当前位置:文档之家› Evaluation of fracture toughness of ZrO2 and Si3N4 engineering ceramics following CO2 and fibre lase

Evaluation of fracture toughness of ZrO2 and Si3N4 engineering ceramics following CO2 and fibre lase

Evaluation of fracture toughness of ZrO2 and Si3N4 engineering ceramics following CO2 and fibre lase
Evaluation of fracture toughness of ZrO2 and Si3N4 engineering ceramics following CO2 and fibre lase

Evaluation of fracture toughness of ZrO 2and Si 3N 4engineering ceramics following CO 2and ?bre laser surface treatment

P.P.Shukla a ,n ,https://www.doczj.com/doc/5f13665952.html,wrence b

a Loughborough University,Wolfson School of Mechanical and Manufacturing Engineering,Leicestershire LE113TU,UK b

Lincoln School of Engineering,University of Lincoln,Brayford Pool,Lincoln LN67TS,UK

a r t i c l e i n f o

Article history:

Received 7July 2010Received in revised form 14September 2010

Accepted 15September 2010

Available online 16October 2010Keywords:CO 2laser Fibre laser

Si 3N 4and ZrO 2engineering ceramics Vickers indentation method K 1C

a b s t r a c t

The fracture toughness property (K 1C )of Si 3N 4and ZrO 2engineering ceramics was investigated by means of CO 2and a ?bre laser surface treatment.Near surface modi?cations in the hardness were investigated by employing the Vickers indentation method.Crack lengths and the crack geometry were then measured by using the optical microscopy.A co-ordinate measuring machine was used to investigate the diamond indentations and to measure the lengths of the cracks.Thereafter,computational and analytical methods were employed to determine the K 1C .An increase in the K 1C of both ceramics was found by the CO 2and the ?bre laser surface treatment in comparison to the as-received surfaces.The K 1C of the CO 2laser radiated surface of the Si 3N 4was over 3%higher in comparison to that of the ?bre laser treated surface.This was by softening of the near surface layer of the Si 3N 4which comprised of lowering of hardness,which in turn increased the crack resistance.The effects were not similar in ZrO 2ceramic to that of the Si 3N 4as the ?bre laser radiation in this case had produced an increase of 34%compared to that of the CO 2laser radiation.This occurred due to propagation of lower crack resulting from the Vickers indentation test during the ?bre laser surface treatment which inherently affected the end K 1C through an induced compressive stress layer.The K 1C modi?cation of the two ceramics treated by the CO 2and the ?bre laser was also believed to be in?uenced by the different laser wavelength and its absorption co-ef?cient,the beam delivery system as well as the differences in the brightness of the two lasers used.

&2010Elsevier Ltd.All rights reserved.

1.Introduction

Low crack resistance and fracture toughness in comparison to metals can limit the use of ZrO 2and Si 3N 4engineering ceramics,particularly in demanding applications.In any case,the applica-tions of ZrO 2and Si 3N 4have gradually increased on account of the desirable physical properties and longer functional life which often gives the engineering ceramics a commercial advantage over the conventional materials in use.Conventional metals and alloys especially can be replaced by engineering ceramics such as ZrO 2and Si 3N 4due to its exceptional mechanical and thermal properties offered.Now,ZrO 2and Si 3N 4ceramics in particular are predominantly being used to manufacture components in the aerospace,automotive and motorsports industrial sectors.For such applications,fracture toughness is an essential property since low fracture toughness in comparison to metals and alloys is one of the disadvantages of the ceramic.Inherently,an increase in the fracture toughness would therefore lead to an enhancement in the components functional life,better performance which in

turn leads to reduction in the maintenance time and cost of the component/part and or the system.

Fracture toughness is considered to be an important property of both ZrO 2and Si 3N 4as well as other ceramics in general due to their high hardness and brittleness.Materials such as metals and alloys are soft and ductile,which in turn would resist cracks at higher stress levels and loading [1,2–4],whereas hard and brittle materials such as a Si 3N 4ceramic posses a low fracture toughness and allow crack propagation to occur at lower stresses and loading.The fracture toughness for the ZrO 2ceramic is fairly high in comparison to the Si 3N 4but not in comparison to metals and alloys.This is due to their low ductility,high hardness,caused by the closely packed grains along with a porous structure which increases crack-sensitivity.This characteristically prevents these ceramics from increasing the movement of dislocations in comparison to that of metals [5,6].Dislocations are hard to generate within the ceramics due to its strong and highly directional covalent bonds which make it dif?cult to move the atoms from its lattice positions.Mechanical yielding of the ZrO 2or the Si 3N 4is also limited due to porosity and surface ?aws make it crack-sensitive and eventually lead to a much lower resistance to fracture.K 1C is a parameter of fracture toughness and is low for both the ceramics in comparison to metals and alloys,so it would

Contents lists available at ScienceDirect

journal homepage:https://www.doczj.com/doc/5f13665952.html,/locate/optlaseng

Optics and Lasers in Engineering

0143-8166/$-see front matter &2010Elsevier Ltd.All rights reserved.doi:10.1016/j.optlaseng.2010.09.010

n

Corresponding author.Tel.:+441509227592.

E-mail address:P.Shukla@https://www.doczj.com/doc/5f13665952.html, (P.P.Shukla).

Optics and Lasers in Engineering 49(2011)229–239

be an advantage if the K1C of the ceramic is enhanced.Through improvement of K1C,it is possible to make way for new applications where metals and metal alloys fail due to their low hardness,thermal resistance,co-ef?cient of friction and wear rate.

This paper investigated the use of empirical equations from the literature to calculate the fracture toughness property(K1C)of a ZrO2and a Si3N4engineering ceramic and observed the effects thereon of the CO2and the?bre laser surface treatment.A change in the K1C has an in?uence on the materials’functionality or diversity in its applications;by improving the K1C of materials can enhance its functional capabilities such as longer functional life, improved performance under higher cyclic and mechanical loading, particularly for demanding applications as previously mentioned.

Laser processing of ceramic based materials has been the subject of many investigations.Malshe et al.[7]investigated the CO2laser processing of a Si3N4ceramic to eliminate imperfections within the ceramic and further conducted a three-point bending strength study of Si3N4after the CO2laser surface treatment.Li et al.[8]then investigated that a YSiAlON phase within the Si3N4 was softened through melting and?lled the pre-existing fractures to increase the?exural and the bending strengths.A similar investigation was also conducted by Segall et al.[9]using a high powered CO2laser to cover a fractured surface of a thin?lm Al2O3 ceramic sheet.Nd:YAG laser machining of structural ceramics was demonstrated by Anoop et al.[10]and discussed the physical phenomenon of material removal of Al2O3,SiC,MgO and Si3N4 ceramics.The use of Nd:YAG laser was also employed by Hae and Lawrence[11]on MgO–PSZ ceramics to improve the wettability characteristics for biomedical applications.Hae and Lawrence [12]also investigated the improvement of cell adhesion through a CO2laser surface treatment.Hae and Lawrence[13]in another investigation used a?nite element model(FEM)and compared it to an experimental model to simulate the CO2laser surface treatment of the MgO–PSZ.Several other studies discussed the use of industrial lasers to modify the surface of engineering, structural and refractory type ceramics[14–19].Triantafyllidis et al.[14]investigated a possibility of achieving a crack-free surface of a refractory Al2O3ceramics using double laser sources: a CO2and a high powered diode laser(HPDL)by balancing out the thermal gradient and increasing the solidi?cation rate.Investiga-tion by Lawrence and Li[15]initially employed a CO2laser;a Nd:YAG laser;a HPDL and an excimer laser with a SiO2/Al2O3 ceramic to study the effect of the laser beam absorption on the ceramic and showed that the CO2laser had the highest absorption followed by the Nd:YAG and then the https://www.doczj.com/doc/5f13665952.html,wrence and Li[16] then employed a high powered diode laser(HPDL)to surface treat an Al2O3based refractory ceramic and achieved an increased wear life as a dense structure comprising of minor cracks and porosities was found.Another investigation by Lawrence and Li[17]also used the HPDL to process an ordinary Portland concrete(OPC)and showed enhancement in the resistance to chemical attack,water absorption as well as improved wear life of the OPC.Wang et al. [18,19]published two separate papers on the micro-structural and surface density modi?cation of a mixture of Al2O3+ZrO2+SiO2 refractory ceramics system by employing the CO2laser to show that the laser treatment had re?ned the microstructure into a?ne grain dendrites structure as well as achieving a change in its phase transformation(Fig.1).

Much work has been conducted by using the CO2,Nd:YAG, HPDL and an excimer to process various technical ceramics. However,no other investigation except the one by Shukla and Lawrence[20,21]has been done hitherto by employing a?bre laser to process engineering ceramics.Moreover,the?bre laser was selected because of its shorter wavelength radiation in comparison to the conventional lasers previously used for ceramic processing[7–22].Also,the section of the CO2laser was made so a contrast of two different wavelengths can be seen.It would be interesting to investigate further the effect of short wavelength on the surface properties of the ZrO2and Si3N4engineering ceramic. Moreover,Shukla and Lawrence[20,21]investigated the effects on the K1C using a?bre laser to surface treat a ZrO2and Si3N4 engineering ceramics which showed changes in the K1C of both the ceramics.However,the effects of the?bre laser are

different

Fig. 1.Schematic diagram showing the experimental set-up of the CO2laser surface treatment of the ZrO2and the Si3N4engineering ceramics.

Nomenclature

Al2O3alumina

D average diagonal size

c average?aw size

b beta

CIP cold isostatic pressed

CMM co-ordinate measuring machine 1C degrees centigrade

d delta

K1C fracture toughness

GPa Giga Pascal

HV hardness

HIP hot isostatic pressed

Ic interior cracks

l litres

P load(kg)Pc load impact

MPa Mega Pascal

m3metre cubed

m metres

m minà1metres per minute

m m micro-metre

mm milimeters

nm nano-metres

N Newtons

NC numerical control

O2oxygen

Si3N4silicon nitride

y theta

a two times the average?aw size(2c) E Young’s modulus

ZrO2zirconia oxide

P.P.Shukla,https://www.doczj.com/doc/5f13665952.html,wrence/Optics and Lasers in Engineering49(2011)229–239 230

from that of the CO 2laser due to the differing wavelength,beam conditions as well as the beam delivery system despite applying identical parameters.This is why a broader investigation was carried out by using the CO 2and the ?bre laser on the ZrO 2and the Si 3N 4engineering ceramic.Furthermore,despite the Nd:YAG laser wavelength being in the same region as that of the ?bre laser,the Nd:YAG laser does not function stably in the continuous wave (CW)mode.This is required for reducing the thermal shock induced into a ceramic.Fibre lasers also produce high brightness in comparison to the more conventional CO 2and Nd:YAG lasers which generally inhibit deeper penetration,capable of producing ?ner spot sizes,longer depth of focus,as well as low cost per wattage being exhibited due to their high brightness.As one can see,this investigation is timely as limited research has been conducted by employing ?bre lasers to conduct the surface treatment of materials,particularly for engineering ceramics (Fig.2).

2.Background of the Vickers indentation method to determine the K 1C of the ceramics

The Vickers indentation test can be used to determine the K 1C of ceramics and glass type materials from empirical relationships as demonstrated in [1,2,4,23–25].The procedure and steps in order to produce a genuine Vickers indentation test were followed and are documented elsewhere [26].Several authors have used this method to determine the K 1C of ceramics and glass type materials [3,4,20,21,27,28].Ponton and Rawlings [3,4],Chicot et al.[24],Liang et al.[25]and Orange et al.[28]presented a thorough investigation into various equations speci?cally applied to cera-mics and justi?ed the reasons for their suitability for use.The equations originate from various other authors [27,29–38]and are said to be unique for various ceramics and glass based materials.However,due to simplicity and ease of use,equations derived by Ponton and Rawlings were adopted for this investigation.

