当前位置:文档之家› 三自由度并联机床驱动分支动力学分析

三自由度并联机床驱动分支动力学分析

三自由度并联机械手的设计..

学号: 密级: 武汉东湖学院本科生毕业论文(设计) 三自由度并联机械手的设计 院(系)名称:机电工程学院 专业名称:机械设计制造及其自动化 学生姓名: 指导教师: 二〇一六年五月六日

郑重声明 我郑重声明:本人恪守学术道德,崇尚严谨学风,所呈交的学术论文是本人在老师的指导下,独立进行研究工作所取得的结果。除文中明确注明和引用的内容外,本论文不包含任何他人已经发表和撰写过得内容。论文为本人亲自撰写,并对所写内容负责。 本人签名: 日期:2016年5月7号

摘要 随着机器人技术的快速发展,并联机械手的应用领域越来越广,已成为当今机器人领域新的研究热点。针对并联机械手机构比传统串联机械手更复杂的问题,本文以一种轻型高速的三自由度Delta 并联机械手为例,在完成其运动学的基础上,对并联机械手进行了建模以及装配。 首先,本文介绍了三自由度并联机械手机构的工作原理,并对其进行了运动学分析。其中,对机构的自由度进行的计算,采用几何法求得了其运动学正解以及其运动学逆解。其次,对机构进行了速度模型及雅克比矩阵的分析。实现了solidworks对机构的零部件与装配图三维建模。最后,通过个零部件的配合,实现了三自由度并联机械手的装配。 关键词:并联机械手;三自由度;3D建模

ABSTRACT With the rapid development of robot technology, parallel manipulator used more and more widely, has become the hot spot in the field of new robots today. In view of the parallel manipulator mechanism more complex than the traditional serial manipulator problem, based on a lightweight high-speed three degree of freedom parallel manipulator as an example, the Delta at the completion of its kinematics, on the basis of the parallel manipulator has carried on the modeling and assembly. First, this paper introduces the working principle of three degrees of freedom parallel manipulator mechanism, and carries on the kinematics analysis. Among them, the institution of degree of freedom for the calculation of geometric method is used to obtain the positive kinematics solution and its inverse kinematics solution. Second, the institutions for the velocity model and the Jacobi matrix analysis. Implements the solidworks for spare parts and assembly drawing 3 d modeling of the organization. Finally, by a spare parts, implements the three degree of freedom parallel manipulator assembly. Keywords: Parallel manipulator;Three degrees of freedom;3D modeling

凸轮机构的弹性动力学汇编

凸轮机构的弹性动力学分析(附MATLAB 代码) 【问题】已知一凸轮系统,欲使其考虑弹性因素后从动件的真实运动规律按照余弦加速度运动规律运动,建立该凸轮系统的弹性动力学模型,分析其未考虑弹性因素时从动件的运动规律,并绘制出从动件的理论运动规律及考虑弹性因素后的真实运动规律。凸轮系统的运动及动力参数自定。程序代码需提供电子版,并说明运行环境。 【解答】 一、建立动力学模型 取图1所示的凸轮机构为研究对象,图2为其所对应的动力学模型。 图1:凸轮机构运动简图 图2:凸轮机构的动力学模型 为使得问题简化,力学模型中忽略了凸轮轴的扭转变形、弯曲变形以及回位弹簧的阻尼作用。图2中k 为系统等效弹簧的刚度,c 为凸轮机构从动组件的阻尼系数,h k 为回位弹簧的刚度,0F 为回位弹簧的预紧力,M 为凸轮机构在从动件侧的当量质量,x 为与凸轮廓线有关的等效凸轮升程(图中所示的凸轮并非真正的凸轮,其廓线对应的升程与真实凸轮廓线对应的升程0x 具备关系0rx x ,其中r 为摇臂比。因为x 与0x 仅相差一个比例系数r ,为了便于叙述,后文将只注重分析x 与从动件输出的关系,而不再专门区别x 与0x 的差异),y 为从动件的实际升程。 二、建立动力学方程 该机构的自由度为1,利用牛顿第二定律建立运动微分方程:

)cos 1(2 ?-=h y 022)()(F y k dt dx dt dy c x y k dt y d M h ------= (式1) 设凸轮转动的角速度为ω,它与时间微分dt 、凸轮转角微分?d 具有关系: ω ? d dt = (式2) 将(式2)代入(式1)并整理可得: 02 22 )(F kx d dx c y k k d dy c d y d M h -+=+++? ω?ω?ω (式3) 微分方程(式3)有两层含义:①若已知从动件的真实运动规律,可求解出凸轮在高速运转条件下考虑弹性变形影响的理论轮廓;②若已知凸轮廓线,可求解考虑弹性变形的从动件的动力学响应。 三、运动方程的求解 (一)凸轮轮廓的设计 已知条件如下:kg M 08459.0=,凸轮的转速min /1200r n =,m s N c /7148.55?=, m N k h /10400=,m N k /3194800=,N F 4000=;为避免余弦加速度运动产生的冲击, 取凸轮的推程运动角和回程运动角均为 180,远休止角和近休止角均为 0,从动件的最大升程mm h 2.6=。 根据已知条件,可以确定从动件的位移方程 将上式代入(式3)可得: kx d dx c F h k k c h k k M h h h +=+++++-? ω?ω?ω02)(21sin 2cos )]([2 (式4) 由于(式4)对应的常微分方程难以求出解析解,这里利用MATLAB 求解出其数值解并与位移方程比较如下图:

3自由度并联机床的运动学和动力学研究(翻译)

3自由度并联机床的运动学和动力学研究 摘要:中国东北大学已经研制出一种用于钢坯研磨的新型3自由度并联机床。它具有结构简单,刚度大的优点,更高的力量重量比,较大的工作空间,简单的运动学方程,没有运动的奇异位姿。在使用相应刀具情况下该机器人可用于磨削,研磨,抛光等加工过程。在本文中,介绍了简单的机器人的结构和自由度,运动学和工作空间,精度分析,静态和动态的分析及其相关参数。 关键词:并联机床;运动学;动力学;3自由度 1.前言 与传统机床相比,并联机床具有更高的精度,高刚度的优点,和更高的刚度质量比,所以近些年它得到了行业和机构大量的研究和评估。由美国Giddings & Lewis公司研制的“六足虫”并联机床被认为是21世纪机床领域中的革命性理念。然而这个Stewart平台存在运动耦合的缺点,并且具有复杂的运动学和构件要求十分严格。这类少于六自由度并联机床在行业和机构也因此受到越来越多的关注。意大利Comau研制出了一种命名为Tricept的四条腿的的三自由度并联机床。东北大学已经开发出了一种新型三自由度的三腿平行磨削机床(图1)。与“六足虫”并联机床相比,此三腿平行磨削并联机床具有以下优点:(1)结构简单且具有更大工作空间;(2)动力学方程简单便于控制操作;(3)在工作空间没有运动耦合状态。

图1 2.并联机床 2.1 3自由度系统的布局 该三自由度并联机构由一个移动平台,基础平台,一个平行的联动和三条腿的连接两个平台。中间腿支链控制的移动平台的三个自由,如图2所示。移动平台的转换是由平行连杆机构控制。 图2 2.2 运动学和工作空间 移动平台平行于基础平台,一个坐标系统(O- X,Y,Z)选择如图2所示,这种机制的逆向运动学正解方程可以表示为:

三自由度3-CS并联平台机构的运动学分析

三自由度3-CS并联平台机构的运动学分析 于靖军;毕树生;宗光华;黄真 【期刊名称】《航空学报》 【年(卷),期】2001(022)003 【摘要】With the development of parallel mechanisms research, spatial imperfect-DOF parallel mechanisms especially some constrained 3-DOF parallel mechanisms have received more attention for the advantages of their simple structure, easy control and low cost. In this paper, a novel model of constrained 3-DOF parallel manipulator—3-CS in-parallel platform mechanism is introduced firstly. The instantaneous possible motion characteristics for this mechanism are analyzed in detail by applying the screw theory. In addition, the first order kinematic analysis of the 3-CS mechanism is discussed thoroughly, which involves deriving three motion constraint equations for the output motions of the manipulator and formulating the kinematic influence matrix (also called Jacobian of the mechanism) reflecting the velocity relationship between three independent input motions and three independent output motions in a closed form. At last, the closed-form solutions are developed for both the inverse and forward position kinematics.%首先介绍了一种新型的并联机构——三自由度3-CS并联平台机构的模型。应用螺旋理论分析了该机构的瞬时运动。同时对该机构进行了运动学分析:给出了操作平台的输出运动参数的3个运动约束方程和3个独立输出运动参数与3个独

