当前位置:文档之家› 江苏省历年日平均气温变化图

江苏省历年日平均气温变化图

江苏省历年日平均气温变化图
江苏省历年日平均气温变化图

站名纬度经度拔海高度页码东台32°52′N 120°19′E 4.3m 2-13 赣榆34°50′N 119°07′E 3.3m 14-25 南京32°00′N 118°48′E 7.1m 26-37 徐州34°17′N 117°09′E 41.2m 38-49

东台气象站1953年~2013年1月日平均温度

-15

-10

-5

5

10

15

201

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

日期

19531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005

2006

2007200820092010201120122013历年日平均

东台气象站1953年~2013年2月日平均温度

-10

-5

5

10

15

20

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

日期

19531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005

2006

2007

2008

2009

2010

2011

2012

2013

历年日平均

东台气象站1953年~2013年3月日平均温度

-5

5

10

15

20

25

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

日期

19531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005

2006

2007

2008

2009

2010

2011

2012

2013

历年日平均

东台气象站1953年~2013年4月日平均温度

5

10

15

20

25

301

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

日期

19531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005

2006

2007

20082009

201020112012

2013历年日平均

东台气象站1953年~2013年5月日平均温度

5

10

15

20

25

301

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

日期

19531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005

2006

2007

2008

2009

2010

2011

2012

2013

历年日平均

东台气象站1953年~2013年6月日平均温度

51015

20

25

30

351

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

日期

19531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005

2006

2007

2008

2009

2010

2011

2012

2013

历年日平均

东台气象站1953年~2013年7月日平均温度

5

10

15

20

25

30

35

401

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

日期

19531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005

2006

2007

2008

2009

2010

2011

2012

2013

历年日平均

东台气象站1953年~2013年8月日平均温度

5

10

15

20

25

30

35

401

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

日期

19531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005

2006

2007

2008

2009

2010

2011

2012

2013

历年日平均

东台气象站1953年~2013年9月日平均温度

51015

20

25

30

351

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

日期

19531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005

2006

2007

2008

2009

2010

2011

2012

2013

历年日平均

东台气象站1953年~2012年10月日平均温度

5

10

15

20

25

301

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

日期

1953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004

2005

2006

2007

2008

2009

2010

2011

2012

历年日平均

东台气象站1953年~2012年11月日平均温度

-5

5

10

15

20

251

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

日期

1953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004

2005

2006

2007

2008

2009

2010

2011

2012

历年日平均

东台气象站1953年~2012年12月日平均温度

-10

-5

5

10

15

201

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

日期

1953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004

2005

2006

2007

2008

2009

2010

2011

2012

历年日平均

资料来源:中国气象局国家气象信息中心气象资料室

赣榆气象站1957年~2013年1月日平均温度

-15

-10-5

5

10

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

日期

1957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005

2006

2007

2008

2009

2010

2011

2012

2013

历年日平均

赣榆气象站1957年~2013年2月日平均温度

-15

-10

-5

5

10

151

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

日期

1957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005

20062007200820092010

201120122013历年日平均

赣榆气象站1957年~2013年3月日平均温度

-5

5

10

15

20

25

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

日期

1957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005

2006

2007

2008

2009

2010

2011

2012

2013

历年日平均

赣榆气象站1957年~2013年4月日平均温度

5

10

15

20

25

30

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

日期

1957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005

2006

2007

2008

2009

2010

2011

2012

2013

历年日平均

赣榆气象站1957年~2013年5月日平均温度

5

10

15

20

25

30

351

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

日期

1957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005

20062007200820092010

201120122013历年日平均

赣榆气象站1957年~2013年6月日平均温度

51015

20

25

30

351

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

日期

1957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005

2006

2007

2008

2009

2010

2011

2012

2013

历年日平均

赣榆气象站1957年~2013年7月日平均温度

5

10

15

20

25

30

351

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

日期

1957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005

20062007200820092010

201120122013历年日平均

子夜太阳高度和日太阳高度变化规律

子夜太阳高度和周日太阳高度变化规律探讨 洛阳市第十九中学 王安周 (邮编:471000) 摘 要:从太阳高度的概念入手,采用公式衍生和几何推导相结合的方法,推导出子夜太阳高度的计算模型,结合球面三角公式和计算模型对太阳高度变化规律进行了探讨。结果表明:非极昼区,子夜太阳高度由直射点关于球心的对称点所在纬度为中心南北对称分布;北半球各地子夜太阳高度最小值出现在夏至日;日太阳高度变化速率具有非线性特征等。 关键词:正午太阳高度;子夜太阳高度;日太阳高度;极昼区 太阳高度是指太阳光线与地平面的夹角,受地球公转、自转、黄赤夹角等因素影响,太阳高度随纬度、季节、时刻有规律变化。杨长青、孔祥群、赖月喜等对正午太阳高度公式推导和变化规律、黄赤交角变化对正午太阳高度影响、正午太阳高度的实际运用、正午太阳高度制作模型、等太阳高度线图判读等进行了深入探讨[1-3],但子夜太阳高度计算和规律探讨较少。借助球面立体几何、天体物理等知识对子夜太阳高度计算模型进行了推导,结合实际计算和图形分析对子夜太阳高度和日太阳高度变化规律进行探讨。 一、子夜太阳高度的计算模型 正午太阳高度为地方时12时太阳光线与地平面夹角,是一天中最大的太阳高度,正午太阳高度知识在生活中用处较多,如楼间距计算、房屋朝向、太阳能热水器集热板最宜倾角、物影变化、季节判读、地方时计算等,但是正午太阳高度计算及其应用是教学重难点,通过二分日全球正午太阳高度分布图来探讨正午太阳高度分布规律(图1)。 图1 二分日全球正午太阳高度分布由图1可知,春/阳高度分布由赤道(直射点所在的纬线为中心)向南北两侧递减;正午太阳高度同为66°34′、0°的纬度分布均有两个,推理可知,正午太阳高度分布具有对称性,对称轴为直射点所在的纬线,距对称轴的纬度距离相等;0°、23°26′N 、90°N 正午太阳高度分别为90°、66°34′、0°,表明其变化是以直射点所在纬度为中心,纬度每远离中心1°则正午太阳高度相应递减1°,推导出190H H α-=?=?o (公式中1H 为所求地的正午太阳高 度,α?表示所求地与太阳直射点的纬度之差);影响因素仅有纬度,因此同一纬线具有相同的正午太阳高度。 子夜太阳高度是指地方时0时的太阳高度角,是一天中太阳高度日变化的最小值。 本文系河南省基础教育教学研究课题《普通高中地理新课程典型课例再研究 》。

