当前位置:文档之家› 频谱分析仪at5010使用方法

频谱分析仪at5010使用方法

频谱分析仪at5010使用方法
频谱分析仪at5010使用方法

频谱分析仪

Spectrum Analyzer

系统主要的功能是在频域里显示输入信号的频谱特性.频谱分析仪依信号处理方式的不同,一般有两种类型;即时频谱分析仪(Real-Time Spectrum Analyzer)与扫描调谐频谱分析仪(Sweep-Tuned Spectrum Analyzer).

即时频率分析仪的功能为在同一瞬间显示频域的信号振幅,其工作原理是针对不同的频率信号而有相对应的滤波器与检知器(Detector),再经由同步的多工扫描器将信号传送到CRT萤幕上,其优点是能显示周期性杂散波(Periodic Random Waves)的瞬间反应,其缺点是价昂且性能受限於频宽范围,滤波器的数目与最大的多工交换时间(Switching Time).

最常用的频谱分析仪是扫描调谐频谱分析仪,其基本结构类似超外差式接收器,工作原理是输入信号经衰减器直接外加到混波器,可调变的本地振荡器经与CRT同步的扫描产生器产生随时间作线性变化的振荡频率,经混波器与输入信号混波降频后的中频信号(IF)再放大,滤波与检波传送到CRT的垂直方向板,因此在CRT的纵轴显示信号振幅与频率的对应关系.

影响信号反应的重要部份为滤波器频宽,滤波器之特性为高斯滤波器(Gaussian-Shaped Filter),影响的功能就是量测时常见到的解析频宽(RBW,ResolutionBandwidth).RBW代表两个不同频率的信号能够被清楚的分辨出来的最低频宽差异,两个不同频率的信号频宽如低於频谱分析仪的RBW,此时该两信号将重叠,难以分辨,较低的RBW固然有助於不同频率信号的分辨与量测,低的RBW将滤除较高频率的信号成份,导致信号显示时产生失真,失真值与设定的RBW密切相关,较高的RBW固然有助於宽频带信号的侦测,将增加杂讯底层值(Noise Floor),降低量测灵敏度,对於侦测低强度的信号易产生阻碍,因此适当的RBW宽度是正确使用频谱分析仪重要的概念.

(9)中频带宽选择(400kHz、20kHz):选在20kHz带宽时,噪声电平降低,选择性提高,能分隔开频率更近的谱线。此时,若扫频宽度过宽,则由于需要更长的扫描时间,从而造成信号过渡过程中信号幅度降低,使测量不正确。此时“校准失效”LED发亮即表明这一点。

(10)视频滤波器选择(VIDEOFILTER):可用来降低屏幕上的噪声,它使得正常情况下,平均噪声电平刚好高出其信号(小信号)谱线,以便于观察。该滤波器带宽是4kHz。

(11)Y移位调节(Y-POS):调节射速垂直方向移动。

(12)BNC 5011输入端口(1NPUT 5011):在不用输入衰减时,不允许超出的最大允许输入电压为+25V(DC)和十10dBm(AC)。当加上40dB最大输入衰减时,最大输入电压为+20dBm。

(13)衰减器按钮:输入衰减器包括有4个10dB衰减器,在信号进入第一混频器之前,利用衰减器按钮可降低信号幅度。按键压下时衰减器接人。

在连接任何信号到输入端之前,先选择设置为最高衰减量(4x10dB)和最高可用频宽(扫频宽度100MHz/格),若此时将中心频率调在500MHz,则在最大可测和显示频率范围内检测出任意谱线。当衰减减小时,基线向上移动,则可指出在最大可显示频率范围(例如1200MHz)之外信号幅度有溢出。

(14)扫频宽度选择按键(SCANWIDTH):用来调节水平轴的每格扫频宽度。用u按键来增加每格频宽,用t按键来减少每格频宽。转换是1—2—5步级,从100kHz/格-100MHz/格。此扫频宽度以MHz/格显示出,它代表水平线每格刻度。中心频率是指水平轴心垂直刻线处的频率。假如中心频率和扫频宽度设置正确,X轴有10分格的长度,则当扫频宽度低于IOOMHz时,只有全频率范围的一部分可被显示。当扫频宽度设在100MHz/格位置,中心频率设在500MHz时,显示频率以每格100MHz扩展到右边,最右是1000MHz(500MHz+5x100MHz)。同样,中心向左边则频率减低。此情况下,左边的刻线代表0Hz。这时,可以看到一条特别的谱线,即,“0频率”。这是由于第一本地振荡器频率通过了第一中频而产生的。当中心频率相对于扫频宽度较低时有此现象。

“0频率”的幅度对每台频谱仪是不一样的。它不能作参考电平来使用。显示在“0频率”点左边的那些谱线被称为镜频。在“0扫频”模式时,频谱仪工作就像是一台可选择(中频)带宽的接收机,此时频率的选择是通过“中心频率”旋钮来实现的。通过中频滤波器的频谱线产生一个电平显示。

所选的扫频宽度/格值由设置按键上方的LED显示出来。

(15)水平位置旋钮(X-POS):水平位置调整旋钮。

(16)水平幅度调整旋钮(X-AMPL):水平幅度调整旋钮。

水平位置及水平幅度调节仅仅在仪器校准时才用。在正常使用下一般无须调节。当需要对它们实施调节时,则需要用一台很精确的射频振荡器配合使用。

(17)耳机插孔(PHONE):阻抗大于16n的耳机或扬声器可以连到耳机插孔。当频谱仪对某一个谱线调谐好时,可能有的音频会被解调出来。

(18)音量调节(VOL):调节耳机输出的音量。

(19)频率显示屏:在频谱分析仪上有一个频率显示屏,显示频标所在位置的频率值。

三、频谱分析仪的使用

1.指导

(1)AT5010频谱分析仪测量幅度为:-100dBm--+13dBm,即:信号强度达到最高的一条水平刻度线时,此信号的幅度为-27dBm,每下一大格减10dBm。如果频谱分析仪上的40dB衰减器全按下时,此时最高水平刻度线幅度为+13dBm(-27dBm+40dBm)。

(2)手机有些信号测试点可以直接用高频电缆连接频谱仪进行测量。但有部分测试点因为存在阻抗匹配的问题,不能直接测量,可选用安泰AZ530-H高阻抗探头,探头输入电容为2pF,阻抗极高,可以直接定量测量手机上任何射频信号不会对被测电路有任何影响。AZ530-H高阻抗探头本身有20dB(典型值)的衰减,因此用其作定量测量时,要在其直接读数上加20dB。

2.操作

用频谱分析仪测量手机的射频信号比较方便,例如,测量爱立信T18第二中频信号(6MHz)时,可按以下方法进行。

(1)打开频谱分析仪,调节亮度和聚焦旋钮,使屏幕上显示的光迹清晰。

(2)调节扫频宽度选择按键(SCANWIDTH)按键,使1MHz指示灯亮,表示每格所占频率为1MHz。

(3)调节中心频率粗/细调调节旋钮,使频标位于屏幕中心位置,所指频率为6MHz。

(4)将频谱仪探头外壳与T18电路主板接地点相连,探针插到第二中频滤波器的输出端,在电流表指针摆动时观察频谱仪屏幕上是否有脉冲式图像,正常情况下,当电流表指针摆动时,有脉冲图像出现在6MHz频标位置。