凸轮机构设计及运动分析

凸轮机构设计及运动分析 问题描述: 如图1所示为以对心直动尖顶盘形凸轮机构。从动杆位移s随时间变化曲线如图2所示。要求设计凸轮机构并分析从动件速度v,加速度a随时间变化的规律,及应力、应变随时间变化的规律。 任务与要求 1.设计满图2运动规律的凸轮机构;(要有设计计算步骤) 2.对所设计的机构运用ansys软件分析从动件速度、加速度随时间变化的规律; 3.查阅资料、了解所给机构的在生产、生活中的应用,说明其工作原理,并附相应的图片或视频。 凸轮机构设计及运动分析指导书

一、设计的目的 通过设计,训练学生机构设计的能力,掌握运用ANSYS Workbench进行瞬态动力学分析的方法、步骤和过程,提高学生解决实际问题的能力。 二、设计报告的主要要求 设计报告包括设计报告书Word文档和Powerpoint演示文稿两部分。 1.设计报告书内容包括目录、任务书、正文、参考文献、组员工作内容表。 (1)文档格式严格遵守设计书文档规范要求。 (2)目录必须层次清楚,并标有页码数。 (3)正文按章节编写,按照任务书要求合理安排内容,并附有参考文献。 2.Powerpoint演示文稿要求内容简洁,重点突出。 三、人员要求:1人 四、时间安排 1.布置任务、准备、查阅资料:2天; 2.机构设计及动画:6天; 3.Ansys分析:6天; 4.编写报告书、Powerpint演示文稿、验收:2天。 5.答辩。 五、成绩形成: 设计报告书:50分;答辩:50分 组内成员按实际完成工作量评定每位学生最终成绩;不参加答辩的学生没有答辩成绩。 六、参考资料:机械原理的平面机构,ansys机械工程应用精华59例

全转动副三自由度并联机器人设计说明书资料

河北工业大学城市学院 毕业论文 作者:周** 学号:***** 系(专业):机械系 专业:机械设计与制造及其自动化 题目:全转动副三自由度并联机器人 指导者:李** 教授 (姓名) (专业技术职务) 评阅者: (姓名) (专业技术职务) 2015 年6月11 日

目录 1 绪论 ........................................................................................................................ - 4 - 1.1 引言 .............................................................................................................. - 4 - 1.2 此次课题研究背景和意义 ........................................................................ - 4 - 1.3 串并联机器人的国内外研究现状、使用范围及发展趋势 ...................... - 5 - 1. 4 本次毕业设计主要完成工作 ..................................................................... - 6 - 1.4.1 基本内容 ............................................................................................ - 6 - 1.4.2 课题研究拟采用的手段和工作路线 ................................................ - 6 - 2 总体方案的设计 .................................................................................................... - 7 - 2.1 总体布局的设计 ....................................................................................... - 7 - 3 由基本参数选定标准件的型号 .......................................................................... - 10 - 3.1 减速机的选择 .......................................................................................... - 10 - 3.2 选择伺服电机并对其检验 ...................................................................... - 12 - 3.3 轴承的选择及校核 .................................................................................... - 15 - 3.4 联轴器的选择 .......................................................................................... - 17 - 4.1 支链尺寸的确定 ........................................................................................ - 19 - 4.2 对主动轴尺寸的确定及校核 .................................................................... - 20 - 4.3 对支链上转动副的设计 ............................................................................ - 22 - 4.4 支链末端设计 ............................................................................................ - 25 - 5 机构的整体布局设计及机架设计 ...................................................................... - 2 6 - 结论 ...................................................................................................................... - 29 - 参考文献 .................................................................................................................... - 31 - 致谢 ............................................................................................................................ - 32 -

两自由度机械手动力学问题

两自由度机械手动力学问题 1题目 图示为两杆机械手,由上臂AB、下臂BC和手部C组成。在A处和B处安装 有伺服电动机,分别产生控制力矩M 1和M 2 。M 1 带动整个机械手运动,M 2 带动下臂 相对上臂转动。假设此两杆机械手只能在铅垂平面内运动,两臂长为l 1和l 2 , 自重忽略不计,B处的伺服电动机及减速装置的质量为m 1 ,手部C握持重物质量 为m 2 ,试建立此两自由度机械手的动力学方程。 图1 图2

2数值法求解 拉格朗日方程 此两杆机械手可以简化为一个双摆系统,改双摆系统在B 、C 出具有质量m 1,m 2,在A 、B 处有控制力矩M 1和M 2作用。考虑到控制力矩M 2的作用与杆2相对杆1的相对转角θ2有关,故取广义力矩坐标为 2211,θθ==q q 系统的动能为二质点m 1、m 2的动能之和,即 由图2所示的速度矢量关系图可知 以A 处为零势能位置,则系统的势能为 由拉格朗日函数,动势为: 广义力2211,M Q M Q == 求出拉格朗日方程中的偏导数,即