3.Experimentation technique and analysis 3.1.Background of the test materials

The materials used for this work were a cold isostatic pressed (CIP)Si 3N 4with 90%Si 3N 4,4%Yttria,4%Al 2O 3(alumina)and 2%other unspeci?ed content by the manufacturer and ZrO 2with 95%ZrO 2and 5%Yttria.Each test piece was 10?10?50mm bars and comprised the surface roughness of 1.56m m (Si 3N 4)and 1.58m m (ZrO 2)ceramics as provided by the manufacturer (Tensky International Company Ltd;Taiwan).This was to minimize the beam re?ection as shinier surfaces would reduce beam absorption,although rougher surfaces of the ceramics can often be more prone to cracking in comparison [1,39].The experiments were conducted in an ambient condition at a known atmospheric temperature (201C).All surfaces of both the Si 3N 4and ZrO 2engineering ceramics to be treated were marked with black ink prior to the laser treatment to enhance the absorption and to allow the laser beam to further penetrate into the surface.Initial experiments reviewed that the black ink helped the beam be better absorbed into the material.This was particularly the case with the ZrO 2ceramic as it re?ected the beam without the black ink because of its colour being white.Furthermore,it was necessary to conduct similar experiments with both laser types using identical material surface conditions so that a true comparison of the effects of the two lasers can then be further performed.The back ink was generally removed by the CO 2or the ?bre laser surface treatment and was not found to have any further effect on the ceramics after the laser surface interaction had taken place.3.2.Vickers indentation test

An indenter of a speci?c shape made from a diamond material was used to indent the CO 2and the ?bre laser treated surfaces of the Si 3N 4and the ZrO 2engineering ceramics.Around 50indentation tests each were performed on all surfaces examined.An indentation load of 49.05N was used.The indented surface and the resulting crack lengths were measured using the optical microscopy and a co-ordinate measuring machine.A standardized technique was adopted to ensure that valid indentation tests were performed [26].Thereafter,the surface area of the indentation (diamond foot-print)was placed into Eq.(1)to calculate the hardness value:HV ?2P sin ?y =2 =D 2?1:8544P =D 2

e1T

where P is the applied load,D is the average diagonal size of the indentation and y is the angle between the opposite faces of the diamond indenter.3.3.Calculation of the K 1C

The equation used to determine the K 1C in this work was chosen by taking into consideration the ?ndings in a previous investiga-tion by Shukla and Lawrence [20],which revealed that Palmqvist cracks were produced,followed by a propagation of the median half-penny cracks when applying high indentation loads to the as-received surface of the ceramics.Furthermore,the values produced by this equation were 38%accurate for Si 3N 4and 42%for ZrO 2in obtaining the true K 1C values which are usually between 4and 8MPa m 1/2for the Si 3N 4and 8–12MPa m 1/2for the ZrO 2ceramic.Eq.(2)was hence used based on these ?ndings to calculate the K 1C of all laser treated ceramic samples in this study [3]:K 1C ?0:016eE =HV T1=2eP =c 3=2T

e2T

where P is the load;c is crack length;HV is the Vickers material hardness value;E is Young’s modulus (320GPa for the Si 3N 4and 210GPa for the ZrO 2)and 0.016is the materials empirical

value

Fig.2.Schematic diagram showing the experimental set-up of the ?bre laser surface treatment of the ZrO 2and the Si 3N 4engineering ceramics.

P.P.Shukla,https://www.doczj.com/doc/5f13665952.html,wrence /Optics and Lasers in Engineering 49(2011)229–239231

[3,4].The hardness obtained from the Vickers indentations test and the crack length of the ceramics after the Vickers indentation test were the changing input parameters for Eq.(2).3.4.CO 2laser surface treatment

A 1.5kW CO 2laser (Everlase S48;Coherent,Ltd.)emitting at a wavelength of 10.6m m in the continuous wave (CW)mode was used in this work.The processing gas used was compressed air,at a ?ow rate of 25l/min.To obtain an operating window,trials were conducted by varying the power between 50and 200W and varying the traverse speed between 100and 600mm/min.From these trials it was found that 65W at 600mm min/min for ZrO 2and 175W at 100mm/min for Si 3N 4were the ideal laser parameters to use in terms of achieving a crack-free surface.Stand-off distance between the nozzle and the work-piece was kept to 16mm in order to obtain a focal spot size of 3mm.Programming of the laser was conducted using an integrated software which controlled the motion system.A 50mm line was programmed using numerical control (NC)programming as a potential beam path,which was transferred by a .dxf ?le.3.5.Fibre laser surface treatment

A 200W ?bre laser (SP-200c-002;SPI,Ltd.)was employed,which emitted a continuous wave (CW)mode beam at a wavelength of 1.075m m.The processing gas used was com-pressed air,which was supplied at a ?ow rate of 25l/min.To obtain an operating window,trials were conducted at a ?xed spot size of 3mm by varying the power between 25and 200W,as well as varying the traverse speed between 25and 500mm/min.From these trials,it was found that 143W at 100mm/min for the ZrO 2and 200W at 100mm/min for the Si 3N 4were the ideal laser parameters to use in terms of achieving a crack-free surface.A 50mm line was also programmed using NC programming as a potential beam path which was transferred by a .dxf ?le.

4.Results and discussion

https://www.doczj.com/doc/5f13665952.html,parison of CO 2laser surface treatment with ?bre laser surface treatment of the ZrO 2engineering ceramic

4.1.1.Change in the surface hardness

Fig.3presents the ?uctuations in the hardness of the CO 2and the ?bre laser radiated surfaces of the ZrO 2ceramics,along with

its mean hardness value.Over 50indentation tests were conducted on one surface plane.As one can see that the hardness of the CO 2laser radiated surfaces was considerably lower than that of the ?bre laser radiated surface.The average hardness of the CO 2laser radiated ZrO 2was 854HV,with the highest value being 1120HV and the lowest being 473HV.The average hardness for the ?bre laser radiated surface of the ZrO 2was 940HV.The highest value above the mean was 1089HV and the lowest was 826HV for the ZrO 2ceramic.The hardness values ?uctuated in both of the curves due to an uneven surface being produced from material removal as well as melting and solidi?cation.The hardness of the CO 2laser radiated surface was up to 22%lower than that of the ?bre laser.This showed that the CO 2laser radiation had softened the surface of the ZrO 2in comparison to that of the ?bre laser radiated surface.

4.1.2.Change in the crack length

Average crack length of the CO 2laser treated surfaces was 216m m with the highest value above the mean being 333m m and the lowest being 143m m as presented in Fig.4.The average crack length of the ?bre laser radiated surface of the ZrO 2was 171m m.The crack length was much reduced in comparison with the crack length of the CO 2laser radiated surfaces.Despite the increase in hardness produced by the ?bre laser radiated surface,a 21%decrease in crack length was found from the ?bre laser radiation.This can be seen from Figs.5and 6where the diamond inden-tation produced by the CO 2laser radiation (see Fig.5)was larger due to the softening of the surface,but produced high cracking pro?les.In comparison,the indentation created by the ?bre laser radiated surface was smaller due to surface hardening and yet produced a considerably smaller cracking geometry.The expected result was a larger crack length due to a smaller indentation foot-print produced.From this,it can be postulated that compressive residual stress could have been induced during the ?bre laser surface radiation,which caused lower crack propagation as further explained in Section 4.3.

One can see from the optical micrographs in Figs.5and 6that surface oxidation is not apparent.The ZrO 2ceramic is less sensitive to the effect of surface oxidation during the exposure to the laser beam radiation due to the majority of the ZrO 2ceramics comprising of Zr+O 2.It can also be seen from the optical micrographs that the ZrO 2has been changed in colour especially in Fig.5due to the thermal energy being induced.It is possible however,that the ZrO 2had undergone a degree of compositional change since it had been exposed to the environment at high temperatures during both CO 2and the ?bre laser irradiation.A compositional change from ZrO 2to ZrCO 2is likely to

have

Fig.3.Hardness of the ZrO 2ceramic treated with a CO 2and a ?bre laser radiation.

P.P.Shukla,https://www.doczj.com/doc/5f13665952.html,wrence /Optics and Lasers in Engineering 49(2011)229–239

232

occurred during the laser surface interaction.This would bring changes in the fracture resistance of the ZrO 2and is deemed to have in?uenced the K 1C values after the laser surface treatments.

4.1.3.Change in the surface K 1C

Fig.7presents the K 1C of the CO 2and the ?bre laser treated ZrO 2ceramics,which showed that the K 1C of the ?bre laser radiated surfaces was 29%higher than that of the CO 2laser radiated surface.The average K 1C of the CO 2laser radiated surface of the ZrO 2was 5.63MPa m 1/2,with the highest value being 9.85MPa m 1/2above the mean and the lowest being 2.97MPa m 1/2below the mean.The average value found for the CO 2laser radiated surface of the ZrO 2was 4.16MPa m 1/2,with the highest value being 7.54MPa m 1/2and the lowest being 1.89MPa m 1/2.The values for both laser treated surfaces ?uctuated due to the variation in the surface hardness and the differing crack geometries.The surface ?nish of the ceramics prior to the laser treatment should also be considered where the unpolished (as-received)surface is more prone to cracking during the diamond indentation due to pre-existing manufacturing surface ?aws and micro-cracks which was the case in the study.

https://www.doczj.com/doc/5f13665952.html,parison of CO 2laser surface treatment and ?bre laser surface treatment of the Si 3N 4engineering ceramic

4.2.1.Change in the surface hardness

The average hardness of the CO 2laser radiated surface of the Si 3N 4was 1028HV which was —a reduction of 13%from the ?bre laser radiated surface (1154HV).This reduction in the surface hardness indicated that a softer surface layer was also produced by the CO 2laser radiation in comparison to that of the ?bre laser radiation.The hardness values ranged between 264and 1449HV for the CO 2laser radiated Si 3N 4,and between 788and 1449HV for the ?bre laser radiated Si 3N 4as shown in Fig.8.It is evident from Fig.8that the ?uctuation in the hardness value was large.This was due to the surface containing an oxide layer of around 100–150m m thickness resulting from both laser treatments,which was somewhat softer and more uneven in comparison to the laser unaffected surface.As such,the diamond indenter penetrated deeper into the surface in some of the regions than in others,which is why the diamond indentations in Figs.9and 10are not

symmetrical.

Fig.4.Crack length of the ZrO 2ceramic obtained after a CO 2and a ?bre laser

radiation.

Fig. 5.Optical image of the CO 2laser radiated surface of the ZrO 2ceramic indented by a 49.05N load;600mm/min;3mm post size (hardness ?650(HV);crack length ?298m m;K 1C ?2.75MPa m 1/2

).

Fig. 6.Optical image of the ?bre laser radiated surface of the ZrO 2ceramic indented by a 49.05N load,600mm/min,3mm post size,hardness ?654(HV),crack length ?232m m,K 1C ?3.97MPa m 1/2).

P.P.Shukla,https://www.doczj.com/doc/5f13665952.html,wrence /Optics and Lasers in Engineering 49(2011)229–239233

Figs.9and 10presents an example of a diamond indentation produced and the accompanying crack geometry,respectively.It can be seen from the two images that the diamond indentation produced on the CO 2laser radiated Si 3N 4(see Fig.9)is larger than

that of the ?bre laser radiated surface (see Fig.10).Both the CO 2and the ?bre laser treated surfaces of the Si 3N 4genuinely showed evidence of surface oxidation.The new surface was formed from the result of the Si 3N 4ceramic being exposed to the atmosphere at high temperatures.This would have led to the possible compositional change where the Si 3N 4was changed to SiO 2.Moreover,the occurrence of the white phase as illustrated

in

Fig.7.K 1C of the ZrO 2ceramic obtained after the CO 2and a ?bre laser

radiation.

Fig.8.Hardness of the Si 3N 4ceramic treated by CO 2and a ?bre laser

radiation.

Fig.9.Optical image of the CO 2laser treated surface of Si 3N 4ceramic indented by a 49.05N load,laser power ?150W;100mm/min;3mm post size (hard-ness ?623HV;crack length ?281m m,K 1C ?3.58MPa m 1/2

).

Fig.10.Optical image of the ?bre laser treated surface of Si 3N 4ceramic indented by a 49.05N load;laser power ?150W;100mm/min;3mm post size (hard-ness ?900HV;crack length ?248m m;K 1C ?3.59MPa m 1/2).

P.P.Shukla,https://www.doczj.com/doc/5f13665952.html,wrence /Optics and Lasers in Engineering 49(2011)229–239

234

Figs.9and10would also lead to some modi?cation in the microstructure of the Si3N4ceramic as the white oxide layer would be formed above the normal surface of the Si3N4,which in turn would generate in-?lling of the surface cracks in various areas and also cover the grains that would normally appear on the top surface layer.The change in composition of the Si3N4was also con?rmed from a previous investigation by Lysenko et al.[40].

A reduction in the crack length obtained on the CO2laser radiated surface occurred due to the oxide layer being somewhat thicker in various areas in comparison,to the?bre laser radiated surface of the Si3N4which showed lower surface hardness and the resulting crack lengths.

4.2.2.Change in the crack length

The crack lengths obtained from both of the laser radiated surfaces are presented in Fig.11.The average crack length obtained from the CO2laser radiation was210m m and ranged between135and295m m.This in comparison to the cracks produced by the Vickers indentation test of the?bre laser radiated Si3N4was16%lower.The average crack length found was242m m with the highest being337m m and the lowest being 164m m for the?bre laser radiated surfaces.The?uctuation from values in Fig.11has resulted from the newly formed,uneven oxide layer after both the laser surface treatments.

4.2.3.Change in the K1C

The average K1C of the CO2laser treated surface was found to be4.78MPa m1/2and ranged between2.74and11.90MPa m1/2. This was26%higher in comparison to that of the?bre laser radiated surface of the Si3N4ceramic.The average K1C value for the Si3N4after the?bre laser treatment was3.51MPa m1/2.The highest K1C value obtained above the mean was6.03MPa m1/2. The results are shown in Fig.12.The values also?uctuated considerably due to the variations found in the hardness and the crack lengths that led to generating an uneven surface pro?le as mentioned earlier in this study.