气温日较差和年较差随纬度变化曲线图的解释swasky

气温日较差和年较差随纬度变化曲线图的解释 气温较差亦称气温振幅。指一日内或一年内最高气温与最低气温的差值。一日的最高气温与最低气温的差值称日较差或日振幅;一年的最高气温与最低气温的差值称年较差或年振幅。气温较差是辨别每个地区气候类型的重要标志之一。例如,日较差及年较差都很大的地区属于大陆性气候;相反,则属于海洋性气候。气温年较差是高纬大于低纬。气温日较差是低纬大于高纬,当然这是大规律(气温日较差和年较差随纬度变化如下图:①是大陆纬度年较差;②是海洋纬度年较差;③是大陆上纬度日较差;④是海洋纬度日较差。),简要解释如下。 气温日较差和年较差随纬度变化曲线图 (1)气温的年变化 气温的年变化和日变化一样,在一年中月平均气温有一个最高值和一个最低值。就北半球来说,中、高纬度内陆地区月平均最高温度在7月份出现,月平均最低温度在1月份出现。海洋上的气温以8月为最高,2月为最低。一年中月平均气温的最高值与最低值之差,称为气温年较差。 影响气温年较差的因素有以下几条。 (a)纬度气温年较差随纬度的升高而增大。这是因为随纬度的增高,太阳辐射能的年变化增大。低纬度地区气温年较差很小,高纬度地区气温年较差可达40~50℃。 (b)海陆由于海陆热特性不同,对于同一纬度的海陆相比,大陆地区冬夏两季热量收入的差值比海洋大,所以大陆上气温年较差比海洋大得多,一般情况下,温带海洋上年较差为11℃,大陆上年较差可达20~60℃。图中①是大陆纬度年较差,②是海洋纬度年较差。 (c)距海远近由于水的热特性,使海洋升温和降温都比较缓和,距海洋越近,受海洋的影响越大,气温年较差越小,越远离海洋,受海洋的影响越小,气温年较差越大。 此外,地形及天气等对气温年较差的影响与对气温日较差的影响相同。

高中地理世界年平均气温分布图的知识点梳理

高中地理世界年平均气温分布图的知识点梳理 高中地理世界年平均气温分布图的知识点梳理 解读地理图表的方法众多。主要解读图中的‘四性’:一般性、差异性、特殊性和相关性。当然不是所有的图中都具有这‘四性’。下面是作者对‘世界年平均气温的分布’图的解读。 1、全球气温分布的一般规律。 (1)、从低纬向高纬递减。因太阳辐射的分布是从低纬 向高纬递减。 (2)、同纬度海陆气温不同。夏季陆地气温高,海洋气 温低。冬季陆地气温低,海洋气温高。因海陆热力性质的差异所致。 (3)、同纬度高原、山地的气温比平原、低地的气温低。这是地形因素的影响。 2、等温线形状的南北差异。 北半球比较曲折,南半球比较平直。因北半球海陆相间,下垫面性质差异大,等温线偏离纬线。而南半球主要是海洋,下垫面性质单一,太阳辐射是影响气温的主导因素,等温线大致与纬线平行。 3、等温线的突变。 等温线的突变,既偏离纬线。影响的因素不同,偏离的程度和方向不一。一般情况下,陆地上等温线的突变是由地形因素所致,海洋上等温线的突变是洋流的影响。如上图所示:(1)、A、B、C、D四处的等温线都向低纬凸出,说明这

里比同纬度的两侧的.气温低。因这四地都有寒流经过,降温 作用明显。 (2)、E、F、G、H、I五处的等温线都向高纬凸出,说 明这里比同纬度的两侧的气温高。因这五地都有暖流经过,增温作用明显。 (3)、在青藏高原和科迪勒拉山脉等地,等温线向低纬 凸出,说明这里比同纬度的两侧的气温低。因高原山地海拔高,降温作用明显。小范围闭合等温线也是地形因素的影响而形成。等温线与等高线平行。 (4)、A、B两处凸向的纬度比C、D两处的更低。因A、 B两处的寒流是由寒冷的西风漂流向低纬运动而形成的,水温 更低,气温相应降低。而C、D两处的寒流是北太平洋暖流和 北大西洋暖流向低纬运动而形成的,水温较高,气温相应较高。 (5)、从图中可以读出,同一纬度高温区等温线凸向高纬,低温区等温线凸向低纬。可简记为‘高温高凸,低温低凸’(同一纬度)。 s(); 【高中地理世界年平均气温分布图的知识点梳理】

太阳高度的日变化规律和日出日落方位时间(学案)

三、等太阳高度线分布图 从全球范围看:太阳直射点上,太阳高度角为_____; 从直射点开始,太阳高度向四周______, 呈_______状分布(即等太阳高度线);晨昏线上太阳高度为_____。 等太 阳高度线图可以看做是以太阳直 射点为中心的俯视图 例1、图1是某地某日太阳高度分布图,回答: (1)从图中可以看出,太阳高度的分布规律是 。 (2)该图的节气应该是(北半球)。 (3)此时北京时间是。 (4)A点所在经线的经度是。 (5)C点的经度值(大于或小于)23°26′。 (6)若B点有一直立旗杆,此时其影子应指向 A.甲 B.乙 C.丙 D.丁 例2、图为地球上某时刻太阳高度分布示意图,图中粗线为等太阳高度线,读图回答下列问题。1. 此时北京时间为 A. 7时 B. 15时 C. 17时 D. 21时 2. 若①②两点经度相同,②③两点纬度相同, 则此时刻的太阳高度 A. ①<③ B. ①=② C. ②=③ D. ①>② 3. 此时 A. PM为昏线,PN为晨线 B. 新一天的范围约占全球的1/8 C. 新一天的范围约占全球的7/8 D. 全球昼夜平分 4. 此时Q点太阳高度的日变化图是 例3、该图所示区域全部为夜半球,读图回答:(1)此日正午太 阳高度角为0°的点是__,纬度是 (2)此时北京时间是__点。 四、太阳高度的日变化规律 例4、下图中四条曲线表示6月22日太阳高度的全天变化情况,判断四地的纬度位置

