的取值范围就是一类重点考查的题型。这类题目容易让学生想到用分离参数的方法,一部分题用这种方法很凑效,另一部分题在高中范围内用分离参数的方法却不能顺利解决,高中阶段解决它只有华山一条路――分类讨论和假设反证的方法。虽然这些压轴题可以用分类讨论和假设反证的方法求解,但这种方法往往讨论多样、过于繁杂,学生掌握起来非常困难。研究发现利用分离参数的方法不能解决这部分问题的原因是出现了型的式子,而这就是大学数学中的不定式问题,解决这类问题的有效方法就是洛必达法则 洛必达法则是利用导数来计算具有不定型的极限的方法。这法则是由瑞士数学家约翰?伯努利所发现的,因此也被叫作伯努利法则。是在一定条件下通过分子分母分别求导再求极限来确定未定式值的方法。 洛必达法则(定理):设函数f(x)和g(x)满足: (1) = =0; (2)在点a的某去心邻域内f(x)与都可导,且的导数不等于0; (3)若 =A,则 =A

洛必达法则泰勒公式

洛必达法则泰勒公式 一、洛必达法则在第一章第七节中我们曾经讨论过无穷小的比较问题,并且已经知道两个无穷小之比的极限可能存在,也可能不存在,既使它存在也不能用商的极限运算法则去求解.而由无穷大与无穷小的关系知,无穷大之比的极限问题也是如此.在数学上,通常把无穷小之比的极限和无穷大之比的极限称为未定式,并分别简记为和.由于在讨论上述未定式的极限时,不能应用商的极限运算法则,这或多或少地都会给未定式极限的讨论带来一定的困难.今天在这里我们应用导数的理论推出一种既简便又重要的未定式极限的计算方法,并着重讨论当时,型未定式极限的计算,关于这种情形有以下定理.定理1设(1) 当时,函数及都趋于零;(2)在点的某去心邻域内,及都存在,且;(3)存在(或为无穷大),则.也就是说,当存在时,也存在,且等于;当为无穷大时,也是无穷大.这种在一定条件下,通过分子分母分别求导,再求极限来确定未定式极限的方法称为洛必达(L’Hospital)法则.下面我们给出定理1的严格证明:分析由于上述定理的结论是把函数的问题转化为其导数的问题,显然应考虑微分中值定理.再由分子和分母是两个不同的函数,因此应考虑应用柯西中值定理.证因为求极限与及的取值无关,所以可以假定.于是由条件(1)和(2)知,及在点的某一邻域内是连续的.设是这邻域内一点,则在以及为端点的区间上,函数和满

足柯西中值定理的条件,因此在和之间至少存在一点,使得等式(在与之间)成立.对上式两端求时的极限,注意到时,则.又因为极限存在(或为无穷大),所以.故定理1成立.注若仍为型未定式,且此时和能满足定理1中和所要满足的条件,则可以继续使用洛必达法则先确定,从而确定和,即.且这种情况可以继续依此类推.例1求.分析当时,分子分母的极限皆为零,故属于型不定式,可考虑应用洛必达法则.解、注最后一个求极限的函数在处是连续的.例2求.解、注例2中我们连续应用了两次洛必达法则.例3求.解、例4求、解、注(1) 在例4中,如果我们不提出分母中的非零因子,则在应用洛必达法则时需要计算导数,从而使运算复杂化.因此,在应用洛必达法则求极限时,特别要注意通过提取因子,作等价无穷小代换,利用两个重要极限的结果等方法,使运算尽可能地得到简化.课后请同学们自己学习教材136页上的例10 .(2) 例4中的极限已不是未定式,不能对它应用洛必达法则,否则要导致错误的结果.以后在应用洛必达法则时应特别注意,不是未定式,不能应用洛必达法则.对于时的未定式有以下定理.定理2设(1)当时,函数及都趋于零;(2) 当时,与都存在,且;(3)存在(或为无穷大),则.同样地,对于(或)时的未定式,也有相应的洛必达法则.定理3设(1)当(或)时,函数及都趋于无穷大;(2)在点的某去心邻域内(或当时),及都存在,且;(3)存在(或为无穷大),则.例5求、解、

