当前位置:文档之家› 一种改进的深度神经网络在小图像分类中的应用研究

一种改进的深度神经网络在小图像分类中的应用研究

(完整版)深度神经网络及目标检测学习笔记(2)

深度神经网络及目标检测学习笔记 https://youtu.be/MPU2HistivI 上面是一段实时目标识别的演示,计算机在视频流上标注出物体的类别,包括人、汽车、自行车、狗、背包、领带、椅子等。 今天的计算机视觉技术已经可以在图片、视频中识别出大量类别的物体,甚至可以初步理解图片或者视频中的内容,在这方面,人工智能已经达到了3岁儿童的智力水平。这是一个很了不起的成就,毕竟人工智能用了几十年的时间,就走完了人类几十万年的进化之路,并且还在加速发展。 道路总是曲折的,也是有迹可循的。在尝试了其它方法之后,计算机视觉在仿生学里找到了正确的道路(至少目前看是正确的)。通过研究人类的视觉原理,计算机利用深度神经网络(Deep Neural Network,NN)实现了对图片的识别,包 括文字识别、物体分类、图像理解等。在这个过程中,神经元和神经网络模型、大数据技术的发展,以及处理器(尤其是GPU)强大的算力,给人工智能技术 的发展提供了很大的支持。 本文是一篇学习笔记,以深度优先的思路,记录了对深度学习(Deep Learning)的简单梳理,主要针对计算机视觉应用领域。 一、神经网络 1.1 神经元和神经网络 神经元是生物学概念,用数学描述就是:对多个输入进行加权求和,并经过激活函数进行非线性输出。 由多个神经元作为输入节点,则构成了简单的单层神经网络(感知器),可以进行线性分类。两层神经网络则可以完成复杂一些的工作,比如解决异或问题,而且具有非常好的非线性分类效果。而多层(两层以上)神经网络,就是所谓的深度神经网络。 神经网络的工作原理就是神经元的计算,一层一层的加权求和、激活,最终输出结果。深度神经网络中的参数太多(可达亿级),必须靠大量数据的训练来“这是苹在父母一遍遍的重复中学习训练的过程就好像是刚出生的婴儿,设置。.果”、“那是汽车”。有人说,人工智能很傻嘛,到现在还不如三岁小孩。其实可以换个角度想:刚出生婴儿就好像是一个裸机,这是经过几十万年的进化才形成的,然后经过几年的学习,就会认识图片和文字了;而深度学习这个“裸机”用了几十年就被设计出来,并且经过几个小时的“学习”,就可以达到这个水平了。 1.2 BP算法 神经网络的训练就是它的参数不断变化收敛的过程。像父母教婴儿识图认字一样,给神经网络看一张图并告诉它这是苹果,它就把所有参数做一些调整,使得它的计算结果比之前更接近“苹果”这个结果。经过上百万张图片的训练,它就可以达到和人差不多的识别能力,可以认出一定种类的物体。这个过程是通过反向传播(Back Propagation,BP)算法来实现的。 建议仔细看一下BP算法的计算原理,以及跟踪一个简单的神经网络来体会训练的过程。

趋势分析之深度神经网络

趋势分析之深度神经网络 深度神经网络(Deepl Neural Networks, DNN)从字面上理解就是深层次的神经网络。自从Hinton和Salakhutdinov在《Science》上发表的论文解决了多层神经网络训练的难题后,随着研究的深入,各种深度神经网络模型如雨后春笋般涌现出来。 2012年Krizhevsky等人设计的包含5个卷积层和3个全连接层的AlexNet,并将卷积网络分为两个部分在双CPU上进行训练;2014年Google研发团队设计的22层GoogleNet;同年牛津大学的Simonyan和Zisserman设计出深度为16-19层的VGG网络;2015年微软亚洲研究院的何凯明等人提出了152层的深度残差网络ResNet,最新改进后的ResNet网络深度可达1202层;2016年生成式对抗网络GAN获得广泛关注。 深度神经网络热度变化图 下面我们将用Trend analysis分析深度神经网络领域内的研究热点。 (点击链接即可进入Deep Neural Networks Trend Analysis: https://https://www.doczj.com/doc/5b19144779.html,/topic/trend?query=Deep%20Neural%20Network%20) 通过Trend analysis的分析挖掘结果我们可以看到,当前该领域的热点研究话题有feature

