当前位置:文档之家› 第二章+数字仿真的计算方法

第二章+数字仿真的计算方法

计算方法——第二章——课后习题答案刘师少

2.1 用二分法求方程013=--x x 在[1, 2]的近似根,要求误差不超过3102 1-?至少要二分多少? 解:给定误差限ε=0.5×10-3,使用二分法时,误差限为 )(211*a b x x k k -≤-+ 只要取k 满足ε<-+)(2 11 a b k 即可,亦即 96678.912lg 10lg 35.0lg 12lg lg )lg(=-+-=---≥εa b k 只要取n =10. 2.3 证明方程1 -x –sin x =0 在区间[0, 1]内有一个根,使用二分法求误差不超过 0.5×10-4的根要二分多少次? 证明 令f (x )=1-x -sin x , ∵ f (0)=1>0,f (1)=-sin1<0 ∴ f (x )=1-x -sin x =0在[0,1]有根.又 f '(x )=-1-c os x<0 (x ∈[0.1]),故f (x ) 在[0,1]单调减少,所以f (x ) 在区间 [0,1]内有唯一实根. 给定误差限ε=0.5×10-4,使用二分法时,误差限为 )(211*a b x x k k -≤-+ 只要取k 满足ε<-+)(211 a b k 即可,亦即 7287.1312 lg 10lg 45.0lg 12lg lg )lg(=-+-=---≥εa b k 只要取n =14. 2.4 方程0123=--x x 在x =1.5附近有根,把方程写成四种不同的等价形式,并建立相应的迭代公式: (1)211x x +=,迭代公式2111k k x x +=+ (2)231x x +=,迭代公式3211k k x x +=+ (3)112-=x x ,迭代公式111-=+k k x x (4)13-=x x ,迭代公式131-=+k k x x 试分析每种迭代公式的收敛性,并选取一种收敛迭代公式求出具有四位有效数字的近似根。 解:(1)令211)(x x f + =,则3 2)(x x f -=',由于 159.05.112)(33<≈≤='x x f ,因而迭代收敛。 (2)令321)(x x f +=,则322)1(3 2)(-+='x x x f ,由于

有效数字及有效数字计算修约基础知识

有效数字及有效数字计算、修约基础知识 一、有效数字 1、末的概念 末:指任何一个数最末一位数字所对应的单位量值。 例:用分度值为0.1mm的卡尺测量物体的长度,结果为19.8mm,最末一位的量值0.8mm,即为最末一位数8与所对应的单位量0.1mm的乘积,故19.8mm的末为0.1mm。 2、有效数字的界定 1~9都为有效数字,数字之间的0、末尾的0也为。 二、近似数计算 1、“+-”以小数位数最少为准,修约比该数多一位,计算后修约以小数点最少数的位数为准。 如:18.3+1.4545+0.876 ≈18.3+1.45+0.88=20.63≈20.6 2、“×÷”各数修约到有效数字最少多一位,最后结果以有效数字最少的那个为准。 如:3.670×45.3×5.6735≈3.670×45.3×5.674=943.31≈943 3、乘方、开方,参加运算有几位有效数字,结果就得保留几位数字。 81=9.000 9.002=81.0 . 00 如几级运算,乘方开方多保留一位。

0. 81+4.359=9.000=4.359 4、混合运算: 不管如何运算,结果必须以位数最少为准。 三、修约规则 1、舍去数第一位小于5则舍,大于5则进。 4.254→4.25 38.735→39 2、舍去数第一位为5,5后并非全为0则进。 9.55033→9.6 3、舍去数第一位为5,5后无数或全为0,奇进偶舍。 0.0415→0.042 0.0425→0.042 4、注意不得连续修约。 如:37.4546→37.455→37.46→37.5→38 5、按GB 8170-2008《数值修约规则》对“1”“2”“5”修约间隔做了规定,即k×10n(k=1、2、5,n为正、负整数) 另外,0.5、0.2修给采用分别乘以2与5,修约后再除以2与5来修约。 如:以0.5修约60.25 60.25×2得120.5修约为120,再除以2得60.0

数值计算方法大作业

目录 第一章非线性方程求根 (3) 1.1迭代法 (3) 1.2牛顿法 (4) 1.3弦截法 (5) 1.4二分法 (6) 第二章插值 (7) 2.1线性插值 (7) 2.2二次插值 (8) 2.3拉格朗日插值 (9) 2.4分段线性插值 (10) 2.5分段二次插值 (11) 第三章数值积分 (13) 3.1复化矩形积分法 (13) 3.2复化梯形积分法 (14) 3.3辛普森积分法 (15) 3.4变步长梯形积分法 (16) 第四章线性方程组数值法 (17) 4.1约当消去法 (17) 4.2高斯消去法 (18) 4.3三角分解法 (20)

4.4雅可比迭代法 (21) 4.5高斯—赛德尔迭代法 (23) 第五章常积分方程数值法 (25) 5.1显示欧拉公式法 (25) 5.2欧拉公式预测校正法 (26) 5.3改进欧拉公式法 (27) 5.4四阶龙格—库塔法 (28)