洛必达法则在高考解答题中的应用

一.洛必达法则: 法则1.若函数)(x f 和)(x g 满足下列条件:(1) ()lim 0x a f x →= 及()lim 0x a g x →=; (2)在点a 的去心邻域内,)(x f 与)(x g 可导且0)('≠x g ; (3)()()lim x a f x l g x →'=',那么 ()()lim x a f x g x →=()() lim x a f x l g x →'='. 法则2.若函数)(x f 和)(x g 满足下列条件:(1) ()lim x a f x →=∞及()lim x a g x →=∞; (2)在点a 的去心邻域内,)(x f 与)(x g 可导且0)('≠x g ; (3)()()lim x a f x l g x →'=',那么 ()()lim x a f x g x →=()() lim x a f x l g x →'='. 利用洛必达法则求未定式的极限是微分学中的重点之一,在解题中应注意: ○ 1将上面公式中的a x →,∞→x 换成+∞→x ,-∞→x ,+→a x ,-→a x 洛必达法则也成立. ○ 2洛必达法则可处理00,∞∞ ,0?∞,∞1,0∞,00,∞-∞型. ○3在着手求极限以前,首先要检查是否满足00,∞∞,0?∞,∞1,0∞,00,∞-∞型定式,否则滥用洛必达法则会出错.当不满足三个前提条件时,就不能用洛必达法则,这时称洛必达法则不适用,应从另外途径求极限. ○ 4若条件符合,洛必达法则可连续多次使用,直到求出极限为止. 二.高考例题讲解 1. 函数2()1x f x e x ax =---. (Ⅰ)若0a =,求()f x 的单调区间; (Ⅱ)若当0x ≥时()0f x ≥,求实数a 的取值范围. 2. 已知函数x b x x a x f ++=1ln )(,曲线()y f x =在点))1(,1(f 处的切线方程为230x y +-=. (Ⅰ)求a 、b 的值; (Ⅱ)如果当0x >,且1x ≠时,ln ()1x k f x x x > +-,求k 的取值范围. 3.若不等式3sin ax x x ->对于)2,0(π ∈x 恒成立,求实数a 的取值范围.

洛必达法则的应用

洛必达法则在高考中的应用 法则1 若函数f(x) 和g(x)满足下列条件: (1) ()lim 0x a f x →= 及()lim 0x a g x →=; (2)在点a 的去心邻域内,f(x) 与g(x) 可导且g'(x)≠0; (3)() () lim x a f x l g x →'=', 那么 () ()lim x a f x g x →=() () lim x a f x l g x →'='。 法则2 若函数f(x) 和g(x)满足下列条件: (1)()lim 0x f x →∞ = 及()lim 0x g x →∞ =; (2)0A ?f ,f(x) 和g(x)在(),A -∞与(),A +∞上可导,且g'(x)≠0; (3)()()lim x f x l g x →∞ '=',那么 ()()lim x f x g x →∞=() () lim x f x l g x →∞'='。 法则3 若函数f(x) 和g(x)满足下列条件: (1) ()lim x a f x →=∞及()lim x a g x →=∞; (2)在点a 的去心邻域内,f(x) 与g(x) 可导且g'(x)≠0; (3)()()lim x a f x l g x →'=',那么 () ()lim x a f x g x →=() () lim x a f x l g x →'='。 利用洛必达法则求未定式的极限是微分学中的重点之一,在解题中应注意: 1.将上面公式中的x→a ,x→∞换成x→+∞,x→-∞,x a + →,x a - →洛必达法则也成立。 2.洛必达法则可处理 00x a -→,∞ ∞ ,0?∞,1∞,0∞,00,∞-∞型。 3.在着手求极限以前,首先要检查是否满足00,∞∞ ,0?∞,1∞,0 ∞,00,∞-∞型定式,否则滥用洛 必达法则会出错。当不满足三个前提条件时,就不能用洛必达法则,这时称洛必达法则不适用,应从另外途径求极限。 4.若条件符合,洛必达法则可连续多次使用,直到求出极限为止。