再如,用频谱分析仪测量诺基3310功放输出信号的频谱,可按以下步骤进行测量。

(1)打开频谱分析仪,调节亮度和聚焦旋钮,使屏幕上显示清晰的图像。

(2)调节中心频率粗/细调调节旋钮,使频标位于屏幕中心位置,显示屏显示频率值为900MHz。

(3)调节扫频宽度选择按键(SCANWIDTH)按键,使10MHz指示灯亮,表示每格所占频率为10MHz。

(4)将频谱仪外壳与3310主板接地点相连,控针插到功放块的输出端,并拨打“112”,观察电流表摆动的同时观看频谱仪屏幕上有无脉冲图像,正常情况下,在900MHz频标附近会出现脉冲图像,但幅度会超出屏幕范围,可以按衰减按键,使图像最高点在屏幕范围内。

(5)标记按钮(ONOFF):当标记按钮置于OFF(断)位置时,中心频率(CF)指示器发亮,此时显示器读出的是中心频率,当此开关在ON(通)位置时,标记(MK)指示器发亮,此时显示器读出的是标记的频率,该标记在屏幕上是一个尖峰。

(6)标记旋钮(MARKER):用于调节标记频率。

(7)LED指标灯:闪亮时表示幅度值不正确。这是由于扫频宽度和中频滤波器设置不当而造成幅度降低所致。这种情况可能出现在扫频范围过大时(相对于中频带宽(20kHz),或视频滤波器带宽(4kHz)),若要正确测量,可以不用视频滤波器或者减小扫频宽度。

第二页

频谱分析仪的使用方法(第二页)

13MHz信号。一般情况下,可以用示波器判断13MHz电路信号的存在与否,以及信号的幅度是否正常,然而,却无法利用示波器确定13MHz电路信号的频率是否正常,用频率计可以确定13MHz电路信号的有无,以及信号的频率是否准确,但却无法用频率计判断信号的幅度是否正常。然而,使用频谱分析仪可迎刃而解,因为频谱分析仪既可检查信号的有无,又可判断信号的频率是否准确,还可以判断信号的幅度是否正常。同时它还可以判断信号,特别是VCO信号是否纯净。可见频谱分析仪在手机维修过程中是十分重要的。

另外,数字手机的接收机、发射机电路在待机状态下是间隙工作的,所以在待机状态下,频率计很难测到射频电路中的信号,对于这一点,应用频谱分析仪不难做到。

一、使用前须知

在使用频谱分析仪之前,有必要了解一下分贝(dB)和分贝毫瓦(dBm)的基本概念,下面作一简要介绍。

1.分贝(dB)

分贝是增益的一种电量单位,常用来表示放大器的放大能力、衰减量等,表示的是一个相对量,分贝对功率、电压、电流的定义如下:

分贝数:101g(dB)

分贝数=201g(dB)

分贝数=201g(dB)

例如:A功率比B功率大一倍,那么,101gA/B=10182’3dB,也就是说,A功率比B功率大3dB,

2.分贝毫瓦(dBm)

分贝毫瓦(dBm)是一个表示功率绝对值的单位,计算公式为:

分贝毫瓦=101g(dBm)

例如,如果发射功率为lmw,则按dBm进行折算后应为:101glmw/1mw=0dBm。如果发射功率为40mw,则10g40w/1mw--46dBm。

二、频谱分析仪介绍

生产频谱分析仪的厂家不多。我们通常所知的频谱分析仪有惠普(现在惠普的测试设备分离出来,为安捷伦)、马可尼、惠美以及国产的安泰信。相比之下,惠普的频谱分析仪性能最好,但其价格也相当可观,早期惠美的5010频谱分析仪比较便宜,国产的安泰5010频谱分析仪的功能与惠美的5010差不多,其价格却便宜得多。

下面以国产安泰5010频谱分析仪为例进行介绍。

1.性能特点

AT5010最低能测到2.24uv,即是-100dBm。一般示波器在lmv,频率计要在20mv以上,跟频谱仪比相差10000倍。如用频率计测频率时,有的频率点测量很难,有的频率点测最不准,频率数字显示不稳定,甚至测不出来。这主要足频率计灵敏度问题,即信号低于20mv 频率计就无能为力了,如用示波器测量时,信号5%失真示波器看不出来,在频谱仪上万分之一的失真都能看出来。

但需注意的是,频谱仪测量的是高频信号,其高灵敏度也就决定了,要注意被测信号的幅度范围,以免损坏高频头,在2.24uv-1V之间,超过其范围应另加相应的衰减器。

AT5010频谱分析仪频率范围在0.15~1000MHz(1G),其系列还有3G、8G、12G等产品。

AT5010频谱分析仪可同时测量多种(理论上是无数个)频率及幅度,Y轴表示幅度,X轴表示频率,因此能直观的对信号的组成进行频率幅度和信号比较,这种多对比件的测量,示波器和频率计是无法完成的。

2.性能指标

(1)频率

频率范围:0.15—1050MHz

中心频率显示精度:士lOOkHz

频率显示分辨率:lOOkHz

扫频宽度:100kHz/格—100MHz/格

中频带宽(一3dB):400kHz和20kHz

扫描速度:43Hz

(2)幅度

幅度范围:一100~+13dBm

屏幕显示范围:80dBm(10dB/格)

参考电平:一27-13dBm(每级10dB)

参考电平精度:±2dD

平均噪声电平:一99dBm

(3)输入。

输入阻抗:50n

插座:BNC

衰减器:0~40dB

输入衰减精度:±1dDm

最大输入电平:+10dBm、+25V(DC)

3.安泰5010频谱分析仪功能介绍

安泰5010频谱分析仪面板功能示意图如图4-4所示。

(1)聚焦旋钮(FOCJS):用于光点锐度调节。

(2)亮度调节旋钮(1NTENS):用于光点亮暗调节。

(3)电源开关(POWER):被按下后,频谱分析仪开始工作。

(4)轨迹旋钮(TR):即使有磁性(铍膜合金)屏蔽,地球磁场对水平扫描线的影响仍不可能避免。通过轨迹旋钮内装的一个电位器来调整轨迹;使水平扫描线与水平刻度线基本对齐。

频谱分析仪的使用方法(第二页)

(9)中频带宽选择(400kHz、20kHz):选在20kHz带宽时,噪声电平降低,选择性提高,能分隔开频率更近的谱线。此时,若扫频宽度过宽,则由于需要更长的扫描时间,从而造成信号过渡过程中信号幅度降低,使测量不正确。此时“校准失效”LED发亮即表明这一点。

(10)视频滤波器选择(VIDEOFILTER):可用来降低屏幕上的噪声,它使得正常情况下,平均噪声电平刚好高出其信号(小信号)谱线,以便于观察。该滤波器带宽是4kHz。

(11)Y移位调节(Y-POS):调节射速垂直方向移动。

(12)BNC5011输入端口(1NPUT5011):在不用输入衰减时,不允许超出的最大允许输入电压为+25V(DC)和十10dBm(AC)。当加上40dB最大输入衰减时,最大输入电压为+20dBm。

(13)衰减器按钮:输入衰减器包括有4个10dB衰减器,在信号进入第一混频器之前,利用衰减器按钮可降低信号幅度。按键压下时衰减器接人。

在连接任何信号到输入端之前,先选择设置为最高衰减量(4x10dB)和最高可用频宽(扫频宽度100MHz/格),若此时将中心频率调在500MHz,则在最大可测和显示频率范围内检测出任意谱线。当衰减减小时,基线向上移动,则可指出在最大可显示频率范围(例如1200MHz)之外信号幅度有溢出。