思考: 能否画出以下地区的太阳高度全天变化情况 1.北回归线与北极圈线之间 2.北极圈线与北极点之间 ①极点:在极昼期间,极点上见到太阳高度在一天之内是_____的, 其太阳高度始终等于_______的纬度,其值的年变化幅度介于___到_______之间 ②非极点地区:非极点地区的太阳高度在一日内是_______的。 一天之内有一个最___值,即当地的___________ A:极圈及其以内地区太阳高度的变化: 从日变化看,极昼期间,全天太阳高度始终都大于或等于00,其中极圈上在0时太阳高度为______(如图乙),极圈到极点之间的地区,其太阳高度全天始终都_____00(如图丙);从年变化看,北极圈内太阳高度是随太阳直射点北移而______,南极圈反之 B:其他地区的太阳高度变化: 都是日出日落时为____,_____时最大,12时前递____,12时后递_____,特殊之处是:赤道上的太阳高度是_____时和_____时为00(如图丁),其最大太阳高度的年变化范围是______________ 五、日出日落的时间、方位1、比较下图甲、乙、丙三图所示太阳周日视运动规律。 (1)三地太阳视运动相同点是:

近50年中国气温日较差的变化趋势分析

文章编号:100020534(2007)0120150208 收稿日期:2005210225;改回日期:2006207203 基金项目:国家自然科学基金项目(40475035);国家重点基础研究发展计划项目(2006CB400500)共同资助 作者简介:陈铁喜(1983— ),男,黑龙江人,主要从事气候变化研究.E 2mail :xchen @https://www.doczj.com/doc/5b13425451.html, 近50年中国气温日较差的变化趋势分析 陈铁喜, 陈星 (南京大学大气科学系,江苏南京 210093) 摘 要:利用近50年的气温观测资料,对中国地区的气温日较差的空间分布和时间序列变化特征进行了分析。同时分析了与日最高气温、最低气温以及平均气温时空分布之间的关系。结果发现,近50年来气温日较差呈下降趋势,其平均减小幅度为高纬度地区大于低纬度地区;不同地区及同一地区的 D TR 季节变化特征也不相同,我国北方多为冬季D TR 下降最大,其次是春季和秋季,夏季最小。在黄 淮和长江流域,以夏季和春季D TR 下降最为显著。华南地区仍以冬季下降最大。气温日较差整体呈现下降趋势,中高纬度下降比低纬度明显。在相同纬度带上,由于地理状况的不同,变化趋势有所不同。同时,气温日较差的变化有明显的区域和季节性差异,特别在西部的青藏高原和新疆地区的D TR 变化与东部地区的差异明显。 关键词:中国;气温日较差;全球气候变暖;青藏高原中图分类号:P423 文献标识码:A 1 引言 随着全球气候变暖,气温日较差(Diurnal Temperat ure Range ,简称D TR )变化的研究已受到广泛的重视。与平均温度的变化不同的是,D TR 可以反映全球和区域性的温度变化幅度特征,有着重要的生态学意义,对于人类生存环境的变化、气候异常的影响和可持续发展研究具有特殊的参考价值。自20世纪90年代以来,国际上对全球气候变暖背景下的D TR 变化及其原因开始了研究,试图通过D TR 的基本变化事实和气候模式的模拟试验结果来认识其变化特征和机制,以及对全球环境可能带来的影响。因此,科学家们已经将D TR 作为表征气候变化的一个新的重要指标[1~3]。中国西北及青藏高原地区的温度变化特征已有较多的深入研究,并指出了温度变化的可能影响机制[4~10],也涉及到区域最高最低温度的变化和分布特征[11],但和国外研究相比,中国的D TR 研究工作尚待深入。中国东部季风气候区、西北气候干旱和半干旱区及西南部青藏高原的不同气候背景,形成了中国区域气候特征及对全球气候变暖区域响应的复杂性和特殊性,研究D TR 的变化具有重要意义。本文利用 过去50年中国地区地面观测资料,对D TR 变化的总体特征、区域差异和季节变化做了分析比较,给出了全球气候变暖背景下中国区域D TR 的响应趋势。 2资料和方法 本文所用地面气候资料为中国气象局国家气候 中心编制的31个省市资料,除青藏高原、新疆地区外,其它地区选择1952—2001年50年实测资料,青藏高原地区选取1956—2001年46年实测资料,新疆地区选取1957—2001年45年实测资料。年平均D TR 的值为年平均最高温度减去年平均最低温度,季节平均D TR 的计算方法类似。为了比较中国地区D TR 的区域差异,本文按以下六个特征区计算分析D TR :东部季风区、新疆地区、青藏高原区、四川盆地、云贵高原地区和河套地区。其中东部季风地区按纬度带进行D TR 的计算,以分析其纬度变化特征。 3D TR 的区域特征 3.1 东部季风区 中国东部地区主要受东亚季风控制,以湿润和 第26卷 第1期2007年2月 高 原 气 象PLA TEAU M ETEOROLO GY Vol.26 No.1 February ,2007