考研数学:极限计算法则——洛必达法则

考研数学:极限计算法则——洛必达法则 洛必达法则是计算极限最常用的方法之一,也是历年考研数学的一个高频考点,不仅能算出具体函数的极限,对于抽象函数求极限也同样适用。在大学阶段,同学们最喜欢一洛到底,但是洛必达法则也是有底线的,并不是所有的极限都能用洛必达求出来,接下来就介绍一下洛必达法则,正确认识洛必达,才可以理解其定理及科学有效地使用,吃透定理后进而找到它们的解题思路,才不至于在做这一题型时感到无从下手。 一、关于洛必达法则 洛必达法则有两类,分别是x a →和x →∞,现归为一种情况x → 进行介绍,定理如下:设(),)f x g x (满足ⅰ)()0lim ()0x f x g x →= 或∞∞ⅱ)(),)f x g x (在 的某去心邻域内可导且()0 g x '≠ⅲ)()lim () x f x g x →'' 存在或为∞则有()()lim lim .()()x x f x f x g x g x →→'=' 关于该法则需要注意的有两点: ①在使用洛必达法则时一定要注意检验条件,三个条件缺一不可,否则很容易得到错误的结果;②使用洛必达法则之前一定先对极限式化简(等替或者四则运算的函数分解). 二、下面分别对每个条件进行分析:对于条件一,只需保证极限是00或∞∞ 的分式形式;对于条件二,需保证可导性,当已知极限式中的函数存在n 阶导数时,只能使用洛必达法则至出现1n -阶导数(如至n 阶,不能保证连续性),最后一步一般凑导数的定义;当已知极限式中的函数存在n 阶连续导数时,可以使用洛必达法则至出现n 阶导数。

例:已知 ()f x 二阶可导,求20))2)lim .h f x h f x h f x h →++--(((解:2 00000))2) lim ))lim 2)()())lim 21)()1)()lim lim 22(). h h h h h f x h f x h f x h f x h f x h h f x h f x f x f x h h f x h f x f x h f x h h f x →→→→→++--''+--=''+-+--=''+---=+-''=(((((((((分析:二阶可导,可洛至一阶,之后凑二阶导数定义; 若该题中,已知 ()f x 二阶连续可导,解题过程如下;解:2 000))2) lim ))lim 2))lim 2 (). h h h f x h f x h f x h f x h f x h h f x h f x h f x →→→++--''+--=''''++-=''=(((((((对于条件三,需保证求导之后的极限必须存在或为∞(后者情况较少),即当()lim ()x f x A g x →'=' 或∞时,方可使用洛必达。易错点如下:()lim ()x f x g x →'' 不存在,不能()lim () x f x g x →? 不存在;()lim x f x → 存在,不能()lim x f x →'?' 存在;正确说法为:()lim ()x f x g x → 存在()lim .()x f x g x →'?≠∞'