4.3.Differences between the CO2and the?bre laser surface treatment and the effects on the hardness,crack lengths and the K1C of the engineering ceramics

4.3.1.Rationale for the change in the hardness

The results showed that a change in the hardness occurred due to both of the laser treatments of the ZrO2and the Si3N4 engineering ceramics.However,the hardness produced by the CO2laser in comparison to the?bre laser was somewhat lower. This was due to the difference in the absorption of the mid-infra-red wavelength CO2and the near-infra-red wavelength of the ?bre laser wavelength.Both the CO2and the?bre laser wavelength,however,penetrate to a signi?cant depth within the ceramics.Although the CO2laser has the tendency to produce high interaction zones at the surface whereas the?bre laser penetrates deeper into the Si3N4ceramic layer in particular.This produces more compositional change at the top surface radiated by the CO2laser.A white SiO2layer is produced which is somewhat softer in comparison to the parent surface.For the ZrO2 ceramic,the?bre laser wavelength is somewhat transparent, hence the interaction is lower in comparison to the CO2

laser Fig.11.Crack length of the Si3N4ceramic obtained after a CO2and a?bre laser

radiation.

Fig.12.K1C of the CO2laser treated surface of the Si3N4ceramic.

P.P.Shukla,https://www.doczj.com/doc/5f13665952.html,wrence/Optics and Lasers in Engineering49(2011)229–239235

interaction with the ZrO 2.This in turn produces a high local temperature and larger melt pool at the surface but yet it is still shallow in comparison to the ?bre laser radiated surface.The larger melt zone intrinsically produces a bigger diamond indentation foot-print in comparison to the ?bre laser radiated surface and therefore has slightly lower hardness in comparison.This ?nding relates to the work of White et al.[41],who reported that an increase in the hardness of boron carbide ceramic by processing with the near-infra-red wavelength of a Nd:YAG laser was found,which complies with the higher hardness found with the near-infra-red wavelength of the ?bre laser.

Furthermore,taking into consideration of the effects produced by the laser ?oat zone (LFZ)melting and (LZM)of eutectic ceramics by several workers [41–49],it can be said that considerable change in the microstructure would occur after the laser–material interaction had taken place with both the CO 2and the ?bre laser radiated ceramics in this work.Those changes are within the surface morphology,growth of oxide crystals,and changes in the grain size and direction would occur,formation of amorphous layers as well as decrease in porosity would occur,which in turn would considerably affect the local characteristics and properties of the ceramics,particularly in the case of the surface hardness and the K 1C ,which heavily in?uences the microstructure of the ceramics.Further investigations are being undertaken to justify the micro-structural modi?cations induced by the laser surface treatment.

4.3.2.Rationale for the change in the crack lengths and the end K 1C of the ceramics

The increase in hardness is usually manifested as an increase in the crack length due to the ceramic becoming more brittle;however,this did not occur with surfaces of both CO 2and the ?bre laser radiation.A likely cause for this would be the effect of crack healing as the pre-existing surface micro-cracks on the ceramic were ?lled and covered particularly by the ?bre laser radiation.Also,the event of phase transformation would have occurred for both ceramics,which led to a change in the K 1C values.

Consideration must also be given to the event of strain hardening taking place as a result of the ?bre laser–ceramic surface interaction.The effect of strain hardening through move-ment of dislocations at elevated temperatures inherently could induce compression into the surface and sub-surface of the ceramic and through the effect of transformation hardening.If one considers the heat generated from irradiation the ?bre laser beam is likely to have caused the Si 3N 4in particular to transform from the a to b state at 16001C,as stated by Jiang et al.[50].This

intrinsically would have caused the observed increase in the hardness of the Si 3N 4to 3600HV in particular.Since the temperature during the ?bre laser processing has been found to be much higher than 16001C [50]for both ceramics,phase transformation of a –b phase will inherently occur within the Si 3N 4;and the change from monoclinic (M)phase to active tetragonal (T)phase would occur within ZrO 2during the ?bre laser irradiation.

An investigation by Moon et al.[51]found that the fracture toughness of Al 2O 3and Si 3N 4ceramics was improved considerably by generating dislocations within the ceramics by plastic deforma-tion (shot blasting)and then annealing to temperatures of 15001C.Work by Shukla and Lawrence [21]showed that the ?bre laser surface processing of the Si 3N 4and the ZrO 2occurred above 20001C and could have led to an increase in the hardness as the movement of dislocations at high temperatures would have induced a degree of residual stress into the ceramic in the form of compression.

To account for the ?bre laser induced compression (see Fig.13),the tension would need to overcome the compression in order to propagate a crack.Therefore,the cracking of the ceramics was much smaller in the ?bre laser radiated surface compared to the CO 2laser radiated surface.This meant that the tension induced by the 49.05N load to produce a crack on the ?bre laser treated surface was much smaller than the induced compression.This rationale goes some way in explaining the reason why smaller crack lengths have been found on the ?bre laser treated ceramic (particularly with Si 3N 4)surfaces in comparison with the CO 2laser treated surfaces.Values obtained for the hardness,crack length and the K 1C for the Si 3N 4and the ZrO 2ceramics treated by both the ?bre laser and the CO 2laser are presented in Table 1.

4.4.Other in?uential aspects affecting the K 1C of the laser treated ceramics

4.4.1.Differences in laser parameters

The differences within the K 1C results achieved by the CO 2and the ?bre laser surface treatment have occurred due to several aspects which should be considered.These are the material absorption;laser beam delivery system;wavelength and the brightness (power per unit area).The beam quality of the CO 2laser and the ?bre laser are in the same region (TEM 00).Therefore,the effect of the beam quality factor is minimal.However,it is important to consider the way in which the Gaussian beam of TEM 00is delivered as this would have an in?uence on the interaction between the ceramics and the speci?c laser

used.

Fig.13.Schematic representation of tension and compression concept where (a)the increase in induced compression from the ?bre laser surface treatment and (b)showing state of the ceramic under equilibrium condition.

P.P.Shukla,https://www.doczj.com/doc/5f13665952.html,wrence /Optics and Lasers in Engineering 49(2011)229–239

236

Since the CO2laser is delivered by galvanometers and stationary mirrors the beam is focused at a?ne spot size,whereas the?bre laser beam is delivered by a?bre cable which is less focused.It is important that a larger beam size is used for ceramic surface treatment so that the laser beam is distributed evenly onto the ceramic.In this case,a?bre laser with a low focused beam in comparison to that of the CO2would be more ideal,especially for the surface treatment of the ceramics.

The material absorption co-ef?cient is varied with different laser wavelengths,as some wavelengths are better absorbed by the ceramics than others,the CO2laser wavelength absorption with ceramics is about87%,whereas the?bre laser wavelength absorption is about92%.This means that the?bre laser is absorbed more into the material at the wavelength and exhibits better interaction zone.This produces more photon energy that is induced onto the ceramic surface.This in turn,produces high temperatures during the?bre laser processing which allows the ceramics to undergo phase and compositional changes and affect the hardness and the resulting crack geometries in different ways and has also affected the end K1C result from the two different laser sources used.

The difference in the laser brightness(luminance)between the two lasers used would also have an effect during the ceramic interaction as the?bre laser is much brighter than the CO2laser, which indicates that there is more power per unit area being executed at the ceramic surface.On account of this,it is indicative that the luminance at high power per unit area is larger with the ?bre laser and produces more interaction,high processing temperatures and leads rather to transformation hardening of the ceramics,which is not seen with the CO2laser surface radiation.

4.4.2.In?uence of the ceramics’surface condition

The CO2and the?bre laser were both focused executed on the as-received surfaces of the ZrO2and the Si3N4ceramics which comprised some degree of surface?aws such as porosity and micro-cracks and machine induced scarring.Due to this,the possibility of crack propagation increases during the diamond indentation tests.If the surface?aws were minimized in this study by introducing grinding and polishing of the near surface layer of the ceramics then the crack propagation during the indentation test would have been somewhat low.This is also true because the ground and polished surfaces are free from the surface impurities and has the tendency to induce compressive stress and allow the ceramics to be more resistant to cracking[39].This in turn,also increases the surface K1C as the resulting crack lengths from the indentation tests are reduced which also indicate that the surface of the ceramics are less prone to cracking.

4.4.3.Effects of phase transformation and change in composition

A new surface was formed especially on the top surface of the Si3N4ceramic after being radiated by both CO2and the?bre laser (see Figs.9and10).This was because of the Si3N4ceramic being exposed to the atmosphere at high temperatures and led to a possible change in the composition as the Si3N4was changed to SiO2.Consequently,the effects with ZrO2were also identical after conducting both the CO2and the?bre laser surface treatments.

A change in composition within the ZrO2would have also taken place where the top surface of the ZrO2was changed to ZrCO2.

A compositional change within the laser radiated ZrO2and Si3N4 was also previously con?rmed with the work of Shukla and Lawrence[52].A change in composition after the?bre laser surface treatment in turn,would affect the hardness of the ceramics which inherently in?uenced the crack geometry during the Vickers indentation test and furthermore,the end K1C values.

4.4.4.Effects of the Vickers indentation test and parameters used within the K1C equation

The Vickers indentation method is easy to set up and is cost effective but it still has several?aws such as the results obtained from the hardness test heavily depending on user’s ability to detect the crack lengths and their geometry.The K1C values could be much improved if the surface hardness values and the resulting crack geometries were consistently balanced with minimal?uctuation.The?uctuations found in the mean hardness from the results of this study were up to11%.This in comparison with the values for the ceramics given in the literature were1% higher than the710%range(error)given in[2].Errors of at least 1%(minimum)between the hardness values found in this study and the literature can be exempted from being non-conformance and may be considered to pass through the quality requirements test if the hardness test was used for a(real life)ZrO2ceramic engineering component/product.This could be found by adopting other indentation methods and by using many of the other existing empirical equations.

The calculation of fracture toughness is somewhat dif?cult due to various uncertainties such as the selection of the most appropriate equation;input parameters which compliment the equation used;the surface conditions of the ceramics and the ceramics response to the diamond indentations.Consideration should be given to two parameters that can in?uence the K1C of the ceramics here in this investigation and on a general note. Those parameters are the indentation load and the Young’s modulus.Whereas the indentation load was kept constant in this study;the effects of this parameter were zero.However,Young’s modulus would also in?uence the K1C of the Si3N4,since an increase in the ratio of stress and strain in turn increases Young’s modulus value and affects the end K1C value.If the effect of Young’s modulus was ignored,then the K1C value for the CO2laser treated surfaces would be reduced to6%on average.

5.Conclusions

Fracture toughness property(K1C)of the ZrO2and Si3N4 engineering ceramics was conducted following CO2and a?bre

Table1

Surface hardness,crack lengths and the K1C values found by using5kg indentation load from the experimental investigation of both the Si3N4and the ZrO2engineering ceramics treated by the CO2and the?bre laser radiation.

Average surface hardness(HV)Average surface crack length(l m)Average surface K1C(MPa m1/2)

Si3N4STVD Range ZrO2STVD Range Si3N4STVD Range ZrO2STVD Range Si3N4STVD Range ZrO2STVD Range

As-received surface 1106201707–

1648

983141.3717707–

1330

3860.000865227–

499

2780.000707178–

512

1.710.590.55–

3.06

2.450.830.92–

4.42

CO2laser treatment 1019216666–

1379

854178473–

1120

2780.000609179–

463

2160.000434144–

333

3.16 1.17 1.13–

5.30

3.75 1.05 1.69–

6.78

Fibre laser treatment 1154159788–

1449

94060826–

1089

2420.000407160–

307

1700.000328112–

243

3.250.94 1.95–

5.52

5.05 1.51 2.67–

8.86

P.P.Shukla,https://www.doczj.com/doc/5f13665952.html,wrence/Optics and Lasers in Engineering49(2011)229–239237

laser surface treatment.The Vickers indentation technique was employed for determination of K1C.The following conclusions were drawn from comparing the two laser sources applied to the ZrO2and the Si3N4ceramics:

The CO

2

laser radiated surfaces in comparison to the that of the ?bre laser radiated surface modi?ed the K1C of both ceramics.

This was found by the CO2and the?bre laser surface treatment in comparison to the as-received surfaces.

The K

1C

values found on the CO2laser radiated surface of the Si3N4were3%higher in comparison to that of the?bre laser.

This was due to the near surface of the Si3N4being soft and was lower in hardness,which further increased the fracture resistance.

The effects were different in the ZrO

2

compared to ceramic to those in Si3N4as the?bre laser surface treatment on this occasion had produced a rise of34%compared to that of the CO2laser radiation.This was because of low crack propagation, which resulted from the Vickers indentation test and inhe-rently affected the end K1C of the?bre laser radiated surface of the ZrO2engineering ceramic.

The K

1C

modi?cation of the two ceramics treated by the CO2 and the?bre laser was also believed to be in?uenced by the different laser wavelengths and its absorption co-ef?cient of the ceramics as well as the beam delivery system and the brightness of the two laser types applied.

The change in the wavelength affects the absorption of the laser energy.The?bre laser was induced deeper into the surface of the ceramics in particular the Si3N4whilst the CO2 laser produced larger pro?le and more broader laser affected region which in turn generated a larger oxide layer which was somewhat softer in comparison to the?bre laser radiated surface.

For the ZrO

2

ceramic,the?bre laser wavelength was some-what transparent so the laser–material interaction was lower in comparison to the CO2laser interaction with the ZrO2.High local temperature and larger melt pool at the surface were therefore produced.Furthermore,the larger melt zone pro-duced a bigger diamond indentation foot-print in comparison to the?bre laser radiated surface and comprised of slightly lower hardness in comparison.

References

[1]Shukla https://www.doczj.com/doc/5f13665952.html,ser surface treatment of silicon nitride.M.Sc.by Research Thesis,

Coventry University,2007.

