当前位置:文档之家› 风荷载作用-例题

风荷载作用-例题

风荷载作用-例题
风荷载作用-例题

[例题2-1] 某高层建筑剪力墙结构,上部结构为38层,底部1-3层层高为4m ,其他各层层高为3m ,室外地面至檐口的高度为120m ,平面尺寸为30m ?40m ,地下室筏板基础底面埋深为12m,如图2-4所示。已知100年一遇的基本风压为2

/45.0m kN =? 建筑场地位置大城市郊区。已计算求得作用于突出屋面小塔楼上的风荷载标准值的总值为800kN 。为简化计算,将建筑物沿高度划分为6个区段,每个区段为20m ,近似取其中点位置的风荷载作为该区段的平均值、计算在风苛载作用下结构底部(一层)的剪力设计值和筏板基础底面的弯矩设计值。

[解] (1) 基本自振周期 根据钢筋混凝土剪力墙结构的经验公式,可得结构的基本周期

为:

s n T t 9.13805.005.0≈?== ( n 是层数)

222210/62.19.145.0m s kN T ?=?=?

(2) 风荷载体型系数 对于矩形平面,由《高层规程》附录A 可求得

80.01=s μ

57.0)40

12003.048.0()03.048.0(2=?+-=+-=L H s μ (3) 风振系数 由条件可知地面粗糙度类别为B 类,由表2-6可查得脉动增大系数

502.1=ξ

脉动影响系数v 根据H /B 和建筑总高度H 由表2-7确定,其中B 为与风向相一致的房屋宽度,由H/B=4.0可从表2-7经插值求得v=0.497;由于结构属于质量和刚度沿高度分布比较均匀的弯剪型结构,可近似采用振型计算点距室外地面高度z 与房屋高度H 的比值,即 H

H i z =?。i H 为第i 层标高;H 为建筑总高度。则由式(2-4)可求得风振系数为: H

H H H i z i z v z z v z ??+=?+=+=μμξμα?ξβ497.0502.1111 (4) 风荷载计算 风荷载作用下,按式(2-2a)的可得沿房屋高度分布的风荷载标准值为: z z z z z q βμβμ66.2440)57.08.0(45.0)(=?+?=

按上述方法可求得各区段中点处的风荷载标准值及各区段的合力见表2-9,如图2-4所示。

则可计算求得在风荷载作用下结构底部一层的剪力设计值为

kN V 16.9652)8.5230.7928.9760.11322.12726.1379800(4.11=++++++= 可求得筏板基础底面的弯矩设计值为

628.976820.11321022.12721226.1397132800(4.1?+?+?+?+??=M

+792.0)228.52342?+?

M kN ?=72.845662

[例题2-2]某钢筋混凝土烟囱高度为l00m ,上口外径为4m ,底部外径为8m ,坡度为2%,如图2-5所示。已知该地区基本风压为 0.452

/m kN , 地面粗糙度类别为B 类,将烟囱沿高度分为五段,试计算各段的平均风荷载以及底部截面产生的弯矩和剪力标准值,并判别是否考虑脉动风引起的横向风振。

[解](1)有关几何参数

第5段的形心高度: m h 70.89)

48.4(3)428.4(20805=+??+?+=, 其他各段形心距底部截面的高度、

各段风荷载作用面积见表2-10。

(2)风荷载体型系数

总高度为100m ,平均直径为

,015.02.160.645.0,0.62>=??==z z o z d m d μμ?μ67.16=d H ,

又因钢筋混凝土表面属表面“光滑”条件。由《荷载规范》表7.3.1项次36可得 554.0=s μ 。

(3)

风压高度变化系数

按照地面粗糙度为B 类,由表2-5可查得不同高度z 处的风压高度变化系数见表2-10。

(4)风振系数

烟囱的自振周期可按照《荷载规范》附录E 公式(E.1.2-2)计算 s s d

H da T 25.0077.261001010.041.01010.041.02

2221>=??+=?+=-- H ——第i 层离地面高度及房屋总高度;

ξ——动力系数,或称脉动增大系数,按表2-4采用;

ν——脉动影响系数,B 类粗糙度地形取v=0.53,C 类取v=0.63;

z μ——风压高度变化系数,按表2-1采用。

表中,0ω ——高层建筑基本风压值;

t T ——结构基本自振周期,可按下式近似计算,式中N 为层数。

框架结构 N T t )1.0~08.0(=

框架 剪力墙(筒体) N T t )08.0~06.0(=

剪力墙及筒中筒 N T t 05.0=

二、总风荷载与局部风荷载

总风荷载设计时,应使用总风荷载计算风荷级作用下结构的内力及位移。总风荷载为建筑物各个表面承受风力的合力,是沿建筑物高度变花的线荷载。通常,按x 、y 两个互相垂直的方向分别计算总风荷载。按下式计算的总风荷载标准值是z 高度处的线荷载(kN/m)。 )c o s ....cos cos (222111n n sn s s o z Z z B B B W αμαμαμωμβ+++= (2-1-3) n ——建筑物外围表面数(每一个平面作为一个表面);

1B 、2B 、…..n B ——n 个表面的宽度;

1s μ、2s μ、…..sn μ——n 个表面的平均风荷载体型系数;

1α、2α、…...n α——n 个表面法线与风作用方向的夹角。

建筑物某个表面与风力作用方向垂直时,即00=i α,则这个表面的风压全部计入总风荷载;当某个表面与风力作用方向平行时,即090=i α,则这个表面的风压不计入总风荷载;其他与风作用方向成某一角度的表面,都计入该表面上压力在风作用方向的分力,在计算时要特别注意区别是风压力还是风吸力,以便作矢量相加。

各表面风荷载的合力作用点,即总风荷载作用点。

局部风载 在某些风压较大的部位,有时需要验算表面围护构件及玻璃等的强度或构件连接强度。在计算建筑突出部位如阳台、檐口、雨罩、遮阳板等构件内力时,要考虑由风产生的向上漂浮力。这些计算称为局部风荷载计算,采用表2-3列出的局部风载体型系数,出式(2-1-1)计算单位面积上的风荷载标准值。

[例2-1]计算框架-剪力墙结构的总风荷载标准值及其作用位置。该结构平面图如图2-4,18层,房屋总高58米,地区标准风压值2/64.0m kN ,风向为图中

箭头所指方向,体型系示于图中。

[解] 沿建筑物高度总风荷载是

01cos ωαμμβi si R i i z

z z B W ∑== 0ω取2/7.064.01.1m kN =?