读气温日变化曲线图

C 二、综合题 41、读气温日变化曲线图,回答: (1)AB 两条曲线中,表示阴天的曲线是_______。 (2)白天阴天,气温比晴天时 ,这是由于 。 (3)夜晚阴天,气温比晴天时 ,这是由于 。 (4)阴天比晴天气温日较差(大、小) 。 42、读图回答问题: (1)该锋面是 锋,判断根据是 。 (2)锋面过境时,该城市天气状况如何? 。 (3)锋面过境后,城市的天气状况如何? 。 43、读某地区等压线分布图(北半球),回答: (1)在图中标出高压中心和低出中心的位置。 (2)在图中画出高压脊线(用===)低压槽(用―――)的位置。 (3)图中甲地的风向是 风,乙地的风向是 风。 (4)甲地的风力较乙地的风力 ,原因是 。 (5)如果图中的低压中心大致以每小时20km 的速度向东南方向移动,48小时后,乙地将出现 天气。 44、读某月份海平面等压线分布图,回答: (1)图中气压中心B 是 ,C 是 。造成海陆上气压分布差异的原因是 。由于大陆上形成气压中心B ,从而切断了 气压带,使之由带状分布变为 状分布。 (2)此时D 地盛行 风向的风,E 地盛行 风。 (3)E 地此时盛行风的成因主要是 。 (4)此时亚欧大陆东部和南部地区气候特点 ,请解释原因: 。 45 、读下面“某地逐月气温、降水统计图”,回答下列问题:(图中数字代表月份) (1)该地的气候类型是_________ 。 (2)该气候区降水最多的季节,控制当地的盛行风是 风,此时的气候特征是 。 (3)当地气温最高的季节,控制当地的气压带是 ,在它控制下的天气特点是 。 (4)当地处于一年中降水最少的季节时,我国广州市的气候特点是__________,原因是此时广州受_________ 影响。 (5)此图代表的地点可以是下列中的:______ 。 A 、上海 B 、伦敦 C 、罗马 D 、开普敦 E 、孟买 46、读下图回答: (1)该图表示北 半球(季节)的大气环流状况,判断的理由是 。 (2)A点比B 点降水量 ,原因 。 (3)B 点和B 点纬度相当的南半球的C点现在分别受何种环流形式影响,B 点是 带, 降水(mm ) 气温(℃)

《气温的变化》教学设计新部编版0918

教师学科教案[ 20 – 20 学年度第__学期] 任教学科:_____________ 任教年级:_____________ 任教老师:_____________ xx市实验学校

《气温的变化》教学设计 一、指导思想与理论依据 本课的设计基于《义务教育地理课程标准(2011年版)》中提出的“学习对生活有用的地理”和“学习终生有用的地理”的课程基本理念。同时,课程标准中要求使学生“获得基本的地理技能和方法”,要求学生“初步学会根据收集到的地理信息,通过比较、分析、归纳等思维过程,形成地理概念”。因此,本课在设计时从学生的生活感受和体验出发,通过活动培养学生绘制、分析统计图表的地理技能,帮学生建立“气候的概念”,创设有趣的情境以提高学习兴趣。 二、教学背景分析 1.学习内容分析: 本节课选自人教版地理教材七年级上册第三章第二节《气温和气温的分布》第一课时。气温的变化体现了天气要素向气候要素的过渡,对学生建立气候的概念十分重要,而气候又是主要且重要的自然地理环境要素,在地理学知识体系中有重要地位。同时,统计图表是表征气候的主要载体,阅读和绘制气温变化曲线是重要的地理实践力。气温的变化十分贴近生活,学生可以产生丰富的情感体验。 2.学生情况分析: 学生初步了解了天气与气候的区别,能够区分对天气和气候的描述。没有完全建立“气候”的概念。好奇心强,对生活有一定的观察但不够细致,积累了气温在一定时间周期内变化的生活经验,利于探究能力的形成。由于接触地理学科时间较短,且处于易于接受直观事物的认知阶段,因此缺乏用统计图表来表征地理要素的思维习惯和技能,利用统计图归纳要素规律也有一定难度。 3.教学方式与教学手段说明、技术准备 教学方式:启发式教学等。 教学手段:读图、绘图、小组合作等。 4.前期教学状况、问题、对策等研究说明 根据以往教学经验,学生在区域地理学习中,往往在自然特征的气候要素方

世界气温的变化规律

《世界气温的分布规律》说课稿 一、说教材所处的地位和作用 这节课是七年纪地理上册第三章“天气与气候”部分中第二节“气温和气温的分布”的第二课时,着重介绍气温的时空分布规律。本课是在第一课时学习了“气温的变化”后的自然延伸和发展,本节与第三节《降水和降水分布》是并列关系,本节课通过阅读分析世界年平均气温分布图,理解世界气温分布的规律,为下一节学习世界降水的分布规律的学习奠定了基础,为第四节“世界的气候”提供必备了的知识,所以本节内容在初中地理教学中占据重要地位。根据新课标的要求,地理课要以学生发展为本,以培养学生终身学习能力为基本宗旨,因此教材内容安排简明、扼要,弹性大,给教师上课留有很大的发挥空间,更重要的是内容处理的基本模式是利用地图分析、归纳内在规律,这对于培养学生的发散性思维,提高学生读图、析图、用图的能力是非常有益的,教师应充分利用好教材的这一优势。 二、说教学对象 通过近两个月的地理知识的学习,学生对地理已经有了一定的兴趣。七年级的学生形象思维能力较强,而好奇、好动、好表现是这一年龄段孩子的特点。在前阶段学习过纬度、海陆分布等知识,上一节刚学过的气温变化知识,是学习本节气温分布知识的基础,但由于学生基础知识参差不齐,加上他们的抽象能力还不强,因此,在教学中,要扬长避短,引导学生从现实生活的经历和体验出发,让学生想观察,敢思考,进而激发学生的求知欲和好奇心。 三、说教学目标 1.知识和能力目标:初步学会阅读世界年平均气温分布图,说出气温分布的规律。 2.过程与方法:学生在教师的引导下,通过阅读分析世界年平均气温分布图,理解世界气温分布的规律。 3.情感态度与价值观目标:通过应用气温分布规律来解释生活中的现象,培养学生养成关注生活的意识。 四、说教学重点和难点: 通过阅读世界年平均气温分布图,总结气温分布的规律。 五、说教学方法: 鉴于本节知识的重要性,为了体现“学习对生活有用的地理”、“学习对终身发展有用的地理”、“改变地理学习方式”等基本理念,突出重点、突破难点,实现本节课的教学目标,在教学中可采用多种教学手段来激发学生的学习兴趣:如启发式教学法,讨论法,自主探究法,启发式读图法。 六、说学法