(14)扫频宽度选择按键(SCANWIDTH):用来调节水平轴的每格扫频宽度。用u按键来增加每格频宽,用t按键来减少每格频宽。转换是1—2—5步级,从100kHz/格-100MHz/格。此扫频宽度以MHz/格显示出,它代表水平线每格刻度。中心频率是指水平轴心垂直刻线处的频率。假如中心频率和扫频宽度设置正确,X轴有10分格的长度,则当扫频宽度低于IOOMHz时,只有全频率范围的一部分可被显示。当扫频宽度设在100MHz/格位置,中心频率设在500MHz时,显示频率以每格100MHz扩展到右边,最右是1000MHz(500MHz+5x100MHz)。同样,中心向左边则频率减低。此情况下,左边的刻线代表0Hz。这时,可以看到一条特别的谱线,即,“0频率”。这是由于第一本地振荡器频率通过了第一中频而产生的。当中心频率相对于扫频宽度较低时有此现象。

“0频率”的幅度对每台频谱仪是不一样的。它不能作参考电平来使用。显示在“0频率”点左边的那些谱线被称为镜频。在“0扫频”模式时,频谱仪工作就像是一台可选择(中频)带宽的接收机,此时频率的选择是通过“中心频率”旋钮来实现的。通过中频滤波器的频谱线产生一个电平显示。

所选的扫频宽度/格值由设置按键上方的LED显示出来。

(15)水平位置旋钮(X-POS):水平位置调整旋钮。

(16)水平幅度调整旋钮(X-AMPL):水平幅度调整旋钮。

水平位置及水平幅度调节仅仅在仪器校准时才用。在正常使用下一般无须调节。当需要对它们实施调节时,则需要用一台很精确的射频振荡器配合使用。

(17)耳机插孔(PHONE):阻抗大于16n的耳机或扬声器可以连到耳机插孔。当频谱仪对某一个谱线调谐好时,可能有的音频会被解调出来。

(18)音量调节(VOL):调节耳机输出的音量。

(19)频率显示屏:在频谱分析仪上有一个频率显示屏,显示频标所在位置的频率值。

三、频谱分析仪的使用

1.指导

(1)AT5010频谱分析仪测量幅度为:-100dBm--+13dBm,即:信号强度达到最高的一条水平刻度线时,此信号的幅度为-27dBm,每下一大格减10dBm。如果频谱分析仪上的40dB衰减器全按下时,此时最高水平刻度线幅度为+13dBm(-27dBm+40dBm)。

(2)手机有些信号测试点可以直接用高频电缆连接频谱仪进行测量。但有部分测试点因为存在阻抗匹配的问题,不能直接测量,可选用安泰AZ530-H高阻抗探头,探头输入电容为2pF,阻抗极高,可以直接定量测量手机上任何射频信号不会对被测电路有任何影响。AZ530-H高阻抗探头本身有20dB(典型值)的衰减,因此用其作定量测量时,要在其直接读数上加20dB。

2.操作

用频谱分析仪测量手机的射频信号比较方便,例如,测量爱立信T18第二中频信号(6MHz)时,可按以下方法进行。

(1)打开频谱分析仪,调节亮度和聚焦旋钮,使屏幕上显示的光迹清晰。

(2)调节扫频宽度选择按键(SCANWIDTH)按键,使1MHz指示灯亮,表示每格所占频率为1MHz。

(3)调节中心频率粗/细调调节旋钮,使频标位于屏幕中心位置,所指频率为6MHz。

(4)将频谱仪探头外壳与T18电路主板接地点相连,探针插到第二中频滤波器的输出端,在电流表指针摆动时观察频谱仪屏幕上是否有脉冲式图像,正常情况下,当电流表指针摆动时,有脉冲图像出现在6MHz频标位置。

再如,用频谱分析仪测量诺基3310功放输出信号的频谱,可按以下步骤进行测量。

(1)打开频谱分析仪,调节亮度和聚焦旋钮,使屏幕上显示清晰的图像。

(2)调节中心频率粗/细调调节旋钮,使频标位于屏幕中心位置,显示屏显示频率值为900MHz。

(3)调节扫频宽度选择按键(SCANWIDTH)按键,使10MHz指示灯亮,表示每格所占频率为

10MHz。

(4)将频谱仪外壳与3310主板接地点相连,控针插到功放块的输出端,并拨打“112”,观察电流表摆动的同时观看频谱仪屏幕上有无脉冲图像,正常情况下,在900MHz频标附近会出现脉冲图像,但幅度会超出屏幕范围,可以按衰减按键,使图像最高点在屏幕范围内。

(5)标记按钮(ONOFF):当标记按钮置于OFF(断)位置时,中心频率(CF)指示器发亮,此时显示器读出的是中心频率,当此开关在ON(通)位置时,标记(MK)指示器发亮,此时显示器读出的是标记的频率,该标记在屏幕上是一个尖峰。

(6)标记旋钮(MARKER):用于调节标记频率。

(7)LED指标灯:闪亮时表示幅度值不正确。这是由于扫频宽度和中频滤波器设置不当而造成幅度降低所致。这种情况可能出现在扫频范围过大时(相对于中频带宽(20kHz),或视频滤波器带宽(4kHz)),若要正确测量,可以不用视频滤波器或者减小扫频宽度。

频谱分析仪的使用方法

频谱分析仪的使用方法(第一页) 13MHz信号。一般情况下,可以用示波器判断13MHz电路信号的存在与否,以及信号的幅度是否正常,然而,却无法利用示波器确定13MHz电路信号的频率是否正常,用频率计可以确定13MHz电路信号的有无,以及信号的频率是否准确,但却无法用频率计判断信号的幅度是否正常。然而,使用频谱分析仪可迎刃而解,因为频谱分析仪既可检查信号的有无,又可判断信号的频率是否准确,还可以判断信号的幅度是否正常。同时它还可以判断信号,特别是VCO信号是否纯净。可见频谱分析仪在手机维修过程中是十分重要的。 另外,数字手机的接收机、发射机电路在待机状态下是间隙工作的,所以在待机状态下,频率计很难测到射频电路中的信号,对于这一点,应用频谱分析仪不难做到。 一、使用前须知 在使用频谱分析仪之前,有必要了解一下分贝(dB)和分贝毫瓦(dBm)的基本概念,下面作一简要介绍。 1.分贝(dB) 分贝是增益的一种电量单位,常用来表示放大器的放大能力、衰减量等,表示的是一个相对量,分贝对功率、电压、电流的定义如下: 分贝数:101g(dB) 分贝数=201g(dB) 分贝数=201g(dB) 例如:A功率比B功率大一倍,那么,101gA/B=10182’3dB,也就是说,A功率比B功率大3dB, 2.分贝毫瓦(dBm) 分贝毫瓦(dBm)是一个表示功率绝对值的单位,计算公式为: 分贝毫瓦=101g(dBm) 例如,如果发射功率为lmw,则按dBm进行折算后应为:101glmw/1mw=0dBm。如果发射功率为40mw,则10g40w/1mw--46dBm。 二、频谱分析仪介绍 生产频谱分析仪的厂家不多。我们通常所知的频谱分析仪有惠普(现在惠普的测试设备分离出来,为安捷伦)、马可尼、惠美以及国产的安泰信。相比之下,惠普的频谱分析仪性能最好,但其价格也相当可观,早期惠美的5010频谱分析仪比较便宜,国产的安泰5010频谱分析仪的功能与惠美的5010差不多,其价格却便宜得多。 下面以国产安泰5010频谱分析仪为例进行介绍。 1.性能特点 AT5010最低能测到2.24uv,即是-100dBm。一般示波器在lmv,频率计要在20mv以上,跟频谱仪比相差10000倍。如用频率计测频率时,有的频率点测量很难,有的频率点测最不准,频率数字显示不