数值计算方法 第一章非线性方程求根 1.1迭代法 程序代码: Private Sub Command1_Click() x0 = Val(InputBox("请输入初始值x0")) ep = Val(InputBox(请输入误差限ep)) f = 0 While f = 0 X1 = (Exp(2 * x0) - x0) / 5 If Abs(X1 - x0) < ep Then Print X1 f = 1 Else x0 = X1 End If Wend End Sub 例:求f(x)=e2x-6x=0在x=0.5附近的根(ep=10-10)

1.2牛顿法 程序代码: Private Sub Command1_Click() b = Val(InputBox("请输入被开方数x0")) ep = Val(InputBox(请输入误差限ep)) f = 0 While f = 0 X1 = x0 - (x0 ^ 2 - b) / (2 * b) If Abs(X1 - x0) < ep Then Print X1 f = 1 Else x0 = X1 End If Wend End Sub 例:求56的值。(ep=10-10)

数值分析第二章复习与思考题

第二章复习与思考题 1.什么是拉格朗日插值基函数?它们是如何构造的?有何重要性质? 答:若n 次多项式()),,1,0(n j x l j =在1+n 个节点n x x x <<< 10上满足条件 (),,,1,0,, ,0, ,1n k j j k j k x l k j =?? ?≠== 则称这1+n 个n 次多项式()()()x l x l x l n ,,,10 为节点n x x x ,,,10 上的n 次拉格朗日插值基函数. 以()x l k 为例,由()x l k 所满足的条件以及()x l k 为n 次多项式,可设 ()()()()()n k k k x x x x x x x x A x l ----=+- 110, 其中A 为常数,利用()1=k k x l 得 ()()()()n k k k k k k x x x x x x x x A ----=+- 1101, 故 ()()()() n k k k k k k x x x x x x x x A ----= +- 1101 , 即 ()()()()()()()()∏ ≠=+-+---=--------=n k j j j k j n k k k k k k n k k k x x x x x x x x x x x x x x x x x x x x x l 0110110)( . 对于()),,1,0(n i x l i =,有 ()n k x x l x n i k i k i ,,1,00 ==∑=,特别当0=k 时,有 ()∑==n i i x l 0 1. 2.什么是牛顿基函数?它与单项式基{ }n x x ,,,1 有何不同? 答:称()()()(){ }10100,,,,1------n x x x x x x x x x x 为节点n x x x ,,,10 上的牛顿基函数,利用牛顿基函数,节点n x x x ,,,10 上的n 次牛顿插值多项式()x P n 可以表示为 ()()()()10010---++-+=n n n x x x x a x x a a x P 其中[]n k x x x f a k k ,,1,0,,,,10 ==.与拉格朗日插值多项式不同,牛顿插值基函数在增加节点时可以通过递推逐步得到高次的插值多项式,例如 ()()()()k k k k x x x x a x P x P --+=++ 011,

(完整)小学三年级两位数乘除法计算练习题

两位数乘两位数计算练习 27×41= 43×46= 25×23= 66×57= 47×33= 87×10= 84×13= 15×46= 95×37= 45×86= 98×27= 43×90= 96×54= 84×81= 91×80= 84×41= 91×32= 41×31= 34×40= 42×64= 31×41= 23×99= 56×72= 20×26= 14×78= 58×37= 42×11= 88×17=

86×39 = 61×39= 45×62= 79×78= 54×37= 35×57= 43×98= 81×22= 35×96= 17×69= 72×98= 42×56= 26×12= 96×29= 58×26= 58×42= 60×47= 37×97= 38×26= 59×93= 46×76= 93×35= 92×62= 88×49= 87×38= 84×44= 27×57= 26×76= 83×23= 82×52= 79×19= 36×76= 78×28= 77×57= 76×46= 75×35= 27×41= 43×46= 25×23= 66×57= 47×33= 87×10= 84×13= 15×46= 95×37= 45×86= 98×27= 43×90= 96×54= 84×81= 91×80= 84×41= 76×46= 60×62= 43×10= 82×46= 91×32= 41×31= 34×40= 42×64=

14×78= 58×37= 42×11= 88×17= 11×81= 39×54= 43×23= 22×72= 86×39= 61×39= 45×62= 79×78= 54×40= 83×77= 81×96= 10×62= 60×47= 37×97= 38×26= 59×93= 26×83= 36×30= 42×40= 39×93= 54×37= 35×57= 43×98= 81×22= 35×96= 17×69= 72×98= 42×56= 26×12= 96×29= 58×26= 58×42= 14×21= 94×33= 89×66= 55×91= 99×75= 54×35= 56×41= 20×90= 12×66= 60×56= 70×60= 41×20= 39×84= 78×88= 72×65= 47×23= 52×61= 88×94= 40×91= 49×66=