[2]McColm IJ.Ceramic hardness.New York:Platinum Press;1990.

[3]Ponton B,Rawlings C.Vickers indentation fracture toughness test,Part

1—Review of literature and formulation of standardised indentation tough-ness equations.Journal of Materials Science Technology1989;5:865–72. [4]Ponton B,Rawlings C.Vickers indentation fracture toughness test,Part

2—Review of literature and formulation of standardised indentation tough-ness equations.Journal of Materials Science Technology1989;5:961–76. [5]Mitcjell TE.Dislocations in ceramics.Journal of Materials Science and

Technology1985;1.994–949.

[6]Castaing J,Veyssiere P.Core structure dislocations in ceramics,https://www.doczj.com/doc/5f13665952.html,:

Gordon and Breach Science Publishers Inc and OPA Ltd;1985.p.213–27. [7]Malshe A,Li Sun,Jiang W,McCluskey WP.Effect of CO2laser surface

processing on fracture behaviour of silicon nitride ceramic.Journal of Engineering Materials and Technology2006;128:460–7.

[8]Sun Li,Malshe AP,Jian Wen-Ping,Mccluskey PH.Experimental investigation

of laser surface processing of?exure silicon nitride ceramic.Transactions of Nonferrous Materials Society of China2006;16:558–65.

[9]Segall AE,Cai G,Akarapu R,Ramasco A.Fracture control of unsupported

ceramics during laser machining using a simultaneous prescore.Journal of Laser Applications2005;17(1):57–62.

[10]Anoop N,Samant B,Dahotre Narendra.Differences in physical phenomena

governing laser machining of structural ceramics.Ceramics International 2009;35:2093–7.[11]Hae L,Lawrence J.Effects of Nd:YAG laser treatment on the wettability

characteristics of a zirconia-based bioceramic.Optics and Lasers in Engineering2006;44:803–14.

[12]Hae L,Lawrence J,Chian KS.Osteoblast cell adhesion on a laser modi?ed

zirconia based bioceramic.Journal of Material Science:Materials in Medicine 2005;16:719–26.

[13]Hao L,Lawrence J.Numerical modeling of the laser surface processing of

magnesia partially stabilized zirconia by the means of three-dimensional transient?nite element analysis.Proceedings of the Royal Society—A 2006;462(2065):43–57.

[14]Triantafyllidis D,Li L,Stott FH.Surface treatment of alumina-based ceramics

using combined laser sources.Applied Surface Science2002;186:140–4. [15]Lawrence J,Li L.On the differences between the beam interaction

characteristics of CO2,Nd:YAG,excimer and high power diode lasers with a SiO2/https://www.doczj.com/doc/5f13665952.html,sers in Engineering2002;12(2):81–93.

[16]Lawrence J,Li L.Augmentation of the mechanical and chemical resistance

characteristics of an Al2O3-based refractory by means of high power diode laser surface treatment.Journal of Materials Processing Technology 2003;142:461–5.

[17]Lawrence J,Li L.The enamelling of concrete for improved performance

characteristics by means of high power diode laser interaction.Journal of Materials Processing Technology2003;138:551–9.

[18]Wang HA,Wang WY,Xie CS,Song WL,Zeng DW.CO2laser-induced structure

changes on an alumina–mullite–zirconia refractory.Applied Surface Science 2004;223:244–51.

[19]Wang HA,Wang WY,Xie CS,Song WL,Zeng DW.Micro-structural

characteristics of Al2O3-based refractory containing ZrO2induced by CO2 laser melting.Applied Surface Science2003;221:291–301.

[20]Shukla PP,Lawrence J,Wu H.On the fracture toughness of a zirconia

engineering ceramic and the effects thereon of surface processing with?bre laser radiation.Proceedings of the Institution of Mechanical Engineers Part B 2009;224:in press,doi:10.1243/09544054JEM1887.

[21]Shukla PP,Lawrence J.Fracture toughness modi?cation by using a?bre

laser surface treatment of a silicon nitride engineering ceramic.Journal of Materials Science2010;45(21):6540–55.

[22]Lawrence J,Li L.On the difference between the beam interactions

characteristics of CO2,Nd:YAG excimer and high powered diode lasers with

a SiO2/https://www.doczj.com/doc/5f13665952.html,sers in Engineering2002;12(2):81–93.

[23]Lawn BR,Evans AG,Marshall DB.Elastic/plastic indentation damage in

ceramic:the median/radial crack system.Journal of the American Ceramic Society1980;63(9–10):574–81.

[24]Chicot D.New development for fracture toughness determination by Vickers

indentation.Journal of Materials Science and Technology2004;20:877–84.

[25]Liang KM,Orange G,Fantozzi G.Crack resistance and fracture toughness of

alumina and zirconia ceramics:comparison of notched-beam and indenta-tion technique.In:Proceedings of the science ceramics14th international conference,vol.14,1988.p.709–14.

[26]British Standards.Vickers hardness test—Part2—Veri?cation and calibration

of testing machines.Metallic Materials—ISO6507-1,2005.

[27]Exner HE.The in?uence of sample preparation on Palmqvist’s method for

toughness testing of cemented carbides.Transactions of the Metallurgical Society of AIME1989;245(4):677–83.

[28]Orange G,Liang KM,Fantozzi G.Crack resistance and fracture toughness of

alumina and zirconia ceramics:comparison of notched beam and indentation technique.Science of Ceramics1987;14(PT7–9):709–14.

[29]Marion RH.In fracture mechanics applied to brittle materials.In:Freiman

SW,editor.STP678.Philadelphia,PA:ASTM;1979.p.103–11.

[30]Evans AG,Wilshaw TR.Quasi static particle damage in brittle solids.Acta

Metallurgica1976;24:939–56.

[31]Evans AG,Charles EA.Fracture toughness determinations by indentation.

Journal of American Society1976;59(7–8):371–2.

[32]Lawn BR,Evans AG,Marshall DB.Elastic/plastic indentation damage in

ceramic:the median/radial crack system.Journal of the American Ceramic Society1980;63(9–10):574–81.

[33]Marshall DB.Failure from contact induced surface?aws.Journal of the

American Ceramic Society1983;66:127–31.

[34]Anstis GR,Chanrikul P,Lawn BR,Marshall DB.A critical evaluation of

indentation techniques for measuring fracture toughness:I,Crack measure-ments.Journal of the American Ceramic Society1981;64:533–8.

[35]Niihara K,Morena R,Hasselman DPH.Evaluation of K1C of brittle solids by the

indentation method with low crack-to-indent ratios.Journal of Material Science Literature1982;1:13–6.

[36]Tani T,Miyamoto Y,Koizumi M.Grain size dependences of Vickers

microhardness and fracture toughness in Al2O3and Y2O3ceramics.Ceramics International1986;12:33–7.

[37]Hoshide T.Grain fracture model and its application to strength evaluation

in engineering ceramics.Engineering Fracture Mechanics1993;44(3):403–8.

[38]Kelly JR,Cohen ME,Tesk JA.Error biases in the calculation of indentation

fracture toughness for ceramics.Journal of the American Ceramic Society 1993;76(10):2665–8.

[39]Ahn Y,Chandrasekar S,Farris TN.Determination of surface residual stress in

machined ceramics using indentation fracture.Journal of Manufacturing Science and Engineering1996;118:483–9.

[40]Lysenko VS,Nazarov AN,Lokshin MM,Kaschieva SB.Effects of laser

irradiation on the structure of silicon dioxide?lm with implanted phosphorus ions.Fizika i Tekhnika Poluprovodnikov1977;1(11):2254–7.

P.P.Shukla,https://www.doczj.com/doc/5f13665952.html,wrence/Optics and Lasers in Engineering49(2011)229–239 238

[41]White RM,Kunkle JM,Polotai AV,Dickey EC.Microstructure and hardness

scaling in laser-processed B4C–TiB2eutectic ceramics.Journal of the European Ceramic Society2010;42:in press.

[42]Brody HD,Haggerty JS,Cima MJ,Flemings MC.Highly textured and single

crystal Bi2Ca Sr2Cu2O x prepared by laser heated?oat zone crystallizartion.

Journal of Crystal Growth1989;96:225–33.

[43]Ozkan N,Glowacki BA,Robinson EA,Freeman PA.Infrared zone melting

process for YBa2Cu3O7àd wires.Journal of Materials Research1991;6:1829–37.

[44]Pena JI,Merino RI,Harlan1NR,Larrea A,Fuente de la GF,Orera VM.

Microstructure of Y2O3doped Al2O3–ZrO2eutectics grown by the laser?oating zone method.Journal of the European Ceramic Society2002;22:2595–602. [45]Lennikova VV,Kazinb PE,Tretyakovb YD,Fuente de la https://www.doczj.com/doc/5f13665952.html,ser zone melting

and texture formation in MgO-doped Bi2.03Sr1.93Ca1.07Cu2.05O8+d.Journal of Inorganic and General Chemistry2002;630:2337–42.

[46]Larrea A,Fuente de la GF,Merino RI,Orera VM.ZrO2–Al2O3eutectic plates

produced by laser zone melting.Journal of European Ceramic Society 2002;22:191–8.[47]Leral F,Angurel LA,Rojo1JA,Mora1M,Recuero S,Arroyo MP,Andr es N.

Microstructure origin of hot spots in textured laser zone melting Bi-2212 monoliths.Superconductor Science and Technology,18.Institute of Physics Publishing;2005.p.1489–95.

[48]Su H,Zhang J,Liu L,Fu H.Processing,microstructure,and properties of laser

remelted Al2O3/Y3Al5O12(YAG)eutectic in situ composite.Transition of Nonferrous Material Society of China2007;17:1259–64.

[49]Angurel LA,Carlos Diez J,Francisco de la Fuente https://www.doczj.com/doc/5f13665952.html,ser induced cylindrical

zone melting of Bi2Sr2CaCu2O8+d superconductors.Journal of Inorganic and General Chemistry2009;635:1767–72.

[50]Jiang JZ,Kragh F,Frost DJ,Stahl K,Lindelov H.Hardness and thermal stability

of cubic silicon nitride.Journal of Physics Condensed Matter2001;13(22): L515–20.

[51]Moon W,Ito T,Uchimura S,Saka H.Toughening of ceramics by dislocation

sub-boundaries.Material Science and Engineering A2004;387–389:837–9.

[52]Shukla PP,Lawrence J.Characterization of?bre laser treated engineering

ceramics.In:Proceedings of the ICALEO-09,Florida,USA,2009.

P.P.Shukla,https://www.doczj.com/doc/5f13665952.html,wrence/Optics and Lasers in Engineering49(2011)229–239239

骨科考试试题

1.下列哪项属于不稳定性骨折 A.嵌插骨折 B.青枝骨折 C.胸椎压缩性骨折(1/5) D.螺旋形骨折 2.导致骨筋膜室综合症的主要原因是 A.主要血管损伤 B.主要神经损伤 C.肌肉挛缩 D.筋膜室内压力过高 3.下列哪项不是骨折功能复位的标准 A.儿童下肢缩短移位<2cm B.侧方成角移位完全矫正 B.长骨干横性骨折,骨折端对位至少达1/2 D.干骺端骨折对位至少3/4 4.肘关节脱位和肱骨髁上骨折的临床鉴别要点 A.局部肿胀 B.肘关节反常活动 C.肘部畸形 D.肘后三角关系改变 5. 关于桡骨下端骨折下列哪项是错误的 A.骨折发生在距桡骨下端关节面3CM以内 B.屈曲型骨折远折端向掌、尺侧移位 C.伸直型骨折远折端向桡、背侧移位骨折易误诊为腕关节脱位 6. 关于手的功能位 A.是手可以随时发挥最大功能的位置 B.腕关节背伸20度~30度 C.轻度尺偏 D.拇指对掌位,远端指间关节半屈位 7. 患者。男,68岁。不慎跌倒,感左髋部疼痛。体检:左下肢短缩2CM、极度外旋畸形。常常提示 A.股骨颈骨折 B.股骨转子间骨折 C.髋关节前脱位 D.髋关节后脱位 8. 骨折的最严重的并发症是: A、正中神经损伤 B、畸形愈合形成肘内翻畸形 C.肌肉 缺血性挛缩 D、骨化性肌炎 9. 处理时,妥善固定的目的,哪一项是错误的 A、为了试行复位 B、避免搬动时骨折端刺伤重要血管神经 C、 防止搬动时疼痛 D、有利于防休克 岁小儿,右肘部被牵拉后即出现哭闹,肘略屈,不敢拿东西,其诊断最大可能是: A.关节脱位 B、右肘关节软组织损伤 C、右桡骨小头半脱位 D、右肱骨髁上骨折 11.胫骨中下1/3交界处最易发生骨折的原因是 A.此处肌肉附着少 B.血液丰富 C.此处骨质疏松 D.骨质形态变化

股骨颈骨折(transcervical fracture)