代入拉格朗日方程式,整理得: 给定条件 (1)角位移运动规律 ()231*52335.0*1163.0t t t +-=θ,()232*52335.0*1163.0t t t +-=θ 21θθ和都是从0到90°,角位移曲线为三次函数曲线。 (2)质量 m 1=4㎏ m 2=5kg (3)杆长 l 1= l 2= MATLAB 程序 t=0::3; theta1=*t.^3+*t.^2; w1=*t.^2+*t; a1=*t+; theta2=*t.^3+*t.^2; w2=*t.^2+*t; a2=*t+; m1=4; m2=5; l1=; l2=;

二自由度机械臂动力学分析

平面二自由度机械臂动力学分析 姓名:黄辉龙 专业年级:13级机电 单位:汕头大学 摘要:机器臂是一个非线性的复杂动力学系统。动力学问题的求解比较困难,而且需要较长的运算时间,因此,这里主要对平面二自由度机械臂进行动力学研究。拉格朗日方程在多刚体系统动力学的应用方法分析平面二自由度机械臂的正向动力学。经过分析,得出平面二自由度机械臂的动力学方程,为后续更深入研究做铺垫。 关键字:平面二自由度 动力学方程 拉格朗日方程 相关介绍 机器人动力学的研究有牛顿-欧拉(Newton-Euler )法、拉格朗日(Langrange)法、高斯(Gauss )法等,但一般在构建机器人动力学方程中,多采用牛顿-欧拉法及拉格朗日法。 欧拉方程又称牛顿-欧拉方程,应用欧拉方程建立机器人机构的动力学方程是指研究构件质心的运动使用牛顿方程,研究相对于构件质心的转动使用欧拉方程,欧拉方程表征了力、力矩、惯性张量和加速度之间的关系。 在机器人的动力学研究中,主要应用拉格朗日方程建立机器人的动力学方程,这类方程可直接表示为系统控制输入的函数,若采用齐次坐标,递推的拉格朗日方程也可以建立比较方便且有效的动力学方程。 在求解机器人动力学方程过程中,其问题有两类: 1)给出已知轨迹点上? ??θθθ、及、 ,即机器人关节位置、速度和加速度,求相应的关节力矩矢量τ。这对实现机器人动态控制是相当有用的。 2)已知关节驱动力矩,求机器人系统相应各瞬时的运动。也就是说,给出关节力矩矢量τ,求机器人所产生的运动? ??θθθ、及、 。这对模拟机器人的运动是非常有用的。 平面二自由度机械臂动力学方程分析及推导过程 1、机器人是结构复杂的连杆系统,一般采用齐次变换的方法,用拉格朗日方程建立其系统动力学方程,对其位姿和运动状态进行描述。机器人动力学方程的具体推导过程如下: 1) 选取坐标系,选定完全而且独立的广义关节变量n r ,,2,1,r ???=θ。 2) 选定相应关节上的广义力r F :当r θ是位移变量时,r F 为力;当r θ是角度变量时,r F 为力矩。 3)求出机器人各构件的动能和势能,构造拉格朗日函数。 4) 代入拉格朗日方程求得机器人系统的动力学方程。 2、下面以图1所示说明机器人二自由度机械臂动力学方程的推导过程。

凸轮机构研究及发展趋势综述

凸轮机构研究及发展趋势综述-机械制造论文 凸轮机构研究及发展趋势综述 程亚民唐飞龙王志刚杨洋 (西华大学机械工程学院,四川成都610039) 摘要:主要对凸轮机构的运动规律和轮廓设计作论述。首先对凸轮机构的运动规律和轮廓设计研究进行了介绍,论述其在国内外的发展概况,同时指出凸轮机构在目前应用过程中存在的问题,并提出了相应的解决方案,最后对凸轮机构的发展趋势作了概述。 关键词:凸轮机构;运动规律;轮廓设计 0引言 凸轮机构由凸轮、从动件及机架组成,通过直接接触将预定的运动传给从动件。凸轮机构不仅结构简单、工作可靠,而且能够实现多种复杂的运动规律和轨迹,在各种机械中得到了广泛的运用,如轻工业机械、纺织机械、包装机械、印染机械、内燃机械等。凸轮机构之所以能在各种自动机械中获得广泛应用,还因为它兼有导引及控制机构的各种功能。虽然现在的计算机技术水平很高,但凸轮机构理论和设计方法仍然是许多数学家、工程技术人员和自然科学家研究的热点。凸