重庆市历年日平均气温变化图

站名纬度经度拔海高度页码沙坪坝29°35′N 106°28′E 259.1m 2-13 酉阳28°50′N 108°46′E 664.1m 14-25

沙坪坝气象站1951年~2013年1月日平均温度 246 8 10 12 14 1234567891011121314151617181920212223242526272829303 1 日期℃19511952195319541955195619571958 19591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990 1991199219931994199519961997199819992000200120022003200420052006 2007200820092010201120122013历年日平均

沙坪坝气象站1951年~2013年2月日平均温度 2 4 6 8 10 12 14161820 123456789101112131415161718192021222324252627282 9 日期℃1951195219531954195519561957195819591960196119621963196419651966 196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990 19911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013历年日平均

太阳高度角的变化规律

太阳高度角的变化规律与常见图表判读 晨昏圈上=0昼半球大于0夜半球小于0 (一)太阳高度角的日变化:--日变化曲线图 (1)出现极昼现象的极点,一天内太阳高度角大小不变=直射点纬度=晨昏线与地轴夹角,与极昼、极夜的最低纬度(和晨昏线相切的纬线)互余; (2)除极点外,一天中太阳高度角是不断变化的:h日出时=0,h逐渐增大,当地正午12最大(H),之后渐小,h日落时=0,日落后小于0; (3)太阳高度最大时(为正午太阳高度角):若太阳高度最大时等于90°,则该地当天正午被太阳直射; (4)极昼区内的三种情况: ①24小时太阳高度都大于等于0°,该地出现极昼现象; ②太阳高度角最小=0°,该地极昼,且处于与晨昏线相切的纬线上,即当天极昼的最低纬度; ③若太阳高度角一天中大于0°且为一定值,则该地为处于极昼的极点; ④若太阳高度角最大=0,则该地极夜,并处于与晨昏线相切的纬线上;

太阳高度角日变化曲线图的相关计算和分析: 1、读时间坐标 (1)昼长时间=日落时间-日出时间 ①若昼短于12小时,说明该地处于冬半年; ②若昼等于12小时,说明太阳直射赤道(两分)或该地位于赤道上; ③若昼长于12,说明该地是夏半年; ④若昼长等于24小时,说明该地极昼。 (2)若坐标上为北京时间: ①可计算:日出当地时间=12-昼长/2 日落当地时间=12+昼长/2 ②据当地与北京时间差,求当地经度; 2、读太阳高度高度角,可判断或计算直射点纬度、当地纬度: a h (太阳高度) 0° 66°34 0:00 6:00 12:00 18:00 24:00 90° 23°26 46°52 43°08 b c d e f

最新气温的变化与分布第二课时

第2课气温的变化与分布 教学目标: 1.学会使用气温资料,绘制气温曲线,并读图说出气温的变化规律 2.初步学会阅读世界年平均气温分布图,说出世界气温的分布规律 教材分析 重点说出气温的变化规律和世界气温的分布规律 难点初步学会阅读世界年平均气温分布图,说出世界气温的分布规律 教学方法问题解决式教学、发现教学法、地理迁移法 教具学具准备学生每人一份学案 教学过程 导入新课播放一组昆明的风光图片,请学生欣赏。图片定格在昆明的一幢普通楼房上。 通过一个“考眼力,找不同”的小活动,对比昆明和潍坊的楼房外观,设悬疑、 提问题、导新课。 板书第二课气温的变化与分布 讲授新课从学生当天的着装入手,让学生通过自己的感受,自然得出结论:气温是变化的。我们把以一天为周期的气温变化叫做气温的日变化。 板书时间变化日变化 承转设问气温是如何测定的?怎样直观地反映气温一天的变化趋势呢? 展示课件自制动画片《气温自述》,使学生了解气温的测定和气温日变化曲线图的绘制。 结合潍坊的天气预报,学会阅读气温日变化曲线图。 教师提问你感觉一天中的最高温度和最低温度出现在什么时候? 学生回答从生活实际出发,看图明确气温日变化规律。 学习归纳一天的最高气温一般出现在14时左右,最低气温出现在日出前后。一天中最高气温减去最低气温的差叫做气温日较差。气温日较差大的地区,它的气温日变 化曲线弯曲就明显。 承转过渡请学生从四季服装的变化入手,明确气温不但在一天中有变化,在一年内也有变化。 教师讲授我们把以一年为周期的气温变化叫做气温的年变化 板书年变化 迁移学习能否用气温变化曲线图表示气温年变化规律呢?在学习绘制气温日变化曲线图的基础上,用同样的方法,利用学案提供的资料,绘制气温年变化曲线图。 学生活动分四个大组,分别画出悉尼、巴马科、潍坊、格陵兰四地的年变化曲线图。学生在绘制过程中,教师发现问题,及时纠正。 展示课件悉尼、巴马科、潍坊、格陵兰四地的气温年变化曲线图 学生活动读图分析:1、悉尼与其他三地的气温年变化曲线有什么不同? 2、每个地区的最高月气温和最低月气温的差值是否相同?结合气温 年变化曲线图,明确气温年较差的概念。 3、它们分别属于哪几个温度带?你的判断依据是什么? 4、计算一下各地的年平均气温。 承转过渡仅仅四个地区,气温就差异那么大。说明气温不但存在时间变化,不同地区的

关于“太阳高度日变化曲线图”的归纳总结

关于“太阳高度日变化曲线图”的归纳总结 关于太阳高度日变化曲线图的试题在考试中经常出现,这类试题本不是很难,但学生经常出错,如果能够把常见情况熟悉并理解,做这类题应该轻而易举。现把主要太阳高度日变化曲线图总结归纳如下: 读图,首先应弄清横纵坐标具体表示什么: 如左图纵坐标表示太阳高度,横坐标表示时间;而右图纵坐标表示时间,横坐标表示太阳高度。 其次、从图中找出三个特殊点:日出点A 、正午C 、日 落点B ;并且能够读出日出时间、日落时间、正午太 阳高度;根据日落时间和日出时间推算出昼长(昼长= 日落时间-日出时间),根据昼长大于或者小于12小时,从而可以判断当地正处于夏半年或者冬半年。从而判断出季节。 主要太阳高度日变化曲线图有以下几种情况: ⑴当地处于冬半年,昼短夜长: ⑶刚出现极昼处,昼长=24小时,最小太阳高度等于零。 当地正午太阳高度为直射点纬度的2倍 如右图:直射点纬度=H 1/2 ⑷已经出现极昼地方,昼长=24小时,最小太阳高度大于零。 当地最小太阳高度与最大太阳高度之和为直射点纬度的 2倍。 h (太阳高度) t (地方时) h (太阳高度) H 1 h ( 太阳高度 ) h ( 太阳 高度 ) h (太阳高度 ) h (太阳高度 )