extraction、speech recognition、face recognition、information retrieval、object recognition、cell cycle等。近年来,深度神经网络由于优异的算法性能,已经广泛应用于图像分析、语音识别、目标检测、语义分割、人脸识别、自动驾驶、生物医学等领域,而根据分析结果可知语音识别是该领域热门研究话题top 1。 深度神经网络在工业界也得到了广泛的应用,Google、Facebook、Microsoft、IBM、百度、阿里巴巴、腾讯、科大讯飞等互联网巨头也纷纷开展深度神经网络的研究工作,并且成功应用于谷歌Now、微软OneNote手写识别、Cortana语音助手、讯飞语音输入法等。 附一. 深度神经网络领域5位代表学者 Dong Yu (俞栋) Tara N. Sainath

基于深度卷积神经网络的图像分类

SHANGHAI JIAO TONG UNIVERSITY 论文题目:基于卷积神经网络的自然图像分类技术研究 姓名: 高小宁 专业:控制科学与工程

基于卷积神经网络的自然图像分类技术研究 摘要:卷积神经网络已在图像分类领域取得了很好的效果,但其网络结构及参数的选择对图像分类的效果和效率有较大的影响。为改善卷积网络的图像分类性能,本文对卷积神经网络模型进行了详细的理论分析,并通过大量的对比实验,得出了影响卷积网络性能的因素。结合理论分析及对比实验,本文设计了一个卷积层数为8层的深度卷积网络,并结合Batch Normalization、dropout等方法,在CIFAR-10数据集上取得了%的分类精度,有效地提高了卷积神经网络的分类效果。 关键词:卷积神经网络,图像分类,Batch Normalization,Dropout Research on Natural Image Classification Based on Convolution Neural Network Abstract: Convolution neural network has achieved very good results in image classification, but its network structure and the choice of parameters have a greater impact on image classification efficiency and efficiency. In order to improve the image classification performance of the convolution network, a convolutional neural network model is analyzed in detail, and a large number of contrastive experiments are conducted to get the factors that influence the performance of the convolution network. Combining the theory analysis and contrast experiment, a convolution layer depth convolution network with 8 layers is designed. Combined with Batch Normalization and dropout, % classification accuracy is achieved on CIFAR-10 dataset. Which improves the classification effect of convolution neural network. Key Words: Convolution neural network(CNN), image classification, Batch Normalization, Dropout

(完整版)深度神经网络全面概述

深度神经网络全面概述从基本概念到实际模型和硬件基础 深度神经网络(DNN)所代表的人工智能技术被认为是这一次技术变革的基石(之一)。近日,由IEEE Fellow Joel Emer 领导的一个团队发布了一篇题为《深度神经网络的有效处理:教程和调研(Efficient Processing of Deep Neural Networks: A Tutorial and Survey)》的综述论文,从算法、模型、硬件和架构等多个角度对深度神经网络进行了较为全面的梳理和总结。鉴于该论文的篇幅较长,机器之心在此文中提炼了原论文的主干和部分重要内容。 目前,包括计算机视觉、语音识别和机器人在内的诸多人工智能应用已广泛使用了深度神经网络(deep neural networks,DNN)。DNN 在很多人工智能任务之中表现出了当前最佳的准确度,但同时也存在着计算复杂度高的问题。因此,那些能帮助DNN 高效处理并提升效率和吞吐量,同时又无损于表现准确度或不会增加硬件成本的技术是在人工智能系统之中广泛部署DNN 的关键。 论文地址:https://https://www.doczj.com/doc/5b19144779.html,/pdf/1703.09039.pdf 本文旨在提供一个关于实现DNN 的有效处理(efficient processing)的目标的最新进展的全面性教程和调查。特别地,本文还给出了一个DNN 综述——讨论了支持DNN 的多种平台和架构,并强调了最新的有效处理的技术的关键趋势,这些技术或者只是通过改善硬件设计或者同时改善硬件设计和网络算法以降低DNN 计算成本。本文也会对帮助研究者和从业者快速上手DNN 设计的开发资源做一个总结,并凸显重要的基准指标和设计考量以评估数量快速增长的DNN 硬件设计,还包括学界和产业界共同推荐的算法联合设计。 读者将从本文中了解到以下概念:理解DNN 的关键设计考量;通过基准和对比指标评估不同的DNN 硬件实现;理解不同架构和平台之间的权衡;评估不同DNN 有效处理技术的设计有效性;理解最新的实现趋势和机遇。 一、导语 深度神经网络(DNN)目前是许多人工智能应用的基础[1]。由于DNN 在语音识别[2] 和图像识别[3] 上的突破性应用,使用DNN 的应用量有了爆炸性的增长。这些DNN 被部署到了从自动驾驶汽车[4]、癌症检测[5] 到复杂游戏[6] 等各种应用中。在这许多领域中,DNN 能够超越人类的准确率。而DNN 的出众表现源于它能使用统计学习方法从原始感官数据中提取高层特征,在大量的数据中获得输入空间的有效表征。这与之前使用手动提取特征或专家设计规则的方法不同。 然而DNN 获得出众准确率的代价是高计算复杂性成本。虽然通用计算引擎(尤其是GPU),已经成为许多DNN 处理的砥柱,但提供对DNN 计算更专门化的加速方法也越来越热门。本文的目标是提供对DNN、理解DNN 行为的各种工具、有效加速计算的各项技术的概述。 该论文的结构如下:

深度神经网络及目标检测学习笔记

深度神经网络及目标检测学习笔记 https://youtu.be/MPU2HistivI 上面是一段实时目标识别的演示,计算机在视频流上标注出物体的类别,包括人、汽车、自行车、狗、背包、领带、椅子等。 今天的计算机视觉技术已经可以在图片、视频中识别出大量类别的物体,甚至可以初步理解图片或者视频中的内容,在这方面,人工智能已经达到了3岁儿童的智力水平。这是一个很了不起的成就,毕竟人工智能用了几十年的时间,就走完了人类几十万年的进化之路,并且还在加速发展。 道路总是曲折的,也是有迹可循的。在尝试了其它方法之后,计算机视觉在仿生学里找到了正确的道路(至少目前看是正确的)。通过研究人类的视觉原理,计算机利用深度神经网络(DeepNeural Network,NN)实现了对图片的识别,包括文字识别、物体分类、图像理解等。在这个过程中,神经元和神经网络模型、大数据技术的发展,以及处理器(尤其是GPU)强大的算力,给人工智能技术的发展提供了很大的支持。 本文是一篇学习笔记,以深度优先的思路,记录了对深度学习(Deep Learning)的简单梳理,主要针对计算机视觉应用领域。 一、神经网络 1.1 神经元和神经网络 神经元是生物学概念,用数学描述就是:对多个输入进行加权求和,并经过激活函数进行非线性输出。 由多个神经元作为输入节点,则构成了简单的单层神经网络(感知器),可以进行线性分类。两层神经网络则可以完成复杂一些的工作,比如解决异或问题,而且具有非常好的非线性分类效果。而多层(两层以上)神经网络,就是所谓的深度神经网络。 神经网络的工作原理就是神经元的计算,一层一层的加权求和、激活,最终输出结果。深度神经网络中的参数太多(可达亿级),必须靠大量数据的训练来设置。训练的过程就好像是刚出生的婴儿,在父母一遍遍的重复中学习“这是苹

基于神经网络的图像分割

基于遗传神经网络的图像分割 摘要 针对图像分割的复杂性,利用遗传算法对BP神经网络的权值和阈值进行优化,设计出误差最小的神经网络,然后再对图像的像素进行分类识别,实现并提高了图像分割性能。仿真实验表明,与传统的图像分割方法相比,取得了比传统方法更好的图像分割效果。 关键词:图像分割;神经网络;遗传算法;遗传优化 A Study of Genetic Neural Network Used in Image Segmentation ABSTRACT Because of the complexity of image segmentation, the optimization of the weights and thresholds of BP neural network are realized by genetic algorithm, and a BP neural network with minimum error is designed. It classify the image pixels, implement and improve the performance of image segmentation. The results of simulation show that the algorithm neuralnetwork can better achieve the image segmentation, compared with the traditional method. Key word :Image segmentation;Neural Network;Genetic algorithm;Genetic optimization 一、遗传算法 1.1基本概念 遗传算法(Genetic Algorithm)是一类借鉴生物界的进化规律(适者生存,优胜劣汰遗传机制)演化而来的随机化搜索方法。它是由美国的J. Holland教授1975年首先提出,其主要特点是直接对结构对象进行操作,不存在求导和函数连续性的限定;具有内在的隐并行性和更好的全局寻优能力;采用概率化的寻优方法,能自动获取和指导优化的搜索空间,自适 1