轮研究主要包括以下内容:一是凸轮机构的运动规律,二是凸轮机构的轮廓设计。经过多年研究,凸轮机构的运动规律主要有多项式运动、三角函数运动[1],凸轮轮廓设计主要有平面凸轮机构、空间凸轮机构,确定轮廓的方法有瞬心法、包络法、共轭曲面法、等距曲面法[2]、反求法。 1凸轮研究历史概述 在最近的研究中一些学者还提出了其他类型的机构,如球面分度凸轮机构、内啮合式平行分度凸轮机构和弧面球包络分度机构等,在过去的几十年里凸轮研究工作者对凸轮轮廓设计及凸轮运动规律的研究不仅取得了显著的成就,还拓宽了凸轮的研究领域和方向。 (1)对从动件弹性的凸轮机构动力学进行了比较深入的研究,并分析了多种凸轮曲线对机构动力学性能的影响,同时也涉及了有关间隙的运动学、动力学、谐分析、谐综合、振动方面的研究。 (2)经过多年积累,凸轮研究已在振动、噪声、磨损等方面取得了一定的成绩。在20世纪,一些研究人员就将数值仿真方法用于研究凸轮从动件磨损,效果良好。 在过去的100年里,凸轮机构的发展决定着新的制造工艺的发展。早在20世

三自由系统的动力学分析

石家庄铁道大学SHIJIAZHUANG TIEDAO UNIVERSITY 《振动理论》课程论文 培养单位_ 机械工程学院 学科专业_ 机械电子工程 课程名称振动理论 任课教师李韶华 学生姓名赵 学号 提交日期 2010.01.17

三自由系统的动力学分析 摘要 工程上较复杂的振动问题多数需要用多自由度系统的振动理论来解决。我们熟悉的教材上给出的都是理论求解的方法,本文旨在进行三自由系统的动力学分析。本文将先分析三自由系统的固有振动,其中采用大家熟悉的振型叠加法研究系统的响应,关键是利用Matlab软件求解三自由系统的理论解与数值解,绘图并分析两者的差异和规律。 关键词:三自由系统 Matlab 理论解数值解 Abstract On the engineering ,more complicated vibration problem need to use multi-freedom degree system to solve. The teaching material that we acquaint with offer the theory method. This text aims at carrying on the dynamics analysis of three-free systems. This text will analyze the proper vibration of three free systems first and adopt fold responding to research system, the key is the theory solution and number-solution that makes use of Matlab software to solve three free systems, paint and analyze the difference and regulation. Key words:three-freedom degree system Matlab number-solution theory solution 1

