当前位置:文档之家› 金属材料的拉伸与压缩试验

金属材料的拉伸与压缩试验

金属材料的拉伸与压缩试验
金属材料的拉伸与压缩试验

试验一 金属材料的拉伸与压缩试验

1.1概 述

拉伸实验是材料力学实验中最重要的实验之一。任何一种材料受力后都要产生变形,变形到一定程度就可能发生断裂破坏。材料在受力——变形——断裂的这一破坏过程中,不仅有一定的变形能力,而且对变形和断裂有一定的抵抗能力,这些能力称为材料的力学机械性能。通过拉伸实验,可以确定材料的许多重要而又最基本的力学机械性能。例如:弹性模量E 、比例极限R p 、上和下屈服强度R eH 和R eL 、强度极限R m 、延伸率A 、收缩率Z 。除此而外,通过拉伸实验的结果,往往还可以大致判定某种其它机械性能,如硬度等。

我们以两种材料——低碳钢,铸铁做拉伸试验,以便对于塑性材料和脆性材料的力学机械性能进行比较。

这个实验是研究材料在静载和常温条件下的拉断过程。利用电子万能材料试验机自动绘出的载荷——变形图,及试验前后试件的尺寸来确定其机械性能。

试件的形式和尺寸对实验的结果有很大影响,就是同一材料由于试件的计算长度不同,其延伸率变动的范围就很大。例如:

对45#钢:当L 0=10d 0时(L 0为试件计算长度,d 0为直径),延伸率A 10=24~29%,当L 0=5d 0时,A 5=23~25%。

为了能够准确的比较材料的性质,对拉伸试件的尺寸有一定的标准规定。按国标GB/T228-2002、GB/P7314-1987的要求,拉伸试件一般采用下面两种形式:

图1.1

1. 10倍试件;

圆形截面时,L 0=10d 0 矩形截面时,L 0=11.3

0S

2. 5倍试件 圆形截面时,L 0=5d 矩形截面时, L 0=5.650S =

π0

45

S d 0——试验前试件计算部分的直径;

S 0——试验前试件计算部分断面面积。

此外,试件的表面要求一定的光洁度。光洁度对屈服点有影响。因此,试件表面不应有刻痕、切口、翘曲及淬火裂纹痕迹等。

1.2拉伸实验

一、实验目的:

1.研究低碳钢、铸铁的应力——应变曲线拉伸图。

2.确定低碳钢在拉伸时的机械性能(比例极限R p 、下屈服强度R eL 、强度极限R m 、延伸率A 、断面收缩率Z 等等)。

3. 确定铸铁在拉伸时的力学机械性能。

二、实验原理:

拉伸实验是测定材料力学性能最基本的实验之一。在单向拉伸时F —ΔL (力——变形)曲线的形式代表了不同材料的力学性能,利用: 0F

S σ= 0L L ε?= 可得到σ—ε曲线关系。

三、实验所用的设备、仪器和工具

1、Zwick电子万能材料试验机一台

2、游标卡尺一支

3、记号笔一支

4、低碳钢、铸铁试件各一个

四、实验步骤:

1.量度试件尺寸:

1)量度直径d0。对于圆试件,在计算长度的两端及中部三处用卡尺测量,每一处都要在两个互相垂直的方向上量出直径,取其直径最小值,测量精度到±0.1mm。

2)确定计算长度L0。

在试件中间等粗的细长部分内,量取计算长度L0(按10倍或5倍试件确定)。然后用刻线机(记号笔等)把计算长度L0分成若干等分(通常是以5mm或10mm为一等分)。以便当试件断裂不在中间时进行换算,从而求得比较正确的延伸率。但刻线时,应尽量轻微。

建议使用下列表格表1.3。

1)打开主机电源

2)静候数秒,以待机器系统检测

3)打开TestXpert测试软件,选取相应测试程序(或直接在电脑桌面上双击程序图标)

4)按主机“ON”按钮,以使主机与程序相连

5)顺利后,点击“LE”图标以使夹具恢复到设定值

6)用游标卡尺测量试样尺寸,并输入

7)摆放试样于试样台,用夹具夹持试样一端

8)点击“清零”图标,使力值清零

9)用夹具夹持试样另一端

10)点击“Start”图标,开始测试

11)弹出试样尺寸确认框,输入试样尺寸,点击“OK”

12)测试终止后,取出试样

13)按“LE”按钮,使横梁自动恢复到初始位置,程序自动计算测试结果并作出图表

14)将断裂后试样尺寸输入

15)点击“Print Protocol”图标,打印测试报告

16)保存测试结果文件,另存为*.zse格式的文件

17)退出程序

18)关闭主机电源,清理工作台

4.试验注意事项:

随时注意观察试件在拉伸过程中的形状变化和应力——应变曲线的变化情况。

1)当试件拉伸过程中,当应力——应变曲线出现平台时载荷即到达屈服阶段,在试件表面可能出现契尔诺夫滑移线。

2)过了屈服阶段后,观察冷作硬化现象。

3)当载荷到达最大值(F m)时,曲线开始回落下降,密切注意试件形状的变化,此时可看到颈缩现象。

4)试件拉断后,立即停机存盘。打印出所得的拉伸图,取下试件并量度此时的断后标距长度L u(如果试件是断在计算长度之外的作废)和颈缩处的最小直径d u。量度时将试件的两半接在一起,使其尽量紧贴。

5.试验结果整理和计算: 1)对拉伸曲线的修正。

拉伸曲线得到后,往往在开始处形成如图3.3中所示的不规则的曲线。这是由于试验开始时,握紧器、夹具和试件之间尚未紧密相接。并非完全由于试件变形所致。因此对此曲线要进行修正,即将拉伸图直线部分往下延长,它与横座标相交,交点即为原点

2)根据拉伸图的比例,找出相应的R eL ,R m 。并求出:

下屈服点 R eL =0S F e

强度极限

R m =0S F m

3)计算延伸率: A =00

L L L u -100%

试件拉断后的残余变形在整个长度的分布是非均匀的。在颈缩部分大,而非颈缩部分残余变形小一些(见图3.4)。

由此看出,断在中间时,试件残余变形最大,延伸率也最大。为了对同一种材料只得出一个相对稳定的值,不因断裂的位置而异,可以将试验所得到的残余变形换算成相当于试件在中间断裂时的“标准数值”此方法叫“断处移中法”(见图3.5)。

例如在图3.5中,其延伸率应换算为

A =00

2L L n m -+100%

其中:m 及n 的小格数目依具体情况而选定。

4) 断面收缩率:

图3.4 图3.5

图3.2 图3.3

Z =

00S S S u

100%

S u ——颈缩处的最小面积。

5) 拉断时颈缩处的实际应力: R /m =u m

S F

1.3压缩试验

一、试验目的

研究和比较塑性材料与脆性材料在室温下单向压缩时的力学性能。

二、压缩试件与试验所用机器、仪器和工具:

1、压缩试件

取两种不同材料的试件——低碳钢和铸铁。金属试件一般采用圆柱形,其高与直径之比应为l <L 0/d 0<2。其它材料的试件一般都采用立方体。

2、试验所用机器、仪器和工具:

与拉伸试验相同,采用压缩夹具。

三、试件步骤:

1、量试件尺寸(长、宽、高、直径)。

2、把试件放在试验机上。

3、开机动器,进行试验,一直到试件破坏。

4、卸去载荷,取出破坏的试件。

5、打印出实验报告。

四、实验注意事项:

1、低碳钢不能压到破坏,压到45kN 时即停止试验。

2、为了能很好地观察铸铁的破坏裂纹,在试验中,一但发现载荷值上升缓慢时,需及时停止加载。

五、试验结果的整理和计算

1.低碳钢:

低碳钢为塑性材料,其压缩图见图3.9,开始时遵守胡克定律沿直线上升,比例极限以后变形加快,但无明显屈服阶段。相反地,图形逐渐向上弯曲。这是因为在过了比例极限后,随着塑性变形的迅速增长,而试件的横截面积逐渐增大,因而承受的载荷也随之增大。