如右图:直射点纬度=(H 1+H 2)/2 极点的太阳高度等于直射点纬度 如图:直射点纬度=H 1 四、图中时间可能采用非地方时,比如:世界时、国际标准时间、北京时间等等。 ⑴如图,为某地6月22日太阳高度变化图,试分析其地理 坐标: 根据直射北回归线,而正午太阳高度600 来计算纬度。 正午地方时应为 12点,而正午时北京时间从图上可知为15点来计算当地经度。 ⑵某地6月22日太阳高度的日变化示意图 该地的地理坐标是:( ) A 、00,600W B 、0 0,600E C 、900S , 1200E D 、900N ,1800 ②Q 点的数值为:( ) A、55023’ B、70058’ C、66034’ D、630 46’ 例题1:下图中①②③④四条线分别表示北半球夏半年某日四地的太阳高度变化过程 , 读图后回答下列问题 (h 为一已知量 )。 (1) 这一天 , 太阳直射点的纬度是 。 ④表示的地点是 。 (2) ②表示的地点是 。该地夏半年太阳高度值 h 的变化范围是 。 (3) 四地中, 发生极昼现象的是 地。③地正午太阳高度H= 。 (4) 四地的纬度从高到低排列,正确的是 A. ④①③② B. ④③①② C. ②①③④ D. ②③①④ 例题21.该地的纬度位置是 ( ) A .65°N B .75°N C .65°S D .75°S 2.这一天,太阳直射点的纬度位置是( ) A .20°N B .25°N C .20°5 D .25°S 3.当太阳光线处在a 位置时,国际标准时间是20时,则该地的经度位置是( ) A .65°W B .经度0° C .60°E D .经度180° h ( 太阳高度) h ( 太阳高度) h ( 太阳高度) 24 18 (北京时间) h ( 太 阳高 度)

初中地理世界气温分布规律

世界气温分布规律 学习目标 1.阅读等温线图,能够判读等温线图。 2.阅读课本63页图4.10世界年平均气温分布图,描述世界气温分布特点。 3.阅读世界1月、7月平均气温分布图及气温的垂直变化图,说出世界1月、7月气温分布特点。 学习重难点 世界气温的分布规律 一、小组合作探究: 1.读左图:根据图中等温线的分布情况,小组合作描述世界气温分布规律。 2.读世界7月平均气温分布图比较C 点与D 点的温度高低,并判断此时是海洋气温高还是陆地气温高? 3.读世界1月平均气温分布图比较A 点与B 点的温度高低,并判断此时是海洋气温高还是陆地气温高? 世界7月平均气温分布图 C D C A B 世界年平均气温分布图 世界1月平均气温分布图

二、思考探究: 图(1)图(2) 4.读图(1)和图(2):回答下列问题: (1)图(1)在半球;图中A (陆地或海洋),B (陆地或海洋) (2)在图(2)中C (陆地或海洋),D (陆地或海洋) 三、课堂总结(我学到了什么?): 练一练: 1.(2011?巢湖)在北半球,一年中陆地最高气温出现在() A.一月B.七月C.二月D.八月 2.(2012?天门模拟)世界气温的分布规律是() A.地势越低,气温越低B.同纬度的陆地和海洋气温相同 C.南半球的等温线比北半球平直D.由高纬度向低纬度逐渐降低 3.有关世界气温分布规律的叙述,正确的是() A.由高纬度向低纬度地区逐渐降低B.由沿海向内陆逐渐降低 C.由山麓向山顶逐渐降低D.由陆地向海洋逐渐降低 4.世界气温变化的一般规律是() A.从低纬度向两极逐渐降低B.从中纬度向低纬度和高纬度降低 C.从两极向低纬度降低D.从高纬度向低纬度和中纬度降低 5.受纬度影响,世界气温从向逐渐降低. 6.一般来说,气温随着纬度的增高而降低,低纬度气温,高纬度气温. 7.读“世界年平均气温分布图”,回答问题. (1)从图中可看出,低纬度气温,高纬度气 温. (2)从赤道向两极,气温的变化规律 是.

太阳高度和正午太阳高度(修正版)

太阳高度和正午太阳高度 一、太阳高度与正午太阳高度的区别 1、概念:A、太阳高度指太阳光线与地平面的夹角,即图1中的H。 B、当地地方时12时的太阳高度称为正午太阳高度。 2、区别:一天中正午时太阳高度最大,日出和日落时太阳高度为0。 二、正午太阳高度的变化(如图2) (1)正午太阳高度的纬度变化规律:从直射点往南北两侧递减;离直射点距离越近(纬度差越小),正午太阳高度越大。(因此:已知某一正午太阳高度角,一般有两条纬线等于此度数)。 具体而言,春秋分日:由赤道向南北两侧递减;夏至日:由北回归线向南北两侧递减;冬至日:由南回归线向南北两侧递减。 (2)正午太阳高度的季节变化规律: A、北回归线及其以北地区,夏至时正午太阳高度最大,冬至时最小; B、南回归线及其以南地区,冬至时正午太阳高度最大,夏至时最小; C、南北回归线之间,直射时正午太阳高度最大,并且该地若在北半球则冬至日正午太阳高度最小,若该地位于南半球则夏至日正午太阳高度最小。 (3)最值: A、直射北回归线,北回归线及其以北地区达一年中最大值,整个南半球达一年中最小值; B、直射南回归线,南回归线及其以南地区达一年中最大值,整个北半球达一年中最小值。 三、正午太阳高度的计算及应用 1、正午太阳高度的计算正午太阳高度H=90°-两地纬度差 注:两地纬度差指所求地点与太阳直射点之间的相隔的纬度数 图2 二分日不同纬度的正午太

