当前位置:文档之家› 三种典型燃油系统的比较

三种典型燃油系统的比较

三种典型燃油系统的比较
三种典型燃油系统的比较

三种典型燃油系统的比较

姓名:

学号:

三种典型燃油系统的比较

综述:发动机燃油系统的主要作用是:在各种工作状态下,把燃油以合适于燃烧的形式,连续不断的供往燃烧室,并满足发动机起动、加速、减速和稳定状态下工作时,对燃油量的不同要求。发动机在工作的过程中,想燃烧室供油量的多少要满足当时进入发动机的空气量和气流流速,否则发的冬季就不能正常工作。燃油的控制系统分为两大类:燃油控制系统(包括:机械式燃油控制系统等)和电子控制系统(包括:电子监控式燃油控制系统和FADEC式燃油控制系统)。

一、三种燃油系统的定义和组成的区别:

1、机械液压式:典型的机械式燃油控制器有机械液压式和气动机械式。他是一种典型机械液压式燃油控制装置,主要包括两大部分:计算部分和计量部分。

2、监控型电子控制系统:监控型电子控制系统是发动机控制系统从完全机械液压式到FADEC之间的过渡。监控型组成主要是两大部分:机械液压式燃油调节器和电子部分(EEC或者PMC)监控型是指发动机的燃油控制主要靠机械液压式燃油调节器完成的,而电子部分只是其修正和限制作用,以实现对发动机功率的更准确控制,并起安全保护的作用,防止出现超转、超温等现象。EEC装在电子设备舱内,它有两个通道,一个是监控通道,另一个是限制通道。监控通道主要修正EPR的大小,提高发动机功率的控制精度。信纸通道感受转速,防止转子超转。

3、FADEC式燃油控制系统:全功能数字式电子控制系统(FADEC)

被广泛的应用在现代发动机控制中,所谓全功能数字控制就是充分利用电子式控制系统的能力来完成控制系统所要求的任务。其组成为:EEC、为EEC提供输入信号的传感器和线束、EEC的输出线束和EEC 所驱动的马达、电磁活门等。

二、三种燃油系统控制内容及其控制原理的区别:

1、机械液压式:在发动机加速、减速和稳态工作过程中,计算部分感受工作参数的变化,控制计量活门的开度,改变供油量。计量部分把计量后的燃油送往燃烧室,并把多余的燃油送货油泵进口。计算部分主要包括压气机出口压力限制器,两个三维凸轮,定长偏差凸轮和大气压力传感器。计算部分是以油气比作为控制参数的。加减速3D凸轮感受高压转子转速和压气机进气温度,控制发动机的加速和减速。3D凸轮的形面是按照油气比与发动机的转速和压气机进气温度之间的对应关系制定的,从而实现对发动机加速、减速方案的控制。定常偏差凸轮综合来自两个3D凸轮的信号,并输入到计量部分,控制计量活门的开度,通过慢车调节钉和部分功率调节钉课修改此凸轮的位置,实现对慢车和本分功率的调节。计量部分主要包括计量活门、压力调节活门和燃油最小压力关断活门。这种机械液压式燃油调节器,一般用膜盒感受压力,用离心飞重感受转速。

2监控型电子控制系统:以伍德沃德为例,FFG是燃油的主控制器,而EEC只起到修正和限制作用。EEC和FFG之间的联系是靠力矩马达实现的。

(1)FFG通过控制送往计量活门作动活塞腔的高压伺服燃油量的

多少来实现。计量活门有最大和最小流量止动钉。最大流量止动是为了防止在低高度、高飞行速度时发动机超转;最小流量止动用来保证在高高度、慢车状态下,压气机能提供足够的引气。最小慢车止动有两个位置,有最小流量复位电磁活门控制。计量活门进出口的压差调节活门感受计量活门进、出口压差的变化。当计量活门开度改变时,其通过调节溢流活门的开度,来保持压差恒定。限制活门控制送往