概述髋关节是躯干与下肢的重要连接装置与承重结构,主要由股骨头、颈与髋臼共同构成。股骨颈的长轴线与股骨干纵轴线之间形成颈干角,为110°-140°,平均为127°儿童颈干角大于成人。成人股骨头的血液供应有多种来源:①股骨头圆韧带内的小凹动脉,提供股骨头凹部的血液循环;②股骨干滋养动脉升支,沿股骨颈进入股骨头;③旋股内、外侧动脉的分支,是股骨头、颈的重要营养动脉。股骨颈骨折(fracture of the fenoral neck)常发生于老年人,随着人的寿命延长,其发病率日渐增高。其临床治疗中存在骨折不愈合和股骨头缺血坏死两个主要问题。病因和发病机制中老年人发生骨折有两个基本因素,一是骨强度下降,二是老年人髋周肌群退变,不能有效地抵消髋部有害应力。而青壮年股骨颈骨折,往往由于严重损伤所致,且多见于不稳定型。一、按骨折部位分类 1、股骨头下骨折骨折线在股骨头下,损伤旋股内、外侧动脉发出的营养血管支,使股骨头的血液供应中断,仅有股骨头圆韧带内的小凹动脉提供是少量供血,导致股骨头缺血严重,发生股骨头缺血性坏死。2、经股骨颈骨折骨折线在股骨颈中部,呈斜形,多有一三角形骨块与股骨头相连。骨折损伤股骨干滋养动脉升支,导致股骨头供血不足,易发生股骨头缺血性坏死和骨折不愈合。3、股骨颈基底骨折骨折线位于股骨颈大、小转子之间连线处。旋股内、外侧动脉的分支提供血液循环,故对骨折部的血液供应影响不大,骨折容易愈合。二、按X线表现分类 1、内收骨折远端骨折线与两侧髂嵴连线的夹角(Pauwells角)大于50°,为内收骨折,属于不稳定型骨折,因为其骨折面接触较少,容易移位。Pauwells角越大,骨折端所遭受的剪切力越大,骨折越不稳定。2、外展骨折远端骨折线与两侧髂嵴连线的夹角小于30°,为外展骨折,属于稳定性骨折。若处理不当,如过度牵引,外旋、内收,或过早负重等,也可发生移位,成为不稳定性骨折。三、按移位程度分类 1、不完全骨折仅有部分骨完整性破坏,股骨颈的一部分出现裂纹,类似于骨折的裂纹骨折。2、完全性骨折骨折线贯穿股骨颈,骨结构完全破坏。可分为:(1)无移位的完全性骨折;(2)部分移位的完全骨折;(3)完全移位的完全骨折。临床表现一、畸形患肢多有轻度屈髋屈膝及外旋畸形,一般在45°-60°之间。二、疼痛移动患肢时髋部疼痛明显。在患肢足跟部或大粗隆部叩击时,髋部感疼痛。三、功能障碍移位骨折病人在伤后不能坐起或站立。有时伤后并不立即出现功能障碍,仍能行走,数天后髋部疼痛逐渐加重,才出现不能行走。实验室及其他检查一、肢体测量通过检查可发现患肢缩短。在平卧位,由髂前上嵴向水平划垂线,再由大转子与髂前上嵴的垂线画水平线,构成Bryant三角,股骨颈骨折时,此三角底边较健侧缩短。在平卧位,由髂前上嵴与坐骨结节之间画线,为Nélaton线。正常情况下,大转子在此线上,若大转子超过此线,表明大转子有向上移位。二、X线检查X线检查可同时发现骨折的部位、类型、移位情况,是选择治疗方法的重要依据。疾病概述病因病理临床表现检查检验诊断鉴别并发症治疗预后预防诊断和鉴别诊断根据中老年患者摔倒后出现髋部疼痛,下肢活动受限,不能站立和行走,应怀疑病人有股骨颈骨折。结合X线检查、肢体测量可明确骨折部位、类型和移位。一般诊断明确,不需要鉴别。并发症一、骨折不愈合。二、股骨头缺血性坏死是股骨颈骨折晚期最常见的并发症,发生率为20%-40%.当患者已恢复正常活动后患髋出现疼痛时应复查,若X线显示股骨变白、囊性变活股骨头塌陷,可认为是股骨头缺血性坏死的表现,但往往难以预测其发病趋势。治疗一、治疗时机早期治疗有利于尽快恢复骨折后血管受压或痉挛。股骨颈骨折手术原则上不超过2周。二、骨折复位准确良好的复位是骨愈合重要的条件。牵引患肢,同时在大腿根部加反牵引,待肢体原长度恢复后,行内旋外展复位。三、内固定目前内固定器材主要四类:①单钉类:三翼钉为代表,三刃钉内固定为众所熟悉的传统疗法。这种单根钉在骨的力学效能上不能持久,另外,此钉也不适于青少年及颈部粉碎性骨折者。②多钉固定类:包括史氏针、三角针和多根螺纹钉。此类固定对骨的损伤较小,利用多钉的布局在生物力学上的优势,疗效较好,缺点是钉退出后骨不愈合。③滑移式钉板固定装置

常见骨科症状体征

1、锁骨骨折症状:局部疼痛,患肩活动受限 体征:肩部或锁骨处可有皮肤擦伤及瘀斑,局部肿胀,有触痛。移位明显者有畸形,可触及骨折断端 注意:锁骨下动脉、臂丛神经、胸膜、肺损伤 2、肱骨外科颈骨折症状:局部疼痛,患肩活动受限 体征:局部肿胀,有触痛,可触及骨折断端 注意:臂丛神经、腋动脉损伤、肩关节脱位。复位后小夹板或超肩U型石膏外固定 3、肱骨髁上骨折肘关节伸直或半屈位时手掌着地病史,导致伸直型或屈曲型骨折 症状:局部疼痛,患肘活动受限 体征:肘部肿胀、畸形、触痛,可有骨擦感及反常活动,可触及骨折断端 注意:肱动脉损伤、尺、桡神经损伤鉴别:肱骨髁骨折、肘关节脱位 复位后石膏外固定,伸直型骨折,肘关节固定于90-120度屈曲位,屈曲型40-60度,1周后改为功能位 4、尺、桡骨骨折症状:局部疼痛,患肘、腕活动及前臂旋转受限 体征:局部肿胀、畸形、触痛,可有骨擦感及反常活动,可触及骨折断端 注意:上、下尺、桡关节脱位、骨筋膜室综合征 5、桡骨远端骨折腕关节于背伸位掌侧着地所致伸直型骨折—Colles骨折 桡骨远端向掌桡侧移位—Smith骨折 症状:局部疼痛,患腕活动受限 体征:局部肿胀、触痛,典型为“枪刺刀”及“餐叉样”畸形,可有骨擦感 注意:桡神经损伤、尺骨茎突骨折、腕关节脱位 6、股骨颈骨折老年骨质疏松者或严重外力 症状:局部疼痛,患髋活动受限,无法站立行走 体征:髋周可有瘀斑、肿胀、患肢短缩外旋畸形,有压痛及纵向叩击痛,大转子上移 鉴别:转子间骨折检查:患髋及骨盆X线。治疗:无明显移位-胫骨结节牵引

注意:其股骨头坏死、骨折不愈合比转子间骨折概率高 7、转子间骨折症状:局部疼痛,患髋活动受限,无法站立行走 体征:髋周可有瘀斑、肿胀、患肢短缩外旋畸形,有压痛及纵向叩击痛,大转子上移 8、股骨干骨折症状:局部疼痛,患髋、膝活动受限,无法站立行走,甚至休克 体征:局部肿胀、畸形,成角短缩畸形,可有骨擦感及反常活动 注意:腘动脉、腓总神经、胫神经损伤 9、髌骨骨折症状:局部疼痛,患膝活动受限,无法站立行走 体征:局部肿胀、畸形,压痛,可触及骨擦感,有关节积液征 10、胫腓骨骨折症状:局部疼痛,患膝、踝活动受限,无法站立行走 体征:局部肿胀、畸形,压痛,可触及骨擦感,可有反常活动,开放性者有骨外露 注意:腓总神经损伤、骨筋膜室综合征 11、踝部骨折症状:局部疼痛,患踝活动受限,无法站立行走 体征:局部瘀斑、肿胀、畸形,压痛,可触及骨擦感,重者有内外翻畸形 注意:三角韧带、下胫腓韧带损伤、踝关节脱位治疗:U型石膏外固定 12、脊柱骨折症状:局部疼痛,脊柱活动受限,并脊髓损伤者出现相应平面的运动、感觉障碍 体征:局部肿胀、压痛叩击痛 注意:脊髓损伤、脊柱滑脱、内脏损伤 13、骨盆骨折症状:局部疼痛,无法站立行走 体征:可有会阴、腹股沟、腰骶部瘀斑,肿胀、压痛,骨盆挤压分离试验(+) 注意:失血性休克、尿道、直肠损伤 14、肩关节脱位症状:局部疼痛,患肩活动受限 体征:方肩畸形,肩胛盂处右空虚感,杜加氏征(+) 注意:骨折,尤其是肱骨大结节

中医骨科常见骨折病历书写模板

骨科常见骨折病历书写模板 入院记录 主诉:**致***部肿痛、畸形、活动受限**天。 现病史:自述**天前在****因****不慎跌倒,***最先着地,致伤***部,伤后觉***部**(疼痛类型)痛难忍,***部逐渐肿胀,并出现畸形,活动时疼 痛加重,***关节活动受限,伤后***(处理情况)。为求进一步治疗, 于今(入院方式)我院门诊就诊,门诊拟“*****”收住我科进一步诊 疗。伤后无头晕头痛、恶心呕吐、胸闷气促、腹胀腹痛、二便失禁或血 尿血便。入院证见:**部肿痛、畸形、活动受限。 既往史:平素体健,否认有肝炎、肺结核、心脏病、糖尿病及肾炎等病史;预防接种史不详;否认外伤、手术及输血史,未发现药物过敏史。其他系统 回顾未见异常。 个人史:出生及生长于原籍,否认曾到过其他地方病或传染病流行地区及其接触情况,无烟酒、食鱼生及其他特殊嗜好,生活及居住条件一般。否认有 冶游史。 婚育史:**岁结婚,有*儿*女,子女及配偶均健康。 月经史:**岁*-*/**-**,既往月经量中等,颜色暗红,无血块,否认痛经、白带异常及闭经史等。 家族史:否认家族成员中有特殊的传染病及遗传病史。 体格检查 T**℃,P**次/分,R**次/分,BP***/**mmHg,体重:**Kg,身高:***cm。 一般情况:神志清楚,**面容;面色红润、含蓄;音语清晰,语声如常。发育正常,营养中等,自主体位,查体合作。舌质淡红,苔薄白,脉***。皮肤粘膜:全身皮肤、粘膜无黄染,无水肿、皮疹、瘀斑、紫癜、皮下结节、肿块、焦痂、溃疡、瘢痕、肝掌及蜘蛛痣,全身毛发生长、分布正常。淋巴结:全身或局部浅表淋巴结未触及肿大及压痛。 头部及其器官:头颅五官大小正常,无肿块、压痛、瘢痕,双瞳孔等圆等大,直径2.5mm,对光反射灵敏,巩膜无黄染,双眼睑无浮肿,乳突区 无压痛,外耳道及鼻道未见异常分泌物,各鼻窦区无压痛,口唇 无紫绀,口腔粘膜无出血点及溃疡,咽无红肿充血,双侧扁桃体 无肿大。 颈部:颈部软,两侧对称,颈静脉无曲张,无抵抗及压痛,双侧甲状腺不大,未触及肿块及结节。 胸部: 胸廓:两侧胸廓对称无畸形,胸壁未见有静脉曲张、皮下气肿,肋间隙无增宽或变窄,胸骨无压痛。 肺脏:两肺呼吸运动对称,呼吸平稳,节律整齐;两侧语颤无明显增强或减弱,无胸膜摩擦感、皮下捻发感等;双肺叩诊清音,无实音或浊音;听诊两 肺呼吸音清,未闻及明显干湿性罗音及胸膜摩擦音。 心脏:心前区无隆起,心尖搏动无弥漫,心前区未触及震颤和摩擦感,心界叩诊无增大,心率**次/分,律齐,心音有力,各瓣膜区未闻及明显病理性杂 音。

常见骨科疾病诊疗知识

常见骨科疾病诊疗知识 股骨颈骨折 中老年人常有骨质疏松,骨质量下降,当遭受轻微暴力即可发生骨折。此病特点有:①伤后髋部疼痛,不能站立;②X线照片可以确诊;③骨折后股骨头、颈部血运破坏,骨折难愈合或不愈合。此病的治疗有手术治疗及非手术治疗。单纯的稳定型骨折可以选择非手术治疗,但要卧床2月后,才能逐渐扶拐下地负重行走。手术方法有钢板、钢针固定或关节置换术。我科在手术治疗方面有很高的水平,从上世纪八十年代开始采用“带血管蒂髂骨瓣移植”治疗股骨颈骨折,预防骨折不愈合,预防股骨头缺血坏死疗效满意,治愈率在98%以上。患者骨折愈合后功能可完全恢复,且费用不高,患者可满意接受。如果患者在患此病早期未得到正确的治疗,出现了股骨头坏死,转来我院后,可给患者行“人工髋关节置换术”,我院的人工关节设计均与国际同步,未发现过排异反应等。总之,如果患有“股骨颈骨折”,要有心理准备,要选择正确的治疗方案,有一个较长恢复过程。 四肢骨折 四肢骨折较为常见,如在行走摔倒、车祸、坠楼等情况下均可发生。在四肢受伤后如果发现肢体变形,即是骨折的表现。若伤口不能立即肯定是否骨折,则上医院照片可以确诊。发现四肢骨折后,必须找骨科专科医生看病或住院治疗。骨科医生会根据你的骨折情况分类,若是简单的、稳定性骨折可不手术治疗,而采用夹板、石膏等固定,配合中药治疗,并不太困难。若是粉碎性骨折等情况则最好手术。应用医疗用的特殊钢板或钢针内固定,我院可治疗创伤后的各型骨折,有进口和国产的各种型号器材,均按世界通用的骨料“AO”原理及技术应用。如长骨骨干骨折可采用带锁钉、自锁钉、加压钢板、记忆合金(钛合金材料或无人体反应的合金材料制成),骨端应用解剖异型钢板等。亦可选择应用可吸收螺钉固定(日后不要再取的材料)。由于有先进技术及器材,故手术后骨折固定牢固,愈合良好。各类骨折治愈率均在98%以上。若有肢体发烂、皮肤缺损,我科可采用显微技术行皮瓣修复。 腰椎间盘突出症 我们人类直立行走,脊柱是人体重量的轴心。脊柱是依靠椎间盘、关节突关节及周围韧带连接而成,椎间盘是上下软骨板,中心髓核及四周纤纤环构成,通过椎间盘测压发现,