首先计算 i i si i B W αμωcos 0=,

按8块表面积分别计算。表面序号

在图中O 内标明,列表计算如下,

i x 为 0ω 到原点o 的距离。

风力合力作用点距原点

m x

x i i i

1616

.2980.4660===∑∑ωω

框架-剪力墙结构基本周期近似取 s N T 26.11807.007.01=?== 222210/11.126.17.0m s kN T ?=?=ω 查表2-4得45.1=ξ

B 类地区得53.0=ν

所以 ∑∑+==i i z i z z z H H W ωξνμωμβ)( 16.29)76.0(?+H

H i z μ 各楼层高度处风荷载值如下:

风荷载计算

4.2风荷载 当空气的流动受到建筑物的阻碍时,会在建筑物表面形成压力或吸力,这些压力或吸力即为建筑所受的风荷载。 4.2.1单位面积上的风荷载标准值 建筑结构所受风荷载的大小与建筑地点的地貌、离地面或海平面高度、风的性质、风速、风向以高层建筑结构自振特性、体型、平面尺寸、表面状况等因素有关。 垂直作用于建筑物表面单位面积上的风荷载标准值按下式计算:(-1) 式中: 1.基本风压值Wo 按当地空旷平坦地面上10米高度处10分钟平均的风速观测数据,经概率统计得出50年一遇的 值确定的风速V0(m/s)按公式确定。但不得小于0.3kN/m2。 对于特别重要或对风荷载比较敏感的高层建筑,基本风压采用100年重现期的风压值;对风荷载是否敏感主要与高层建筑的自振特性有关,目前还没有实用的标准。一般当房屋高度大于60米时,采用100年一风压。 《建筑结构荷载规范》(GB50009-2001)给出全国各个地方的设计基本风压。 2.风压高度变化系数μs 《荷载规范》把地面粗糙度分为A、B、C、D四类。 A类:指近海海面、海岸、湖岸、海岛及沙漠地区; B类:指田野、乡村、丛林、丘陵及房屋比较稀疏的城镇及城市郊区; C类:指有密集建筑群的城市市区; D类:指有密集建筑群且房屋较高的城市市区; 书P55页表4.2给出了各类地区风压沿高度变化系数。位于山峰和山坡地的高层建筑,其风压高系数还要进行修正,可查阅《荷载规范》。 3.风载体型系数μz 风荷载体型系数是指建筑物表面实际风压与基本风压的比值,它表示不同体型建筑物表面风力的小。一般取决于建筑建筑物的平面形状等。 计算主体结构的风荷载效应时风荷载体型系数可按书中P57表4.2-2确定各个表面的风载体型或由风洞试验确定。几种常用结构形式的风载体型系数如下图

多层钢筋混凝土框架设计(7 风荷载内力计算)

七风荷载内力计算 基本风压w0=0.4kN/m2,地面粗糙度为B类。本章计算以左风为例。(一)风荷载计算 w k=βzμsμz w0,建筑物高度<30m,故βz=1.0 迎风时μs1=+0.8,背风时μs2=-0.5,则μs=0.8+0.5=1.3 计算过程见下表 计算简图(单位:kN) 14.60 15.44 16.85 13.98 17.04

(二)内力计算 1.抗侧刚度和反弯点高度确定 计算过程见下表 2.剪力在各层分配(单位:kN ) ∑ == 5 n i i Pi P V ,Pi k ik V D D V ?= ∑ V P5V P4V P3V P2V P1

3.柱端弯矩计算(单位:kN?m ) 4.风荷载作用下的内力图 M 图(单位:kN ?m ) 62.98 51.34 32.5132.51 24.71 24.71 14.826.27 19.12 8.67 7.77 4.73 3.95 2.181.11 42.16 41.69 28.77 28.45 19.88 19.65 12.77 12.624.36 4.3157.21 57.21 57.23 34.9522.2837.9 15.6222.289.2818.26 27.54 16.98 3.69 13.296.536.5357.23 22.28 15.62 27.5416.9837.99.283.6934.95 22.28 18.26 6.53 13.29 6.53

V N V ,N 图(单位:kN ) 5.梁端柱边弯矩(单位:kN?m ) 28.11 19.18 13.25 8.51 2.91 35.13 36.8321.39 22.46 12.17 12.5 5.62 5.8 13.74 21.57 9.22 18.06 6.55 13.73 4.11 9.43 1.51 1.4 4.15 17.39 12.38 1.51 2.84 6.27 9.41

竖向荷载计算--分层法例题详解

例:如图1所示一个二层框架,忽略其在竖向荷载作用下的框架侧移,用分层法计算框架的弯矩图,括号内的数字,表示各梁、柱杆件的 线刚度值( EI i l )。 图1 解:1、图1所示的二层框架,可简化为两个如图2、图3所示的,只带一层横梁的框架进行分析。 图2 二层计算简图

图3 底层计算简图 2、计算修正后的梁、柱线刚度与弯矩传递系数 采用分层法计算时,假定上、下柱的远端为固定,则与实际情况有出入。因此,除底层外,其余各层柱的线刚度应乘以0.9的修正系数。底 层柱的弯矩传递系数为1 2 ,其余各层柱的弯矩传递系数为 1 3 。各层梁的弯 矩传递系数,均为1 2 。 图4 修正后的梁柱线刚度

图5 各梁柱弯矩传递系数 3、计算各节点处的力矩分配系数 计算各节点处的力矩分配系数时,梁、柱的线刚度值均采用修正后的结果进行计算,如: G节点处: 7.63 0.668 7.63 3.79 G H G H GH GH GD Gj G i i i i i μ==== ++ ∑ GD 3.79 0.332 7.63 3.79 GD GD GH GD Gj G i i i i i μ==== ++ ∑ H节点处: 7.63 0.353 7.63 3.7910.21 HG HG HG HG HE HI Hj H i i i i i i μ==== ++++ ∑ 3.79 0.175 7.63 3.7910.21 HI HI HI HG HE HI Hj H i i i i i i μ==== ++++ ∑ 10.21 0.472 7.63 3.7910.21 HE HE HE HG HE HI Hj H i i i i i i μ==== ++++ ∑ 同理,可计算其余各节点的力矩分配系数,计算结果见图6、图7。