P4/P1调节器的高压伺服燃油量变化的快慢,这样也就控制量计量活门作动活塞移动的快慢,即控制发动机的加减速。其目的就是为了防止加速时,加油过多而超转;减速时,减油过快而熄灯。

(2)FFG已经根据油门杆给出了发动机的功率,即EPR。EEC也会根据油门杆角度信号给出一个发动机推力的要求值,即EPR的要求值,并根据飞行高度、大气总温和飞行速度以及发动机的引气状态对该要求的EPR进行修正。EPR传感器把实际EPR值传给EEC,这样若实际值和要求值不一致,则EEC的监控通道就修正电流到FFG上的力矩马达,微调燃油流量,使实际EPR值也会在EICAS上给出显示。同时,EEC的限制通道会监控转速,在过大时,调节供油量,下调转速,即限制通道其保护作用。

3、FADEC燃油控制系统:FADEC控制系统去掉了机械液压部分中的计算原件等结构,它不只控制发动机的燃油系统,而且还控制发动机的其他系统,如发动机启动系统、反推系统、压气机气流控制系统、主动间隙控制系统,以及燃油和滑油工作温度等。

三、三种控制系统综合功能的优缺点比较:

1、监控型电子控制系统相对于机械液压式控制系统:在结构组成上,相对于机械式,监控型电子控制系统增加了EEC电子控制系统,为控制系统提高了控制精度,增加了对发动机的保护。子自检功能还是它具有了一定能力的故障监控和报告能力。

2、FADEC燃油控制系统相对于监控型和机械式控制系统:FADEC控制系统具有以下优点:

(1)控制范围广、控制速度快、控制精度高,可以实现在整个飞行范围内保证发动机性能最佳,从而提高了发动机的性能,降低燃油消耗。

(2)由于去掉了机械液压部分中的计算原件等结构,燃油控制组件的重量大大减轻。

(3)减轻飞行人员的工作负荷。

(4)控制的可靠性高。

电控柴油机_高压共轨_燃油供给系统故障诊断与分析

第6卷第3期电控柴油机(高压共轨)燃油供给系统主要由油 箱、LP泵 、滤清器、油水分离器、高低压油管、高压泵、 高压共轨组件、喷油器、预热装置及各种传感、ECM等 基本部分组成。其基本功用是根据柴油机的工作要 求,定时、定量、定压地将雾化良好的柴油以一定的要 求喷入气缸内,并使这些燃油与空气迅速地混合和燃 烧。所谓定时就是按照供油相位要求;定量就是保证 一定的油量,满足动力性的要求;定压则要求喷入气 缸的燃油具备一定的动能与空气进行混合。优良的混 合气是提高柴油机动力性、燃油经济性、降低排放率 和噪音率的关键,也就是要求喷射系统产生足够高的 喷射压力,确保燃油雾化良好,同时还必须精确控制 喷油始点和喷油量。其中燃油供给压力就是柴油机一 直困扰人们的常见问题。电控柴油机(高压共轨)燃油 供给系故障就是指其燃油供给异常,影响发动机工作 性能的故障现象,就其故障产生原因,现就华泰现代 柴油车系为例分别从燃油供给系统低压部分、高压部 分、电控部分等因素引起的电控柴油机(高压共轨)燃 油供给系统故障进行简要分析与判排。 一、燃油供给系统低压部分引起的燃油系统故障 共轨喷油系统的低压供油部分包括:燃油箱(带有 滤网,油位显示器,油量报警器)、输油泵、燃油滤清器 总成及低压油管等1.输油泵压力异常引起燃油系统故障图1LP示意图输油泵是一种带有滤网的滚柱叶片泵 (容积式 泵),它将燃油从燃油箱中吸出,将所需的燃油连续供给高压泵。安装在油箱外部的专用支架上,叶片泵主 要由转子、与转子偏心的定子(即泵体)及在转子和定收稿日期 :2010-9-30作者简介:姜伦(1967~)男,高级工程师,工学学士,主要研究方向:汽车检测与维修技术.电控柴油机(高压共轨)燃油供给系统 故障诊断与分析姜伦( 湖南民族职业学院,湖南岳阳414000) 【摘要】:随着人类社会发展的需要,环保与低碳走进了我们日常生活的点点滴滴,"低碳"是当今人类科研 与人们谈论的大环境。轿车发展到今天,柴油版轿车凭借其优越的经济性与环保性备受广大车友的青睐,未来轿 车的发展方向除混合动力外,柴油轿车必将重拳出击,在未来的轿车市场分一杯甜羹!电控柴油燃油供给系统一 直是柴油车系难以突破的难点,该系统的工作状况对柴油机的功率和油耗有重要的影响,而其中的燃油供给压 力是该系统必须力克的难关。现就电控柴油机(高压共轨)燃油供给系统的燃油压力异常问题作重点阐述,进而 对其他因素引起的柴油机燃油供给系统故障作简要的分析与判排。