洛必达法则解决高考导数问题

洛必达法则简介: 法则1 若函数f(x) 和g(x)满足下列条件:(1) ()lim 0x a f x →= 及()lim 0x a g x →=; (2)在点a 的去心邻域内,f(x) 与g(x) 可导且g '(x)≠0; (3)() () lim x a f x l g x →'=', 那么 ()() lim x a f x g x →=() () lim x a f x l g x →'='。 法则2 若函数f(x) 和g(x)满足下列条件:(1)()lim 0x f x →∞ = 及()lim 0x g x →∞ =; (2)0A ?,f(x) 和g(x)在(),A -∞与(),A +∞上可导,且g '(x)≠0; (3)() () lim x f x l g x →∞ '=', 那么 () ()lim x f x g x →∞=() () lim x f x l g x →∞'='。 法则3 若函数f(x) 和g(x)满足下列条件:(1) ()lim x a f x →=∞及()lim x a g x →=∞; (2)在点a 的去心邻域内,f(x) 与g(x) 可导且g '(x)≠0; (3)() () lim x a f x l g x →'=', 那么 ()() lim x a f x g x →=() () lim x a f x l g x →'='。 利用洛必达法则求未定式的极限是微分学中的重点之一,在解题中应注意: ○1将上面公式中的x→a,x→∞换成x→+∞,x→-∞,x a + →,x a - → 洛必达法则也 成立。 ○ 2洛必达法则可处理00,∞∞ ,0?∞,1∞ ,0∞,00,∞-∞型。 ○ 3在着手求极限以前,首先要检查是否满足00,∞∞ ,0?∞,1∞ ,0∞,00,∞-∞型定式,否则滥用洛必达法则会出错。当不满足三个前提条件时,就不能用洛必达法则,这时称洛必达法则不适用,应从另外途径求极限。 ○ 4若条件符合,洛必达法则可连续多次使用,直到求出极限为止。 二.高考题处理 1.(2010年全国新课标理)设函数2 ()1x f x e x ax =---。 (1) 若0a =,求()f x 的单调区间; (2) 若当0x ≥时()0f x ≥,求a 的取值范围

用洛必达法则求下列极限(学习资料)

习题3-2 1. 用洛必达法则求下列极限: (1)x x x ) 1ln(lim 0+→; (2)x e e x x x sin lim 0-→-; (3)a x a x a x --→sin sin lim ; (4)x x x 5tan 3sin lim π →; (5)2 2 )2(sin ln lim x x x -→ ππ ; (6)n n m m a x a x a x --→lim ; (7)x x x 2tan ln 7tan ln lim 0+→; (8)x x x 3tan tan lim 2 π → ; (9)x arc x x cot ) 11ln(lim ++∞→; (10)x x x x cos sec ) 1ln(lim 20-+→; (11)x x x 2cot lim 0 →; (12)2 1 2 lim x x e x →; (13)?? ? ??---→1112lim 21x x x ; (14)x x x a )1(lim +∞→; (15)x x x sin 0 lim +→;

(16)x x x tan 0)1 (lim +→. 解 (1)111 lim 111 lim )1ln(lim 000=+=+=+→→→x x x x x x x . (2)2cos lim sin lim 00=+=--→-→x e e x e e x x x x x x . (3)a x a x a x a x a x cos 1cos lim sin sin lim ==--→→. (4)5 3 5sec 53cos 3lim 5tan 3sin lim 2- ==→→x x x x x x ππ. (5)81 2csc lim 41)2()2(2cot lim )2(sin ln lim 22 2 22 -=---=-?-=-→ →→x x x x x x x x πππππ. (6)n m n m n m a x n n m m a x a n m na mx nx mx a x a x -----→→= = =--1 11 1lim lim . (7)177sec 22sec lim 277tan 2tan lim 272 2sec 2tan 17 7sec 7tan 1 lim 2tan ln 7tan ln lim 22002200=??==????=+→+→+→+→x x x x x x x x x x x x x x . (8))sin (cos 23 )3sin (3cos 2lim 31cos 3cos lim 3133sec sec lim 3tan tan lim 2 222 222 2 x x x x x x x x x x x x x x -?-==?=→ →→→ππππ 3sin 3sin 3lim cos 3cos lim 2 2 =---=-=→ → x x x x x x ππ . (9)122lim 212lim 1lim 11 )1 (111 lim cot arc )11ln(lim 222 2==+=++=+- ?+ =++∞→+∞→+∞→+∞→+∞→x x x x x x x x x x x x x x x . (10)x x x x x x x x x x x 22 022020cos 1lim cos 1)1ln(cos lim cos sec )1ln(lim -=-+=-+→→→(注: cos x ?ln(1+x 2)~x 2) 1sin lim )sin (cos 22lim 00==--=→→x x x x x x x . (11)2 1 22sec 1lim 2tan lim 2cot lim 2000 = ?==→→→x x x x x x x x .

相关主题
文本预览
相关文档 最新文档