风荷载例题

风荷载例题 下面以高层建筑为例,说明顺风向结构风效应计算。 由0k z s z W W βμμ=知,结构顺风向总风压为4个参数的乘积,即基本风压0W 、风压高度变化系数z μ、风荷载体型系数s μ、风振系数z β。因基本风压与风压高度变化系数与结构类型和体型无关,以下主要讨论高层建筑体型系数和风振系数的确定,然后通过实例说明高层建筑顺风向风效应的计算。 1.高层建筑体型系数 高层建筑平面沿高度一般变化不大,可近似为等截面,且平面以矩形为多。根据风洞试验及实验结果,并考虑到工程应用方便,一般取矩形平面高层建筑迎风面体型系数为+(压力),背风面体型系数为(吸力),顺风向总体型系数为1.3s μ=。 根据《高层建筑混凝土结构技术规程》JGJ 3-2002第3.2.5条:

2.高层建筑风振系数 高层建筑风振系数可根据《高层建筑混凝土结构技术规程》JGJ 3-2002进行计算,也可参考《建筑结构荷载规范》。 3.实例 【例1】已知一矩形平面钢筋混凝土高层建筑,平面沿高度保持不变,质量和刚度沿竖向均匀分布。100H m =,33B m =,地面粗糙度指数s α=,基本风压按粗糙度指数为0.16s α=的地貌上离地面高度s z =10m 处的风速确定,基本风压值为200.44/w kN m =。结构的基本自振周期1 2.5T s =。求风产生的建筑底部弯矩。 解: (1) 为简化计算,将建筑沿高度划分为5个计算区段,每个区段20m 高,取其中点位置的风载值作为该区段的平均风载值,。 (2) 体型系数 1.3s μ=。 (3) 本例风压高度变化系数 在各区段中点高度处的风压高度变化系数值分别为 10.62z μ= 21z μ= 3 1.25z μ= 4 1.45z μ= 5 1.62z μ= (4) 风振系数的确定,由 201a w T =××2=221.71/kN s m ? 查表得脉动增大系数 1.51ξ= 计算各区段中点高度处的第1振型相对位移 11?= 12?= 13?= 14?= 15?= 因建筑的高度比/3H B =,查表得脉动影响系数0.49ν=。 将上式数据代入风振系数的计算公式,得到各区段中点高度处的风振系数: 1β= 2β= 3β= 4β= 5β= (5) 计算各区段中点高度处的风压值 21 1.12 1.30.620.440.40/w kN m =???=

等效风荷载计算方法分析

等效静力风荷载的物理意义 从风洞试验获取屋面风荷载气动力信息,到得到结构的风振响应整个过程来看,计算过程中涉及到风洞试验和随机振动分析等复杂过程,不易为工程设计人员所掌握,因此迫切需要研究简便的建筑结构抗风设计方法。 等效静力风荷载理论 就是在这一背景下提出的。其基本思想是将脉动风的 动力效应以其等效的静力形式表达出来,从而将复杂的动力分析问题转化为易于被设计人员所接受的静力分析问题。等效静力风荷载是联系风工程研究和结构设计的纽带[3] ,是结构抗风设计理论的 核心内容,近年来一直是结构风工程师研究的热点之一。 等效静力风荷载的物理意义可以用单自由度体系的简谐振动来说明 [45, 108] 。 k c P(t) x(t) 图1.3 气动力作用下的单自由度体系 对如图1.3的单自由度体系,在气动力 P t 作用下的振动方程为: mx cx kx P t (1.4.1) 考虑粘滞阻尼系统,则振动方程可简化为: 2 00 2 22P t x f x f x m (1.4.2) 式中 12 f k m 为该系统的自振频率, 2c km 为振动系统的临界阻尼比。 假设气动力为频率为 f 的简谐荷载,即 20i ft P t F e ,那么其稳态响应为: 202 00 1 2i ft F k x t e f f i f f (1.4.3) 进一步化简有: 2 i ft x t Ae (1.4.4) 其中 02 2 2 1 2F k A f f f f , 2 2arctan 1 f f f f , A 为振幅, 为气动力和 位移响应之间的相位角。 现在假设该系统在某静力 F 作用下产生幅值为A 的静力响应,那么该静力应该为:

荷载计算题

1.图示简支梁,4000L mm =,受到楼面传来的均布恒荷载标准值7.5/k g kN m = (不含梁自重),均布活荷载标准值8/k q kN m =,梁截面尺寸为250400b h mm mm ?=?,混凝土容重为325/kN m γ=。活荷载的组合值系数为0.7c ψ=,准永久值系数为0.5q ψ=,频遇值系数0.6f ψ=,求该梁跨中处弯矩的基本组合、准永久组合和频遇组合。 ①基本组合: 梁自重线荷载:325/0.250.4 2.5/kN m m m kN m ??= 该梁承受均布荷载标准值 2.57.510/k g kN m =+= 当由可变荷载效应控制时 22 2211 1.2 1.4881 1 1.2104 1.484242 2.446.488G Gk Q Qk k k S S S g L q L kN m γγ=+=??+??=???+???=+=? 当由永久荷载效应控制时 22 2211 1.35 1.40.7881 1 1.35104 1.40.7842715.684 2.6888G Gk Q c Qk k k S S S g L q L kN m γγψ=+=??+???=???+????=+=? 该梁在基本组合下跨中弯矩为46.4kN m ? ②准永久组合 22 122118811 1040.5842082888n Gk qi Qik k q k i S S S g L q L kN m ψψ==+=?+??=??+???=+=?∑ ③频遇组合 22 1122211 881 1 1040.684209.629.688k n G f Q k qi Qik k f k i S S S S g L q L kN m ψψψ==++=?+??=??+???=+=?∑ 2.图示外伸梁,已知该梁受到均布恒荷载标准值10/k g kN m =(含梁自重),均布活荷载标准值