数值分析第1章习题

一 选择题(55分=25分) (A)1. 3.142和3.141分别作为π的近似数具有()和()为有效数字(有效数字) A. 4和3 B. 3和2 C. 3和4 D. 4和4 解,时,, m-n= -3,所以n=4,即有4位有效数字。当时,, ,m-n= -2,所以n=3,即有3位有效数字。 (A)2. 为了减少误差,在计算表达式时,应该改为计算,是属于()来避免误差。(避免误差危害原则) A.避免两相近数相减; B.化简步骤,减少运算次数; C.避免绝对值很小的数做除数; D.防止大数吃小数 解:由于和相近,两数相减会使误差大,因此化加法为减法,用的方法是避免误差危害原则。 (B)3.下列算式中哪一个没有违背避免误差危害原则(避免误差危害原则) A.计算 B.计算 C.计算 D.计算 解:A会有大数吃掉小数的情况C中两个相近的数相减,D中两个相近的数相减也会增大误差 (D)4.若误差限为,那么近似数0.003400有()位有效数字。(有效数字) A. 5 B. 4 C. 7 D. 3 解:即m-n= -5,,m= -2,所以n=3,即有3位有效数字 (A)5.设的近似数为,如果具有3位有效数字,则的相对误差限为()(有效数字与相对误差的关系) A. B. C. D. 解:因为所以,因为有3位有效数字,所以n=3,由相对误差和有效数字的关系可得a的相对误差限为 二 填空题:(75分=35分)

1.设则有2位有效数字,若则a有3位有效数字。(有效数字) 解:,时,,,m-n= -4,所以n=2,即有2位有效数字。当时, ,m-n= -5,所以n=3,即有3位有效数字。 2.设 =2.3149541...,取5位有效数字,则所得的近似值x=2.3150(有效数字)解:一般四舍五入后得到的近似数,从第一位非零数开始直到最末位,有几位就称该近似数有几位有效数字,所以要取5位有效数字有效数字的话,第6位是5,所以要进位,得到近似数为2.3150. 3.设数据的绝对误差分别为0.0005和0.0002,那么的绝对误差约为 0.0007 。(误差的四则运算) 解:因为,, 4.算法的计算代价是由 时间复杂度 和 空间复杂度 来衡量的。(算法的复杂度) 5.设的相对误差为2%,则的相对误差为 2n% 。(函数的相对误差) 解:, 6.设>0,的相对误差为δ,则的绝对误差为 δ 。(函数的绝对误差) 解:,, 7.设,则=2时的条件数为 3/2 。(条件数) 解:, 三 计算题(220分=40分) 1.要使的近似值的相对误差限小于0.1%,要取几位有效数字?(有效数字和相对误差的关系) 解:设取n位有效数字,由定理由于知=4所以要使相对误差限小于0.1%,则,只要取n-1=3即n=4。所以的近似值取4位有效数字,其相对误差限小于0.1%。 2.已测得某场地长的值为,宽d的值为,已知试求面积的绝对误差限和

数值计算方法第二章

第二章 非线性方程数值解法 在科学计算中常需要求解非线性方程 ()0f x = (2.1) 即求函数()f x 的零点.非线性方程求解没有通用的解析方法,常采用数值求解算法.数值解法的基本思想是从给定的一个或几个初始近似值出发,按某种规律产生一个收敛的迭代序列0{}k k x +∞=,使它逐步逼近于方程(2.1)的某个解.本章介绍非线性方程实根的数值求解算法:二分法、简单迭代法、Newton 迭代法及其变形,并讨论它们的收敛性、收敛速度等. §2.1 二分法 一、实根的隔离 定义 2.1 设非线性方程(2.1)中的()f x 是连续函数.如果有*x 使*()0f x =,则称*x 为方程(2.1)的根,或称为函数()f x 的零点;如果有*()()()m f x x x g x =-,且()g x 在*x 邻域内连续,*()0g x ≠,m 为正整数,则称*x 为方程(2.1)的m 重根.当1m =时,称*x 为方程的单根. 非线性方程根的数值求解过程包含以下两步 (1) 用某种方法确定有根区间.称仅存在一个实根的有根区间为非线性方程的隔根区间,在有根区间或隔根区间上任意值为根的初始近似值; (2) 选用某种数值方法逐步提高根的精度,使之满足给定的精度要求. 对于第(1)步有时可以从问题的物理背景或其它信息判断出根的所在位置,特别是对于连续函数()f x ,也可以从两个端点函数值符号确定出有根区间. 当函数()f x 连续时,区间搜索法是一种有效的确定较小有根区间的实用方法,其具体做法如下 设[,]a b 是方程(2.1)的一个较大有根区间,选择合适的步长()/h b a n =-,k x a kh =+,(0,1,,)k n =L .由左向右逐个计算()k f x ,如果有1()()0k k f x f x +<,则区间1[,]k k x x +就是方程的一个较小的有根区间. 一般情况下,只要步长h 足够小,就能把方程的更小的有根区间分离出来;如果有根区间足够小,例如区间长度小于给定的精度要求,则区间内任意一点可