一种三自由度并联机器人运动轨迹精度的可靠性研究

一种三自由度并联机器人运动轨迹精度的可靠性研究六 口李兵 口张晓瑾 口谢里阳口魏玉兰 东北大学机械工程与自动化学院沈阳 110004 摘要:机器人轨迹精度的可靠性是评价机构性能的重要参数。压电材料作为一种驱动器能够抑制机器人柔性连接杆的振动,在抑制振动的同时也提高了机器人运动轨迹的精度。首先介绍了一种三自由度平面并联机器人系统;其次表达了振动控制系统的工作原理和实验分析;然后分别表达了不考虑振动和考虑振动因素时机器人轨迹精度的可靠度计算方法;最后分析了无振动控制和有振动控制时机器人运动轨迹精度的可靠度。可靠度计算表明,振动控制系统能够提高机器人运动轨迹精度的可靠度。 关键词:并联机器人减振轨迹精度可靠性中图分类号:TP242 0328 文献标识码:A文章编号:1000一4998(2010)lO—O005一04 Abstract:Thereliabilityofthetrajectoryaccuracyofthemnipulator is an imponant p啪meter toevaluatethe perfomance of tIle m粕ipulator.ThevibmtionoftIlenexiblelinkIge8ofthem肌ipulatorc锄besuppressedwhenthepiezoelectricmaterialisu鸵d 鹊a咖sducer. Andthe kine啪tic trajectoryaccuracyofthem锄ipulatorisimproved at the s舢e time. Athree—degree—of— f}eedom pl衄盯paraUelrnanipulatori8 in删uced first.Thentheworkingprincipleandexperimentalanalysisofthevibration suppression8ystema聆pre鸵med.Thecalculatingmethodsofthereliabilityofthet阳jectoryaccuracyof山e毗njpulator with or withoutvibmtionfactorcorIside陀d are alsoprovided.Finally,tlIe陀liabilityofkinematict陋jectory∞curacyofIhe mIlipIllator with or without、ribmtionsupp陀ssion is锄lyzed.The resultsshowthatthereliabilityofthekinematic tmjectoryaccumcyofthe 眦nipulator can beimpmvedwit}Ithehelpofvibmtionsuppres8ion. Key words:Par棚elMaIIipIllatorVmmti帅Su坤re辎i伽TrajectoryAc饥ncyReIiability 并联机器人具有刚度大、运动精度高等优点而被广泛使用在航天工业和制造业中…。为了获得更高的运动速度和加速度,轻质量连接杆的机器人被使用,但同时却造成了系统振动,影响了运动精度。 多种方法可以抑制柔性杆的振动,例如选用刚性或阻尼更大的材料【2.”。近十几年,利用智能结构抑制柔性系统的振动被越来越重视,一个智能结构包含4个要素:驱动器、传感器、控制策略和动力控制装置。压电材料能被作为智能驱动器和传感器,PzT压电材料要求更低的驱动电压,并可使用在更大的频率范围而被广泛使用¨】。多种控制策略能实现柔性连接杆的动态振动抑制,其中应变反馈控制策略具有更宽的动态阻尼频率区域,能实现更大范围的振动抑制”】。 机器人在运动过程中产生的振动会影响其运动轨迹的精度№1。振动越强,运动轨迹精度越差,若振动幅度超过规定值就认为机器人动态性能失效,即意味着机器人不能按照预定的轨迹运动。当使用PzT振动控制系统后,能明显抑制机器人的振动,提高运动轨迹精度。机器人运动轨迹精度可靠性研究的主要任务是评价机器人运动可靠度及其机构动态精度,对机器人的 ★国家863高技术研究发展计划项目(编号:2007AA042428)科技部重大专项资助项目(编号:2009zx04013)收稿日期:2010年4月 器 机械制造48卷第554期 运动精度作出合理的可靠性预计。因此,机器人运动轨迹精度的可靠性研究具有重要的意义。 1机器人模型 如图1,这种三自由度(3一DOF)并联机器人由3个对称布置的连接杆以封闭形式组成,每一组连接杆机构都由一个直线位移约束和两个转动约束组成n1。机器人使用了比较轻的连接杆,能够获得更快的运动速度和加速度,但系统却产生了振动,而且使运动轨迹的精度降低。 机器人的系统坐标系,如图2所示,其中标出了连 20lO/lO 囤 万方数据

凸轮机构设计分析毕业设计

凸轮机构设计分析 院系:机械工程学院 班级: 12机械设计与制造1班 姓名:董辉 指导老师:谢长雄

一、绪论 1、1 凸轮机构概述 低副机构一般只能近似地实现给定运动规律,而且设计较为复杂。当从动 件的位移、速度和加速度必须严格地按照预定规律变化,尤其当原动件作连续 运动而从动件必须作间歇运动时,则以采用凸轮机构最为简便。凸轮机构由凸轮、从动件或从动件系统和机架组成,是一种高副机构,由具有曲线轮廓和凹 槽的构件通过高副接触带动从动件实现预期运动规律。凸轮机构具有结构简单,可以准确实现要求的运动规律等优点。只要适当地设计凸轮的轮廓曲线,就可 以使推杆得到各种预期的运动规律。 在各种机械,特别是自动机械和自动控制装置中,广泛地应用着各种形式 的凸轮机构。凸轮机构之所以能在各种自动机械中获得广泛的应用,是因为它 兼有传动、导引及控制机构的各种功能。当凸轮机构用于传动机构时,可以产 生复杂的运动规律,包括变速范围较大的非等速运动,以及暂时停留或各种步 进运动;凸轮机构也适宜于用作导引机构,使工作部件产生复杂的轨迹或平面 运动;当凸轮机构用作控制机构时,可以控制执行机构的自动工作循环。因此 凸轮机构的设计和制造方法对现代制造业具有重要的意义。 1、2 凸轮机构课题研究背景及意义 早期的工程技术人员大多采用作图法绘制凸轮轮廓,这种方法的效率低、精度差、很难精确地得到压力角和曲率半径等设计参数。在CAD二维设计阶段,CAD的作用仅仅是使工程人员得以摆脱烦琐、精度低的手工绘图,可重复利用已有的设计方案。 而如今的CAD三维设计与CAM集成化,使工程人员可以从三维建模开始, 进行产品构思设计和制图,实现了设计数据直接传输到生产的过程,大大简化 了手工工作环节。由于计算机技术和各种数值计算的发展,使得很多方面的研 究得以深入。利用参数化技术三维CAD可以绘制精确的凸轮。参数化设计具有 造型精确,造型速度快,避免了手工取点造型的复杂过程,完成三维实体模型 可以不断的修改的特点。由于电子技术的发展,现在某些设备的控制元件可以 采用电子元器件,但他们一般只能传递较小的功率,而凸轮机构却能在实现控