工程中风压-风荷载理论定义和计算方法

第一章风、风速、风压和风荷载 第一节风的基本概念 风是空气从气压大的地方向气压小的地方流动而形成的。气流一遇到结构的阻塞,就形成高压气幕。风速愈大,对结构产生的压力也愈大,从而使结构产生大的变形和振动。结构物如果抗风设计不当,或者产生过大的变形会使结构不能正常地工作,或者使结构产生局部破坏,甚至整体破坏。 风引起对结构作用的风荷载,是各种工程结构的重要设计荷载。风荷载对于高耸结构(如塔、烟囱、桅杆等)、高层房屋、桥梁、起重机、冷却塔、输电线塔、屋盖等高、细、长、大结构,常常起着主要的作用。因而,风力的研究,对工程结构,特别对上述工程结构,是设计计算中必不可少的一部分。 对结构安全产生影响的是强风,可分为热带低压、热带风暴、台风或飓风、寒潮风暴、飑风、龙卷风等。 不同的季节和时日,町以有不同的风向,给结构带来不同的影响。每年强度最大的风对结构影响最大,此时的风向常称为主导风向,可从该城市(地区)的风玫瑰图得出。由于风玫瑰图是由气象台得出的,建筑所在地的实际风向可能与此不同,因而在结构风丁程上,除了某些参数需考虑风向外,一般都可假定最大风速出现在各个方向上的概率相同,以较偏于安全地进行结构设计。关于需考虑风向的参数将在下面有关章节中加以说明。 风可以有一定的倾角,相对于水平一般最大可在±10°到—10°内变化。这样,结构上除水平分风力外,还存在上下作用的竖向分风力。竖向分风力对细长的竖向结构,例如烟囱等,一般只引起竖向轴力的变化,对这类工程来讲并不重要,因而只有像大跨度屋盖和桥梁结构,竖向分风力才应该引起我们的注意。但其值也较水平风力为小,但属于同一数量级。 根据大量风的实测资料可以看出,在风的时程曲线中,瞬时风速。包含两种成分:一种是长周期部分,其值常在10min以上;另一种是短周期部分,常只有几秒左右。图1—1是风从开始缓慢上升至稳定值后的一个时程曲线示意图。根据上述两种成分,实用上常把风分为平均风(即稳定风)和脉动风(即阵风脉动)来加以分析。平均风是在给定的时间间隔内,把风对建筑物的作用力的速度、方向以及其他物理量都看成不随时间而改变的量,考虑到风的长周期远远地大于一般结构的自振周期,因而这部分风 虽然其本质是动力的,但其作用与静力作用相近,因此可认为,其作用性质相当于静力。脉动风是由于风的不规则性引起的,它的强度是随时间按随机规律变化的。由于它周期较短,因而应按动力来分析,其作用性质完全是动力的。 研究表明,脉动风的影响与结构周期、风压、受风面积等有直接影响,这些参数愈大,影响也愈大,兼之结构上还有平均风作用,因而对于高、细、长、大等柔性结构,风的影响起着很大的、甚至决定性的作用。 第二节风力强度表示法 不同的风有不同的特征,但它的强度常用风速来表达。最常用的风速分类有两种,即范围风速和工程风速。 一、范围风速 将风的强度划分为等级,用一般风速范围来表达。常用的有:蒲福风速表;福基达龙卷风风力等级表。 (一)蒲福风速表

桥梁计算题2014.10.6

六、计算题 1、某公路桥梁由多跨简支梁组成,总体布置如图6-1所示,每孔标准跨径25m ,计算跨径24m ,桥梁总宽10m ,行车道宽8m ,每孔上部结构采用后张法预应力混凝土箱梁,每个桥墩上设四个支座,支座横桥向中心距为4m 。桥墩支承在岩基上,由混凝土独柱墩身和带悬臂 的盖梁组成,桥梁设计荷载等级为公路-I 级,混凝土的重力密度为25kN/m 2 。 问:(1)该桥按规模分为哪一类? (2)该桥的设计安全等级为几级? (3)在计算汽车设计车道荷载时,设计车道数取几? (4)桥梁的车道横向折减系数为多少? (5)在计算主梁的剪力和弯矩时,车道荷载标准值如何取用? 图6-1(图中尺寸单位:m ) 【解】(1)根据《桥规》第1.0.11条表1.0.11可知:该桥按规模分类属大桥; (2)根据《桥规》第1.0.9条表1.0.9可知:该桥的设计安全等级为二级; (3)根据《桥规》第4.3.1条表4.3.1-3可知:设计车道数取2; (4)根据《桥规》第4.3.1条表4.3.1-4可知:车道横向折减系数为1.0; (5)在计算主梁的剪力和弯矩时,车道荷载的均布荷载标准值均为kN/m 5.10=k q ;集中荷载标准值,当桥梁计算跨径小于或者等于5m 时,kN 180=k P ;当桥梁计算跨径等

于或大于50m 时,kN 360=k P ;当桥梁计算跨径在5m ~50m 之间时,k P 值采用直线内插求得。计算剪力时,集中荷载标准值k P 乘以1.2的系数。本题中,计算跨径024m l =。 所以:计算主梁弯矩时的集中荷载标准值:180180(245)/(505)256kN k P =+?--=; 计算主梁剪力时的集中荷载标准值:256 1.2=307.2kN k P =?。 2、某预应力钢筋混凝土箱形截面简支梁桥,计算跨径40m ,设计荷载等级为公路-I 级,桥梁采用上、下行双幅分离式横断面形式,单幅行车道宽16m ,两侧防撞栏杆各0.6m ,单幅桥全宽17.2m 。 问:(1)计算汽车设计车道荷载时,采用几个设计车道数? (2)桥梁的车道横向折减系数为多少? (3)在计算主梁的剪力和弯矩时,车道荷载标准值各为多少? 【解】(1)根据《桥规》第4.3.1条表4.3.1-3可知:设计车道数取4; (2)根据《桥规》第4.3.1条表4.3.1-4可知:车道横向折减系数为0.67; (3)在计算主梁的剪力和弯矩时,车道荷载的均布荷载标准值均取为kN/m 5.10=k q ;集中荷载标准值:当计算主梁弯矩时:180180(405)/(505)320kN k P =+?--=; 当计算主梁剪力时:320 1.2=384kN k P =?。 3、某预应力钢筋混凝土箱形截面简支梁桥,计算跨径40m 。若该主梁跨中横断面面积 2m 6.9=F 、主梁采用C50混凝土,混凝土的弹性模量MPa 1045.34?=c E ,跨中截面的截面 惯性矩4m 75.7=c I 、材料重力密度3 kN/m 0.26=γ,试计算汽车荷载冲击系数μ为多少? 【解】已知:m 40=l ,2 m 6.9=F ,MPa 1045.34?=c E ,3kN/m 0.26=γ,4m 75.7=c I 结构跨中处延米结构重力: 3 26109.6249600N/m G F γ==??= 结构跨中处的单位长度质量:22 /249600/9.8125443Ns /m c m G g === 简支梁桥基频: 3.18Hz f = == 冲击系数:189.00157.01826.3ln 1767.00157.0ln 1767.0=-=-=f μ。 4、图6-2所示为一座桥面板铰接的T 形截面简支梁桥,桥面铺装厚度为0.12m ,桥面板净跨径为 1.42m ,车辆两后轮轴距为 1.4m ,车辆后轮着地宽度和长度分别为:20.6m b =和 20.2m a =;车辆荷载的轴重kN 140=P ,冲击系数3.11=+μ,计算桥面板根部在车辆荷