安立频谱仪使用说明

安立频谱仪介绍

安立频谱仪使用章程 频谱分析仪的正面图如下: 下面介绍这些按键的功能: 第三章按键功能 硬键 硬键是指在面板上用黑色和蓝色标注的按键,他们有着特殊的功能。功能硬键有四种,他们位于下端,而右端则有17个硬键,这17个硬键中有12个硬键有着双重的功能,这就要看当前所使用的模式而决定它们的功能了。 功能硬键 模式 按一下“MODE(模式)”键,然后用“UP/DOWN(上下)”键来选 择所要操作的模式,然后再按“ENTER(回车)”键来确认所选的模 式。 FREQ/SPAN (频率/频宽)

按一下“FREQ/SPAN(频率/频宽)”键后便会出现“CENTER(中心)、 FREQUENCY(频率)、SPAN(频宽)、START(开始频率)和STOP(截 至频率)的选项。我们可以通过相应的软键来选择相应的功能。AMPLITUDE (幅度) 按一下“AMPLITUDE(幅度)”键后便会出现“REFLEVEL(参考电平)、 SCALE(刻度)、ATTEN(衰减)、REF LEVEL OFFSET(参考电平偏移)、 和UNITS(单位)”选项,我们可以通过相应的软键来选择相应的功能。BW/SWEEP (带宽/扫描) 按一下“BW/SWEEP(带宽/扫描)”键后便会出现“RBW、VBW、 MAXHOLD(保持最大值)、A VERAGE(平均值)和DETECTION(检 测)”选项,我们可以通过相应的软键来选择相应的功能。KEYPAD HARD KEYS (面板上的硬键) 下面的这些按键是用黑色字体标注的 0~9 是当需要进行测量或修改数据时用来输入数据的。 +/- 这个键可以使被操作的数值的符号发生变化即正负变化。 . 入小数点。 ESCAPE CLEAR 这个键的功能是退出当前操作或清楚显示。如果您在进行参数修改时 按一下这个键,则该参数值只保存最后一次操作的有效值,如果再按 一次该键则关闭该参数的设置窗口。再正常的前向移动(就是进入下 层目录)中,按一下这个键则返回上层目录。如果在开该仪器的时候 一直按下该键则仪器将恢复出厂时的设置。 UP/DOWN ARROWS

频谱分析仪使用指南

Spectrum Analyzer Basics 频谱分析仪是通用的多功能测量仪器。例如:频谱分析仪可以对普通发射机进行多项测量,如频率、功率、失真、增益和噪声特性。 功能范围(Functional Areas ) 频谱分析仪的前面板控制分成几组,包含下列功能:频率扫描宽度和幅度(FREQUENCY,SPAN&LITUDE)键以及与此有关的软件菜单可设置频谱仪的三个基本功能。 仪器状态(INSTRUMENT STATE ):功能通常影响整个频谱仪的状态,而不仅是一个功能。 标记(MARKER)功能:根据频谱仪的显示迹线读出频率和幅度 提供信号分析的能力。 控制(CONTRIL)功能:允许调节频谱分析的带宽,扫描时间和 显示。 数字(DATA)键:允许变更激活功能的数值。 窗口(WINDOWS)键:打开窗口显示模式,允许窗口转换,控 制区域扫宽和区域位置。 基本功能(Fundamental Function) 频谱分析仪上有三种基本功能。通过设置中心频率,频率扫宽或者起始和终止频率,操作者可控制信号在频幕上的水平位置。信号的垂直位置由参考电平控制。一旦按下某个键,其

功能就变成了激活功能。与这些功能有关的量值可通过数据输入控制进行改变。 Sets the Center Frequency Adjusts the Span Peaks Signal Amplitude to 频率键(FREQUENCY) 按下频率( FREQUENCY)键,在频幕左侧显示CENTER 表示中心频率功能有效。中心频率(CENTERFREQ)软键标记发亮表示中心频率功能有效。激活功能框为荧屏上的长方形空间,其内部显示中心频率信息。出现在功能框中的数值可通过旋钮,步进键或数字/单位键改变。 频率扫宽键(SPAN) 按下频率扫宽 (SPAN)键, (SPAN)显示在活动功能框中,(SPAN)软键标记发亮,表明频率扫宽功能有效。频率扫宽的大小可通过旋钮,步进键或数字键/单位键改变。 幅度键(AMPLITUDE)按下 按下幅度键(AMPLITUDE)参考电平(REFLEVEL)0dbm显示在 激活功能框中,( REFLEVEL)软键标记发亮,表明参考电平功

频谱分析仪的原理及应用

频谱分析仪的原理及应用 (远程互动方式) 一、实验目的: 1、熟悉远程电子实验系统客户端程序的操作,了解如何控制远地服务器主机,操作与其连接的电子综合实验板和PCI-1200数据采集卡,具体可参照实验操作说明。 2、了解FFT 快速傅立叶变换理论及数字式频谱分析仪的工作原理,同时了解信号波形的数字合成方法以及程控信号源的工作原理。 3、在客户端程序上进行远程实验操作,由程控信号源分别产生正弦波、方波、三角波等几种典型电压波形,并由数字频谱分析仪对这几种典型电压波形进行频谱分析,并对测量结果做记录。 二、实验原理: 1、理论概要 数字式频谱分析仪是通过A/D 采样器件,将模拟信号转换为数字信号,传给微处理器系统或计算机来处理和显示,与模拟仪器相比,数据的量化更精确,而且很容易实现存储、传输、控制等智能化的功能。电压测量的分辨率取决于A/D 采样器件的位数,例如12位A/D 采样的分辨率是1/4096。在对交流信号的测量中,根据奈奎斯特采样定理,采样速率必须是信号频率的两倍以上,采样频率越高,时间轴上的信号分辨力就越高,所获得的信号就越接近原始信号,在频谱上展现的频带就越宽。 本实验系统基于虚拟仪器构建,数字频谱分析仪是通过PCI-1200数据采集卡来实现的。通过虚拟仪器软件提供的网络通信功能,实现客户端与服务器之间的远程通信。由客户端程序发出操作请求,由服务器接受并按照要求控制硬件实验系统,然后将采集到的实验数据发给客户端,由客户端程序进行处理。 频谱分析仪是在频域进行信号分析测量的仪器之一,它采用滤波或傅立叶变换的方法,分析信号中所含各个频率份量的幅值、功率、能量和相位关系。频谱仪按工作原理,大致可分为滤波法和计算法两大类,本实验所用的数字频谱分析仪采用的是计算法。 计算法频谱分析仪的构成如图1所示: 图1 计算法频谱分析仪构成方框图 数据采集部分由数据采集部分由抗混低通滤波(LP )、采样保持(S/H )和模数转换(A/D )几个部分组成。 数字信号处理(DSP )部分的核心是FFT 运算。 有限离散序列Xn 和它的频谱X m 之间的傅立叶变换可表示如下: N-1 nm X m = ∑ Xn ·W N n=0 -j2π/N 式中W N = C n,m = 0,1,……,N-1 1 N-1 -nm Xn = - ∑ X m ·W N N m=0 X m 有N 个复数值,由它可获得振幅和相位谱∣X m ∣,φm 。由于时间信号Xn 总是实函数,X m 的N 个值的前后半部分共轭对称。 由于数据采集进行的是有限时间内的信号采集,而不是无限时间信号,在进行FFT 变