从实验我们知道,低碳钢试件可以被压成极簿的平板而一般不破坏。因此,其强度极限一般是不能确定的。我们只能确定的是压缩的屈服极限应力。

σsc =0sc

F S

图3.9 低碳钢压缩 图3.10 铸铁压缩 2.铸铁:

铸铁为脆性材料,其压缩图在开始时接近于直线,与纵轴之夹角很小,以后曲率逐渐增大,最后至破坏,因此只确定其强度极限(见图3.11)。

σbc =0bc

F S

铸铁试件受压力作用而缩短,表明有很少的塑性变形的存在。当载荷达到最大值时,试件即破坏,并在其表面上出现了倾斜的裂缝(裂缝一般大致在与横截面成45°的平面上发生)铸铁受压后的破坏是突然发生的,这是脆性材料的特征。

从试验结果与以前的拉伸试验结果作一比较,可以看出,铸铁承受压缩的能力远远大于承受拉伸的能力。抗压强度远远超过抗拉强度,这是脆性材料的一般属性。

1.4 电子万能材料试验机简介

电子万能材料试验机简称电子万能试验机,是材料力学性能测试的专用设备,主要用于材料的拉伸、压缩、弯曲、剪切等力学性能试验。电子万能试验机是机械技术、传感器技术、电子(计算机)测量、控制及数据处理技术结合的新型试验机。与以往的机械式和液压式试验机相比,近年来生产的电子万能试验机最突出的特点是利用计算机控制试验过程,并完成测量数据的自动采集和处理。不同厂家生产的电子万能试验机虽然在结构形式、操作界面、使用功能及技术性能上存在差异,但基本结构和工作原理是类似的,一般都包括机械加载架、试样夹持装置、测量系统、动力系统、传动系统、控制系统、计算机系统等基本工作单元。常见电子万能试验机按照最大载荷划分为10kN 、20 kN 、50 kN 、100 kN 、200 kN 、250 kN 等不同的规格,下面以国产CMT5105型100kN 电子万能试验机为例做一简要介绍。

图3.13 电子万能材料试验机

一、电子万能材料试验机的结构与工作原理

图3.13是Zwick 电子万能试验机的照片,图3.14是电子万能试验机的结构及工作原理示意图。电子万能试验机的机械加载架一般为“门式”结构,有单空间和双空间两种形式,由立柱、滚珠丝杠、上横梁、下横梁、移动横梁构成。单空间是指试验机的拉伸和压缩共用同一个加载空间,而双空间是指试验机设有拉伸和压缩两个加载空间。单空间试验机在拉伸试验转换为压缩试验或由压缩试验转换为拉伸试验时,需要更换夹具,而双空间试验机不存在这个问题,因此使用比较方便。Zwick 型试验机是单空间式的。在拉伸时安装有拉伸夹具,在压缩时安装有压缩夹具和弯曲夹具。测力传感器、引伸计、光电编码器、数据采集电路(与控制系统集成在一起)组成测量系统,测力传感器用于测量试验载荷,引伸计用于测量试样的变形,光电编码器用于测量横梁移动的位移。各个测量信号均经过数据采集电路送入计算机储存、处理和显示。伺服电机的输出功率经减速器、同步齿形带传递给滚珠丝杠,然后滚珠丝杠带动移动横梁升降将试验载荷施加到试样上。伺服控制器与伺服电机和光电编码器组成闭环控制系统,控制移动横梁的运动。伺服控制器向上经过控制电路与计算机联系,最终由计算机实现对可移动横梁的运动进行控制,包括位置、速度等。

由于电子万能试验机采用了闭环控制,加载过程和数据采集都是在计算机的控制下完

成的,因此可以选择不同的参数控制方式进行试验。参数控制方式是指以应力(或载荷)、位移、应变等诸试验参数中的某一个作为加载控制因素。例如,“位移控制”就是设定横梁的运动速度(通常是恒定速率),让试验机按照设定的横梁速度和方向对试样进行加载。

图3.14电子万能材料试验机的结构及工作原理

1.立柱

2.拉伸夹具

3.拉伸试样

4.移动横梁

5.测力传感器

6.压缩夹具

7.弯曲夹具

8.下横梁

9.同步齿型传

动带10.带轮11.光电编码器12.伺服电机13.上横梁14.滚珠丝杠15.引伸计16.手控键盘17.减速机

三、电子万能试验机的使用注意事项:

1、由于电气参数初始化的原因,开机、关机时要注意顺序,开机顺序为主机-计算机-打印机,关机顺序为试验机-打印机-计算机。

2、安装试样前要注意将横梁限位调整好,以防止损坏机器。

1.5思考题:

1、试述低碳钢拉伸过程的四个阶段的力学特性。

2、名义应力——应变曲线的定义是什么?如何得到真实的应力——应变曲线?

3、当有契尔诺夫滑移线出现时,利用力学概念解释此现象。

4、比较低碳钢与铸铁拉伸破坏时的端口形状有什么不同,为什么?

5、讨论环境条件(温度、加载速率、受力状态)对屈服强度有何影响?

6、低碳钢为什么得不到抗压极限强度?

7、对铸铁受压破坏的端口进行力学受力分析。

实验二金属材料的压缩试验1

实验二金属材料的压缩试验 实验时间:设备编号:温度:湿度一、实验目的 二、实验设备和仪器 三、实验数据及处理 材料 直径d o(mm)高度 l(mm) L d o 截面积A0 (mm 2 ) 屈服载荷 F s(K N) 最大载荷 F b(K N) 1 2 平均 低碳钢铸铁

载荷一变形曲线(F—△l曲线)及结果 材料低碳钢铸铁F—△l曲线 断口形状 实验结果屈服极限ós=屈服极限ób= 四、问题讨论 (1)观察铸铁试样的破坏断口,分析破坏原因; (2)公析比较两种材料拉伸和压缩性质的异同。

金属村翻盖的压缩试验 原始试验数据记录 实验指导老师: 200 年月日

实验四金属扭破坏实验、剪切弹性模量测定 实验时间:设备编号:温度:湿度一、实验目的 二、实验设备和仪器 三、实验数据及处理 弹性模量E= 泊松比μ= 实验前 材料标距 L0(mm) 直径d0(mm)平均极惯 性矩I p (mm4) 最小抗扭 截面模量 W T (mm3)截面I 截面II 截面III 1 2 平均 1 2 平均 1 2 平均 低碳钢铸铁

低碳钢钢剪切弹性模量测定 扭矩T(K N)扭转角(rad)扭转角度增量(rad)△φT0= T1 T2 T0 T3 T4 T5 △T= 理论值相对误差 截荷-变形曲线(F-△l曲线及结果) 材料低碳钢铸铁 T—φ曲线 断口形状 实验记录屈服扭矩T s 破坏扭矩T b 破坏扭矩T b 实验结果屈服极限t s 强度极限t b

四、问题讨论 (1)为什么低碳钢试样扭转破坏断面与横截面重合,而铸铁试样是与试样轴线成450螺旋断裂面? (2)根据低碳钢和铸铁拉伸、压缩、扭转试验的强度指标和断口形貌,分析总结两类材料的抗拉、抗压、抗剪能力。