风荷载标准值计算方法

按老版本规范风荷载标准值计算方法: 1.1风荷载标准值的计算方法 幕墙属于外围护构件,按建筑结构荷载规范(GB50009-20012006年版)计算: w k =B gz u z y si W 0 ……7.1.1-2[GB50009-2001 2006 年版] 上式中: w k :作用在幕墙上的风荷载标准值(MPa); Z :计算点标高:15.6m ; B gz :瞬时风压的阵风系数; 根据不同场地类型,按以下公式计算(高度不足5m 按5m 计算): 1. 正压区 2. 负压区 - 对墙面, - 对墙角边, 二、内表面 对封闭式建筑物,按表面风压的正负情况取 -0.2或0.2 本计算点为大面位置 按JGJ102-2003第5.3.2条文说明:风荷载在建筑物表面分布是不均匀的, 在檐口附近、边角部位较大。根据风洞试验结果和国外的有关资料, 在上述区域 B gz =K(1+2 卩 f ) 其中K 为地面粗糙度调整系数, 1 f 为脉动系数 A 类场地: B gz =0.92 X (1+2 卩 f ) 其中: ■0 12 1 f =0.387 X (Z/10). B 类场地: B gz =0.89 X (1+2 [1 f ) 其中: 1 f =0.5(Z/10) -0.16 C 类场地: B gz =0.85 X (1+ 2 1 f ) 其中: 1 f =0.734(Z/10) -0.22 D 类场地: B gz =0.80 X (1+2 1 f ) 其中: 1 f =1.2248(Z/10) -0. 3 对于B 类地形, B gz =0.89 X (1+2 X (0.5(Z/10) 卩Z :风压咼度变化系数; 根据不同场地类型,按以下公式计算: 类场地: ))=1.7189 类场地: 类场地: 类场地: 0 24 卩 z =1.379 X (Z/10). 当 Z>300m 时,取 Z=300m 当 Z<5m 时,取 Z=5m 0.32 卩 z =(Z/10) 当 Z>350m 时,取 Z=350m 当 Z<10ni 时,取 Z=10m 卩 z =0.616 X (Z/10) 0.44 当 Z>400m 时,取 Z=400m 当 Z<15ni 时,取 Z=15m 卩 z =0.318 X (Z/10) 0.60 当 Z>450m 时,取 Z=450m 当 Z<30ni 时,取 Z=30m 15.6m 高度处风压高度变化系数: 对于B 类地形, 卩 z =1.000 X (Z/10) 卩S1:局部风压体型系数; 按《建筑结构荷载规范》GB50009-2001(2006年版)第7.3.3条:验算围护 构 件及其连接的强度时,可按下列规定采用局部风压体型系数卩 一、外表面 S1 : 按表7.3.1采用; 取-1.0 取-1.8 15.6m 高度处瞬时风压的阵风系数:

荷载组合例题(1)

【例题1】某办公楼面板,计算跨度为3.18m ,沿板长每米永久荷载标准值为3.1kN/m ,可变荷载只有一种,标准值为1.35Kn/m ,该可变荷载组合系数为0.7,准永久值系数为0.4,结构安全等级为二级。 求:用于计算承载能力极限状态和正常使用极限状态所需的荷载组合。 解: 1、承载能力极限状态 可变荷载控制的组合 ()221 1.2 3.1 3.18/8 1.4 1.35 3.18/87.07M kN m =???+??= 永久荷载控制的组合 ()221 1.35 3.1 3.18/8 1.40.7 1.35 3.18/8 6.96M kN m =???+???= 取 6.96M kN m = 。 2、正常使用极限状态 按标准组合计算 223.1 3.18/8 1.35 3.18/8 5.63M kN m =?+?= 按准永久组合计算 223.1 3.18/80.4 1.35 3.18/8 4.60M kN m =?+??= 【例题2】某矩形截面外伸梁如图,截面尺寸为250mm ×500mm ,承受永久荷载标准值20kN/m ,可变荷载标准值10kN/m ,组合系数ψc =0.7。 求:跨中最大弯矩设计值。 解:对跨中弯矩计算,跨中梁段荷载为不利荷载,其设计值应乘以放大系数: 1.35×20+0.7×1.4×10=36.8kN/m (永久荷载控制) 1.2×20+1.4×10=38kN/m (可变荷载控制) 外伸梁段的荷载为有利荷载,所以永久荷载分项系数为1.0,可变荷载分项系数为0,其设计值为:1×20+0×10=20kN/m 。 所以跨中最大弯矩设计值为: 38×62/8-0.5×20×22/2=151kN-m 。 对外伸段梁,跨中弯矩数值不影响支座处负弯矩,但是影响弯矩包络图范围,从而影响负筋配置,当然外伸段梁荷载为不利荷载。

风荷载作用-例题

[例题2-1] 某高层建筑剪力墙结构,上部结构为38层,底部1-3层层高为4m ,其他各层层高为3m ,室外地面至檐口的高度为120m ,平面尺寸为30m ?40m ,地下室筏板基础底面埋深为12m,如图2-4所示。已知100年一遇的基本风压为2 /45.0m kN =? 建筑场地位置大城市郊区。已计算求得作用于突出屋面小塔楼上的风荷载标准值的总值为800kN 。为简化计算,将建筑物沿高度划分为6个区段,每个区段为20m ,近似取其中点位置的风荷载作为该区段的平均值、计算在风苛载作用下结构底部(一层)的剪力设计值和筏板基础底面的弯矩设计值。 [解] (1) 基本自振周期 根据钢筋混凝土剪力墙结构的经验公式,可得结构的基本周期 为: s n T t 9.13805.005.0≈?== ( n 是层数) 222210/62.19.145.0m s kN T ?=?=? (2) 风荷载体型系数 对于矩形平面,由《高层规程》附录A 可求得 80.01=s μ 57.0)40 12003.048.0()03.048.0(2=?+-=+-=L H s μ (3) 风振系数 由条件可知地面粗糙度类别为B 类,由表2-6可查得脉动增大系数 502.1=ξ 脉动影响系数v 根据H /B 和建筑总高度H 由表2-7确定,其中B 为与风向相一致的房屋宽度,由H/B=4.0可从表2-7经插值求得v=0.497;由于结构属于质量和刚度沿高度分布比较均匀的弯剪型结构,可近似采用振型计算点距室外地面高度z 与房屋高度H 的比值,即 H H i z =?。i H 为第i 层标高;H 为建筑总高度。则由式(2-4)可求得风振系数为: H H H H i z i z v z z v z ??+=?+=+=μμξμα?ξβ497.0502.1111 (4) 风荷载计算 风荷载作用下,按式(2-2a)的可得沿房屋高度分布的风荷载标准值为: z z z z z q βμβμ66.2440)57.08.0(45.0)(=?+?= 按上述方法可求得各区段中点处的风荷载标准值及各区段的合力见表2-9,如图2-4所示。