频谱分析报告仪地使用方法

频谱分析仪的使用方法 13MHz信号。一般情况下,可以用示波器判断13MHz电路信号的存在与否,以及信号的幅度是否正常,然而,却无法利用示波器确定13MHz电路信号的频率是否正常,用频率计可以确定13MHz电路信号的有无,以及信号的频率是否准确,但却无法用频率计判断信号的幅度是否正常。然而,使用频谱分析仪可迎刃而解,因为频谱分析仪既可检查信号的有无,又可判断信号的频率是否准确,还可以判断信号的幅度是否正常。同时它还可以判断信号,特别是VCO信号是否纯净。可见频谱分析仪在手机维修过程中是十分重要的。 另外,数字手机的接收机、发射机电路在待机状态下是间隙工作的,所以在待机状态下,频率计很难测到射频电路中的信号,对于这一点,应用频谱分析仪不难做到。 一、使用前须知 在使用频谱分析仪之前,有必要了解一下分贝(dB)和分贝毫瓦(dBm)的基本概念,下面作一简要介绍。 1.分贝(dB) 分贝是增益的一种电量单位,常用来表示放大器的放大能力、衰减量等,表示的是一个相对量,分贝对功率、电压、电流的定义如下: 分贝数:101g(dB) 分贝数=201g(dB) 分贝数=201g(dB) 例如:A功率比B功率大一倍,那么,101gA/B=10182’3dB,也就是说,A功率比B功率大3dB, 2.分贝毫瓦(dBm) 分贝毫瓦(dBm)是一个表示功率绝对值的单位,计算公式为: 分贝毫瓦=101g(dBm) 例如,如果发射功率为lmw,则按dBm进行折算后应为:101glmw/1mw=0dBm。如果发射功率为40mw,则10g40w/1mw--46dBm。 二、频谱分析仪介绍 生产频谱分析仪的厂家不多。我们通常所知的频谱分析仪有惠普(现在惠普的测试设备分离出来,为安捷伦)、马可尼、惠美以及国产的安泰信。相比之下,惠普的频谱分析仪性能最好,但其价格也相当可观,早期惠美的5010频谱分析仪比较便宜,国产的安泰5010频谱分析仪的功能与惠美的5010差不多,其价格却便宜得多。 下面以国产安泰5010频谱分析仪为例进行介绍。 1.性能特点 AT5010最低能测到2.24uv,即是-100dBm。一般示波器在lmv,频率计要在20mv以上,跟频谱仪比相差10000倍。如用频率计测频率时,有的频率点测量很难,有的频率点测最不准,频率数字显示不稳定,甚至测不出来。这主要足频率计灵敏度问题,即信号低于20mv频率计就无能为力了,如用示波器测量时,信号5%失真示波器看不出来,在频谱仪上万分之一的失真都能看出来。

频谱仪的简单操作使用方法

R3131A频谱仪简单操作使用方法 一.R3131A频谱仪简介。 R3131A频谱仪是日本ADV ANTEST公司的产品,用于测量高频信号,可测量的频率范围为9K—3GHz。对于GSM手机的维修,通过频谱仪可测量射频电路中的以下电路信号, (维修人员可以通过对所测出信号的幅度、频率偏移、干扰程度等参数的分析,以判断出故障点,进行快速有效的维修): 1.手机参考基准时钟(13M,26M等); 2.射频本振(RFVCO)的输出频率信号(视手机型号而异); 3.发射本振(TXVCO)的输出频率信号(GSM:890M—915M;DCS:1710—1785M); 4.由天线至中频芯片间接收和发射通路的高频信号; 5.接收中频和发射中频信号(视手机型号而异)。 面板上各按键(如图-1所示)的功能如下: A区:此区按键是其他区功能按键对应的详细功能选择按键,例如按下B区的FREQ 键后,会在屏幕的右边弹出一列功能菜单,要选择其中的“START”功能就可通过按下其对 (图-1) B区:此区按键是主要设置参数的功能按键区,包括:FREQ—中心频率; SPAN—扫描频率宽度;LEVEL—参考电平。此区中按键只需直接按下对应键输入数值及单位即可。 C区:此区是数字数值及标点符号选择输入区,其中“1”键的另一个功能是“CAL(校

准)”,此功能要先按下“SHIFT(蓝色键)”后再按下“1”键进行相应选择才起作用; “-”是退格删除键,可删除错误输入。 D 区:参数单位选择区,包括幅度、电平、频率、时间的单位,其中“Hz ”键还有“ENTER(确认)”的作用。 E 区:系统功能按键控制区,较常使用的有“SHIFT ”第二功能选择键,“SHIFT+CONFIG(PRESET )”选择系统复位功能,“RECALL ”调用存储的设置信息键,“SHIFT+RECALL(SA VE )”选择将设置信息保存功能。 F 区:信号波形峰值检测功能选择区。 G 区:其他参数功能选择控制区,常用的有“BW ”信号带宽选择及“SWEEP ”扫描时间选择,“SWEEP ”是指显示屏幕从左边到右边扫描一次的时间。 显示屏幕上的信息(如图-2所示)。 二.一般操作步骤。[“ ”表示的是菜单面板上直接功能按键,“ ” 表 示单个菜单键的详细功能按键(在显示屏幕的右边)]: 1) 按Power On 键开机。 2) 每次开始使用时,开机30分钟后进行自动校准,先按 Shift+7(cal ) ,再选择 cal all 键,校准过程中出现“Calibrating ”字样,校准结束后如通过则回复校准前状态。校准过程约进行3分钟。 3) 校准完成后首先按 FREQ 键,设置中心频率数值,例如需测中心频率为902.4M 的信

频谱分析仪的设计方案及实际应用案例汇总

频谱分析仪的设计方案及实际应用案例汇总 频谱分析仪是研究电信号频谱结构的仪器,用于信号失真度、调制度、谱纯度、频率稳定度和交调失真等信号参数的测量,可用以测量放大器和滤波器等电路系统的某些参数,是一种多用途的电子测量仪器。现代频谱分析仪能以模拟方式或数字方式显示分析结果,能分析1 赫以下的甚低频到亚毫米波段的全部无线电频段的电信号。仪器内部若采用数字电路和微处理器,具有存储和运算功能;配置标准接口,就容易构成自动测试系统。 基于MSP430 的FM 音频频谱分析仪的设计方案 本文中主要提出了以MSP43 处理器为核心的音频频谱分析仪的设计方案。以数字信号处理的相关理论知识为指导,利用MSP430 处理器的优势来进行音频频谱的设计与改进,并最终实现了在TFT 液晶HD66772 上面显示。 基于NIOS II 的频谱分析仪的设计与研制 本设计完全利用FPGA 实现FFT,在FPGA 上实现整个系统构建。其中CPU 选用Altera 公司的Nios II 软核处理器进行开发, 硬件平台关键模块使用Altera 公司的EDA 软件QuartusIIV8.0 完成设计。整个系统利用Nios II 软核处理器通过Avalon 总线进行系统的控制。 基于频谱分析仪二代身份证读卡器测量 本文所介绍使用频谱仪检测RFID 读卡器的应用实例也是一种通用检测 方案,可广泛应用在RFID 读卡器和主动式电子标签研发过程中的调试、产线 的检验等多个方面。 基于频谱分析仪分析手机无线测试 本文将对手机无线通信中遇到的问题提出相应的解决方案。手机在进行通信时存在着频段控制、通信质量检测和信号大小控制等问题。被射频工程师

安捷伦glenB 频谱分析仪使用说明简介

Agilent E4402B ESA-E Series Spectrum Analyzer 使用方法简介 宁波之猫 2009-6-17

目录

1简介 Agilent ESA-E系列是能适应未来需要的Agilent中性能频谱分析仪解决方案。该系列在测量速度、动态范围、精度和功率分辨能力上,都为类似价位的产品建立了性能标准。它灵活的平台设计使研发、制造和现场服务工程师能自定义产品,以满足特定测试要求,和在需要时用新的特性升级产品。该产品