两位数乘以两位数的快速算法

特殊两位数乘两位数 1.十几乘十几: 口诀:头乘头,尾加尾,尾乘尾。 例:12×14=? 解:1×1=1 2+4=6 2×4=8 12×14=168 注:个位相乘,不够两位数要用0占位。 2.头相同,尾互补(尾相加等于10): 口诀:一个头加1后,头乘头,尾乘尾。 例:23×27=? 解:2+1=3 2×3=6 3×7=21 23×27=621 注:个位相乘,不够两位数要用0占位。 3.第一个乘数互补,另一个乘数数字相同: 口诀:一个头加1后,头乘头,尾乘尾。 例:37×44=? 解:3+1=4 4×4=16 7×4=28 37×44=1628 注:个位相乘,不够两位数要用0占位。 4.几十一乘几十一: 口诀:头乘头,头加头,尾乘尾。 例:21×41=? 解:2×4=8 2+4=6 1×1=1 21×41=861 5.11乘任意数: 口诀:首尾不动下落,中间之和下拉。 例:11×23125=?

解:2+3=5 3+1=4 1+2=3 2+5=7 2和5分别在首尾 11×23125=254375 注:和满十要进一。 6.十几乘任意数: 口诀:第二乘数首位不动向下落,第一因数的个位乘以第二因数后面每一个数字,加下一位数,再向下落。 例:13×326=? 解:13个位是3 3×3+2=11 3×2+6=12 3×6=18 13×326=4238 注:和满十要进一。 7.多位数乘以多位数 口诀:前一个因数逐一乘后一个因数的每一位,第二位乘10倍,第三位乘100倍……以此类推 例:33*132=? 33*1=33 33*3=99 33*2=66 99*10=990 33*100=3300 66+990+3300=4356 33*132=4356 注:和满十要进一。 数学中关于两位数乘法的“首同末和十”和“末同首和十”速算法。所谓“首同末和十”,就是指两个数字相乘,十位数相同,个位数相加之和为10,举个例子,67×63,十位数都是6,个位7+3之和刚好等于10,我告诉他,象这样的数字相乘,其实是有规律的。就是两数的个位数之积为得数的后两位数,不足10的,十位数上补0;两数相同的十位取其中一个加1后相乘,结果就是得数的千位和百位。具体到上面的例子67×63,7×3=21,这21就是得数的后两位;6×(6+1)=6×7=42,这42就是得数的前两位,综合起来,67×63=4221。类似,15×15=225,89×81=7209,64×66=4224,92×98=9016。我给他讲了这个速算小“秘诀”后,小家伙已经有些兴奋了。在“纠缠”着让我给他出完所有

药检有效数字和数值的修约及其运算规则

药检有效数字和数值的修约及其运算规则 一目的:制定有效数字和数值的修约及其运算规则,规范有效数字和数值的修约及其运算。 二适用范围:适用于有效数字和数值的修约及其运算。 三责任者:品控部。 四正文: 本规程系根据中国兽药典2005年版“凡例”和国家标准GB8170-87《数值修约规程》制许,适用于药检工作中除生物检定统计法以外的各种测量或计算而得的数值。 1 有效数字的基本概念 1.1 有效数字系指在检验工作中所能得到有实际意义的数值。其最后位数字欠准是允许的,这种由可靠数字和最后一位不确定数字组成的数值,即为有效数字。 最后一位数字的欠准程序通常只能是上下差1单位。 1.2 有效数字的字位(数位),是指确定欠准数字的位置。这个位置确定后,其后面的数字均为无效数字。欠准数字的位置可以是十进位的任何数位,用10n来表示:n可以是正整数,如n=1、101=10(十数位),n=2、102=100(百数位),……,n也可以是负数,如n= -1、10-1=0.1(十分位),n= -2、10-2=0.01(百分位),……, 1.3 有效位数 1.3.1 在没有小数位且以若干个零结尾的数值中,有效位数系指从非零数字最左一位向右数得到的位数减去无效零(即仅为定位用的零)的个数。例如35000中若有两个无效零,则为三位有效位数,应写作350×102;若有三个无效零,则为两位有效位数,应写作35×102。 1.3.2 在其它十进位数中,有效数字系指从非零数字最左一位向右数而得到的位数。例如3.2、0.32、0.032和0.0032均为两位有效位数,为0.320三位有效位数,10.00为四位有效位数,1 2.490为五位有效位数。 1.3.3 非连续型数值(如个数、分数、倍数)是没有欠准数字的,其有效位数可视为无限多位;例如分子式“H2SO4”中的“2”和“4”是个数。常数π、e和系数2等值的有效位数也可视为无限多位;含量测定项下“每1ml的XXXX滴定液(0.1mol/L)……”中的“0.1”为名义浓度,规格项下的“0.3g”或“1ml:25mg”中的“0.3”、“1”和“25”为标示量,