ASTM E8M-09 中文版 金属材料拉伸试验方法E8-09

金属材料拉伸试验的标准试验方法 1范围 1.1 本方法适用于室温下任何形状的金属材料的拉伸试验。特别是对于屈服强度、屈服点延伸率、抗拉强度、延伸率和断面收缩率的测定。 1.2 对于圆形试样,标距长度等于直径的4倍【E8】或5倍【E8M】(对于E8和E8M,试样的标距长度是两个标准的最大区别,其他技术内容是一致的)。用粉末冶金(P/M)材料制成的试样无此要求,以保持工业要求的材料的压力至规定的设计面积和密度。 1.3 除本方法规定外,可对特殊材料制定单独的技术规范及试验方法,例如:试验方法和定义A370,试验方法B557,B557M。 1.4 除非另有规定,室温应定为10—38℃。 1.5 国际单位(SI)和英制单位相互独立,两个单位体系的数值并不完全相等,因此,它们应该独立使用。两个单位体系结合使用得到的数值与标准不符合。 1.6 本标准并不涉及所有安全的问题,如果有,也是与它的用途有关。在使用本标准前制定适当的安全和健康规范,确定使用的规章制度是本标准使用者的责任。 2参考文件 2.1 ASTM标准: A 356/A 356M 铸钢、碳素钢、低合金钢、不锈钢、蒸汽锅炉钢的产品规范 A370 钢产品力学性能试验方法及定义 B557 锻、铸铝合金和镁合金产品的拉伸试验方法 B557M锻、铸铝合金和镁合金产品的拉伸试验方法(公制) E4 试验机的力学校验方法 E6 力学性能试验方法相关术语

E29 用标准方法确定性能所得试验数据的有效位数的推荐方法 E83 引伸计的的校验及分级方法 E345 金属箔拉伸试验的测试方法 E691 实验室之间探讨确定试验方法精确度的实施指南 E1012 拉伸载荷下试样对中方法的确定 E1856 试验机计算机数据分析处理系统的使用指导 3 术语 3.1 定义——在E6中出现的有关拉伸测试的名词术语均可以用在该拉伸试验方法中。另外需补充以下术语: 3.1.1 不连续屈服——轴向试验中,由于局部屈服,在塑性变形开始的地方观察到力的停滞或起伏(应力-应变曲线不一定出现不连续)。 3.1.2 断后延伸率——由于断裂,使得施加的力突然降低,在此之前测得的延伸率。很多材料并不出现力突然降低的情况,这时断后延伸率通过测量力减小到最大力的10%时的应变值获得。 3.1.3 下屈服强度(LYS[FL-2])——轴向试验中,不考虑瞬时效应的情况,不连续屈服过程中记录的最小应力。 3.1.4 均匀延伸率(EL U[%])——在试样出现缩颈、断裂或者二者都出现之前,所承受最大力时材料的延伸率为均匀延伸率。 3.1. 4.1 说明:均匀伸长率包括弹性延伸率和塑性延伸率。 3.1.5 上屈服强度(LYS[FL-2])——轴向试验中,伴随不连续屈服首此出现的应力最大值(首次出现零斜率时的应力); 3.1.6 屈服点延伸率(YPE)——轴向试验中,不连续屈服过程中上屈服点(应力斜率为0时的转换/临界点)所对应得应变与均匀应变硬化转折点之间的应变差(用百分比表示)。若均匀应变硬化转折点超出应变范围,则YPE的终点是(a)(b)两条直线与横轴的交点: (a)应力—应变曲线的不连续屈服段,通过最后一个零斜率点的水平正切线; (b)应力—应变曲线的均匀应变硬化段的正切线。 若在屈服的地方或附近没有出现斜率为零的点,则材料的的屈服点延伸率为0%。

材料拉伸与压缩试验报告

材料的拉伸压缩实验 【实验目的】 1.研究低碳钢、铸铁的应力——应变曲线拉伸图。 2.确定低碳钢在拉伸时的机械性能(比例极限R p、下屈服强度R eL、强度极限R m、延伸率A、断面收缩率Z等等)。 3. 确定铸铁在拉伸时的力学机械性能。 4.研究和比较塑性材料与脆性材料在室温下单向压缩时的力学性能。 【实验设备】 1.微机控制电子万能试验机; 2.游标卡尺。 3、记号笔 4、低碳钢、铸铁试件 【实验原理】 1、拉伸实验 低碳钢试件拉伸过程中,通过力传感器和位移传感器进行数据采集,A/D转换和处理,并输入计算机,得到F-?l曲线,即低碳钢拉伸曲线,见图1。 对于低碳钢材料,由图1曲线中发现OA直线,说明F正比于?l,此阶段称为弹性阶段。屈服阶段(B-C)常呈锯齿形,表示载荷基本不变,变形增加很快,材料失去抵抗变形能力,这时产生两个屈服点。其中,B'点为上屈服点,它受变形大小和试件等因素影响;B点为下屈服点。下屈服点比较稳定,所以工程上均以下屈服点对应的载荷作为屈服载荷。测定屈服载荷Fs时,必须缓慢而均匀地加载,并应用σs=F s/ A0(A0为试件变形前的横截面积)计算屈服极限。 图1低碳钢拉伸曲线 屈服阶段终了后,要使试件继续变形,就必须增加载荷,材料进入强化阶段。

当载荷达到强度载荷F b后,在试件的某一局部发生显著变形,载荷逐渐减小,直至试件断裂。应用公式σb=F b/A0计算强度极限(A0为试件变形前的横截面积)。 根据拉伸前后试件的标距长度和横截面面积,计算出低碳钢的延伸率δ和端面收缩率ψ,即 % 100 1? - = l l l δ,% 100 1 0? - = A A A ψ 式中,l0、l1为试件拉伸前后的标距长度,A1为颈缩处的横截面积。 2、压缩实验 铸铁试件压缩过程中,通过力传感器和位移传感器进行数据采集,A/D转换和处理,并输入计算机,得到F-?l曲线,即铸铁压缩曲线,见图2。 对铸铁材料,当承受压缩载荷达到最大载荷F b时,突然发生破裂。铸铁试件破坏后表明出与试件横截面大约成45?~55?的倾斜断裂面,这是由于脆性材料的抗剪强度低于抗压强度,使试件被剪断。 材料压缩时的力学性质可以由压缩时的力与变形关系曲线表示。铸铁受压时曲线上没有屈服阶段,但曲线明显变弯,断裂时有明显的塑性变形。由于试件承受压缩时,上下两端面与压头之间有很大的摩擦力,使试件两端的横向变形受到阻碍,故压缩后试件呈鼓形。 铸铁压缩实验的强度极限:σb=F b/A0(A0为试件变形前的横截面积)。 【实验步骤及注意事项】 1、拉伸实验步骤 (1)试件准备:在试件上划出长度为l0的标距线,在标距的两端及中部三个位置上,沿两个相互垂直方向各测量一次直径取平均值,再从三个平均值中取最小值作为试件的直径d0。 (2)试验机准备:按试验机→计算机→打印机的顺序开机,开机后须预热十分钟才可使用。按照“软件使用手册”,运行配套软件。 (3)安装夹具:根据试件情况准备好夹具,并安装在夹具座上。若夹具已 图2 铸铁压缩曲线

金属材料的压缩实验

金属材料的压缩实验 Document serial number【KKGB-LBS98YT-BS8CB-BSUT-BST108】

金属材料压缩实验 一、预习要求 1、电子万能材料试验机在实验前需进行哪些调整如何操作 2、简述测定低碳钢弹性模量E 的方法和步骤。 3、实验时如何观察低碳钢压缩时的屈服极限 三、材料压缩时的力学性能测定 (一)实验目的 1、测定低碳钢压缩时的屈服极限σs 和铸铁压缩时的强度极限σb 。 2、观察比较两种材料压缩破坏现象。 (二)实验仪器及试样 1、万能材料试验机。 2、游标卡尺。 3、压缩试样。压缩试样通常为圆柱形,也分短、长两种(图4a 和b )。短试样用于测定材料抗压强度,通常规定310 ≤≤ d h ;长试样多用于测定钢、铜等材料的弹性 常数E 、μ等。 (三)实验原理 (四)实验步骤及数据处理 1、测量试样尺寸 测定试样的初始高度和直径,并记录到表3中。测定直径时,需在试样中部量取 互相垂直的两个方向的数据取平均值。 2、调整试验机 选择合适的摆锤和示力度盘,自动绘图装置上安装好纸和笔,开动油泵电机。 3、低碳钢压缩实验 安放试样到万能材料试验机活动平台上,注意应放在正中央。开动试验机送油阀,先使活动平台快速提升,当试样与上承压板将要接触时,应减少供油量,放缓提升速度以免压缩过程过快使测试失败。当外载荷加上后观察示力指针,当示力指针停顿并有回摆时说明进入屈服阶段,记录下指针回摆的最低点读数,此值即为对应于屈服极限的载荷值P s 。当示力指针继续上升时,此时进入强化阶段,试样出现明显的变形。变形到一定程度后关闭送油阀打开回油阀卸去载荷,观察试样变形情况。 4、铸铁的压缩实验 准备工作与低碳钢压缩相同。安装好试样后打开送油阀对试样进行压缩直到压断后卸去载荷,通过示力盘上从动指针位置读出最大载荷,此值即为对应于强度极限的载荷值P b 。 5、数据处理 根据测定的试样尺寸计算出试样的横截面积,得: 低碳钢的屈服极限 A P s s = σ 图4 压缩试样