梁计算实例

模板计算实例 1、工程概况 柱网尺寸6m×9m,柱截面尺寸600mm×600mm 纵向梁截面尺寸300mm×600mm,横向梁截面尺寸600mm×800mm,无次梁,板厚150 mm,层高12m,支架高宽比小于3。 (采用泵送混凝土。) 2、工程参数(技术参数)

3计算 3.1梁侧模板计算 图3.1 梁侧模板受力简图 3.1.1梁侧模板荷载标准值计算 新浇筑的混凝土作用于模板的侧压力标准值,依据建筑施工模板安全技术规范,按下列公式计算,取其中的较小值: V F C 210t 22.0ββγ= 4.1.1-1 H F c γ= 4.1.1-2 式中 : γc -- 混凝土的重力密度,取24kN/m 3; t 0 -- 新浇混凝土的初凝时间,按200/(T+15)计算,取初凝时间为5.7 小时。 T :混凝土的入模温度,经现场测试,为20℃; V -- 混凝土的浇筑速度,取11m/h ; H -- 混凝土侧压力计算位置处至新浇混凝土顶面总高度,取0.8m ; β1-- 外加剂影响修正系数,取1.2; β2-- 混凝土坍落度影响修正系数,取1.15。

V F C 210t 22.0ββγ==0.22×24×5.7×1.2×1.15×3.32=138.13 kN/m 2 H F c γ==24×0.8=19.2 kN/m 2 根据以上两个公式计算,新浇筑混凝土对模板的侧压力标准值取较小值19.2kN/m 2。 3.1.2梁侧面板强度验算 面板采用木胶合板,厚度为18mm ,验算跨中最不利抗弯强度和挠度。计算宽度取1000mm 。(次楞平行于梁方向) 面板的截面抵抗矩W= 1000×18×18/6=54000mm 3; (W= 650×18×18/6=35100mm 3 ;)(次楞垂直于梁方向) 截面惯性矩I= 1000×18×18×18/12=486000mm 4; (I= 650×18×18×18/12=315900mm 4;) 1、面板按三跨连续板计算,其计算跨度取支承面板的次楞间距,L=0.15m 。 2、荷载计算 新浇筑混凝土对模板的侧压力标准值G 4k =19.2kN/m 2, 振捣砼对侧模板产生的荷载标准值Q 2K =4kN/m 2。 (规范:2振捣混凝土时产生的荷载标准值(k Q 2)(↓→)对水平面模板可采用2 kN/m 2,对垂直面模板可采用4 kN/m 2) 荷载基本组合 1) 由可变荷载效应控制的组合 k Q n i ik G Q r G r S 111+=∑= (4.3.1—2) ∑∑==+=n i ik Qi n i ik G Q r G r S 1 1 9.0 (4.3.1—3) 式中 G r ──永久荷载分项系数,应按表4.2.3采用;

风荷载例题

例题1:某三层钢筋混凝土框架结构,平面为矩形,纵向各轴线间距离为4.2m ,层高为3.6m ,室内外高差0.6m ,地貌为B 类,所在地区基本风压值w 0为0.55kN/m 2 。求,顺风向风对一榀横向中框架各层节点产生的风荷载标准值。 风压高度变化系数μz (z)(老规范) 离地面高度(m ) 地面粗糙度B 5 1.00 10 1.00 15 1.14 解:建筑总高h <30m ,取βz =1.0 层数 βz μs z μz w 0 w z 1 1.0 1.3 4.2 1.00 0.55 0.715 2 7.8 1.00 0.715 3 11.4 1.04 0.744 一榀横向中框架各层节点产生的风荷载标准值为: ()1 1 4. 2 3.60.715 4.211.71kN 2P =?+??= ()21 3.6 3.60.715 4.210.81kN 2P =?+??= 31 3.60.744 4.2 5.62kN 2 P =???= 例题2:某金工车间,外形尺寸及部分风载体型系数如图所示,基本风压2 00.45kN /m ω=, 柱顶标高为10m +,室外天然地坪标高为0.30m -,1=2.1m h ,2=1.2m h ,地面粗糙类别为B ,排架计算宽度6m B =。求作用在排架上的顺风向风荷载标准值。 .解:(1)求21,q q ,

离地10m 时,0.1=z μ,离地15m 时,14.1=z μ,当离地10.3m 时, ()1.141 110.3101 .011510 z μ-=+ ?-=- ()10.8 1.010.456 2.18/k q kN m =???=→ ()20.5 1.010.456 1.36/k q kN m =???=→ (2)求w 屋顶与檐口风压高度变化系数均按檐口离室外地坪的高度10.3+2.1=12.4 ()1.141 112.410 1.071510 z μ-=+ ?-=- ()()0.80.5 2.10.50.6 1.2 1.070.4567.54k w kN =+?+-????=????