股骨粗隆间骨折(intertrochanteric fracture)

?股骨粗隆间骨折(intertrochanteric fracture) ?2009年03月04日电力医院骨科 ? 股骨近端解剖 定义:股骨粗隆间骨折系指股骨颈基底至小粗隆(小转子)下缘之间的骨折。 概述:股骨粗隆间骨折多见于老年人,男性多于女性,约为1.5:1,属于关节囊外骨折。美国每年发生超过25万例髋部骨折,总的的治疗费用估计超过80亿美元,其中股骨粗隆间骨折约占1/2,我国统计股骨粗隆间骨折患病年龄平均为70岁,比股骨颈骨折患者高5~6岁,高龄患者长期卧床引起并发症(肺炎;褥疮;泌尿系感染)较多,病死率为15~20%。 股骨粗隆部有许多肌肉附着,所以局部的血液供给丰富,加以骨折的接触面积大,因此,骨折后愈合连接一般不成问题。主要问题是有发生髋内翻的趋势,形成畸形连接,造成跛行,并由于承重线的改变,可能在后期引起患肢创伤性关节炎。 病因及危险因素: 1.直接暴力:大粗隆受到直接打击。 2.间接暴力:下肢突然扭转、跌倒时强力内收或外展。 3.骨质疏松:骨质疏松本身不是单独的危险因素,但绝经后妇女增加锻 炼、激素替代治疗并摄入足够的钙质能够降低股骨粗隆间骨折(髋部骨折)的发生率。 分类及分型: 1.按骨折线方向分型:此分型目的在于表示其稳定性。

(1)顺粗隆间线型(骨折),即骨折线由大粗隆向内下至小粗隆,其走行与粗隆间线平行,称为稳定型。 (2)逆粗隆间线型(骨折):即骨折线由大粗隆下方向内上达小粗隆的上方,称为不稳定型。有时骨折线难以分辨走向,呈粉碎骨折,其稳定性亦差。 临床实践表现,以骨折的原始状态来判断其稳定性似乎更为重要。凡伤后髋内翻越严重,骨折越不稳定,反之,原始髋内翻越轻或无内翻者,骨折越趋稳定。因此,骨折的稳定性似与骨折走向方向无关。 A图为顺粗隆间线型(骨折) B图为逆粗隆间线型(骨折) 2. 改良Evans或Evans-Jensen分型系统: Jensen对于Evans分型进行了改进,基于大小粗隆是否受累及复位后骨折是否稳定而分为五型。Ⅰa型:两骨折片段,骨折无移位。Ⅰb型:两骨折片段,骨折有移位。Ⅱa型:三骨折片段,累及大粗隆,因为移位的大粗隆片段而缺乏后外侧支持。Ⅱb型:3骨折片段,累及小粗隆,由于小粗隆或股骨矩骨折缺乏后内侧支持。Ⅲ型:四骨折片段,骨折累及两个粗隆,缺乏内侧和外侧的支持,为Ⅱa型和Ⅱb型的结合。Jensen研究发现Ⅰa、Ⅰb型骨折94%复位后稳定;Ⅱa型骨折33%复位后稳定;Ⅱb 型骨折21%复位后稳定;Ⅲ型骨折8%复位后稳定。Jensen指出大小粗隆的粉碎程度与复位后骨折的稳定性成反比,改良的Evans分型为判断复位后的稳定性和骨折再次移位的风险提供了最为可靠的预测。

骨科常见专科诊断

上肢及上肢带骨骨折 锁骨骨折[类病鉴别 ] 1、肩锁关节脱位:锁骨外端高于肩峰,甚至形成梯状崎形,向下牵拉上肢时,骨外端隆起更明显;向下按压骨外端可回复,松手后又隆起;X线片显示肩锁关节脱位。43JwXkc。 2、胸锁关节脱位:两侧胸锁关节不对称,可有异常活动,锁骨内端可突出或空虚。 3、臂丛神经瘫疾:易与婴幼儿锁骨骨折相混淆。前者锁骨仍完整,同时可见典型得肩部内收内旋、肘部伸直畸形;一般在2个月—3个月后可有显著恢复。sar36d5。 肩胛骨骨折〔类病鉴别〕 1、肋骨骨折:伤后胸部疼痛,咳嗽及深呼吸时疼痛加重;挤压胸廊时,骨折部分疼痛加剧;有时可合并气、血胸;X线片示肋骨骨折。jl72Isw。 2、肱骨外科颈骨折:多为传达暴力所致,上臂内侧可见瘀斑,有疼痛、压痛、功能障碍,可触及骨擦感及异常活动。SqnpgYI。 肱骨大结节骨折〔类病鉴别〕 l、肩关节前脱位:受伤机制与本病相近,也表现为肩部肿痛,活动受限.但有方肩畸形,可扪及异位肱骨头,肩关节弹性固定.有时两者常合并存在。vCcaKVZ。 2、肩峰骨折:均为肩部肿痛,但压痛点位于肩峰部,被动外展时可有一定得活动度;x线片可见肩峰骨折。 3、肱骨外科颈骨折:症状、体征相似,但本病肿胀及瘀斑较明显,肱骨上端环形压痛,可有异常活动;X线片见骨折线位于肱骨外颈.亦可两者合并存在。ygofaiP。 肱骨外科颈骨折〔类病鉴别〕 1、肩关节前脱位:亦表现肩部疼痛、压痛、活动受限,典型方肩畸形;但伤肢外展25°一30°位弹性固定,搭肩试验阳性;X线可鉴别.有时两者合并存在。3OOI0Ta。 2、肱骨大结节骨折:肩外侧大结节处压痛,外展活动受限,上臂内侧无瘀斑,无环形压痛。 3、肩部挫伤:系直接暴力所致.局部皮肤有擦伤、瘀斑,肿胀、压痛局限于着力部位,无环形压痛及纵向叩击痛;X线片无骨折征象。6RcDcyT。 肱骨干骨折〔类病鉴别〕 1、肱骨外科颈骨折:肿痛在肩部,肱骨上端压痛;X线正位片及穿胸位可显示骨折线在肱骨解剖颈下2厘米一3厘米;治疗后骨折多能愈合。C4J9BFt。 2、肱骨肱骨上骨折:多发生于儿童,肘部肿胀较明显,呈靴状畸形;X线片示骨折线在肱骨下端扁薄处;治疗后常遗有肘内翻畸形。cksT7hp。 3、上臂扭伤:压痛局限于损伤部位,有牵拉痛,上臂功能障碍较轻;无环形压痛及纵向叩击痛,无异常活动。 肱骨髁上骨折〔类病鉴别〕

2018骨科考试题

骨科科考试试卷(一) 一、单项选择题:(每题4分,共32分) 1. 陈旧性骨折就是() A. 骨折畸形愈合 B. 骨折迟缓愈合 C. 骨折后 1 ~ 2 周就诊者 D. 骨折后 2 ~ 3 周就诊者 2. 锁骨骨折患者的姿势常为() A?头斜向患侧,下颌转向健侧 B. 头歪向患侧,下颌转向患侧 C?头歪向患侧,下颌转向健侧 D. 头歪向健侧,下颌转向患侧 3. 肱骨髁上骨折最常见的并发症是() A. 肱动脉破裂 B. 前臂缺血性肌痉挛 C. 正中神经损伤 D. 肘内翻 4. 压缩性骨折最常发生在() A. 肱骨外科颈 B. 桡骨远端 C. 股骨颈 D. 椎体 5. 股骨粗隆部骨折容易发生() A. 迟缓愈合 B. 不愈合 C. 髋内翻 D. 股骨头坏死 6. 出现膝粘征——阳性的髋部损伤是() A. 股骨颈骨折 B. 髋关节前脱位 C. 髋关节后脱位 D. 髋关节中心性脱位 7. 腰椎管狭窄的主要症状是() A. 腰痛 B. 腿痛 C. 腰腿痛 D. 反复腰痛和间歇性跛行 8. 脊椎骨折多发生于() A. 颈椎 B. 颈胸段 C. 胸腰段 D. 腰椎 二、填空题:(每题4分,共20分) 1 引起损伤的外力除直接暴力、间接暴力外,还有 _______________________ 和 ______________ 。

2 桡、尺骨双折的治疗原则是恢复前臂的 _______ 。 3?髌骨骨折的治疗原则主要是恢复膝关节 ____________ 的功能。 4 中医认为骨折的愈合过程为 _______________ 、 ______________ 和骨合。 5 骨折的基本移位方式有缩短移位、移位、 _______ 移位、 __________ 移位和 __________ 移位。 三、名词解释:(每题6分,共18分) 1?颈干角 2?功能复位 3?弹性固定 四、问答题:(每15题分,共30分) 1?小夹板固定后的注意事项有哪些? 2?股骨颈骨折为什么常常难愈合

【创伤骨科常用汉英词汇】

【创伤骨科常用汉英词汇】 A 凹陷骨折depressed fracture B 半脱位subluxation 半月板meniscus 闭合性骨折closed fracture 髌骨patella 髌骨骨折fracture of patella 髌骨脱位dislocation of patella 髌上囊suprapatellar bursa 髌下脂肪垫subpatellar fat pad 髌韧带patellar ligament 病理性骨折pathological fracture 爆裂骨折bursting fracture 鼻骨骨折fracture of nasal bone 不完全骨折no-complete fracture C 尺骨ulnar 尺骨茎突styloid process of ulna

尺骨鹰嘴骨折olecranon fracture of ulna 创伤性脱位traumatic dislocation 创伤性关节炎traumatic arthritis 创伤性滑膜炎traumatic synovitis 耻骨pubis 耻骨联合pubic symphysis 耻骨上支superior ramus of pubis 耻骨下支inferior ramus of pubis 陈旧性骨折old fracture 垂直压迫损伤vertical compression injuries 齿状突odontoid process 错位displacement D 骶骨sacrum 骶椎sacral vertebrae 骶髂关节cacroiliac joint 骶髂关节分离separation of cacroiliac joint 大多角骨trapezium bone 大结节greater tubercle 大转子greater trochanter 对位paratope 对线alignment

骨科各种手术记录大全

骨科各种手术记录大全 1、髌骨骨折 1. 平卧位 2. 常规消毒铺巾。 3. 在右膝关节作横弧形切口,切开筋膜层,显露髌骨骨折端,及断裂的髌韧带扩张部,冲洗膝关节腔,清除血肿,见骨折粉碎,移位,将骨折复位,以巾钳维持,平行髌骨纵向钻入两枚克氏针,再以钢丝“8”字环绕绑扎,取1—0Dexon线环绕髌骨缝扎两周,以固定。 4. 冲洗术野,彻底止血,逐层缝合。 髌骨骨折切开复位内固定术 1.麻醉平稳后,患者仰卧位,常规消毒铺单,取右膝前正中长约8厘米纵行切口,切开皮肤浅深筋膜,分离显露骨折处。 2.术中可见髌骨骨折,呈粉碎性,关节腔可见有大量凝血块,髌腱膜于骨折处横断。 3.手术清除骨折端处凝血块,将骨折复位后,暂用巾钳固定。于髌骨旁纵行切开关节囊,手指探查髌骨关节面复位良好,以髌骨记忆合金张力钩固定,用生理盐水充分冲洗关节腔及切口,用粗丝线缝合修补髌腱膜及关节囊。 4.清点器械无误后缝合皮下组织及皮肤。手术顺利,术中出血不多,术后患者安返病房。 2、肱骨骨折 手术程序: 1. 臂丛麻醉成功后,患者取平卧位,左上臂置于胸前,左上臂根部绑止血带,常规手术野皮肤消毒铺巾。 2. 驱血至300mmHg,上止血带,自尺骨鹰嘴至肱骨下段后方切开约长10cm,切开皮肤及皮下组织,显露肱三头肌及腱膜,显露出尺神经,牵开尺神经以免损伤,自肱三头肌中线切开直至肱骨骨膜,将肱三头肌向两侧拉开,显露肱骨骨折端,见远端向前成角移位,将骨折端血肿清除,牵引复位骨折并维持,取5孔肱骨重建钢板预弯后置于肱骨后侧,钻孔,攻螺纹,拧入螺钉固定,并使骨折端加压,检查骨折固定稳定,肘关节活动不受影响。 3. 冲洗伤口,彻底止血,留置胶管引流1条,逐层缝合。 4. 麻醉满意,术程顺利,术后予左上肢石膏托外固定。 左肱骨骨折内固定术后再次骨折 1.麻醉平稳后,患者取仰卧位,常规消毒铺单。 2.沿原手术切口切开,逐层切开皮肤、皮下组织,分离显露桡神经,游离桡神经并牵开保护,充分显露骨折断端,可见左肱骨骨折,内固定物松脱,骨折断端处有大量肉芽组织形成,有碎骨块,骨折断端错位成角,骨折端骨质硬化,髓腔封闭。 3.手术取出内固定物,清理骨折断端处肉芽组织,咬除骨折断端硬化骨质,打通髓腔,于右髂骨处凿除部分髂骨,于肱骨大结节上方开口并以髓腔锉依次扩髓,打入8×220毫米带锁髓内针主针,针尾穿至平肱骨结节水平。安装瞄准器、压力定位杆,依次经切口、钻孔、测深、攻丝后,拧入远端锁钉1枚,再同理锁入近端锁钉1枚,大量生理盐水冲洗切口后,以所取髂骨植于骨折断端。 4.术中观察骨折对位对线良好,骨折固定牢靠。用大量生理盐水冲洗切口后逐层缝合。 5.C臂机下观察骨折对位,对线良好。手术顺利,术中出血不多,患者安返病房,回房血压