实验一金属材料的拉伸实验

实验一金属材料的拉伸 实验 集团标准化工作小组 #Q8QGGQT-GX8G08Q8-GNQGJ8-MHHGN#

实验一 金属材料的拉伸实验 拉伸是材料力学最基本的实验,通过拉伸可以测定出材料一些基本的力学性能参数,如弹性模量、强度、塑性等。 一.实验目的 1.测定低碳钢拉伸时的强度性能指标:屈服应力s σ和抗拉强度b σ。 2.测定低碳钢拉伸时的塑性性能指标:伸长率δ和断面收缩率ψ。 3.测定灰铸铁拉伸时的强度性能指标:抗拉强度b σ。 4.绘制低碳钢和灰铸铁的拉伸图,比较低碳钢与灰铸铁在拉伸时的力学性能和破坏形式。 二.实验仪器、设备 1.电子万能试验机(或液压万能材料试验机)。 2.钢尺。 3.数显卡尺。 三、实验试样 按照国家标准GB6397—86《金属拉伸试验试样》,金属拉伸试样的形状随着产品的品种、规格以及试验目的的不同而分为圆形截面试样、矩形截面试样、异形截面试样和不经机加工的全截面形状试样四种。其中最常用的是圆形截面试样和矩形截面试样。 对试样的形状、尺寸和加工的技术要求参见国家标准GB6397—86。 夹持 过渡 夹持 过渡 h 试样分为夹持部分、过渡部分和待测部分(l )。标距(l 0)是待测部分的主体,其截面积为A 0。按标距(l 0)与其截面积(A 0)之间的关系,拉伸试样可分为比例试样和非比例试样。按国家标准GB6397-86的规定,比例试样的有关尺寸如下表1-1。 四.实验原理 (一)塑性材料弹性模量的测试: 在弹性范围内大多数材料服从虎克定律,即变形与受力成正比。纵向应力与纵向应变的比例常数就是材料的弹性模量E ,也叫杨氏模量。因此金属材料拉伸时弹性模量E 地测定是材料力学最主要最基本的一个实验。

材料拉伸与压缩实验报告参考

碳钢与铸铁的拉伸、压缩实验(实验一) 一、实验目的 1、测定碳钢在拉伸时的屈服极限s σ,强度极限b σ,延伸率δ和断面收缩率ψ,测定铸铁拉伸时的强度极限b σ。 2、观察碳钢、铸铁在拉伸过程中的变形规律及破坏现象,并进行比较,使用绘图装置绘制拉伸图(P-ΔL 曲线)。 二、实验设备 微机控制电子万能材料试验机、液压式万能材料试验机、游标卡尺。 三、实验试祥 1. 为使各种材料机械性质的数值能互相比较,避免试件的尺寸和形状对试验结果的影响,对试件的尺寸形状GB6397-86作了统一规定,如图1所示: 图1 用于测量拉伸变形的试件中段长度(标距L 0)与试件直径d 。必零满足L 0/d 0=10或5,其延伸率分别记做和δ10和δ5 2、压缩试样:低碳钢和铸铁等金属材料的压缩试件一般做成很短的圆柱形,避免压弯,一般规定试件高度h 直径d 的比值在下列范围之内: 1≤d h ≤3 为了保证试件承受轴向压力,加工时应使试件两 个端面尽可能平行,并与试件轴线垂直,为了减少 两端面与试验机承垫之间的摩擦力,试件两端面应 进行磨削加工,使其光滑。 四、实验原理 图2为试验机绘出的碳钢拉伸P-△L 曲线图, 拉伸变形ΔL 是整个试件的伸长,并且包括机器本身 的弹性变形和试件头部在夹头中的滑动,故绘出的 曲线图最初一段是曲线,流动阶段上限B ‘受变形速度和试件形式影响,下屈服点B 则比较稳定,工程上均以B 点对应的载荷作为材料屈服时的载荷P S ,以试样的初始横截面积A0除PS ,即得屈服极限: 0A Ps S =σ 图2

屈服阶段过后,进入强化阶段,试样又恢复了承载能力,载荷到达最大值P b ,时,试样某一局部的截面明显缩小,出现“颈缩”现象,这时示力盘的从动针停留在P b 不动,主动针则迅速倒退表明载荷迅速下降,试样即将被拉断。以试样的初始横截面面积A 。除P b 得强度极限为 0A P b b =σ 延伸率δ及断面收缩率φ的测定,试样的标距原长为L 0拉断后将两段试样紧密地对接在一起,量出拉断后的标距长为L 1延伸率应为 % 100001?-=l l l δ 断口附近塑性变形最大,所以L 1的量取与断口的部位有关,如断口发生于L ο的两端或在L ο之外,则试验无效,应重做,若断口距L 。的一端的距离不在标距长度的中央31 区域内,要采用断口移中的办法;以度量试件位断后的标距,设两标点CC 1之间共有10格,断口靠近左段,如图3,从临近断口的第一刻线d 起,向右取10/2=5格,记作a ,这就相当于把断口摆在标距中央,再看a 点到C 1点有多少格,就由a 点向左取相同的格数,记作b , 令L ˊ表示C 至b 的长度,L ’表示b 至a 的长度,则L ′+2L ‘′的长度中包含的格数等于 标距长度内的格数10,即 L ′+2L ‘′=L 1。 图3 试样拉断后,设颈缩处的最小横截面面积为A 1,由于断口不是规则的圆形,应在两个相互垂直的方向上量取最小截面的直径,以其平均值计算A 1,然后按下式计算断面收缩率: 010100%ψA -A =?A 铸铁试件在变形极小时,就达到最大载荷P b 而突然发生断裂。没有屈服和颈缩现象,其强度极限远小于低碳钢的强度极限。 图4为低碳钢试件的压缩图,在弹性阶段和屈服阶段,它与拉伸时的形状基本上是一致 图4 图5

实验3-金属材料的压缩实验

实验三 金属材料的压缩实验 一、实验目的 1.测定低碳钢(Q235 钢)的压缩屈服点sc σ和铸铁的抗压强度bc σ。 2.观察、分析、比较两种材料在压缩过程中的各种现象。 二、设备和仪器 1.WES-600S 型电液式万能试验机。 2.游标卡尺。 三、试样 采用1525??(名义尺寸)的圆柱形试样。 四、实验原理 低碳钢(Q235 钢)试样压缩图如图3-1b 所示。试样开始变形时,服从胡克定律,呈直线上升,此后变形增长很快,材料屈服。此时载荷暂时保持恒定或稍有减小,这暂时的恒定值或减小的最小值即为压缩屈服载荷F SC 。有时屈服阶段出现多个波峰波谷,则取第一个波谷之后的最低载荷为压缩屈服载荷F SC 。尔后图形呈曲线上升,随着塑性变形的增长,试样横截面相应增大,增大了的截面又能承受更大的载荷。试样愈压愈扁,甚至可以压成薄饼形状(如图3-1a 所示)而不破裂,因此测不出抗压强度。 铸铁试样压缩图如图3-2a 所示。载荷达最大值F bc 后稍有下降,然后破裂,能听到沉闷的破裂声。 铸铁试样破裂后呈鼓形,破裂面与轴线大约成45o ,这主要是由切应力造成的。 图3-1 低碳钢试样压缩图 图3-2 铸铁试样压缩图 五、实验步骤 1.测量试样尺寸 用游标卡尺在试样高度重点处两个相互垂直的方向上测量直径,取其平均值,记录数据。