计算方法:第2章习题答案

第二章答案 1. 计算下列函数()f x 关于[]0,1C 的12,,f f f ∞ : 注:()max ,a x b f f x ∞ ≤≤=()1 b a f f x dx =?,()() 12 2 2 b a f f x dx = ? ()()() ()()()()()()()()3 10 11122 31,41n m x f x x f x x f x x x m n f x x e -=-= - =-=+与为正整数 解:(1)()()3 1-=x x f ( )()()11max max 3 =-==∞x x f x f 11 3 1 1 ()(1)7 f f x dx x dx ==-=?? ()( ) 111 1 2 2 262 ()(1)f f x dx x dx = = -= ? ? (2)()12 f x x =- () ()11max max 22 f x f x x ∞ ==- = 1 1 1211 02 112 2 2 122 01111 ()()()22241[()]()26b a f x dx x dx x dx f f x dx x dx =-=-+-= ???? ==-= ? ????? ? ???? (3)()() 1,n m f x x x m n =-与为正整数 () max (1)m n m n m n m n f x x m n +=-=∞+ () 1 1 0!!(1)1!m n m n f x x dx m n =-=++?

()() () 11 12 222 20 2!2! (1)() 221! m n m n f x x m n ?? =-= ?? ??++ ? (4)()()10 1x f x x e- =+ 101 10 max(1)2 x f x e e- - =+= ∞ 1 10 26813184 10 (1)9864101 x f x e dx e - =+=- ? () []21 2 1 10 2 ] 1 [dx e x f x ?- + = 2 8 23209 5067136711 8 3199 6857623833 e - = 2.令()()[] 21,0,1 n n T x T x x *=-∈,试证() {} n T x *是在[] 0,1上带权 ( )x ρ=的正交多项式,并求()()()() 0123 ,,, T x T x T x T x ****。 解: ()()()( ) ( )()( )()()() 11 **** 00 11 ** ,(21)(21) 21 1 ,, 2 m n m n n m m n m n m n m n T T x T x T x dx x T x dx t x T T t T t dt t T t dt T T ρ -- ==-- =- === ?? ?? 令,则有 () {} n T x *是在[] 0,1上带权( )x ρ=的正交多项式。 * 00 * 11 *2 22 *32 33 ()(21)1 ()(21)21 ()(21)881 ()(21)3248181 T x T x T x T x x T x T x x x T x T x x x x =-= =-=- =-=-+ =-=-+- 3.() {} i i x ?∞ = 是区间[] 0,1上带权()x x ρ=的最高次项系数为1的正交多项式族,其 中() 1 x ?=,求()() 1 3 x x dx x ?? ?1 和。 解法一: 11 330 00 ()()()() x x dx x x x dx ?ρ?? = ?? {} 11 303 00 ()[0,1]()1 ()()()0()0 i i x x x x x x dx x x dx ?ρ ρ??? ∞ = = ∴== ?? 是区间上带权的最高次项系数为的正交多项式 ,即

数值分析第二章上机题之第二题

姓名:蒋元义、学号:、专业:测绘工程 一、在区间[-1,1]上分别取10,20n =用两组等距节点对龙格函数2 1 ()125f x x =+作多项式插值及三次样条插值,对每个n 值,分别画出插值函数即()f x 的图形。 解: 当N=10时,代码及图像如下: x=-1:0.2:1; y=1./(1+25*x.^2); x1=linspace(-1,1,10); p=interp1(x,y,x1,'linear'); p1=interp1(x,y,x1,'spline'); plot(x,y,'b'); hold on plot(x1,p,'r'); hold on plot(x1,p1,'k'); legend('龙格函数','多项式插值函数','三次样条插值函数'); grid on; title('N=10的插值函数及原函数图形'); xlabel('x 轴'); ylabel('y ‘轴');

当N=20时,代码及图像如下: x=-1:0.2:1; y=1./(1+25*x.^2); x1=linspace(-1,1,20); p=interp1(x,y,x1,'linear'); p1=interp1(x,y,x1,'spline'); plot(x,y,'b'); hold on plot(x1,p,'r'); hold on plot(x1,p1,'k'); legend('龙格函数','多项式插值函数','三次样条插值函数'); grid on; title('N=20的插值函数及原函数图形'); xlabel('x轴'); ylabel('y轴');

数值分析第二章小结

第2章线性方程组的解法 --------学习小结 一、本章学习体会 通过本章知识的学习我首先了解到求解线性方程组的方法可分为两类:直接法和迭代法。计算机虽然运行速度很快,但面对运算量超级多的问题,计算机还是需要很长的时间进行运算,所以,确定快捷精确的求解线性方程组的方法是非常必要的。 本章分为四个小节,其中前两节Gauss消去法和直接三角分解法因为由之前《线性代数》学习的一定功底,学习起来还较为简单,加之王老师可是的讲解与习题测试,对这一部分有了较好的掌握。第三节矩阵的条件数与病态方程组,我 Ax 的系数矩阵A与左端向量b的元素往往是通首先了解到的是线性方程组b 过观测或计算而得到,因而会带有误差。即使原始数据是精确的,但存放到计算机后由于受字长的限制也会变为近似值。所以当A和b有微小变化时,即使求解过程精确进行,所得的解相对于原方程组也可能会产生很大的相对误差。对于本节的学习掌握的不是很好,虽然在课后习题中对课堂知识有了一定的巩固,但整体感觉没有很好的掌握它。第四节的迭代法,初次接触迭代法,了解到迭代法就是构造一个无线的向量序列,使他的极限是方程组的解向量。迭代法应考虑收敛性与精度控制的问题。三种迭代方法的基本思想我已经掌握了,但是在matlab 的编程中还存在很大的问题。 在本节的学习中我认为我最大的问题还是程序的编写。通过这段时间的练习,虽然掌握了一些编写方法和技巧。相比于第一章是对其的应用熟练了不少,但在程序编写上还存在很多问题。希望在以后的学习中能尽快熟练掌握它,充分发挥它强大的作用。 二、本章知识梳理