2、正午太阳高度的应用 A 、确定地方时:某地一天中太阳高度最大时,地方时为12时,也就是说太阳直射点所在经线的地方时为12时。 B 、确定地理纬度 C 、确定房屋的朝向 D 、确定日期、日影长短及方向 E 、确定楼距、楼高 F 、太阳能热水器的倾角调整 【深度链接】 1、 热水器集热板倾角与太阳光线之间的关系图: 2、楼间距与楼高、太阳高度的关系图 太阳能热水器集热板的倾角α与正午太阳高度角是互余的,因此一年中正午太阳高度角变小时,倾角调大;变大时,倾角调小。(注意:据倾角α与正午太阳高度角是互余的,且正午太阳高度角差=纬度差,可推出倾角α就等于该地与太阳直射点的纬度差)。 解析:一年中南北方向修建楼房(当 地纬度为θ,纬度较低的楼高H 米)时,要使纬度较高的楼的底层房屋一年中都能被阳光照射,只需要楼间距大于一年中纬度较低的楼的最长影即可。具体如下: ①、该地若位于北回归线以北地区:(考虑冬至日正午太阳高度) 两楼之间的楼间距为:H ×cot [90°-(θ+23°26′)]。 ②、该地若位于南回归线以南地区:(考虑夏至日正午太阳高度) 两楼之间的楼间距为:H ×cot [90°-(θ+23°26′)]。 其中90°-(θ+23°26′)就是当地一年中最小的正午太阳高度a

气温的变化及其变化曲线图-初中地理知识

气温的变化及其变化曲线图 【知识点的认识】 气温变化曲线是用来直观统计地区气温变化规律的图象,是用来表示气温高低变化的线条.根据气温变化曲线的走势特点,人们可以很方便的得出气温的最高值和最低值,以及确定气温变化的剧烈程度.还可以总结出一个地区确定时段的变化特点,为人们的日常生活和生产活动提供相应的参考.在经常使用的场合中,主要用到气温日变化曲线,气温月变化曲线,气温年变化曲线等. 【命题的方向】 考查了对气温的变化及其变化曲线图的认识,有一定的难度,多以选择、识图解答形式出题,有一定的综合性. 例:(2010?武汉)我国各地气候差别很大,读下图回答问题. (1)甲、乙两地中一月气温低于 0℃的是甲地,气温年较差较小的是乙地. (2)甲、乙两地中降水季节分配不均的是甲地,年降水总量比较多的是乙地. (3)两地降水量季节变化的共同点是C. A.各月降水都很多B.各月降水都很少C.降水量主要集中在夏季D.降水量主要集中在冬季 (4)我们家乡武汉所在地的气候是乙图中的亚热带季风气候. 分析:根据气温变化曲线图和降水量的柱状图解答. 解答:(1)由气温变化曲线可知,甲地的一月气温低于 0℃,乙地的气温气温年较差比甲地小; (2)由降水的柱状可知,甲地降水的季节变化大,主要集中在夏季,乙地年降水量较多; (3)两地在降水上的共同点是降水主要集中在夏季; (4)武汉属于亚热带季风气候,图中乙地符合题意. 故答案为:(1)甲;乙;(2)甲;乙;(3)C;(4)乙;亚热带季风.

点评:考查了气温变化曲线图和降水量的柱状图的应用,难易适中. 【解题思路点拔】 解题关键是对气温变化曲线图的正确判读.可从不同地区的气温变化情况来切入.结合地区气温变化曲线图来理解记忆.

正午太阳高度变化

考点趋势剖析] 3年考情统计 题型示例 考点分析 命题趋势 3年11考,分值38分 2015天津,10、11,8分 2015浙江,11,4分 2015重庆,12,4分 2014海南,12、13,6 分 2014新课标Ⅰ,3,4分 2015上海,14、15,4 分 2013福建,11、12,8分 2010年~2013年全国新课标没有考查正午太阳高度变化这个考点,但之后开始涉及考点的内容,其他自主命题试卷考查该考点频率很大,正午太阳高度的变化属于高频考点,对该考点的考查形式多以选择题的形式呈现,只有个别试卷如上海地理卷出现填空题的形式;该考点的难度系数加大,一般难度系数在0.5左右 根据对近5年来对这个考点考查的统计,常以热点事件或生活中常见的现象为切入点,综合考查正午太阳高度的应用 [考点分层透析] 【典型例题1】(2015·天津文综,10、11,8分)2015年某日出现了日食现象。在四幅日照图中,深色阴影为夜半球,浅色阴影为当时可观测到日食的地区范围。读下图,回答⑴~⑵题。 ⑴发生日食的这天,在图中所示四地中,正午太阳高度角最大的是 A .甲 B .乙 C.丙 D.丁 ⑵在图中所示四地中,观测者正朝西南方向观测日食的是 A.甲 B .乙 C.丙 D.丁 【解析】第⑴题,从昼夜半球分析,此时全球昼夜平分,太阳直射赤道,而甲地距赤道的纬度差最小,所以正午太阳高度最大。第⑵题,图中甲、乙两地属于上午时间,太阳位于其东南方;丙地接近中午12时,太阳位于正南方;而丁地属于下午时间,太阳位于西南方。 【答案】⑴A ⑵D 【考点透析】一、正午太阳高度的分布规律 1.正午太阳高度的空间分布规律 同一时刻,正午太阳高度由太阳直射点所在纬线向南北两侧递减。纬度分布规律(如下图所示):

读气温日变化曲线图

、知识结构 1、气温及其水平分布 2、气温的日变化和日较差 3、气温的年变化和年较差 4、气温的垂直变化和逆温现象 二、练习部分 1、读中纬度某地区某月等温线分布图,分析下列叙述正确的 是 A.位于南半球 B.处于冬季 C.甲处可能为北美大陆 D.乙处可能为亚欧大陆 下图为我国某省的等温线(℃)和等降雨量线(mm)分布图,2、读图完成下列要求:(1)该省1月和7月等温线分布有何共同点?请分析其原因。 (2)比较1月和7月等温线分布有何不同,并分析其原因。 (3)图中0℃等温线向西经过的主要地形和河流是? (4)分析该省夏季南部地区较北部地区降水少的原因。 3、读气温日变化曲线图,回答: 1)AB两条曲线中,表示阴天的曲线是_______ (2)白天阴天,气温比晴天时_____,这是由于_______________。(3)夜晚阴天,气温比晴天时___,这是由于______ (4)阴天比晴天气温日较差(大、小)____