基于深度卷积神经网络的图像分类

Equation Chapter 1 Section 1 令狐采学 SHANGHAI JIAO TONG UNIVERSITY 论文题目:基于卷积神经网络的自然图像分类技术研究 姓名: 高小宁 专业:控制科学与工程

基于卷积神经网络的自然图像分类技术研究 摘要:卷积神经网络已在图像分类领域取得了很好的效果,但其网络结构及参数的选择对图像分类的效果和效率有较年夜的影响。为改良卷积网络的图像分类性能,本文对卷积神经网络模型进行了详细的理论阐发,并通过年夜量的比较实验,得出了影响卷积网络性能的因素。结合理论阐发及比较实验,本文设计了一个卷积层数为8层的深度卷积网络,并结合Batch Normalization、dropout等办法,在CIFAR10数据集上取得了88.1%的分类精度,有效地提高了卷积神经网络的分类效果。 关键词:卷积神经网络,图像分类,Batch Normalization,Dropout Research on Natural Image Classification Based on Convolution Neural Network Abstract: Convolution neural network has achieved very good results in image classification, but its network structure and the choice of parameters have a greater impact on image classification efficiency and efficiency. In order to improve the image classification performance of the convolution network, a convolutional neural network model is analyzed in detail, and a large number of contrastive experiments are conducted to get the factors that influence the performance of the convolution network. Combining the theory analysis and contrast experiment, a convolution layer depth convolution network with 8 layers is designed. Combined with Batch Normalization and dropout, 88.1% classification accuracy is achieved on CIFAR10 dataset. Which improves the classification effect of convolution neural network. Key Words:Convolution neural network(CNN), image classification, Batch Normalization,Dropout 目录 基于卷积神经网络的自然图像分类技术研究- 1 - 1引言-2- 2卷积神经网络的模型阐发-3- 2.1网络基本拓扑结构- 3 - 2.2卷积和池化- 4 - 2.3激活函数- 5 - 2.4 Softmax分类器与价格函数- 6 - 2.5学习算法- 7 - 2.6 Dropout- 9 - 2.7 Batch Normalization- 10 - 3模型设计与实验阐发-10- 3.1 CIFAR10数据集- 10 - 3.2 模型设计- 11 -

深度神经网络

1. 自联想神经网络与深度网络 自联想神经网络是很古老的神经网络模型,简单的说,它就是三层BP网络,只不过它的输出等于输入。很多时候我们并不要求输出精确的等于输入,而是允许一定的误差存在。所以,我们说,输出是对输入的一种重构。其网络结构可以很简单的表示如下: 如果我们在上述网络中不使用sigmoid函数,而使用线性函数,这就是PCA模型。中间网络节点个数就是PCA模型中的主分量个数。不用担心学习算法会收敛到局部最优,因为线性BP网络有唯一的极小值。

在深度学习的术语中,上述结构被称作自编码神经网络。从历史的角度看,自编码神经网络是几十年前的事情,没有什么新奇的地方。 既然自联想神经网络能够实现对输入数据的重构,如果这个网络结构已经训练好了,那么其中间层,就可以看过是对原始输入数据的某种特征表示。如果我们把它的第三层去掉,这样就是一个两层的网络。如果,我们把这个学习到特征再用同样的方法创建一个自联想的三层BP网络,如上图所示。换言之,第二次创建的三层自联想网络的输入是上一个网络的中间层的输出。用同样的训练算法,对第二个自联想网络进行学习。那么,第二个自联想网络的中间层是对其输入的某种特征表示。如果我们按照这种方法,依次创建很多这样的由自联想网络组成的网络结构,这就是深度神经网络,如下图所示:

注意,上图中组成深度网络的最后一层是级联了一个softmax分类器。 深度神经网络在每一层是对最原始输入数据在不同概念的粒度表示,也就是不同级别的特征描述。 这种层叠多个自联想网络的方法,最早被Hinton想到了。 从上面的描述中,可以看出,深度网络是分层训练的,包括最后一层的分类器也是单独训练的,最后一层分类器可以换成任何一种分类器,例如SVM,HMM等。上面的每一层单独训练使用的都是BP算法。相信这一思路,Hinton早就实验过了。 2. DBN神经网络模型 使用BP算法单独训练每一层的时候,我们发现,必须丢掉网络的第三层,才能级联自联想神经网络。然而,有一种更好的神经网络模型,这就是受限玻尔兹曼机。使用层叠波尔兹曼机组成深度神经网络的方法,在深度学习里被称作深度信念网络DBN,这是目前非

基于改进的深度神经网络的人体动作识别模型

————————————————————————————————————————————————基于改进的深度神经网络的人体动作识别模型 作者何冰倩,魏维,张斌,高联欣,宋岩贝 机构成都信息工程大学计算机学院 DOI 10.3969/j.issn.1001-3695.2018.06.0361 基金项目四川省教育厅重点科研项目(17ZA0064) 预排期卷《计算机应用研究》2019年第36卷第11期 摘要针对现有人体动作识别方法需输入固定长度的视频段、未充分利用时空信息等问题,提出一种基于时空金字塔和注意力机制相结合的深度神经网络模型,将包含时空金字塔的3D-CNN 和添加时空注意力机制的LSTM模型相结合,实现了对视频段的多尺度处理和对动作的复杂 时空信息的充分利用。以RGB图像和光流场作为空域和时域的输入,以融合金字塔池化层的 运动和外观特征后的融合特征作为融合域的输入,最后采用决策融合策略获得最终动作识别 结果。在UCF101和HMDB51数据集上进行实验,分别取得了94.2%和70.5%的识别准确率。 实验结果表明,改进的网络模型在基于视频的人体动作识别任务上获得了较高的识别准确 率。 关键词动作识别;深度学习;时空金字塔;注意力机制;卷积神经网络 作者简介何冰倩(1994-),女,四川阆中人,硕士研究生,主要研究方向为图形图像处理(dandelionqian@https://www.doczj.com/doc/5b19144779.html,);魏维(1976-),男,教授,博士,主要研究方向为图形图 像处理;张斌(1992-),男,硕士研究生,主要研究方向为图形图像处理;高联欣(1994-), 男,硕士研究生,主要研究方向为图形图像处理;宋岩贝(1994-),男,硕士研究生,主要 研究方向为图形图像处理. 中图分类号TP391.41 访问地址https://www.doczj.com/doc/5b19144779.html,/article/02-2019-11-082.html 投稿日期2018年6月21日 修回日期2018年8月22日