2.1、Gauss 消去法(次重点) Gauss 消去法基本思想:由消元和回代两个过程组成。 2.1.1顺序Gauss 消去法(对方程组的增广矩阵做第二种初等行变换) 定理 顺序Gauss 消去法的前n-1个主元素) (k kk a (k=1,2,```,n-1)均不为零的充分必要条件是方程组的系数矩阵A 的前 n-1个顺序主子式 )1,,2,1(0)1()1(1 ) 1(1)1(11-=≠=n k a a a a D kk k k K ΛΛM M Λ 消元过程:对于 k=1,2,···,n-1 执行 (1)如果 ,0)(=a k kk 则算法失效,停止计算,否则转入(2) 。 (2)对于i=k+1,k+2,···n,计算 a a k kk k ik k i m )() (,= n k j i m a a a k kj ik k ij k ij ,,1,,) ()() 1(Λ+=-=+ n k i m b b b k k ik k i k i ,,1,) ()() 1(Λ+=-=+ 回代过程: a b x n nn n n n ) () (/= ) (1,,2,1/)() (1 )() (?--=- =∑+=n n k a x a b x k kk j n k j k kj k k k 2.1.2 列主元素Gauss 消去法(把) (n k k i a k kj ,,1,) (?+=中绝对值最大的元素交换到第k 行的主对角线位置)(重点) 定理 设方程组的系数矩阵A 非奇异,则用列主元素Gauss 消去法求解方程组时,各个列主元素a (k=1,2,```,n-1)均不为零。 消元过程:对于 k=1,2,···,n-1 执行 (1)选行号k i ,使 )()(max k i n i k k k i k k a a ≤≤=。 (2)交换A 与b 两行所含的数值。 (3)对于i=k+1,k+2,···n,计算

有效数字修约及运算

目的 ●正确地进行有效数字判定、修约及运算 ●规范取样规则 依据 ●药典“凡例” ●国家标准《数值修约规程》 ●《中国药品检定标准操作规范》 ●适用于药检工作中除生物检定统计法以外的各种测量或计算而得的数值。 主要内容 1、有效数位的判断 1.1有效数字的基本概念 有效数字系指在药检工作中所能得到有实际意义的数值。是由可靠数字和最后一位不确定数字组成的。最后一位数字的欠准程度通常只能是上下差1单位。 1.2有效数位的判断 1.2.1从非零数字最左一位向右数得到的位数减去无效零。 例:350×102 保留三位有效数,两个无效零。 35×103 保留二位有效数,三个无效零。 1.2.2从非零数字最左一位向右数而得到的位数。 例: 3.2 两位有效数字 0.032 两位有效数字 0.0320 三位有效数字 1.2.3有效位数可视为无限多位的 1.2.3.1 非连续型数值(如个数、分数、倍数) 1.2.3.2 常数π,e和系数√2 1.2.3.3 (0.1 mol/L)滴定液的名义值 1.2.3.4 规格、标示量 1.2.4 pH值,其有效位数是由其小数点后的位数决定的,其整数部分只表明其真数的乘方次数。 例:pH=11.26([H+]=5.5×10-12 mol/L),其有效位数只有两位。 1.2.5有效数字的首位数字为8或9时,其有效位数可以多计一位。 例:85% 三位有效位数 115% 三位有效位数 99.0% 四位有效数字 101.0% 四位有效数字。 2、数值的修约及取舍规则 进舍规则:四舍六入五考虑。五后非零则进一, 五后全零看五前,五前偶舍奇进一, 不论数字多少位,都要一次修约成。 RSD修约:只进不舍 例:0.163% 修约成2位有效数位→0.17% 不许连续修约:拟修约数字应在确定修约位数后一次修约获得结果,而不得多次连续修约。 例:修约15.4546,修约间隔为 1 正确的做法为:15.4546—15;