2.开机 打开试验机及计算机系统电源。 3.实验参数设置 按实验要术,通过试验机操作软件设量试样尺寸等实验参数。 4.测试 通过试验机操作软件控制横梁移动对试样进行加载,开始实验。实验过程中注意曲线及数字显示窗口的变化。实验结束后,应及时记求并保存实验数据。 5.实验数据分析及输出 根据实验要求,对实验数据进行分析,通过打印机输出实验结果及曲线。 6.断后试样观察及测量 取下试样,注意观察试样的断口。根据实验要求测量试样的延伸率及断面收缩率 7.关机 关闭试验机和计算机系统电源。清理实验现场.将相关仪器还原。 六、实验结果处理 1. 参考表3-1记录实验原始数据。 表3-1 实验原始数据记录参考表 2. 实验数据处理 据低碳钢(Q235 钢)压缩实验所得到的屈服载荷sc F 计算低碳钢的压缩屈服点sc σ: sc sc 0 F A σ= (3-1) 据铸铁压缩实验所得到的最大载荷bc F 计算铸铁的抗压强度bc σ: bc bc 0 F A σ= (3-2) 七、实验报告要求 包括实验目的,设备名称、型号,实验原始数据记录(列表表示)与实验数据处理,试样破坏形状示意图,分析讨论。

金属材料的拉伸与压缩实验

机械学基础实验 指导书 力学实验中心 金属材料的拉伸与压缩实验 1.1 金属材料的拉伸实验 拉伸实验是材料力学实验中最重要的实验之一。任何一种材料受力后都要产生变形,变形到一定程度就可能发生断裂破坏。材料在受力——变形——断裂的这一破坏过程中,不仅有一定的变形能力,而且对变形和断裂有一定的抵抗能力,这些能力称为材料的力学机械性能。通过拉伸实验,可以确定材料的许多重要而又最基本的力学机械性能。例如:弹性模量E 、比例极限R p 、上和下屈服强度R eH 和R eL 、强度极限R m 、延伸率A 、收缩率Z 。除此而外,通过拉伸实验的结果,往往还可以大致判定某种其它机械性能,如硬度等。 我们以两种材料——低碳钢,铸铁做拉伸试验,以便对于塑性材料和脆性材料的力学机械性能进行比较。 这个实验是研究材料在静载和常温条件下的拉断过程。利用电子万能材料试验机自动绘出的载荷——变形图,及试验前后试件的尺寸来确定其机械性能。 试件的形式和尺寸对实验的结果有很大影响,就是同一材料由于试件的计算长度不同,其延伸率变动的范围就很大。例如: 对45#钢:当L 0=10d 0时(L 0为试件计算长度,d 0为直径),延伸率A 10=24~29%,当L 0=5d 0时,A 5=23~25%。 为了能够准确的比较材料的性质,对拉伸试件的尺寸有一定的标准规定。按国标GB/T228-2002、GB/P7314-2005的要求,拉伸试件一般采用下面两种形式: 图1-1 1. 10倍试件; 圆形截面时,L 0=10d 0 矩形截面时,L 0=11.30S 2. 5倍试件 圆形截面时,L 0=5d 矩形截面时, L 0=5.650S = 045 S d 0——试验前试件计算部分的直径;

有色金属细丝拉伸试验方法

《有色金属细丝拉伸试验方法》国家标准编制说明 (征求意见稿) 国标(北京)检验认证有限公司 二〇一八年十月十八日

《有色金属细丝拉伸试验方法》 编制说明 1工作简况 1.1项目背景和立项意义 随着科学技术的进步与国民经济的发展,对于有色金属材料在数量、品种、质量及成本等方面不断提出新的要求;对其化学成分、物理性能以及产品的可靠性、稳定性等方面的要求也越来越高,这就需要高精度、高可靠性的工艺、装备、控制技术与检测技术。室温拉伸力学性能是有色金属产品的一项基础性能,国内外针对金属材料的室温拉伸力学性能检测方法,制定和实施了很多标准,例如GB/T 228.1-2010《金属材料拉伸试验第1部分:室温试验方法》、GB/T 16865-2013《变形铝、镁及其合金加工制品拉伸试验用试样及方法》、GB/T 34505-2017《铜及铜合金材料室温拉伸试验方法》、ASTM E8/E8M《金属材料拉伸试验方法》、ASTM B557/ B557M《变形及铸造铝、镁拉伸试验方法》、JIS Z 2241《金属材料拉伸试验方法》等,对规范有色金属材料的力学性能检测起到了很大作用。但是,对于有色金属细丝产品来说,由于这些产品的特殊性,不适合采用这些标准方法进行室温拉伸力学性能检测,主要原因有: 1) 横截面积很小的产品,按照标准中建议的量具分辨力测定横截面积,其准确度可能明显超过±2%的要求。例如,直径小于0.05mm的金属细丝,用分辨力0.001mm 的量具测量引起的误差超过±2%,这样,其横截面积测量误差超过±2%。 2) 试样原始标距的标记采用常规的划细线、打小冲点等方法不可行。 3) 试验机的力值范围和分辨力都很小,与常规试验机不同;常规的引伸计也不太可能直接用于这些产品试样的试验。 4) 试样的夹持方法需要特殊的方式等等。 由于上述这些原因,需要针对有色金属细丝产品,制定专门的拉伸试验方法标准,规范有色金属细丝拉伸试验,提高有色金属细丝产品力学性能检测的准确性和可靠性。 国家标准GB 10573-89《有色金属细丝拉伸试验方法》颁布实施二十多年以来,为规范我国有色金属合金丝材的性能检测提供了依据,在有色金属细丝产品的生产贸易以及质量控制方面都起到了巨大的作用。不过,随着我国有色金属合金制造行业的快速发展,有色金属丝材产品的种类也逐渐丰富,我国的有色金属及合金丝、线、条材的标准体系也在发生着不断变化,而且随着现代检测手段和设备的不断更新换代,现行的国家

金属材料的压缩实验

金属材料压缩实验 一、预习要求 1、电子万能材料试验机在实验前需进行哪些调整?如何操作? 2、简述测定低碳钢弹性模量E的方法和步骤。 3、实验时如何观察低碳钢压缩时的屈服极限? 三、材料压缩时的力学性能测定 (一)实验目的 1、测定低碳钢压缩时的屈服极限os和铸铁压缩时的强度极限Ob。 2、观察比较两种材料压缩破坏现象。 (二)实验仪器及试样 1、万能材料试验机。 2、游标卡尺。 3、压缩试样。压缩试样通常为圆柱形,也分短、长两种 (图4a和b)。短试样用于测定材料抗压强度, 通常规定1乞加 _3 ;长试样多用于测定钢、铜等材 d o 料的弹性常数E、卩等。 图4压缩试样 (三)实验原理 1x低碳钢压缩试验 低碳钢在压缩时的F■川曲线见图1-1。在屈服之前,曲线与拉忡时相同. 在屈服之后的曲线,就与拉伸不同了。在弹性范由内,加裁速率应控制在1?10M^a/s.在 明显與性变Jg范围内.加載的应变速率应控制在(100-500) X 10-6/s之间.材料受压 屈眼时,变形继续增大,载荷保持不变或者岀现波动,如图所示。从图中读出压缩屈服荷载P Q然后计算压缩屈服点。 % =瓷<1-1> 耳试件轴线成45°斜截而卜的剪阖力是便材料发生滑移.即屈服的原因a 由林料力学知道”无论试件截面上的正应力是拉应力还是压应力*只要大小相同,则在45°斜 載面上产生的剪应力大小都是相同的,因此%与q应是相等或相近的* 屈服过后,试件变短,横橡面积变大,F-小曲线继续上升,宜至试件被压威饼状。因此低碳钢压缩试验不能测岀其强度极限. 2.错铁压编试验 铸扶压縮时的P-AI曲线呈非线性,见图1-2. 脆性材料受压试件的破坏是个复朵的外部施力、内部损伤破坏的力学过程。国内外都在研讨、争论这节问题。试件端部的受力状态与试件的破坏形式冇首密切关 系°不加任何垫片时.铸铁试件沿着与轴线成45。-55。方向破坏.破坏时斜面卜的剪 应力■同样的材料在剪切试验中所测得的剪切破坏极限%相当接近。试件两端面加垫薄片(三合板〉时”其受压破坏形式和前者冇较大差舁口 抗压强度按下式计算’ (1-2)