风荷载习题

1、求单层厂房的风荷载 条件:某厂房处于大城市郊区,各部尺寸如图2.1.8所示,纵向柱距为6m ,基本风压 w 0=0.55kN /m 2,室外地坪标高为-0.150。 要求:求作用于排架上的风荷载设计值。 答案: 风荷载体型系数如图2.1.8所示。 风荷载高度变化系数,由《荷载规范》按B 类地面粗糙度确定。 柱顶处(标高11.4m 处) μz =1+(1.14-1)×[(11.4+0. 5-10)/(1 5-10)]=1.044 屋顶(标高12.5m 处) 1.075z μ= (标高13.0m 处) 1.089z μ= (标高15.55m 处) 1.14(1.24 1.14)[(15.550.1515)/(2015)] 1.151z μ=+-?+--= (标高15.8m 处为坡面且却是吸力,二面水平分力的合力为零) 垂直作用在纵墙上的风荷载标准值: 迎风面:21100.8 1.0440.550.459/k s z w w kN m μμ==??= 背风面:22200.5 1.0440.550.287/k s z w w kN m μμ==??= 排架边柱上作用的均布风荷载设计值: 迎风面:211 1.40.4596 3.85/Q k q r w B kN m ==??=

背风面:222 1.40.2876 2.41/Q k q r w B kN m ==??= 作用在柱顶的集中风荷载的设计值: 0() 1.4[(0.80.5) 1.075 1.10(0.20.6) 1.0890.5(0.60.6) 1.151 2.55]0.55624.3w Q si zi i F r h w B kN μμ==+??+-+??++????=∑ 2、求双坡屋面的风压 条件:地处B 类地面粗糙程度的某建筑物,长10m ,横剖面如图2.1.10a ,两端为山墙, w 0=0.35kN /m 2。 要求:确定各墙(屋)面所受水平方向风力。 答案:1、已知200.35/w kN m = 1 00 t a n (3/12)14.0415α-==<,相应屋面的0.6s μ=-。 100L m = 2、各墙(屋)面所受水平方向风力列表计算如表2.1.1所示。

盈建科YJK计算参数详解—风荷载信息

风荷载

执行规范:选择最新的。 地面粗糙度类别:《荷规》8.2.1. 修正后的基本风压:指沿海、强风地区及规范特殊规定等可能在基本风压基础上,对基本风压进行修正后的风压。对于一般工程,可按照《荷规》的规定采用。《高规》4.2.2条规定,对风荷载比较敏感的高层建筑,承载力设计时应按基本风压的1.1倍采用。对于该条规定,软件通过“荷载组合”选项卡的“承载力设计时风荷载效用放大系数”来考虑,不需且不能在修正后的基本风压上乘以放大系数。 风荷载计算用阻尼比:《荷规》8.4.4。 结构X、Y项基本周期:初始默认,设计人员应将计算后的结构基本周期重新填入,重新计算以得到更准确的风荷载计算结果。 承载力…放大系数:《高规》4.2.2,对风荷载比较敏感的高层建筑,承载力设计时应按基本风压的1.1倍采用。 风压:取值与风荷载计算时采用的“基本风压”可能不同(10或50年),因此单独列出,仅用于舒适度验算。 结构阻尼比:《高规》3.7.6,宜取0.01~0.02,高度不小于150m才考虑风振舒适度。 精细计算……风荷加载:以前是对柱按柱顶的节点荷载加载,即把作用在整个柱上的风荷载作为柱顶节点集中力加载,这样计算的内力位移偏大。风荷载按柱间均布风荷载加载更符合钢结构门式刚架等设计的需要。精细风情况可操作,默认勾选。 考虑顺风向风振:《荷规》8.4.1:对于高度大于30m且高宽比大于1.5的房屋,以及基本自振周期T1大于0.25s的各种高耸结构,应考虑风压脉动对结构产生顺风向风振的影响。 其他风向角度:软件自动计算的风工况为+X,-X,+Y,-Y四个工况,即0,90,180,270度方向。若需要考虑其他方向的风工况,可在“其他风向”参数中指定。此处设置后,设

风荷载计算软件方法与规范方法进行比较

风荷载是空气流动对工程结构所产生的压力。 风荷载也称风的动压力,是空气流动对工程结构所产生的压力。风荷载与基本风压、地形、地面粗糙度、距离地面高度,及建筑体型等诸因素有关。中国的地理位置和气候条件造成的大风为:夏季东南沿海多台风,内陆多雷暴及雹线大风;冬季北部地区多寒潮大风。其中沿海地区的台风往往是设计工程结构的主要控制荷载。台风造成的风灾事故较多,影响范围也较大。雷暴大风可能引起小范围内的风灾事故。 一《建筑结构荷载规范》GB50009-2012中所规定的顺风向风荷载的具体计算 1 顺风向风荷载 2012规范关于顺风向风荷载的计算公式没有形式上的变化,仍然采用平均风压乘以风振 0ωμμβωκz s z = (1) 其中: k ω— 风荷载标准值(kN/m 2); z β— 高度z 处的风振系数; s μ— 风荷载体型系数; z μ— 风压高度变化系数; 0ω— 基本风压。 如果不考虑结构在风荷载作用下的动力响应,则由平均风压引起的静荷载取决于体型系 数、风压高度变化系数及基本风压这三项因素,下面讨论顺风向作用下的静荷载计算: 1.1 基本风压 中国规定的基本风压w 0 以一般空旷平坦地面、离地面10米高、风速时距为10分钟平 均的最大风速为标准,按结构类别考虑重现期(一般结构重现期为30年,高层建筑和高耸结构为50年,特别重要的结构为100年),统计得最大风速v (即年最大风速分布的96.67%分位值,并按w 0=ρv 2/2确定。式中ρ为空气质量密度;v 为风速)。根据统计,认为离地面10米高、时距为10分钟平均的年最大风压,统计分布可按极值I 型考虑。 基本风压因地而异,在中国的分布情况是:台湾和海南岛等沿海岛屿、东南沿海是最大风压区,由台风造成。东北、华北、西北的北部是风压次大区,主要与强冷气活动相联系。青藏高原为风压较大区,主要由海拔高度较高所造成。其他内陆地区风压都较小。 风速风速随时间不断变化,在一定的时距Δt 内将风速分解为两部分:一部分是平均风 速的稳定部分;另一部分是指风速的脉动部分。为了对变化的风速确定其代表值作为基本风压,一般用规定时距内风速的稳定部分作为取值标准。 建筑设计中的取用:基本风压应按《建筑结构荷载规范》GB50009-2012附录E 中附表 E.5 给出的全国各地区的风压采用数值。对于高层建筑、高耸结构以及对风荷载比较敏感的其他结构,基本风压应适当提高,并应由有关的结构设计规范具体规定。 当城市或建设地点的基本风压值在本规范全国基本风压图上没有给出时,基本风压值可 根据当地年最大风速资料,按基本风压定义,通过统计分析确定,分析时应考虑样本数量的