3自由度旋转台的动力学分析

3自由度旋转台的动力学分析 高征1肖金壮1王洪瑞1金振林2 1. 河北大学,保定,071002 2. 燕山大学,秦皇岛,066004 摘要:对3自由度旋转台进行了动力学分析。该旋转台只有3个方向的转动自由度, 由2自由度球面并联机构和串联在其上的旋转电机构成。根据旋转台的几何和运动特性建立了系统的输入输出速度方程, 得出了速度雅克比矩阵和动能方程。利用拉格朗日法和虚功原理, 建立了系统的动力学模型, 解决了特定外载荷和速度、加速度条件下如何求解驱动力矩的问题。给出了动力学的仿真运算实例, 讨论了在匀速和匀加速情况下, 2自由度球面并联机构驱动力矩的变化。最后根据动力学方程, 得出了串联在2自由度球面并联机构上的第三个自由度的力矩与输出转角的运动学方程。 关键词:并联机构;旋转台;动力学;拉格朗日法;虚功原理 中图分类号:TP242 Dynamic Analysis on A 3-DOF Rotational Platform Gao Zheng1Xiao Jinzhuang1Wang Hongrui1Jin Zhenlin2 1. Hebei University, Baoding, 071002 2. Yanshan University, QinHuangdao, 066004 Abstract: Dynamics is analyzed of a 3-DOF (degree of freedom) rotational platform. This rotational platform, which consists of a 2-DOF spherical parallel mechanism and a rotational degree connecting in series to the platform of the 2-DOF mechanism, has only 3 rotation freedoms. System’s input-and-output velocity functions are established according to rotational platform’s geometry and motion characteristics, and then obtain the velocity Jacobian metrics and energy functions. System’s dynamics model is established by Lagrange method and virtual work principle, and then the drive torque is solved when given the external load, velocities and accelerations. The examples are given of dynamics simulation. The drive torques’ changing curves of the 2-DOF spherical mechanism is discussed under the situation of uniform speed and acceleration. Finally, according to the dynamic functions, the third degree’s kinematics equation is obtained respecting to its torque and output angle. Key words: parallel mechanism; rotation platform; dynamics; Lagrange method; virtual work principle 0 前言 稳定平台系统是多学科有机结合的产物,其中精密机械动力学建模设计和仿真就是主要的应用技术之一[1]。机构动力学模型的建立是并联机器人机构研究的一个重要方面,是并联机器人机构进行动力学模拟、动态分析、动力学优化设计及控制的基础[2]。典型的动力学研究方法主要是Newton-Euler法、Lagrange法和Kane法等。其中基于虚功原理的Lagrange 法是以系统的动能和势能建立的,推导过程比较简便,并且总能得到形式较为简洁的动力学方程,既能用于系统动力学模拟,又能用于动力学控制,而且清楚地表示出各构件的耦合特性[3]。Liu[4]等人将机器人的位姿视为广义坐标,以Lagrange方程为依据建立Stewart平台的动力学方程; 白志富[5]等利用Lagrange 法讨论了一种3-HSS并联机构在工作空间内的动力学方程,得出了其显式解,并结合实例对各滑块的驱动力进行了计算机仿真。刘善增,余跃庆[6]等基于有限元理论、运动弹性动力分析方法和Lagrange 方程,建立了3- RRS 柔性并联 基金项目:教育厅河北省高等学校科学技术研究青年基金项目(2010217),科技部国际合作项目(2008DFR10530)

ode45求解多自由度动力学方程实例

Ode45函数调用形式如下: [T,Y]=ode45(odefun,tspan,y0) 相关参数介绍如下:参数名称 参数说明odefun 用于存放待求解的方程的m 文件名,方程必须用y’=f(t,y)的形式存放tspan 指定自变量范围的向量,通常用[t0,tf]指定y0函数的边界条件,即y0=y(t0),对于方程组,y0也可以是向量 例:若一三自由度多体动力学系统方程如下: 1121221231233232323 1.510050 2.0sin(3.754t) 2 1.5 3 1.55010050 2.0cos(2.2t) 2 1.5350100 1.0sin(2.8t)x x x x x x x x x x x x x x x x x +-+-=-+--+-=-++-+= 初始条件: 1020301020301 1x x x x x x ====== 由于方程必须用y’=f(t,y)的形式存放,因此需要对方程组进行降阶处理。令11 3253214263y x y x y x y x y x y x ====== 则方程组可化为: 12 2241334 424613556 646350.5*(3 1.510050 2.0sin(3.754t)) 0.5*(1.53 1.55010050 2.0cos(2.2t)) 0.5*(1.5350100 1.0sin(2.8t))y y y y y y y y y y y y y y y y y y y y y y y ==-+-++==-++-+-==--+-+