金属材料拉伸试验方法探讨

龙源期刊网 https://www.doczj.com/doc/5b18319921.html, 金属材料拉伸试验方法探讨 作者:侯琳 来源:《科学与信息化》2020年第14期 摘要:金属材料在现代机械中的应用十分广泛,将金属材料应用到机械工程中,要注重技术材料的性能,进而使其可以的满足应用需求。在将金属材料应用到机械中,要注重金属材料的拉伸性能,金属材料的这一性能会对其应用造成直接影响。因此,在对金属材料进行应用时,要通过试验方式对金属材料的拉伸性能进行检验,明确金属材料性能,这对于应用金属材料的应用来说意义重大。 关键词:金属材料;金属性能;拉伸试验;试样 力学性能是金属材料可靠性和性能的一项关键标志,而拉伸性对金属材料的具体应用会造成直接影响。对于金属材料拉伸性能可以采取拉伸性试验进行确定,进而获取到金属材料的各项性能,实现对金属材料的合理应用。 1金属材料拉伸试验 通过拉伸试验对金属材料性能进行检查,这是对金属材料质量,以及生产进行检查的一项重要内容,通过拉伸试验对金属材料性能进行检查,可以获取到金属材料的各项指标参数内容,也是反应金属材料力学性能检测的一项重要因素。但是,从实际情况来看,在进行金属材料拉伸试验期间,拉伸试验会受各项不同因素影响,这会对最终的试验结果,以及各项参数内容造成一定影响。此外,各项影响因素不仅会对影响试验结果,而且也会对金属材料应用造成不良影响,因此,在金属材料拉伸实验室,相关作业人员要从实际情况出发,做好相应分析工作,提高试验结果准确性,确保金属材料能够满足应用需求。 2拉伸性试验的具体要求 金属材料拉伸性试验要在室温环境下完成相应的测定,测定试样的横截面大小的尺寸大小不得小于0.1mm2。而针对横截面较小的试样,例如毛细管、金属箔等各种不同类型的试样,因为横截面小,分辨率无法满足具体要求,在实际施工期间划细线、打小冲点等方法进行作业的,都无法实现对试样的准确标记,同时,在小横截面尺寸试验在进行拉伸试验时,也适合采用引伸计,因此,在具体试验时,要采取单独协议。在室温情况下对金属材料进行拉伸试验,要将室温温度控制在10-35℃以内,若温度低于10℃,或者高于35℃,则不再是室温环境。需要特别注意的是,若材料在10~35℃温度范围内十分敏感,要在更加严格的温度内进行试验,通常要将试验温度控制在18~22℃之间,进而确保最终能够获取到精准试验结果。 3金属材料拉伸性试验具体分析

实验二低碳钢和铸铁的压缩实验

实验二金属材料(低碳钢和铸铁)的压缩实验 一、实验目的 (1)比较低碳钢和铸铁压缩变形和破坏现象。 (2)测定低碳钢的屈服极限σs和铸铁的强度极限σb。 (3)比较铸铁在拉伸和压缩两种受力形式下的机械性能、分析其破坏原因。 二、验仪器和设备 (1)万能材料试验机。 (2)游标卡尺。 三、试件介绍 根据国家有关标准,低碳钢和铸铁等金属材料的压缩试件一般制成圆柱形试件。低碳钢压缩试件的高度和直径的比例为3:2,铸铁压缩试件的高度和直径的比例为2:1。试件均为圆柱体。 四、实验原理及方法 压缩实验是研究材料性能常用的实验方法。对铸铁、铸造合金、建筑材料等脆性材料尤为合适。通过压缩实验观察材料的变形过程、破坏形式,并与拉伸实验进行比较,可以分析不同应力状态对材料强度、塑性的影响,从而对材料的机械性能有比较全面的认识。 压缩试验在压力试验机上进行。当试件受压时,其上下两端面与试验机支撑之间产生很大的摩擦力,使试件两端的横向变形受到阻碍,故压缩后试件呈鼓形。摩擦力的存在会

影响试件的抗压能力甚至破坏形式。为了尽量减少摩擦力的影响,实验时试件两端必须保证平行,并与轴线垂直,使试件受轴向压力。另外。端面加工应有较高的光洁度。 低碳钢压缩时也会发生屈服,但并不象拉伸那样有明显的屈服阶段。因此,在测定Ps 时要特别注意观察。在缓慢均匀加载下,测力指针等速转动,当材料发生屈服时,测力指针转动将减慢,甚至倒退。这时对应的载荷即为屈服载荷Ps。屈服之后加载到试件产生明显变形即停止加载。这是因为低碳钢受压时变形较大而不破裂,因此愈压愈扁。横截面增 ,因此也得不到强度极大时,其实际应力不随外载荷增加而增加,故不可能得到最大载荷P b ,所以在实验中是以变形来控制加载的。 限 b 前出现较明显的变形然后破裂,此时试验机测力铸铁试件压缩时,在达到最大载荷P b 指针迅速倒退,从动针读取最大载荷P 值,铸铁试件最后略呈故形,断裂面与试件轴线大 b 约呈450。 图2—2 低碳钢压缩图铸铁压缩图 五、实验步骤 (1)试验机准备。根据估算的最大载荷,选择合适的示力度盘(量程)按相应的操作规程进行操作。 (2)测量试件的直径和高度。测量试件两端及中部三处的截面直径,取三处中最小一处的平均直径计算横截面面积。 (3)将试件放在试验机活动台球形支撑板中心处。 (4)开动试验机,使活动台上升,对试件进行缓慢均匀加载,加载速度为0.5mm/min。对于低碳钢,要及时记录其屈服载荷,超过屈服载荷后,继续加载,将试件压成鼓形即可停

实验1-金属材料的拉伸实验

实验一 金属材料的拉伸实验 一、试验目的 1.测定低碳钢(Q235 钢)的强度性能指标:下屈服强度sL σ(eL R )和抗拉强度b σ(m R )。 2.测定低碳钢(Q235 钢)的塑性性能指标:断后伸长率δ(A )和断面收缩率ψ(Z )。 3.测定灰铸铁(HT250)的强度性能指标:抗拉强度b σ(m R )。 4.观察、比较低碳钢(Q235 钢)和铸铁两种材料的力学性能、拉伸过程及破坏现象。 5. 学习试验机的使用方法。 二、设备和仪器 1.WEW-600B 型电液式万能试验机。 2.游标卡尺、钢板尺 三、试样 国标GB/T228-2002采用直径d 0=10mm (名义尺寸)的圆形截面长比例试样。 四、实验原理 1)低碳钢(Q235 钢)的拉伸实验 将试样安装在试验机的上下夹头中,连接试验机和微机的数据线,启动试验机对试样加载,微机自动绘制出载荷位移曲线。观察试样的受力、变形直至破坏的全过程。 屈服阶段反映在F l -?曲线图上为一水平波动线。上屈服力su F 是试样发生屈服而载荷首次下降前的最大载荷。下屈服力sL F 是试样在屈服期间去除初始瞬时效应(载荷第一次急剧下降)后波动最低点所对应的载荷。最大力b F 是试样在屈服阶段之后所能承受的最大载荷。相应的强度指标由以下公式计算: 图1-1 试样 图1-2 低碳钢的拉伸曲线