深度神经网络的关键技术及其在自动驾驶领域的应用

ISSN 1674-8484 CN 11-5904/U 汽车安全与节能学报, 第10卷第2期, 2019年 J Automotive Safety and Energy, Vol. 10 No. 2, 2019 1/13 119—145 深度神经网络的关键技术及其在自动驾驶领域的应用 李升波1,关?阳1,侯?廉1,高洪波1,段京良2,梁?爽3,汪?玉3,成?波1, 李克强1,任?伟4,李?骏1 (1. 清华大学车辆与运载学院,北京100084,中国;2. 加州大学伯克利分校机械系,加州 94720,美国; 3. 清华大学电子工程系,北京100084,中国; 4. 加州大学河滨分校电子计算机系,加州92521,美国) 摘?要:?智能化是汽车的三大变革技术之一,深度学习具有拟合能力优、表征能力强和适用范围广的 特点,是进一步提升汽车智能性的重要途径。该文系统性总结了用于自动驾驶汽车的深度神经网络(DNN)技术,包括发展历史、主流算法以及感知、决策与控制技术应用。回顾了神经网络的历史及现状, 总结DNN的“神经元-层-网络”3级结构,重点介绍卷积网络和循环网络的特点以及代表性模型; 阐述了以反向传播(BP)为核心的深度网络训练算法,列举用于深度学习的常用数据集与开源框架,概 括了网络计算平台和模型优化设计技术;讨论DNN在自动驾驶汽车的环境感知、自主决策和运动控 制3大方向的应用现状及其优缺点,具体包括物体检测和语义分割、分层式和端到端决策、汽车纵 横向运动控制等;针对用于自动驾驶汽车的DNN技术,指明了不同问题的适用方法以及关键问题的 未来发展方向。 关键词:?智能汽车;自动驾驶;深度神经网络(DNN);深度学习;环境感知;自主决策;运动控制 中图分类号:?TP 18;U 463.6 文献标志码:?A DOI:?10.3969/j.issn.1674-8484.2019.02.001 Key technique of deep neural network and its applications in autonomous driving LI Shengbo1, GUAN Yang1, HOU Lian1, GAO Hongbo1, DUAN Jingliang2, LIANG Shuang3, WANG Yu3, CHENG Bo1, LI Keqiang1, REN Wei4, LI Jun1 (1. School of Vehicle and Mobility, Tsinghua University, Beijing 100084, China; 2. Mechanical Engineering, University of California Berkeley, Berkeley, CA 94720, USA; 3. Electronic Engineering, Tsinghua University, Beijing 100084, China; 4. Electrical and Computer Engineering, University of California Riverside, Riverside, CA 92521, USA) Abstract: Autonomous driving is one of the three major innovations in automotive industry. Deep learning is a crucial method to improve automotive intelligence due to its outstanding abilities of data fitting, feature representation and model generalization. This paper reviewed the technologies of deep neural network (DNN) 收稿日期?/?Received?:?2019-01-19。 基金项目?/?Supported?by?: “十三五”国家重点研发计划(2016YFB0100906);国家自然科学基金面上项目(51575293);国家自然科学基金优秀青年科学基金项目(U1664263);国家自然科学基金重点项目(51622504);北京市自然科学基金杰出青 年科学基金项目(JQ18010);汽车安全与节能国家重点实验室开放基金课题(KF1828)。 第一作者?/?First?author?:?李升波(1982—),男(汉),山东,副教授。E-mail: lishbo@https://www.doczj.com/doc/5b19144779.html,。

深度神经网络带来的影响

深度神经网络带来的影响 人工智能近几年实现了爆炸式发展,深度学习可以说是其主要的推动力。 在计算机视觉领域,大部分的问题都已经开始使用深度神经网络进行解决,也确实取得了广泛的成功。在很多视觉任务中,如图像识别、语义分割、目标检测与跟踪、图像检索等,作为提取特征的CNN网络模型往往起到了关键的作用。我们经常见到最新的方法将基础网络换一下,性能就会得到很大的提升。因此,研究并设计一个更好的网络模型变得至关重要。 基础网络模型的结构样例最新研究进展经典的神经网络模型主要在宽度与深度方面进行不同程度的扩增。借助于大规模数据的训练,AlexNet、VGG-16、VGG-19等经典网络通过宽度或深度增加的参数可以有效地提升其模型的表达能力。但当网络变得越来越深,其训练难度也随之相应增加,反而会导致性能的下降。最近的ResNet和Highway Networks 等方法通过引入Skip跳跃结构来试图解决极深网络在优化上带来的问题。 ResNet和Highway Networks结构的简单示意图 最新的一些研究尝试从其他角度来解释Highway、ResNet和GoogLeNet等网络结构表现优异的原因。其中我在微软实习的导师王井东研究员、实习生魏祯和张婷以及曾文君研究员提出Deep Fusion (Jingdong Wang,Zhen Wei,TIng Zhang,Wenjun Zeng:Deeply-Fused Nets. CoRR abs/1605.07716 (2016))深度融合的概念,认为不同分支的网络在中间层进行融合(加和或拼接等方式)能够(1)产生很多潜在的共享参数的基础网络,(2)同时优化信息的流动,(3)从而帮助深层网络的训练过程。 Deep Fusion深度融合最简单形式的概念示意图 我们可以发现很多有代表性的网络结构基本都可以按照深度融合的概念进行理解。除去LeNet、AlexNet、VGGNet等单分支网络,近两年提出的ResNet、Highway Networks、

相关主题
文本预览
相关文档 最新文档