数值计算方法第一章

第一章 绪 论 本章以误差为主线,介绍了计算方法课程的特点,并概略描述了与算法相关的基本概念,如收敛性、稳定性,其次给出了误差的度量方法以及误差的传播规律,最后,结合数值实验指出了算法设计时应注意的问题. §1.1 引 言 计算方法以科学与工程等领域所建立的数学模型为求解对象,目的是在有限的时间段内利用有限的计算工具计算出模型的有效解答。 由于科学与工程问题的多样性和复杂性,所建立的数学模型也是各种各样的、复杂的. 复杂性表现在如下几个方面:求解系统的规模很大,多种因素之间的非线性耦合,海量的数据处理等等,这样就使得在其它课程中学到的分析求解方法因计算量庞大而不能得到计算结果,且更多的复杂数学模型没有分析求解方法. 这门课程则是针对从各种各样的数学模型中抽象出或转化出的典型问题,介绍有效的串行求解算法,它们包括 (1) 非线性方程的近似求解方法; (2) 线性代数方程组的求解方法; (3) 函数的插值近似和数据的拟合近似; (4) 积分和微分的近似计算方法; (5) 常微分方程初值问题的数值解法; (6) 优化问题的近似解法;等等 从如上内容可以看出,计算方法的显著特点之一是“近似”. 之所以要进行近似计算,这与我们使用的工具、追求的目标、以及参与计算的数据来源等因素有关. 计算机只能处理有限数据,只能区分、存储有限信息,而实数包含有无穷多个数据,这样,当把原始数据、中间数据、以及最终计算结果用机器数表示时就不可避免的引入了误差,称之为舍入误差. 我们需要在有限的时间段内得到运算结果,就需要将无穷的计算过程截断, 从而产生截断误差. 如 +++=! 21 !111e 的计算是无穷过程,当用 ! 1 !21!111n e n ++++= 作为e 的近似时,则需要进行有限过程的计算,但产生了 截断误差e e n -.

有效数字和数值的修约及其运算

有效数字和数值的修约及其运算 本规程系根据中国药典2010年版凡例和国家标准GB 8170-2008《数值修约规则与极限数值的表示和判定》制订,适用于药检工作中除生物检定统计法以外的各种测量或计算而得的数值。 1.数值修约通过省略原数值的最后若干位数字,调整所保留的末位数字,使最后所得到的值最接近原数值的过程。 2.修约间隔 确定修约保留位数的一种方法。 注:修约间隔的数值一经确定,修约值即为该数值的整数倍。 例1:如指定修约间隔为0.1,修约值应在0.1的整数倍中选取,相当于将数值修约到一位小数。 例2:如指定修约间隔为100,修约值应在100的整数倍中选取,相当于将数值修约到“百”数位。 2.3 极限数值limiting values 标准(或技术规范)中规定考核的以数量形式给出且符合该标准(或技术规范)要求的指标数值范围的界限值。 3数值修约规则 3. 1确定修约间隔 a)指定修约间隔为10-n(n为正整数),或指明将数值修约到n位小数; b)指定修约间隔为1,或指明将数值修约到“个”数位; c)指定修约间隔为10n (n为正整数),或指明将数值修约到10n数位,或指明将数值修约到“十”、“百”、“千”……数位。

3. 2进舍规则 3.2.1拟舍弃数字的最左一位数字小于5,则舍去,保留其余各位数字不变。 例:将12. 149 8修约到个数位,得12;将12. 149 8修约到一位小数,得12.l。 3.2.2拟舍弃数字的最左一位数字大于5,则进一,即保留数字的末位数字加1. 例:将1 268修约到“百”数位,得13 × 102(特定场合可写为1 300)。 注:本标准示例中,“特定场合”系指修约间隔明确时。 3.2.3拟舍弃数字的最左一位数字是5,且其后有非0数字时进一,即保留数字的末位数字加1。 例:将10. 500 2修约到个数位,得1。 3.2.4拟舍弃数字的最左一位数字为5,且其后无数字或皆为0时,若所保留的末位数字为奇数(1,3,5,7,9)则进一,即保留数字的末位数字加1;若所保留的末位数字为偶数((0,2,4,6,8),则舍去。 例1:修约间隔为0. 1 <或10-') 拟修约数值修约值 1. 050 10 × 10-1(特定场合可写成为1. 0) 0.35 4×10-1(特定场合可写成为0. 4) 例2:修约间隔为1 000(或103) 拟修约数值修约值 2 500 2 × 103(特定场合可写成为2 000) 3 500 4 × 103(特定场合可写成为4 000) 3.2.5负数修约时,先将它的绝对值按3.2.1~3.2.4的规定进行修约,然后在

两位数乘两位数的一些简算方法

两位数乘两位数的一些速算方法 (一)课程信息及介绍 (二)教学步骤 1.认识一些“特殊组合”,体验计算方法的多样化。 2. 通过探索、比较、发现,了解两位数乘两位数的速算方法,使计算简便。 3. 通过学习,培养思维的敏捷性和灵活性以及合理选择算法计算的能力。 4. 渗透从特殊到一般,再有一般到特殊这种认识事物的方法,增强学习的兴趣和自信。 二.例题讲解 例1.25×12 ; 125×16 【解题分析和过程】根据25×4=100,125×8=1000,只需要把12拆成