下屈服强度sL σ(eL R ): sL sL 0 F A σ= (1-2 ) 抗拉强度b σ(m R ): b b 0 F A σ= (1-3) 测量断后的标距部分长度u l 和颈缩处最小直径d u ,按以下两式计算其主要塑性指标: 断后伸长率δ(A ): 100%u l l l δ-= ? (1-4) 式中0l 为试样原始标距长度,l 为试样断后的标距部分长度。 断面收缩率ψ(Z ): 00 100%u A A A ψ-= ? (1-5) 式中0A 和u A 分别是原始横截面积和断后最小横截面积。 移位法(亦称为补偿法)测定断后的标距部分长度u l 。 在长段上从断口O 点起取长度基本上等于短段格数的一段得B 点,再由B 点起取等于长段所余格数(偶数)之半得C 点(见图1-3a );或取所余格数(奇数)减1与加1之半得C 与C 1点(见图1-3b );移位后的L 1分别为:AO +OB +2BC 或者AO +OB +BC +BC 1 。 2)铸铁的拉伸实验 铸铁拉伸时没有屈服阶段,断口为平端 口,只能测得其抗拉强度。据试样所能承受的最大力值F b ,计算铸铁抗拉强度b σ(m R ): b b 0 F A σ= (1-6) 图1-4铸铁拉伸 (a) (b) 图1-3 移位法测定断后标距

金属材料的拉伸试验报告

金属材料的拉伸试验 [实验目的] 1、测定低碳钢的下屈服强度R eL 、抗拉强度R m 、断后伸长率A 和断面收缩率Z 。 2、测定铸铁的抗拉强度R m 和断后伸长率A 。 3、观察并分析两种材料在拉伸过程中的各种现象(包括屈服、强化、冷作硬化和颈缩等现象)。 4、比较低碳钢(塑性材料)与铸铁(脆性材料)拉伸机械性能的特点。 [实验设备] 万能试验机、游标卡尺、低碳钢和铸铁的标准试样等 [实验原理] 按我国目前执行的国家GB/T 228—2002标准——《金属材料室温拉伸试验方法》的规定,在室温10℃~35℃的范围内进行试验。 将试样安装在试验机的夹头中,然后开动试验机,使试样受到缓慢增加的拉力,直到拉断为止,并利用试验机的自动绘图装置绘出材料的拉伸图。 试验机自动绘图装置绘出的拉伸变形ΔL 主要是整个试样的伸长,还包括机器的弹性变形和试样在夹头中的滑动等因素。由于试样开始受力时,头部在夹头内的滑动较大,故绘出的拉伸图最初一段是曲线。 [实验步骤] 1、试样准备: 用游标卡尺测量标距两端和中间三个横截面处的直径,在每一横截面处沿相互垂直的两个方向各测一次取其平均值,用三个平均值中最小者计算试样的原始横截面积S 0。 2、试验机准备: 根据低碳钢的抗拉强度R m 和试样的原始横截面积S 0估计试验所需的最大荷载,并据此选择合适的量程,配上相应的砝码砣,做好试验机的调零等准备工作。 (a )低碳钢拉伸曲线图 (b )铸铁拉伸曲线图

3、装夹试样: 先将试样安装在试验机的上夹头内,再移动试验机的下夹头使其达到适当位置,并把试样下端夹紧,应尽量将试样的夹持段全部夹在夹头内,并且上下要对称。完成此步操作时切忌在装夹试样时对试样加上了荷载。 4、检查试车: 启动试验机,预加少许荷载后,卸载回至零点,以检查试验机工作是否正常。同时消除试样在夹头中的滑移对绘制拉伸图曲线的影响。 5、进行试验: 开动试验机使之缓慢匀速加载,并注意观察示力指针的转动、自动绘图的情况和相应的试验现象,继续加载,观察试样的颈缩现象,直至试样断裂停车。记录所加的最大荷载F m。 6、试样断后尺寸测定: 取出试样断体,观察断口情况和位置。将试样在断裂处紧密对接在一起,测量断后试样长度,计算断后最小横截面积S u。 7、归整实验设备: 卸回油缸中的液压油,清理试验现场和所用仪器设备,并将所用的仪器设备全部恢复原状。 [实验数据记录]

材料在拉伸与压缩时的力学性能-3

§2-3 材料在拉伸与压缩时的力学性能 材料的力学性能:也称机械性能。通过试验揭示材料在受力过程中所表现出的与试件几何尺寸无关的材料本身特性。如变形特性,破坏特性等。研究材料的力学性能的目的是确定在变形和破坏情况下的一些重要性能指标,以作为选用材料,计算材料强度、刚度的依据。因此材料力学试验是材料力学课程重要的组成部分。 此处介绍用常温静载试验来测定材料的力学性能。 1. 试件和设备 标准试件:圆截面试件,如图2-14:标距l 与直径的比例分为,d d l 10=,; d l 5=板试件(矩形截面):标距l 与横截面面积的比例分为,A A l 3.11=,A l 65.5=; 试验设备主要是拉力机或全能机及相关的测量、记录仪器。 详细介绍见材料力学试验部分。国家标准《金属拉伸试验方法》(如GB228-87)详细规定了实验 方法和各项要求。 2. 低碳钢拉伸时的力学性能 低碳钢是指含碳量在0.3%以下的碳素钢, 如A 3钢、16Mn 钢。 1)拉伸图(P —ΔL ),如图2-15所示。 弹性阶段(oa ) 屈服(流动)阶段(bc ) 强化阶段(ce )由于P —ΔL 曲线与试样 的尺寸有关,为了消除试件尺寸的影响,可采用 应力应变曲线,即εσ?曲线来代替P —ΔL 曲 线。进而试件内部出现裂纹,名义应力下跌, 至f 点试件断裂。 σ对低碳钢来说,s σ,b σ是衡量材料强度的重要指标。 2)εσ?曲线图,如图2-16所示,其各特征点的含义为: oa 段:在拉伸(或压缩)的初始阶段应力σ与应变ε为直线关系直至a 点,此时a 点所对应的

应力值称为比例极限,用P σ表示。它是应力与应变成正比例的最大极限。当P σσ≤ 则有 εσE = (2-5) 即胡克定律,它表示应力与应变成正比,即有 αε σtan == E E 为弹性模量,单位与σ相同。 当应力超过比例极限增加到b 点时, 关系偏离直线,此时若将应力卸至 零,则应变随之消失(一旦应力超过b 点,卸载后,有一部分应变不能消除),此b 点的应力定义为弹性极限ε?σe σ。 e σ是材料只出现弹性变形的极限值。 bc 段:应力超过弹性极限后继续加载, 会出现一种现象,即应力增加很少或不增 加,应变会很快增加,这种现象叫屈服。开始发生屈服的点所对应的应力叫屈服极限s σ。又称屈服强度。在屈服阶段应力不变而应变不断增加,材料似乎失去了抵抗变形的能力,因此产生了显著的塑性变形(此时若卸载,应变不会完全消失,而存在残余变形)。所以s σ是衡量材料强度的重要指标。 表面磨光的低碳钢试样屈服时,表面将出现与轴线成45°倾角的条纹,这是由于材料内部晶格相对滑移形成的,称为滑移线,如图2-17所示。 ce 段:越过屈服阶段后,如要让试 件继续变形,必须继续加载,材料似乎 强化了,ce 段即强化阶段。应变强化阶 段的最高点(e 点) 所对应的应力称为强度极限b σ。 它表示材料所能承受的最大应力。过e 点后,即应力达到强度极限后,试件局部发生剧烈收缩的现象,称为颈缩,如图2-18所示。 3)延伸率和截面收缩率 为度量材料塑性变形的能力,定义 延伸率为