采用单键测量解决方案,并具有易于浏览的用户界面和高速测量的性能,使工程师能把较少的时间用于测试,而把更多的时间用在元件和产品的设计、制作和查错上。 2.面板 操作区 1.观察角度键,用于调节显示,以适于使用者的观察角度。 2.Esc键,可以取消输入,终止打印。 3.无标识键,实现左边屏幕上紧挨的右边栏菜单的功能。 4.Frequency Channel(频率通道)、Span X Scale(扫宽X刻度)和Amplitude Y scale(幅度Y 刻度)三个键,可以激活主要的调节功能(频率、X轴、Y轴)并在右边栏显示相应的菜单。 5.Control(控制)功能区。 6.Measure(测量)功能区。 7.System(系统)功能区。 8.Marker(标记)功能区。 9.软驱和耳机插孔。 10.步进键和旋钮,用于改变所选中有效功能的数值。 11.音量调节。 12.外接键盘插口。 13.探头电源,为高阻抗交流探头或其它附件提供电源。 14.Return键,用于返回先前选择过的一级菜单。 15.Amptd Ref Out,可提供-20dBm的50MHz幅度参考信号。 16.Tab(制表)键,用于在界限编辑器和修正编辑器中四处移动,也用于在有File菜单键所访问对话 框的域中移动。 17.信号输入口(50Ω)。在使用中,接50ΩBNC电缆,探头上必须串联一隔直电容(30PF左右,陶瓷 封装)。探头实物:

AdobeAudition系列教程二频谱分析仪

Adobe Audition系列教程(二):频谱分析仪 频谱分析仪是研究信号频谱特征的仪器,在电子技术一日千里的今天,是研究、开发、调试维修中的有力武器。现代频谱分析仪都趋向于智能化,虚拟仪器技术广泛应用,有些就是以专用的计算机系统为核心设计的。其结果是结构大大简化、性能飞速提高。当然专业的频谱分析仪就比示波器更加昂贵了,业余爱好者更难用上。不过不必灰心,我们可以充分利用Adobe Audition的频谱分析功能,让你拥有精确频谱分析仪的美梦成真! 1. 频谱显示模式 Adobe Audition本身有一种“频谱显示”模式。先打开一段波形,或用《妙用Adobe Audition:数字存储示波器》一文介绍的方法录制一段波形,即可进行频谱分析。这里我们新建一段20秒的对数扫频信号(本文大多选用直接建立的波形,以便了解信号原始波形的标准频谱特征),然后选择“View=>Spectral View”(视图=>频谱),如图1,或点击快捷工具栏的“Toggle between Spectral and Waveform views”(切换频谱视图/波形视图)按扭,即可将波形以频谱显示的方式显示出来,如图2。扫频的频谱显示见图3。 图1

图2 图3 可以看到,横轴为时间,纵轴为频率指示。每个时刻对应的波形频谱都被显示出来了,可以看到扫描速度是指数增加的,即将频率轴取对数时扫描速度是线性的。如图中光标处18秒处频谱指示约11KHz。实际上频谱指示的颜色是代表频谱能量的高低的,颜色从深蓝到红再到黄,指示谱线电平由低到高的变化。这实际上跟地图的地形鸟瞰显示是比较相似的,看图4频谱复杂变化的声音频谱就更容易理解这点了。 图4

Adobe-Audition-系列教程(二):频谱分析仪

Adobe Audition系列教程(二):频谱分析仪 频谱分析仪是研究信号频谱特征的仪器,在电子技术一日千里的今天,是研究、开发、调试维修中的有力武器。现代频谱分析仪都趋向于智能化,虚拟仪器技术广泛应用,有些就是以专用的计算机系统为核心设计的。其结果是结构大大简化、性能飞速提高。当然专业的频谱分析仪就比示波器更加昂贵了,业余爱好者更难用上。不过不必灰心,我们可以充分利用AdobeAudition的频谱分析功能,让你拥有精确频谱分析仪的美梦成真!? 1. 频谱显示模式? Adobe Audition本身有一种“频谱显示”模式。先打开一段波形,或用《妙用Adobe Audition:数字存储示波器》一文介绍的方法录制一段波形,即可进行频谱分析。这里我们新建一段20秒的对数扫频信号(本文大多选用直接建立的波形,以便了解信号原始波形的标准频谱特征),然后选择“View=>Spectral View”(视图=>频谱),如图1,或点击快捷工具栏的“Toggle between Spectral and Waveform views”(切换频谱视图/波形视图)按扭,即可将波形以频谱显示的方式显示出来,如图2。扫频的频谱显示见图3。 图1

图2 图3 可以看到,横轴为时间,纵轴为频率指示。每个时刻对应的波形频谱都被显示出来了,可以看到扫描速度是指数增加的,即将频率轴取对数时扫描速度是线性的。如图中光标处18秒处频谱指示约11KHz。实际上频谱指示的颜色是代表频谱能量的高低的,颜色从深蓝到红再到黄,指示谱线电平由低到高的变化。这实际上跟地图的地形鸟瞰显示是比较相似的,看图4频谱复杂变化的声音频谱就更容易理解这点了。 图4

Adobe-Audition-系列教程(二):频谱分析仪

AdobeAudition系列教程(二):频谱分析仪 频谱分析仪是研究信号频谱特征的仪器,在电子技术一日千里的今天,是研究、开发、调试维修中的有力武器。现代频谱分析仪都趋向于智能化,虚拟仪器技术广泛应用,有些就是以专用的计算机系统为核心设计的。其结果是结构大大简化、性能飞速提高。当然专业的频谱分析仪就比示波器更加昂贵了,业余爱好者更难用上。不过不必灰心,我们可以充分利用AdobeAudition的频谱分析功能,让你拥有精确频谱分析仪的美梦成真! 1. 频谱显示模式 AdobeAudition本身有一种“频谱显示”模式。先打开一段波形,或用《妙用Adobe Audition:数字存储示波器》一文介绍的方法录制一段波形,即可进行频谱分析。这里我们新建一段20秒的对数扫频信号(本文大多选用直接建立的波形,以便了解信号原始波形的标准频谱特征),然后选择“View=>Spe ctral View”(视图=>频谱),如图1,或点击快捷工具栏的“Toggle between Spectral and Waveform views”(切换频谱视图/波形视图)按扭,即可将波形以频谱显示的方式显示出来,如图2。扫频的频谱显示见图3。 图1

图2 图3 可以看到,横轴为时间,纵轴为频率指示。每个时刻对应的波形频谱都被显示出来了,可以看到扫描速度是指数增加的,即将频率轴取对数时扫描速度是线性的。如图中光标处18秒处频谱指示约11KHz。实际上频谱指示的颜色是代表频谱能量的高低的,颜色从深蓝到红再到黄,指示谱线电平由低到高的变化。这实际上跟地图的地形鸟瞰显示是比较相似的,看图4频谱复杂变化的声音频谱就更容易理解这点了。