“4×3”,马上可以计算出答案,同理把16拆成8×2,得出答案: 例2. (1)34×15;(2)28×15; 【解题分析和过程】34×15可以理解成求15个34是多少。因此34×15=34×10+34×5=340+170=510;28×15=28×10+28×5=280+140=420,通过观察发现一个数乘15,就等于这个数先乘10,在加上乘积的一半。可以直接记口诀“见面先乘10,然后加一半”。【例题小结】利用数字间的关系或者根据数字特点,通过对计算题进行变式计算,能使计算更加简便。 例3 (1)26×11;(2)34×11;(3)39×11; 【解题分析和过程】观察两位数和11相乘的算式,可以得出两位数与11相乘的方法是:用两位数的头做积的头,用两位数的尾做积的尾,用这个两位数两个数字之和做积的中间数(如果相加满十,则把和的十位数“1”加到头上)口诀是:“两边分开,相加放中间” 例4 (1)21×31= (2)41×21= (3)61×41= 【解题分析和过程】这三道题都有一个共同点:末位数都是1。

数值分析第二章 习题

第二章 习 题 1. 已知函数()f x 在3,1,4x =的值分别为4,2,5,求Lagrange 插值多项式的表达式. 2. 已知函数 ()f x 在3x =和 4的值分别为0.5和0.64,用线性插值求此函数在 3.8x =的函数值. 3. 证明:对于 ()f x 的以01x x <为节点的一次插值多项式1()p x ,有 2 101()()()8 x x f x p x M ??≤,01x x x ≤≤, 其中01 max ()x x x M f x ≤≤′′= . 4. 已知函数 ()f x 的函数值表: x 0.1 0.2 0.3 0.4 0.5 ()f x 0.70010 0.40160 0.10810 -0.17440 -0.43750 试利用这个函数表求函数()f x 在0.3和0.4之间的零点. 5. 设 01,,,n x x x ???为1n +个互异的节点,()k l x 为n 阶 Lagrange 插值基函数, 0()()n k k x x x ω==?∏.证明: (1) 0()1n k k l x =≡∑; (2) 0(),0,1,2,,k n j j k k x l x x j n =≡=???∑; (3) ()()0,0,1,2,,n j k k k x x l x j n =?≡=???∑; (4)() ()()() k k k x l x x x x ωω= ′?.

6. 若73()1f x x x =?+,求0172,2,,2f ???????和018 2,2,,2f ???????. 7. 设 53()1f x x x =++,求以1x =?,-0.8,0,0.5,1为插值节点的Newton 插值多 项式和插值余项. 8. 已知函数值表: x 0 1 4 3 6 ()f x -7 8 5 14 求Newton 插值多项式的表达式. 9. 分别在下列情况下计算 1n ?次多项式()p t 在指定点t 的的值,各需要多少次乘 法运 算? (a)多项式()p t 按照单项式基函数展开; (b)多项式()p t 按照Lagrange 基函数展开; (c)多项式()p t 按照Newton 基函数展开. 10. 在区间[]0,/2π上使用5个等距节点对函数sin t 进行插值,试计算最大误差. 在 []0,/2π上选取若干点,比较函数值和插值多项式的值,验证误差界. 如果希望最大误 差为10 10 ?,需要多少个插值节点? 11. 一直平面曲线()y f x =过点(0,1) ,(1,3),(2,4),试求一个三次多项式3()p x ,使其经过这3个点,并且满足3(1)1p ′=;然后给出余项3()()()R x f x p x =?的表达式. 12. 试求一个四次多项式4()p x ,使其满足44 44(0)(0)0(1)(1)1p p p p ′′====,,4(2)1p =. 13. 能否通过使用分段二次多项式进行插值,使插值函数是二次连续可微的?为什么? 14. 设[]4 (),f x C a b ∈. 求三次多项式()p x ,使之满足插值条件 11 ()(),0,1,2, ()(),i i p x f x i p x f x ==?? ′′=?

100以内两位数加减法计算题

65+29= 40+43= 61+27= 37+48= 42+37= 72+15= 50+35= 37+29= 44+27= 15+47= 50+27= 56+19= 72+14= 38+25= 81+14= 48+27= 63+28= 31+46= 44+39= 42+37= 65+19= 60+36= 45+36= 53+24= 28+27= 70+26= 62+17= 12+38= 27+47= 64+19= 35+29= 31+39= 42+35= 70+27= 61+19= 15+18= 26+37= 54+29= 34+36= 74+17= 58+29= 71+14= 62+19= 70+12= 2 9+37= 4 8+22= 37+24= 74+18= 43+25= 6 8+14= 1 9+32= 33+46= 47+35= 80+16= 4 9+26= 37+27= 1 8+25= 5 8+17= 5 6+34= 30+46= 59+34= 34+27= 37+16= 25+37= 29+32= 37+47= 60+29= 53+29= 33+36= 48+27= 82+28= 36+27= 26+69= 38+48= 24+27= 38+19= 35+26= 3 8+23= 48+19= 26+37= 28+47= 37+59= 60+18= 3 4+29= 29+37= 48+16= 70+21= 28+49= 45+26= 55+19= 26+59= 28+37= 74+16= 27+37= 36+42= 37+59= 71+23= 3 6+16= 51+29= 2 4+37= 24+35= 39+36= 81+15= 49+24= 58+29=

相关主题
文本预览
相关文档 最新文档