计算例题

【例2-3-7】计算图2-3-52所示的五梁式装配式钢筋混凝土简支梁桥主梁的恒载内力。图2-3-52a 和图2-3-52b分别为主梁横截面和横隔梁布置图。已知计算跨径l=19.5m,每侧栏杆及人行道重量的作用力为5kN/m,钢筋混凝土、沥青混凝土和混凝土的重度分别为25 kN/m3、23kN/m3和24kN/m3。 解:(1)恒载集度计算 1)主梁 2)横隔梁 对于边主梁 A l M x b)

图2-3-53 恒载内力计算图 各计算截面的弯矩和剪力计算结果列于表2-3-7。 用表冲击系数为10.1767ln 0.01570.259f μ=-= (3)计算公路—I 级车道荷载的跨中弯矩 将车道荷载按图2-3-55布置,则车道荷载的跨中弯矩为 图2-3-55 车道荷载的影响线加载图式(单位:m ) 其中,双车道不折减k 19.5 1.00,m 4.875m 4 y ξ== =,车道均布荷载作用下22221 19.5m 47.53m 88 l Ω==?= 故得

(4)计算人群荷载的跨中弯矩一侧人群荷载沿纵向的线荷载集度为 (5)计算跨中截面车道荷载的最大剪力鉴于跨中剪力影响线的较大竖标值位于跨中部分,故全跨采用跨中荷载横向分布系数来计算。按图2-3-55b布置荷载,公路—I级车道荷载作用下11 Ω=???=,则跨中截面剪力为 19.50.5m 2.4375m 22 (6)计算跨中截面人群荷载的最大剪力 (7)计算支点截面车道荷载的最大剪力计算支点截面最大剪力时需要考虑近端荷载横向分布系数沿桥跨的变化,绘制荷载荷载横向分布系数沿桥跨方向的变化图和支点剪力影响线如图2-3-56所示。 图2-3-56 支点剪力计算图式(单位:m) 支点剪力影响线的面积为 则 所示,

风荷载习题

1 1、求单层厂房的风荷载 条件:某厂房处于大城市郊区,各部尺寸如图2.1.8所示,纵向柱距为6m ,基本风压 w 0=0.55kN /m 2,室外地坪标高为-0.150。 要求:求作用于排架上的风荷载设计值。 答案: 风荷载体型系数如图2.1.8所示。 风荷载高度变化系数,由《荷载规范》按B 类地面粗糙度确定。 柱顶处(标高11.4m 处) μz =1+(1.14-1)×[(11.4+0. 5-10)/(1 5-10)]=1.044 屋顶(标高12.5m 处) 1.075z μ= (标高13.0m 处) 1.089z μ= (标高15.55m 处) 1.14(1.24 1.14)[(15.550.1515)/(2015)] 1.151z μ=+-?+--= (标高15.8m 处为坡面且却是吸力,二面水平分力的合力为零) 垂直作用在纵墙上的风荷载标准值: 迎风面:21100.8 1.0440.550.459/k s z w w kN m μμ==??= 背风面:22200.5 1.0440.550.287/k s z w w kN m μμ==??= 排架边柱上作用的均布风荷载设计值: 迎风面:211 1.40.4596 3.85/Q k q r w B kN m ==??=

2 背风面:222 1.40.2876 2.41/Q k q r w B kN m ==??= 作用在柱顶的集中风荷载的设计值: 0() 1.4[(0.80.5) 1.075 1.10(0.20.6) 1.0890.5(0.60.6) 1.151 2.55]0.55624.3w Q si zi i F r h w B kN μμ==+??+-+??++????=∑ 2、求双坡屋面的风压 条件:地处B 类地面粗糙程度的某建筑物,长10m ,横剖面如图2.1.10a ,两端为山墙, w 0=0.35kN /m 2。 要求:确定各墙(屋)面所受水平方向风力。 答案:1、已知200.35/w kN m = 100t a n (3/12)14.0415α-==<,相应屋面的0.6s μ=-。 100L m = 2、各墙(屋)面所受水平方向风力列表计算如表2.1.1所示。

风荷载计算

参考规范: 《建筑结构荷载规范》GB50009-2012 《高层建筑混凝土结构技术规程》JGJ3-2010 一般情况下的风荷载: 风荷载标准值 《荷载规范》8.1.1、《高规》4.2.1 0w w z s z k μμβ= (1)该风荷载标准值的计算公式适用于计算主要承重(主体)结构的风荷 载; (2)所求的风荷载标准值为顺风向的风荷载; (3)风荷载垂直于建筑物的表面; (4)风荷载作用面积应取垂直于风向的最大投影面积; (5)适用于计算高层建筑的任意高度处的风荷载。 基本风压 《荷载规范》3.2.5第2款 对雪荷载和风荷载,应取重现期为设计使用年限…… 《荷载规范》8.1.2 基本风压应采用按本规范规定的方法确定的50年重现期的风压,但不得小 于0.3kN/㎡。 《荷载规范》E.5 《高规》4.2.2 ……对风荷载比较敏感的高层建筑,承载力设计时应按基本风压的1.1倍采 用。 (条文说明)……一般情况下,对于房屋高度大于60m 的高层建筑,承载力 设计时风荷载计算可按基本风压的1.1倍采用…… 《烟规》5.2.1 ……基本风压不得小于0.35kN/㎡。对于安全等级为一级的烟囱,基本风压 应按100年一遇的风压采用。 风压高度变化系数 《荷载规范》8.2.1 地面粗糙度 A 类 近海海面和海岛、海岸、湖岸及沙漠地区 B 类 田野、乡村、丛林、丘陵以及房屋比较稀疏的乡镇 C 类 密集建筑群的城市市区 D 类 密集建筑群且房屋较高的城市市区 《荷载规范》表8.2.1 对墙、柱的风压高度变化系数,均按墙顶、柱顶离 地面距离作为计算高度z ,查表用插入法确定。 风压体型系数 《荷载规范》8.3.1 围墙:按第32项,取1.3 《高规》4.2.3 1 圆形平面建筑取0.8; 2 正多边形及截角三角形平面建筑,由下列计算:n s /2.18.0+=μ 3 高宽比H/B 不大于4的矩形、方形、十字形平面建筑取1.3; 4 下列建筑取1.4: 1)V 形、Y 形、弧形、双十字形、井字形平面建筑; 2)L 形、槽形和高宽比H/B 大于4的十字形平面建筑;

相关主题
文本预览
相关文档 最新文档