(5)若图示为我国某城市8月份两条街道气温日变化曲线,则4、图中代表绿化街道昼夜气温变化曲线的是,由此可知 绿化造林在改造城市小气候方面的主要作用是 ,城市绿化还有没有其它作 用? 1.读图并回答(无锡某日气温变化示意图) (1)A、B、C、三条辐射曲线中代表太阳辐射和气温变化的分别 是和。 (2)请判断此图表示上海是七月还是一月的气温日变化,是月,理由是和。 (3)甲、乙两点中何处是地面辐射最弱时刻,是此时地面热量的收支状况如 何 (4)一日最高气温出现在 5、读各纬度平均气温年较差示意图,分析回答。 (1)气温年较差的分布规律是。原因 是 (2)60°N与60°S相比较,平均气温年较差地区更大,原因 是。 (3)我国各地气温年较差的空间分布规律是 6、读某城某日清晨低层大气剖面图,回答: (1)图中气温分布异常部分是①②③中的,判断的理由是。 (2)该城市工业高度集中,汽车数以百万计,当天发生了重大的烟雾事件,造成这一事件的人为原因 是;气象原因是;地形原因是 (3)在商业区、居民区、近郊工业区、农田区域中,烟雾浓度最大的是。

气温曲线图 (2)

【知识梳理】 1.日最高气温出现在,日最低气温出现在。高纬度地区气温日较差于低纬度地区;同纬度地区,气温日较差陆地于海洋。 2.一年中,北半球,大陆上月份月平均气温最高,月份最低;海洋上月份最 高,月份最低。带地区气温年较差最大,地区气温年较差最小;同纬度地区的气温年较差,陆地于海洋。 3.一般来说,低纬度地区气温,高纬度地区气温。同纬度地带,夏季(陆地或海洋)气温高,冬季相反。在山地,气温随海拔升高而,平均每升高100米,下降℃。 【例题精解】 例一读某区域气温图,图中A、B分别为陆地或海洋,1、2、3为同纬度的三个点,完成下列要求。 (1)图中区域的位置是(南或北)半球。 【相关考点】利用等温线图判断南、北半球。 (解析)等温线数值由南向北递减─→北半球。 等温线数值由北向南递减─→南半球。 (参考答案)北半球。 (2)1处的温度值为(>,=,<)15℃,2处的温度值为(>,=,<)15℃,3处的温度值为(>,=,<)15℃。 【相关考点】利用等温线图判断某点的温度值。 (解析)在同一条等温线上温度相同,处于两条等温线间的点温度介于两条等温线间。 (参考答案)> =< (3)若A处为陆地,B处为海洋,则图中区域所处的季节为(夏季或冬季)。 【相关考点】利用等温线图判断某点的季节。 (解析)陆地气温高于海洋─→夏季 海洋气温高于陆地─→冬季 (参考答案)夏季 (4)若A处为海洋,B处为陆地,则图中区域所处的时间为(一月或七月)。 【相关考点】利用等温线图判断某点的时间。 (解析)北半球夏季─→七月,冬季─→一月 南半球夏季─→一月,冬季─→七月 (参考答案)一月 (5)若此图为七月份等温线图,试判定A处为(海洋或陆地),B处为(陆地或海洋)。 【相关考点】利用等温线图判断海陆分布。 (解析)七月:等温线北凸─→陆地;南凸─→海洋

太阳高度的日变化规律和日出日落方位时间(学案)之欧阳学文创编之欧阳家百创编

三、等太阳高度线分布图 欧阳家百(2021.03.07) 从全球范围看:太阳直射点上,太阳高度角为_____; 从直射点开始,太阳高度向四周______, 呈_______状分布(即等太阳高度线);晨昏线上太阳高度为_____。等太阳高度线图可以看做是以太阳直射点为中心的俯视图 例1、图1是某地某日太阳高度分布图,回答: (1)从图中可以看出,太阳高度的分布规律是 。 (2)该图的节气应该是(北半球)。 (3)此时北京时间是。 (4)A点所在经线的经度是。 (5)C点的经度值(大于或小于)23°26′。 (6)若B点有一直立旗杆,此时其影子应指向 A.甲B.乙C.丙D.丁 例2、图为地球上某时刻太阳高度分布示意图,图中粗线为等太阳高度线,读图回答下列问题。1. 此时北京时间为 A. 7时 B. 15时 C. 17时 D. 21时 2. 若①②两点经度相同,②③两点纬度相同, 则此时刻的太阳高度 A. ①<③ B. ①=② C. ②=③ D. ①>② 3. 此时

A. PM为昏线,PN为晨线 B. 新一天的范围约占全球的1/8 C. 新一天的范围约占全球的7/8 D. 全球昼夜平分 4. 此时Q点太阳高度的日变化图是 例3、该图所示区域全部为夜半球,读图回答:(1)此日正午太阳高度角为0°的点是__,纬度是 (2)此时北京时间是__点。 四、太阳高度的日变化规律 例4、下图中四条曲线表示6月22日太阳高度的全天变化情况,判断四地的纬度位置思考: 能否画出以下地区的太阳高度全天变化情况 1.北回归线与北极圈线之间 2.北极圈线与北极点之间①极点:在极昼期间,极点上见到太阳高度在一天之内是_____的, 其太阳高度始终等于_______的纬度,其值的年变化幅度介于___到_______之间 ②非极点地区:非极点地区的太阳高度在一日内是_______的。 一天之内有一个最___值,即当地的___________ A:极圈及其以内地区太阳高度的变化: 从日变化看,极昼期间,全天太阳高度始终都大于或等于00,其中极圈上在0时太阳高度为______(如图乙),极圈到极点之间的地区,其太阳高度全天始终都_____00(如图丙);从年变化看,北极圈内

相关主题
文本预览
相关文档 最新文档