金属材料压缩实验

金属材料压缩实验一、实验目的 1.测定低碳钢压缩时的下屈服强度R(或屈服极限σ);seL;)R(或抗压强度极限σ2.测定铸铁压缩时的抗压强度bm 3.观察并比较低碳钢和铸铁在压缩时的缩短变形和破坏现象。二、预习思考要点1.用短圆柱状低碳钢和铸铁试样做压缩实验时,怎样才能做到使其轴向(心)受压?放置压缩试样的支承垫板底部为什么制作成球形? 2.圆柱状低碳钢试样被压缩成饼状而不破碎,而圆柱状铸铁试样被压破裂面常发生在与轴线大致成45°~55°方向上,二者的变形特征与破坏形式为什么不同? 三、实验仪器和设备 1.万能材料试验机;2.游标卡尺。 四、实验试样对于低碳钢和铸铁类金属材料,按照GB 7314—1987《金属压缩试验方法》的规定,金属材料的压缩试样多采用圆柱体如图1-9所示。试样的长度L一般为直径d的2.5~3.5倍,其直径d = 10mm~20mm。也可采用正方形柱体试样如图1-10所示。要求试样端面应尽量光滑,以减小摩阻力对横向变形的影响。 正方形柱体试样1-10 圆柱体试样1-9 图图 五、实验原理 Ⅰ低碳钢:以低碳钢为代表的塑性材料,轴向压缩时会产生很大的横向变形,但由于试样两端面与试验机支承垫板间存在摩擦力,约束了这种横向变形,故试样出现显著的鼓胀效应如图1-11所示。为了减小鼓胀效应的影响,通常的做法是除了将试样端面制作得光滑以外,还可在端面涂上润滑剂以利最大限度地减小摩擦力。低碳钢试样的压缩曲线如图1-12所示,由于试样越压越扁,则横截面面积不断增大,试样抗压能力也随之提高,故曲线是持续上升为很陡的曲线。从压缩曲线上可看出,塑性材料受压时在弹性阶段的比例极限、弹性模量和屈服阶段的屈服点(下屈服强度)同拉伸时是相同的。但压缩试验过程中到达屈服阶段时不像拉伸试验时那样明显,因此要认真仔细观察才能确定屈服荷载F,从而得到

金属材料的拉伸与压缩实验

实验四金属材料的拉伸实验(二)一.实验目的 1.测定低碳钢材料在常温、静载条件下的屈服极限σ s ,强度极限σ b ,延伸 率δ和断面收缩率ψ。 2.测定铸铁材料在常温静载下的强度极限σ b 。 3.观察低碳钢﹑铸铁在拉伸过程中出现的各种现象,分析P-△L图的特征。 4.比较低碳钢与铸铁力学性能的特点和试件断口情况分析其破坏原因。 5.了解微机控制电子万能材料试验机的构造原理,学习其使用方法。 二.仪器设备 1.微机控制电子万能材料试验机 2.数显游标卡尺 三.试件 在测试某一力学性能参数时,为了避免试件的尺寸和形状对实验结果的影响,便于各种材料力学性能的测试结果的互相比较,采用国家标准规定的比例试件。 国家标准规定比例试件应符合以下关系:L 0=K A。对于圆形截面试件,K值通 常取5.65或11.3。即直径为d 0的圆形截面试件标距长度分别为5d 和10d 。本试 验采用L 0=10d 的比例试件。 图

3-4-1 四.测试原理 实验时,实验软件能够实时的绘出实验时力与变形的关系曲线,如图3-4-2所示。 图3-4-2 1.低碳钢拉伸 ⑴.弹性阶段 弹性阶段为拉伸曲线中的OB段。在此阶段,试件上的变形为弹性变形。OA 段直线为线弹性阶段,表明载荷与变形之间满足正比例关系。接下来的AB段是一非线弹性阶段,但仍满足弹性变形的性质。 ⑵.屈服阶段 过弹性阶段后,试件进入屈服阶段,其力与曲线为锯齿状曲线BC段。此时,材料丧失了抵抗变形的能力。从图形可看出此阶段载荷虽没明显的增加,但变形继续增加;如果试件足够光亮,在试件表面可看到与试件轴线成45°方向的条纹, . 即滑移线。在此阶段试件上的最小载荷即为屈服载荷P s ⑶.强化阶段 材料经过屈服后,要使试件继续变形,必须增加拉力,这是因为晶体滑移后增加了抗剪能力,同时散乱的晶体开始变得细长,并以长轴向试件纵向转动,趋于纤维状呈现方向性,从而增加了变形的抵抗力,使材料处于强化状态,我们称此阶段为材料的强化阶段(曲线CD部分)。强化阶段在拉伸图上为一缓慢上升的曲线,若在强化阶段中停止加载并逐步卸载,可以发现一种现象——卸载规律,卸载时载荷与伸长量之间仍遵循直线关系,如果卸载后立即加载,则载荷与变形

材料拉伸与压缩实验报告参考

材料拉伸与压缩实验报告参考

碳钢与铸铁的拉伸、压缩实验 一、实验目的 1、测定碳钢在拉伸时的屈服极限s σ,强度极限b σ,延伸率δ和断面收缩率ψ,测定铸铁拉伸时的强度极限b σ。 2、观察碳钢、铸铁在拉伸过程中的变形规律及破坏现象,并进行比较,使用绘图装置绘制拉伸图(P-ΔL 曲线)。 二、实验设备 微机控制电子万能材料试验机、直尺、游标卡尺。 三、实验试祥 1. 为使各种材料机械性质的数值能互相比较,避免试件的尺寸和形状对试验结果的影响,对试件的尺寸形状GB6397-86作了统一规定,如图1所示: 图1 用于测量拉伸变形的试件中段长度(标距L 0)与试件直径d 。必零满足L 0 /d 0=10或5,其延伸率分别记做和δ10和δ5 2、压缩试样:低碳钢和铸铁等金属材料的压缩试件一般做成很短的圆柱形,避免压弯,一般规定试件高度h 直径d 的比值在下列范围之内: 1≤d h ≤3 为了保证试件承受轴向压力,加工时应使试件两个端面尽可能平行,并与试件轴线垂直,为了减少两端面与试验机承垫之间的摩擦力,试件两端面应进行磨削加工,使其光滑。 图

四、实验原理 图2为试验机绘出的碳钢拉伸P-△L 曲线图,拉伸变形ΔL 是整个试件 的伸长,并且包括机器本身的弹性变形和试件头部在夹头中的滑动,故绘出的曲线图最初一段是曲线,流动阶段上限B ‘受变形速度和试件形式影响,下屈服点B 则比较稳定,工程上均以B 点对应的载荷作为材料屈服时的载荷P S ,以试 样的初始横截面积A0除PS ,即得屈服极限: 0A Ps S = σ 屈服阶段过后,进入强化阶段,试样又恢复了承载能力,载荷到达最大值 P b ,时,试样某一局部的截面明显缩小,出现“颈缩”现象,这时示力盘的从动针停留在P b 不动,主动针则迅速倒退表明载荷迅速下降,试样即将被拉断。以试样的初始横截面面积A 。除P b 得强度极限为 0A P b b = σ 延伸率δ及断面收缩率φ的测定,试样的标距原长为L 0拉断后将两段试样紧密地对接在一起,量出拉断后的标距长为L 1延伸率应为 %1000 1?-= l l l δ 试样拉断后,设颈缩处的最小横截面面积为A 1,由于断口不是规则的圆形,应在两个相互垂直的方向上量取最小截面的直径,以其平均值计算A 1,然后按下式计算断面收缩率: 01 100%ψA -A = ?A 铸铁试件在变形极小时,就达到最大载荷P b 而突然发生断裂。没有屈服和颈缩现象,其强度极限远小于低碳钢的强度极限。

相关主题
文本预览
相关文档 最新文档