频谱仪的使用方法

仪器仪表的使用 第一章 频谱仪的使用 ?快速指南 ?测量实例 ?按键功能

目录 一:MS2711B频谱分析仪 (3) 第1节:概述 (3) 第2节快速启动指南 (9) 第3节按键功能 (19) 第4节基本测量 (28) 第5节测量的例子 (36) 第6节预放 (49) 第7节跟踪信号发生器.............................................. 错误!未定义书签。 第8节软件工具.......................................................... 错误!未定义书签。二:AT5011频谱分析仪使用方法............................................. 错误!未定义书签。 1、目的 ................................................................................ 错误!未定义书签。 2、适用型号 ........................................................................ 错误!未定义书签。 3、功能 ................................................................................ 错误!未定义书签。 4、特点 ................................................................................ 错误!未定义书签。 5、应用 ................................................................................ 错误!未定义书签。 6、应用场合 ........................................................................ 错误!未定义书签。 7、其它说明 ........................................................................ 错误!未定义书签。 8、仪器操作使用方法 ........................................................ 错误!未定义书签。三:hp频谱分析仪使用方法..................................................... 错误!未定义书签。 1.目的 ................................................................................ 错误!未定义书签。 2.功能 ................................................................................ 错误!未定义书签。 3.常用键功能介绍 ............................................................ 错误!未定义书签。 4、应用 ................................................................................ 错误!未定义书签。

v1E8000频谱分析仪使用说明书

目录 1仪器的一般性说明 ..................... 错误!未定义书签。 1.1仪器的主要功能简介 ......... 错误!未定义书签。 1.2选择机型介绍 ..................... 错误!未定义书签。 1.3可供选购功能附件的介绍 . 错误!未定义书签。 1.4随机标准配置附件的说明 . 错误!未定义书签。 1.5预防性护理 ......................... 错误!未定义书签。 1.6年检和校准说明 ................. 错误!未定义书签。 1.7静电放电(ESD)的保护方法错误!未定义书签。 1.8电池的更换 ......................... 错误!未定义书签。 1.9使用软背包 ......................... 错误!未定义书签。 1.10有关的技术支持和服务信息错误!未定义书签。 2熟悉仪器 (3) 2.1打开频谱分析仪 (3) 2.1.1频谱分析仪前面板介绍 (3) 2.1.2测试面板介绍 (5) 2.2人机交互界面介绍 (5) 2.2.1屏幕显示信息介绍 (5) 2.2.2菜单操作 (6) 2.2.3符号与指示 (7) 2.2.4数据输入 (7) 2.3测量模式选择 (8) 2.4菜单详解 (8) 2.4.1AMP按键 (8) 2.4.2CPL按键 (10) 2.4.3FREQ按键 (10) 2.4.4MARK按键 (11) 2.4.5MEAS按键 (12) 2.4.6MEAS/SETUP按键 (13) 2.4.7PEAK按键 (14) 2.4.8SAVE按键 (15) 2.4.9SYS按键 (16) 3频谱测量 (17) 3.1测量类型选择 (17) 3.2频谱扫描的功能和使用 (17) 3.2.1基础测量 (17) 3.2.2基本参数设置 (27) 3.2.3测量参数设置 (31) 3.2.4基本使用 (37) 3.3通道功率 (45) 3.3.1基础测量 (45) 3.3.2基本参数设置 (49) 3.3.3测量参数设置 (49) 3.3.4基本使用 (51) 3.4邻道功率 (52) 3.4.1基础测量 (52) 3.4.2基本参数设置 (53) 3.4.3测量参数设置 (54) 3.4.4基本使用 (56) 3.5占用带宽 (57) 目录-1

频谱分析仪使用注意

正确使用频谱分析仪需注意的几点 首先,电源对于频谱分析仪来说是非常重要的,在给频谱分析仪加电之前,一定要确保电源接确,保证地线可靠接地。频谱仪配置的是三芯电源线,开机之前,必须将电源线插头插入标准的三相插座中,不要使用没有保护地的电源线,以防止可能造成的人身伤害。 其次,对信号进行精确测量前,开机后应预热三十分钟,当测试环境温度改变3—5度时,频谱仪应重新进行校准。 三,任何频谱仪在输入端口都有一个允许输入的最大安全功率,称为最大输入电平。如国产多功能频谱分析仪AV4032要求连续波输入信号的最大功率不能超过+30dBmW(1W),且不允许直流输入。若输入信号值超出了频谱仪所允许的最大输入电平值,则会造成仪器损坏;对于不允许直流输入的频谱仪,若输入信号中含有直流成份,则也会对频谱仪造成损伤。 一般频谱仪的最大输入电平值通常在前面板靠近输入连接口的地方标出。如果频谱仪不允许信号中含有直流电压,当测量带有直流分量的信号时,应外接一个恰当数值的电容器用于隔直流。 当对所测信号的性质不太了解时,可采用以下的办法来保证频谱分析仪的安全使用:如果有RF功率计,可以用它来先测一下信号电平,如果没有功率计,则在信号电缆与频谱仪的输入端之间应接上一个一定量值的外部衰减器,频谱仪应选择最大的射频衰减和可能的最大基准电平,并且使用最宽的频率扫宽(SPAN),保证可能偏出屏幕的信号可以清晰看见。我们也可以使用示波器、电压表等仪器来检查DC及AC信号电平。 频谱分析仪的工作原理 频谱分析仪架构犹如时域用途的示波器,外观如图1.2所示,面板上布建许多功能控制按键,作为系统功能之调整与控制,系统主要的功能是在频域里显示输入信号的频谱特性.频谱分

史上最好的频谱分析仪基础知识(收藏必备)

频谱分析是观察和测量信号幅度和信号失真的一种快速方法,其显示结果可以直观反映出输入信号的傅立叶变换的幅度。信号频域分析的测量范围极其宽广,超过140dB,这使得频谱分析仪成为适合现代通信和微波领域的多用途仪器。频谱分析实质上是考察给定信号源,天线,或信号分配系统的幅度与频率的关系,这种分析能给出有关信号的重要信息,如稳定度,失真,幅度以及调制的类型和质量。利用这些信息,可以进行电路或系统的调试,以提高效率或验证在所需要的信息发射和不需要的信号发射方面是否符合不断涌现的各种规章条例。 现代频谱分析仪已经得到许多综合利用,从研究开发到生产制造,到现场维护。新型频谱分析仪已经改名叫信号分析仪,已经成为具有重要价值的实验室仪器,能够快速观察大的频谱宽度,然后迅速移近放大来观察信号细节已受到工程师的高度重视。在制造领域,测量速度结合通过计算机来存取数据的能力,可以快速,精确和重复地完成一些极其复杂的测量。 有两种技术方法可完成信号频域测量(统称为频谱分析)。 1.FFT分析仪用数值计算的方法处理一定时间周期的信号,可提供频率;幅度和相位信息。这种仪器同样能分析周期和非周期信号。FFT 的特点是速度快;精度高,但其分析频率带宽受ADC采样速率限制,适合分析窄带宽信号。 2.扫频式频谱分析仪可分析稳定和周期变化信号,可提供信号幅度和频率信息,适合于宽频带快速扫描测试。

图1 信号的频域分析技术 快速傅立叶变换频谱分析仪 快速傅立叶变换可用来确定时域信号的频谱。信号必须在时域中被数字化,然后执行FFT算法来求出频谱。一般FFT分析仪的结构是:输入信号首先通过一个可变衰减器,以提供不同的测量范围,然后信号经过低通滤波器,除去处于仪器频率范围之外的不希望的高频分量,再对波形进行取样即模拟到数字转换,转换为数字形式后,用微处理器(或其他数字电路如FPGA,DSP)接收取样波形,利用FFT计算波形的频谱,并将结果记录和显示在屏幕上。 FFT分析仪能够完成多通道滤波器式同样的功能,但无需使用许多带通滤波器,它使用数字信号处理来实现多个独立滤波器相当的功能。从概念上讲,FFT方法