骨科专业英语

骨科相关词汇 abduction 外展 abrasion 擦伤 abscess 脓肿 acromegaly 肢端肥大症 adenoma 腺瘤 adolescent 青少年的 adduction 内收 afferent neuron 传入神经 ankylosing spondylitis 强直性脊柱炎 achilles tendon 跟腱 arthritis 关节炎 arthrogryposis 关节屈曲 Aseptic Necrosis 无菌坏死 Avascular necrosis of femoral head 股骨头坏死 axillary nerve 腋神经 bone 骨 brachial plexus 臂丛 Bunion拇囊炎 bursitis 粘液囊炎 calcaneus 跟骨 callus 胼胝 Cellulitis 蜂窝组织炎 cervical 颈椎的 bone cement 骨水泥 chiropody 足科 clubfoot 马蹄内翻足 corn 鸡眼 crescent 新月形 cubital 尺侧的 cyst 囊 cystic 囊性变 débridement 清创术 dislocation 脱位 dysplasia 发育不良 effusion 渗出 erosion 侵蚀 extension 伸展 flexion 屈曲 fracture 骨折 fungal 真菌的 fusion 融合 humeral 肱骨的 humerus 肱骨 hyperostosis 骨肥厚 hypertrophy 肥大 lumbar 腰椎的 idiopathic 特发的 Ingrown toenail 嵌甲

骨科常见疾病

骨科常见疾病疾病种类: 1.手外伤 2.断肢再植 3.肱骨髁上骨折 4.肱骨干骨折 5.尺桡骨骨折 6.股骨颈骨折 7.股骨干骨折 8.髌骨骨折 9.胫腓骨骨干骨折 10.胫骨平台骨折 11.踝部骨折 12.跟骨骨折 13.锁骨骨折 14.肩锁关节脱位 15.肩关节脱位 16.肘关节脱位 17.髋关节脱位 18.足拇外翻 19.腰椎间盘突出症 20.腰椎管狭窄症 21.皮瓣修复术 22.VSD负压吸引术 23.骨科病人的功能锻炼

手外伤 观察要点 1.创口的部位及性质,皮肤缺损范围、程度,肌腱、神经、血管及骨关节损 伤的程度。 2.患手血运情况:是否存在皮肤苍白、批温降低、指腹瘪陷、毛细血管回流 缓慢或消失、皮肤青紫或肿胀等情况。 3.伤口疼痛情况,正确评估疼痛程度。 4.全身情况是否有烦躁不安或表情淡漠、皮肤粘膜苍白、湿冷、尿量减少、 脉搏细速、血压下降等失血性休克的早期表现,即使补充血容量。 术前护理 1.心理护理意外致伤,顾虑手术效果,易产生焦虑心理。应给予耐心地开 导,介绍治疗方法及预后情况,并给予悉心的护理,同时争取家属的理解和支持,减轻和消除心理问题,积极配合治疗。 2.体位平卧位患手高于心脏,有利于血液回流,减轻水肿和疼痛。 3.症状护理手部创伤常伴有明显疼痛,剧烈的疼痛会引起血管痉挛,还可 引起情绪、凝血机制等一系列的变化,因此,应及时遵医嘱使用止痛药物。 4.病情观察包括生命体征及患手局部情况,尤其应警惕失血性休克,正确 使用止血带。 术后护理 1.体位平卧位患手高于心脏,有利于血液回流,减轻肿胀。患手尽快消肿, 可减少新生纤维组织生成,防止关节活动受限。 2.饮食高热量、高蛋白、高维生素、高铁、粗纤维饮食。 3.局部保暖应用烤灯距离30-40cm照射局部,保持室温22-25°C,使局 部血管扩张,改善末梢循环。术后3-4日内持续照射。以后可于清晨、夜间气温较低时照射,术后1周即可停用。 4.用药护理及时、准确执行医嘱,正确使用解痉、抗凝药物,以降低红细 胞之间的凝集作用和对血管壁的附着作用,并可增加血容量,减低血液粘 稠度,利于血液流通及伤口愈合;用药过程中,需注意观察药物不良反应。 5.功能锻炼一般可于术后3-4周开始主动练习法,主动屈曲伸直各关节, 减少肌腱粘连。被动活动开始的时间要以手术缝合方式、愈合是否牢骨而 定。术后5周内不做与肌腱活动方向相反的被动或牵拉肌腱活动。

骨科常见疾病的诊疗指南2017

骨科常见疾病的诊疗指南 第一节儿童肱骨髁上骨 【概述】 肱骨髁上骨折是最常见的儿童肘部骨折,约占全部肘关节损伤的50% ~ 70%,常见于3一10岁的儿童,以5 ~7岁的男孩最多见,肱骨髁上骨折多发生在手的非优势侧。早期处理不当可致前臂骨筋膜室综合征,导致Volkmann挛缩,造成终身残疾。骨折畸形愈合形成肘内翻,影响患儿的肘关节外观,需行截骨术矫正畸形。因此,肱骨髁上骨折是儿童肘部的严重损伤。 【影像检查】 肱骨髁上骨折的诊断以普通X线片检查为主。因肘关节肿胀和疼痛,不能完全伸直肘关节,拍标准的肘关节正侧位片困难。怀疑肱骨髁上骨折时应拍肱骨远端正侧位片。若怀疑无移位或轻度移位骨折而正侧位片未发现骨折线,应拍斜位片。建议术前加照对侧肘关节,对于粉碎性骨折和陈旧性骨折常规行CT 检查。 【分类】 根据远端骨折块移位方向,可分为伸直型与屈曲型骨折。远端骨折块向后上移位者为伸直型骨折,向前上移位则为屈曲型骨折;伸直型骨折又可细分为伸直尺偏型(远端向尺侧移位);伸直桡偏型(远端向桡侧移位)。伸直尺偏型多见(75 % ),可能与肌肉轴线偏内侧和受伤时多处于伸肘、前臂旋前位有关,易合并肘内翻。伸直桡偏型虽仅占伸直型骨折的25 %,但易伴发血管、神经损伤。Gartland依据骨折块移位程度,将伸直型骨折细分为三型: 1、I型骨折无移位; 2、Ⅱ型仅一侧皮质断裂,通常后侧皮质保持完整,骨折断端有成角畸形。 3、Ⅲ型前后侧皮质均断裂,骨折断端完全移位。 【诊断】 严重移位骨折容易诊断,但要注意有无其他伴发骨折和神经血管损伤。约5%的患儿同时伴发同侧其他骨折(通常为桡骨远端骨折)。因而对诊断肱骨髁上骨折的患儿,应作详细检查,以免漏诊。查体可见肘关节肿胀,髁上处有环形

骨科常见疾病名称

1.锁骨骨折 2.肩锁关节脱位 3.肩关节脱位 4.肱骨外科颈骨折 5.肱骨干骨折 6.肱骨髁上骨折 7.肘关节脱位 8.前臂双骨折 9.桡骨下端骨折 10.手外伤 11.断指再植 12.髋关节脱位 13.股骨颈骨折 14.股骨转子间骨折 15.股骨干骨折 16.髌骨骨折 17.髌骨脱位 18.膝关节韧带损伤 19.膝关节半月板损伤 20.胫骨平台骨折 21.胫腓骨骨折 22.踝部骨折 23.踝部扭伤 24.跟腱断裂 25.跟骨骨折 26.跖骨骨折 27.趾骨骨折 28.颞下颌关节脱位 29.脊柱骨折

30.脊髓损伤 31.骨盆骨折 32.周围神经损伤 33.上肢神经损伤 34.下肢神经损伤 35.腰肌劳损 36.棘上棘间韧带损伤 37.滑囊炎 38.狭窄性腱鞘炎 39.腱鞘囊肿 40.肱骨外上髁炎 41.肩关节周围炎 42.疲劳骨折 43.月骨无菌性坏死 44.髌骨软化症 45.胫骨结节骨软骨病 46.股骨头骨软骨病 47.椎体骨软骨病 48.腕管综合征 49.肘管综合征 50.旋后肌综合征 51.梨状肌综合征 52.脊柱骨折和脱位 53.脊柱椎弓崩裂 54.脊椎滑脱 55.椎间盘突出 56.腰扭伤 57.腰背筋膜脂肪疝 58.腰肌劳损

59.腰3横突综合征 60.臀上皮神经炎 61.椎管陈旧性骨折脱位 62.椎管畸形 63.硬脊膜囊肿 64.脊柱结核 65.脊柱骨髓炎 66.强直性脊柱炎 67.类风湿性关节炎 68.软组织纤维质炎 69.软组织筋膜炎 70.血管炎 71.神经炎 72.蛛网膜炎 73.硬膜外感染 74.脊髓炎 75.神经根炎 76.腰椎骨关节炎 77.小关节紊乱 78.骨质疏松症 79.椎体后缘骨赘 80.椎管狭窄 81.黄韧带增厚 82.脊柱裂 83.先天性脊柱侧弯 84.退变性脊柱侧弯 85.移行椎 86.水平骶椎 87.脊肌瘫痪性侧弯

骨伤科常用医疗技术操作规范

骨伤科常用医疗技术操作规范 骨牵引 一、穿针原则 1、术前征得患者同意,签手术知情同意书; 2、熟悉穿针部位的血管神经走行。原则是在重要结构的一侧穿针,以避免损伤这些重要的结果。 3、遵循无菌操作的技术进行皮肤准备。 4、麻醉以1%利多卡因局部浸润麻醉皮肤,但要告知病人完全将骨膜阻滞是困难的,在操作中可能会有疼痛。 5、皮肤切口穿针前,应用小尖刀片预先做一小切口,再行穿针,针眼处每日以酒精消毒,可减少针道的感染。 6、尽量用手摇钻而不用动力钻,以避免高温高热造成骨坏死。 7、穿刺针最好位于干骺端避免损伤骺板,理想的穿刺针是只穿过皮肤、皮下和骨骼,避开肌肉和肌腱。 8、不要破坏骨折血肿以免人为将闭合骨折变为开放状态。 9、不要穿入关节否则会造成化脓性关节炎的发生。 10、其它如在穿刺过程中针不要弯曲;要选择合适的牵引弓;牵引的力线要与骨折的纵轴一致;要注意牵引重量,不要过牵;随时给予X线检查。 二、常用部位骨牵引 1、胫骨结节胫骨结节向后一横指,在其平面下部,由外向内穿针。 2、跟骨外踝顶点下2㎝,再向后2㎝或内踝顶点下3㎝,由内向外穿针。 3、股骨下端髌骨上缘2㎝或内收肌结节上2横指处,由内向外穿针。

4、尺骨鹰嘴由鹰嘴尖端向远端⒈5横指处,由内向外穿针。 5、指骨指骨远节基底远侧。 6、颅骨双侧外耳道经顶部的连线与两眉弓外缘向枕部划线的交点。 皮牵引 一、牵引机制 将胶布和皮肤之间的摩擦力通过浅筋膜、深筋膜及肌间隔等传导到骨骼上。 二、牵引方法 胶布宽度为肢体最细周径的一半,上端在骨折部位,下端超过肢体远端10㎝。也有特制的泡沫塑料带牵引。 三、注意事项 1、适用于儿童、老人或作为一种最初的、暂时的治疗手段; 2、仔细检查牵引处皮肤,祛除污物; 3、保护骨突起部位,避免胶布粘贴骨突起; 4、最大牵引重量一般为5㎏,具体因人而异; 5、抬高患肢,防止水肿; 6、每天检查肢体长度,调整牵引力度。 五、常用皮牵引 1、上肢皮牵引; 2、下肢皮牵引。 石膏固定 一、适应证 1、用于骨折,脱位,韧带损伤和关节感染性疾病,用来缓解疼痛,促进愈合;