因此建立M函数文件来定义此方程组如下: function dy=func(t,y) dy=zeros(6,1); dy(1)=y(2); dy(2)=0.5*(-3*y(2)+1.5*y(4)-100*y(1)+50*y(3)+2.0*sin(3.754*t)); dy(3)=y(4); dy(4)=0.5*(1.5*y(2)-3*y(4)+1.5*y(6)+50*y(1)-100*y(3)+50*y(5)-2.0*cos(2.2*t)); dy(5)=y(6); dy(6)=0.5*(-1.5*y(4)-3*y(6)+50*y(3)-100*y(5)+1.0*sin(2.8*t)); end 在matlab命令窗口里输入一下命令: y0=[111111]; tspan=[030]; [t,y]=ode45(@func,tspan,y0); figure(1) plot(t,y(:,1),t,y(:,3),t,y(:,5)); legend('x1','x2','x3'); xlabel('时间(s)','FontSize',10); ylabel('振动位移曲线','FontSize',10); figure(2) plot(t,y(:,2),t,y(:,4),t,y(:,6)); legend('v1','v2','v3'); xlabel('时间(s)','FontSize',10); ylabel(‘振动速度曲线’,’FontSize’,10);

汽车2自由度和7自由度动力学建模仿真#精选.

1 路面模型的建立 在分析主动悬架控制过程时,路面输入是一个不可忽略的重要因素,本文利用白噪声信号为路面输入激励, )(2)(2)(0 00t w U G t x f t x g g ππ+-=? 其中,0f 为下截止频率,Hz ;G 0为路面不平度系数,m 3/cycle ;U 0为前进车速,m/sec ;w 为均值为零的随机输入单位白噪声。上式表明,路面位移可以表示为一随机滤波白噪声信号。这种表示方式来源于试验所测得的路面不平度功率谱密度(PSD )曲线的形状。我们可以将路面输入以状态方程的形式加到模型中: ???? ?=+=? X C Y W F X A X road road road road road 1,2,2,000==-==road road road g road C U G B f A x X ππ;D=0;考虑路面为普通路面,路面不平系数G 0=5e-6m 3/cycle ;车速U 0=20m/s ;建模中,路面随机白噪声可以用随机数产生(Random Number )或者有限带宽白噪声(Band-Limited White Noise )来生成。本文运用带宽白噪声生成,运用MATLAB/simulink 建立仿真模型如下: 图1 路面模型 2 汽车2自由度系统建模 图2 汽车2自由度系统模型

根据图2所示,汽车2自由度系统模型,首先建立运动微分方程: ()()()()()b b s b w s b w w w t w g s b w s b w m x K x x C x x m x K x x K x x C x x =----???=--+-+-?? 整理得: ?????? ?+--+-+-+-=-+-+-+-=g w t b w t s b w s b w s b w s w b b s b b s w b s b s b x m K x m K K x m K x m C x m C x x m K x m K x m C xb m C x 式中:s C 为悬架阻尼,s K 为悬架刚度,t K 为轮胎刚度,b m 为车身质量,w m 为 车轮质量,b b b x x x 、、分别为车身位移、速度、加速度,w w w x x x 、、分别为车轮位移、速度、加速度,g x 为路面输入。 选取状态变量和输入向量为: []w b w b x x x x X = g x U = 则可将系统运动方程及路面激励写成状态空间矩阵形式,即: BU AX X += 其中,A 为状态矩阵,B 为输入矩阵,其值如下: ?????? ?? ? ?????????---- -=00 1 0001w s s w s w s w s b s b s b s b s m K K m K m C m C m K m K m C m C A ???? ??????????=000w t m K B 将车身加速度、轮胎动变形、悬架动行程作为性能指标,即: T w b g w b x x x x x Y ][--= 将性能指标项写为状态变量以及输入信号的线性组合形式,即: DU CX Y += 其中:

相关主题
文本预览
相关文档 最新文档