HPC基本使用说明

HP8591C频谱仪CATV常规操作 背景 频谱仪简介 顾名思义,频谱分析仪就是对信号的频域特性进行测量分析的一种仪器,目前有两种:扫频外差式频谱仪和FFT分析仪(实时频谱仪1)。 扫频式频谱仪实质是一个中心频率在整个频率范围内可调谐的窄带滤波器。当改变它的调谐频率时,滤波器就分离出特定的频率分量,从而依次得到被分析信号的谱分量。因此,这种频谱仪所显示的频谱图是多次调谐之后拼接的结果,分析带宽受限于窄带滤波器的带宽(通常总是小于信号带宽),所以不能进行实时分析。 而FFT分析仪是在对信号采样之后,选择一定时间长度的离散采样点进行傅立叶变换,从而得到频域信息。由于离散时域信号中已包含了该时段内所有的频率信息,因此可以认为FFT的分析带宽与信号带宽是匹配的,能够实现实时分析。 通常,扫频式频谱仪与FFT分析仪相比,具有较宽的频率范围,较慢的扫描速度。HP8591C频谱仪就是这样一台扫频式频谱仪。 注释 *1所谓“实时”频谱仪,直观的理解是能够在被测信号频率变化之前完成测量、分析和显示,但它又不是指单纯意义上的测量时间短、速度 T的时段内,完成频率分辨率达到1/T的谱分析;或者待分析信号的带宽小于仪器能够同时分析的最大带宽。显然,实时的概念与信号带宽及频率分辨率有关。在要求的频段宽度范围内,如果数据采集、分析速度不小于数据变化速度,

这样的分析就是实时的;如果待分析的信号带宽过宽以至超过了最大分析带宽,则分析变成非实时的。(频谱仪的频率分辨率一般指的是该分析仪中频滤波器的最小3dB带宽,它表征了能够将最靠近的两个相邻频谱分量分辨出来的能力。外差式频谱仪的频率分辨率主要由中频滤波器的带宽决定,最小分辨率还受到本振频率稳定度的影响。而FFT 分析仪的频率分辨率和采样频率及FFT计算的点数有关:频率分辨率△f、采样频率fs和分析点数N三者之间的关系为△f=fs/N 。) 扫频外差式频谱仪基本原理 频谱分析仪的功能是要分辨输入信号中各个频率成份并测量各频率成份的频率和功率。为了完成该功能,扫频外差式频谱分析仪主要采用超外差方式进行扫描—调谐,其特点是频率覆盖范围宽并且允许在中频(IF)进行信号处理 图1是扫频外差式频谱仪的基本原理框图。 图中的中频频率是输入信号通过与本振信号的和频或差频产生的,本振受斜波发生器的控制,在斜波发生器的控制下,本振频率将从低到高的线性变化。这样在显示时,斜波发生器产生的斜波电压加到显示器的X轴上,检波器输出经低通滤波器后接到Y轴上,当斜波发生器对本振频率进行 图1 扫描外差式频谱仪原理框图

频谱分析仪at5010使用方法

频谱分析仪 Spectrum Analyzer 系统主要的功能是在频域里显示输入信号的频谱特性.频谱分析仪依信号处理方式的不同,一般有两种类型;即时频谱分析仪(Real-Time Spectrum Analyzer)与扫描调谐频谱分析仪(Sweep-Tuned Spectrum Analyzer). 即时频率分析仪的功能为在同一瞬间显示频域的信号振幅,其工作原理是针对不同的频率信号而有相对应的滤波器与检知器(Detector),再经由同步的多工扫描器将信号传送到CRT萤幕上,其优点是能显示周期性杂散波(Periodic Random Waves)的瞬间反应,其缺点是价昂且性能受限於频宽范围,滤波器的数目与最大的多工交换时间(Switching Time). 最常用的频谱分析仪是扫描调谐频谱分析仪,其基本结构类似超外差式接收器,工作原理是输入信号经衰减器直接外加到混波器,可调变的本地振荡器经与CRT同步的扫描产生器产生随时间作线性变化的振荡频率,经混波器与输入信号混波降频后的中频信号(IF)再放大,滤波与检波传送到CRT的垂直方向板,因此在CRT的纵轴显示信号振幅与频率的对应关系. 影响信号反应的重要部份为滤波器频宽,滤波器之特性为高斯滤波器(Gaussian-Shaped Filter),影响的功能就是量测时常见到的解析频宽(RBW,ResolutionBandwidth).RBW代表两个不同频率的信号能够被清楚的分辨出来的最低频宽差异,两个不同频率的信号频宽如低於频谱分析仪的RBW,此时该两信号将重叠,难以分辨,较低的RBW固然有助於不同频率信号的分辨与量测,低的RBW将滤除较高频率的信号成份,导致信号显示时产生失真,失真值与设定的RBW密切相关,较高的RBW固然有助於宽频带信号的侦测,将增加杂讯底层值(Noise Floor),降低量测灵敏度,对於侦测低强度的信号易产生阻碍,因此适当的RBW宽度是正确使用频谱分析仪重要的概念. (9)中频带宽选择(400kHz、20kHz):选在20kHz带宽时,噪声电平降低,选择性提高,能分隔开频率更近的谱线。此时,若扫频宽度过宽,则由于需要更长的扫描时间,从而造成信号过渡过程中信号幅度降低,使测量不正确。此时“校准失效”LED发亮即表明这一点。 (10)视频滤波器选择(VIDEOFILTER):可用来降低屏幕上的噪声,它使得正常情况下,平均噪声电平刚好高出其信号(小信号)谱线,以便于观察。该滤波器带宽是4kHz。 (11)Y移位调节(Y-POS):调节射速垂直方向移动。 (12)BNC 5011输入端口(1NPUT 5011):在不用输入衰减时,不允许超出的最大允许输入电压为+25V(DC)和十10dBm(AC)。当加上40dB最大输入衰减时,最大输入电压为+20dBm。 (13)衰减器按钮:输入衰减器包括有4个10dB衰减器,在信号进入第一混频器之前,利用衰减器按钮可降低信号幅度。按键压下时衰减器接人。

安捷伦-Agilent-E4402B-频谱分析仪使用说明简介

Agilent E4402B ESA-ESeries SpectrumAn alyzer 使用方法简介 宁波之猫 2009-6-17

?目录 1简介............................................................................................. 错误!未定义书签。 2.面板............................................................................................. 错误!未定义书签。 2.1操作区?错误!未定义书签。 2.2 屏幕显示......................................................................... 错误!未定义书签。3.各功能区的使用....................................................................... 错误!未定义书签。 3.1 Control(控制)功能区 ............................................ 错误!未定义书签。 3.1.1 FrequencyChannel:?错误!未定义书签。 3.1.2Span X Scale?错误!未定义书签。 3.1.3Amplitude YScale .......................... 错误!未定义书签。 3.1.4 Input/Output ................................................... 错误!未定义书签。 3.1.5 View/Trace?错误!未定义书签。 3.1.6 Display?错误!未定义书签。 3.1.7 Mode ..................................................................... 错误!未定义书签。 3.1.8 Det/Demod?错误!未定义书签。 3.1.9Auto Cuple?8 3.1.10BW/Avg?错误!未定义书签。 3.1.11 Trig ............................................................. 错误!未定义书签。 3.1.12 Single?错误!未定义书签。 3.1.13Sweep?错误!未定义书签。 3.1.14Source?错误!未定义书签。 3.2 Measure(测量)功能区?错误!未定义书签。 3.2.1Measure?错误!未定义书签。 3.2.2 Meas Setup .............................................. 错误!未定义书签。 3.2.3 Meas Control ................................................ 错误!未定义书签。 3.3 System(系统)功能区............................................... 错误!未定义书签。 3.3.1System ......................................................... 错误!未定义书签。 3.3.2 Preset?错误!未定义书签。 3.3.3 File?错误!未定义书签。 3.3.4 Print Setup&Print .................................. 错误!未定义书签。 3.4Marker(标记)功能区?错误!未定义书签。 3.4.1 Marker........................................................... 错误!未定义书签。 3.4.2 Peak Search ................................................... 错误!未定义书签。 3.4.3 Freq Count?错误!未定义书签。 3.4.4Marker→?错误!未定义书签。 4.测试步骤举例............................................................................. 错误!未定义书签。

相关主题
文本预览
相关文档 最新文档