骨科常见疾病名称

. 1.锁骨骨折 2.肩锁关节脱位 3.肩关节脱位 4.肱骨外科颈骨折 5.肱骨干骨折 6.肱骨髁上骨折 7.肘关节脱位 8.前臂双骨折 9.桡骨下端骨折 10.手外伤 11.断指再植 12.髋关节脱位 13.股骨颈骨折 14.股骨转子间骨折 15.股骨干骨折 16.髌骨骨折 17.髌骨脱位 18.膝关节韧带损伤 19.膝关节半月板损伤 20.胫骨平台骨折 21.胫腓骨骨折 22.踝部骨折 23.踝部扭伤 24.跟腱断裂 25.跟骨骨折 26.跖骨骨折 27.趾骨骨折 28.颞下颌关节脱位 29.脊柱骨折

. 30.脊髓损伤 31.骨盆骨折 32.周围神经损伤 33.上肢神经损伤 34.下肢神经损伤 35.腰肌劳损 36.棘上棘间韧带损伤 37.滑囊炎 38.狭窄性腱鞘炎 39.腱鞘囊肿 40.肱骨外上髁炎 41.肩关节周围炎 42.疲劳骨折 43.月骨无菌性坏死 44.髌骨软化症 45.胫骨结节骨软骨病 46.股骨头骨软骨病 47.椎体骨软骨病 48.腕管综合征 49.肘管综合征 50.旋后肌综合征 51.梨状肌综合征 52.脊柱骨折和脱位 53.脊柱椎弓崩裂 54.脊椎滑脱 55.椎间盘突出 56.腰扭伤 57.腰背筋膜脂肪疝 58.腰肌劳损

. 59.腰3横突综合征 60.臀上皮神经炎 61.椎管陈旧性骨折脱位 62.椎管畸形 63.硬脊膜囊肿 64.脊柱结核 65.脊柱骨髓炎 66.强直性脊柱炎 67.类风湿性关节炎 68.软组织纤维质炎 69.软组织筋膜炎 70.血管炎 71.神经炎 72.蛛网膜炎 73.硬膜外感染 74.脊髓炎 75.神经根炎 76.腰椎骨关节炎 77.小关节紊乱 78.骨质疏松症 79.椎体后缘骨赘 80.椎管狭窄 81.黄韧带增厚 82.脊柱裂 83.先天性脊柱侧弯 84.退变性脊柱侧弯 85.移行椎 86.水平骶椎 87.脊肌瘫痪性侧弯

骨科常见专科诊断

上肢及上肢带骨骨折 锁骨骨折[类病鉴别] 1、肩锁关节脱位:锁骨外端高于肩峰,甚至形成梯状崎形,向下牵拉上肢时,骨外端隆起更明显;向下按压骨外端可回复,松手后又隆起;X线片显示肩锁关节脱位。 2、胸锁关节脱位:两侧胸锁关节不对称,可有异常活动,锁骨内端可突出或空虚。 3、臂丛神经瘫疾:易与婴幼儿锁骨骨折相混淆。前者锁骨仍完整,同时可见典型的肩部内收内旋、肘部伸直畸形;一般在2个月—3个月后可有显著恢复。 肩胛骨骨折〔类病鉴别〕 1、肋骨骨折:伤后胸部疼痛,咳嗽及深呼吸时疼痛加重;挤压胸廊时,骨折部分疼痛加剧;有时可合并气、血胸;X线片示肋骨骨折。 2、肱骨外科颈骨折:多为传达暴力所致,上臂内侧可见瘀斑,有疼痛、压痛、功能障碍,可触及骨擦感及异常活动。 肱骨大结节骨折〔类病鉴别〕 l、肩关节前脱位:受伤机制与本病相近,也表现为肩部肿痛,活动受限.但有方肩畸形,可扪及异位肱骨头,肩关节弹性固定.有时两者常合并存在。 2、肩峰骨折:均为肩部肿痛,但压痛点位于肩峰部,被动外展时可有一定的活动度;x 线片可见肩峰骨折。 3、肱骨外科颈骨折:症状、体征相似,但本病肿胀及瘀斑较明显,肱骨上端环形压痛,可有异常活动;X线片见骨折线位于肱骨外颈.亦可两者合并存在。 肱骨外科颈骨折〔类病鉴别〕 1、肩关节前脱位:亦表现肩部疼痛、压痛、活动受限,典型方肩畸形;但伤肢外展25°一30°位弹性固定,搭肩试验阳性;X线可鉴别.有时两者合并存在。 2、肱骨大结节骨折:肩外侧大结节处压痛,外展活动受限,上臂内侧无瘀斑,无环形压痛。 3、肩部挫伤:系直接暴力所致.局部皮肤有擦伤、瘀斑,肿胀、压痛局限于着力部位,无环形压痛及纵向叩击痛;X线片无骨折征象。 肱骨干骨折〔类病鉴别〕 1、肱骨外科颈骨折:肿痛在肩部,肱骨上端压痛;X线正位片及穿胸位可显示骨折线在肱骨解剖颈下2厘米一3厘米;治疗后骨折多能愈合。 2、肱骨肱骨上骨折:多发生于儿童,肘部肿胀较明显,呈靴状畸形;X线片示骨折线在肱骨下端扁薄处;治疗后常遗有肘内翻畸形。 3、上臂扭伤:压痛局限于损伤部位,有牵拉痛,上臂功能障碍较轻;无环形压痛及纵向叩击痛,无异常活动。 肱骨髁上骨折〔类病鉴别〕

常用骨科鉴别诊断模板

常用骨科鉴别诊断 上肢及上肢带骨骨折 锁骨骨折 1、肩锁关节脱位:锁骨外端高于肩峰,甚至形成梯状畸形,向下牵拉上肢时,骨外端隆起更明显;向下按压骨外端可恢复,松手后又隆起;X线片显示肩锁关节脱位。 2、胸锁关节脱位:两侧胸锁关节不对称,可有异常活动,锁骨内端可突出或空虚。 3、臂丛神经瘫疾:易与婴幼儿锁骨骨折相混淆。前者锁骨仍完整,同时可见典型的肩部内收内旋、肘部伸直畸形;一般在2-3个月后可有显著恢复。 肩胛骨骨折 1、肋骨骨折:伤后胸部疼痛,咳嗽及深呼吸时疼痛加重;挤压胸廓时,骨折部分疼痛加剧;有时可合并气、血胸;X线片示肋骨骨折。 2、肱骨外科颈骨折:多为传达暴力所致,上臂内侧可见瘀斑,有疼痛、压痛、功能障碍,可触及骨擦感及异常活动。 肱骨大结节骨折 1、肩关节前脱位:受伤机制与本病相近,也表现为肩部肿痛,活动受限,但有方肩畸形,可扪及异位肱骨头,肩关节弹性固定,有时两者常合并存在。 2、肩峰骨折:均为肩部肿痛,但压痛点位于肩峰部,被动外展时可有一定的活动度;X线片可见肩峰骨折。 3、肱骨外科颈骨折:症状、体征相似,但本病肿胀及瘀斑较明显,肱骨上端环形压痛,可有异常活动;Ⅹ线片见骨折线位于肱骨外颈,亦可两者合并存在。 肱骨外科颈骨折 1、肩关节前脱位:亦表现肩部疼痛、压痛、活动受限,典型方肩畸形;但伤肢外展250一300位弹性固定,搭肩试验阳性;X线可鉴别,有时两者合并存在。 2、肱骨大结节骨折:肩外侧大结节处压痛,外展活动受限,上臂内侧无瘀斑,无环形压痛。

3、肩部挫伤:系直接暴力所致,局部皮肤有擦伤、瘀斑,肿胀、压痛局限于着力部位,无环形压痛及纵向叩击痛;X线片无骨折征象。 肱骨干骨折 1、肱骨外科颈骨折:肿痛在肩部,肱骨上端压痛;X线正位片及穿胸位可显示骨折线在肱骨解剖颈下2一3cm;治疗后骨折多能愈合。 2、肱骨髁上骨折:多发生于儿童,肘部肿胀较明显,呈靴状畸形;X线片示骨折线在肱骨下端扁薄处;治疗后常遗有肘内翻畸形。 3、上臂扭伤:压痛局限于损伤部位,有牵拉痛,上臂功能障碍较轻;无环形压痛及纵向叩击痛,无异常活动。 肱骨髁上骨折 1、肘关节后脱位:儿童肘关节后脱位极少见,脱位后肘后三角关系改变,患肢缩短,屈肘弹性固定;X线片可确诊。 2、肱骨外髁骨折:肿胀及压痛局限于肘外侧,有时可触及骨折块;X片摄片桡骨纵轴线不通过肱骨小头骨化中心。 肱骨髁间骨折 1、肱骨髁上骨折:多发生于儿童,肘部肿胀疼痛相对较轻;X线片示骨折线未波及关节面;治疗后肘关节功能恢复较好。 2、肘关节后脱位:弹性固定于135°左右,肘窝前方饱满,可扪及肱骨滑车;肘后鹰嘴异常后突,上方凹陷、空虚;X线摄片有脱位征象,无骨折。 肱骨外髁骨折 1、肱骨髁上骨折:肿痛较明显,呈环周压痛;X线片示骨折线不波及关节面,桡骨纵轴线通过肱骨小头骨化中心。

(完整版)骨科常见护理诊断与措施

骨科常见护理诊断与措施 1.疼痛:与创伤、骨折、手术切口有关; 措施:根据疼痛的刺激源,给予不同的方法,如遵医嘱给予止痛剂,护患沟通,转移患者对疼痛的注意力,或采用中医疗法,针刺止痛、按摩等以活血化瘀,疏通经络等,也有很好的止痛效果,也可物理止痛,如冷疗、热疗等。 2.知识缺乏:与角色突变,未接受相关知识有关; 措施:根据患者的健康状况,疾病的性质、原因、向患者及家属宣教医学知识,介绍有关治疗护理的方法和意义, 3.焦虑、恐惧:与意外受伤,无思想准备,担心不良预后有关; 措施:鼓励患者讲出自身感受(心理、生理等)给予针对性处理,介绍疾病相关知识,讲解成功病例,鼓励患者有战胜疾病的信心。 4.生活自理缺陷:与疾病和治疗限制,骨折后患肢功能受限有关; 措施:指导病人使用呼叫器,将常用物品放置病人易取到的地方,及时给予生活上的护理,协助病人使用拐杖、助行器、轮椅等,使其进行力所能及的自理活动,鼓励病人完成病情允许的自理活动或部分自理活动,使病人的生活需要得到满足。 5.躯体移动障碍:与受伤后肢体功能障碍和治疗限制有关; 6.有皮肤完整性受损的可能;与长期卧床有关; 7.有废用综合症的危险:与长期卧床及患肢制动,活动受限和减少有关; 措施:医护合作,鼓励并指导患者进行功能锻炼,做示范动作,教会病人并检查患者是否掌握。 8.睡眠形态紊乱:与疾病、心理因素、治疗限制和环境改变有关; 措施:给予心理护理,减轻患者对疾病及相关因素的紧张情绪,针对患者主诉及症状,配合医生给予相应的处理,保持病室环境安静整洁舒适,并给予患者讲解促进睡眠的方法。 9.体温升高:与手术创伤、感染有关; 措施:给予必要的解释工作,根据病因,遵医嘱给予降温措施,指导患者多饮水,按时进行病室内空气净化消毒。 10.潜在并发症:肺部感染、泌尿系感染、压疮、深静脉血栓、便秘、心脑血管意外等 措施: (1)预防心脑血管疾病:如老年人骨折后,循环系统发生明显衰退性变化,心血管系统不能适应应激状态,加之受伤后疼痛刺激,易导致心脑血管疾病发生,要多巡视病房,严密观察血压、脉搏、患者神志、表情变化等,多与病人交流,倾听患者主诉,及时了解病情,发现问题及时处理。 (2)预防消化系统疾病:患者患病后由于长时间卧床,个别病人因生活不能自理,怕给他人增添麻烦,为减少大小便次数,而控制饮食。这样的病人应向其说明营养的重要性。因为胃肠蠕动慢,排空慢,易引起腹胀,便秘,应鼓励患者多进行顺时针按摩腹部,增强肠蠕动,从而预防并减轻腹胀、便秘。另外督促患者多饮水,饮食平衡,多吃新鲜蔬菜及粗粮等,饮食有规律、定时定量,并养成定时排便的习惯,必要时给予缓泻剂。 (3)预防呼吸系统疾病:老年人骨折后,呼吸功能相对减弱,长期卧床及术后病人易发生肺部并发症。因此病人入院,要求不吸烟,讲清吸烟对术后身体的危害性。鼓励病人咳嗽、作深呼吸,上肢能活动的作扩胸运动,增加肺活量。在协助病人翻身时,给予叩背,使积痰易于排出,怕疼痛、不能咳嗽的病人鼓励病人尽量把痰咳出,若痰液粘稠可给予雾化吸入。病房应经常开窗通气,保持空气新鲜,注意保暖,预防感冒。 (4)预防泌尿系统疾病:患者因卧床时间长,加之骨折处疼痛,怕多饮水排尿不方便,易发生泌尿系感染。要鼓励患者多饮水,定时改变体位,有利于尿沉渣的排出,保持会阴部清

相关主题
文本预览
相关文档 最新文档