燃油供给系统组成

燃油供给系统组成:燃油泵、燃油滤清器、燃油压力调节器、喷油器、冷起动喷油器、油压脉冲衰减器等。 ·燃油供给系统功用:供给喷油器一定压力的汽油,喷油器根据电脑指令喷油。 ·一、电动燃油泵 1.电动燃油泵结构与原理 (1)滚柱式电动汽油泵(视频) 1)工作过程 ·转子偏心地安装在泵体内,滚柱装在转子的凹槽中。当转子旋转时,滚柱在离心力的作用下紧压在泵体的内表面上;同时在惯性力的作用下,滚柱总是与转子凹槽的一个侧面贴紧,从而形成若干个工作腔。 ·在汽油泵工作过程中,进油口一侧的工作腔容积增大,成为低压吸油腔,汽油经进油口被吸入工作腔内。在出油口一侧的工作腔容积减小,成为高压油腔,高压汽油从压油腔经出油口流出。 ·限压阀(溢流阀)的作用是当油压超过0.45MPa 时开启,使汽油回流到进油口,以防止油压过高损坏汽油泵。 ·在出油口处装设单向止回阀(出油阀),当发动机停机时,止回阀关闭,防止管路中的汽油倒流回汽油泵,借以保持管路中有一定的油压

2)特点 ·运转噪声大 ·油压脉动大 ·泵内表面和转子易磨损 (2)叶片式电动汽油泵 1)工作原理 ·叶轮是一个圆形平板,在平板的圆周上加工有小槽,形成泵油叶片。 ·叶轮旋转时,小槽内的汽油随同叶轮一同高速旋转。由于离心力的作用,使出口处油压增高,而在进口处产生真空,从而使汽油从进口吸人,从出口排出 2)特点 ·运转噪声小 ·泵油压力高 ·叶片磨损小 ·使用寿命长

2.电动燃油泵的控制 (1)燃油泵继电器控制电路 ·点火开关STA:起动机继电器闭合,同时ECU有STA信号,起动机起动。 ·STA信号和NE信号输入ECU:Tr1接通,开路继电器闭合,燃油泵运转。 ·起动或重负荷时:ECU中的Tr2断开,燃油泵继电器闭合,燃油泵高速运转; ·怠速或轻负荷时:ECU中的Tr2接通,燃油泵继电器断开,电流流过燃油泵电阻器,燃油泵低速运转 (2)燃油泵ECU控制电路 ·起动或重负荷时:发动机ECU通过FPC端子向燃油泵ECU发出高电平信号,燃油泵ECU向燃油泵输出高电压(约12V),燃油泵高速运转 ·怠速或轻负荷时:发动机ECU通过FPC端子向燃油泵ECU发出低电平信号,燃油泵ECU向燃油泵输出低电压(约9V),燃油泵低速运转

2任务工单---燃油供给系统

任务名称燃油供给系统的检修学时班级 学生姓名学生学号任务成绩 实训设备 电控汽油发动机台架或 五菱宏光汽车 实训场地一体化教室日期 任务描述 客户反应该车(五菱宏光汽车)出现不易起动,怠速不稳,加速不良,油耗增 高,请按专业要求排除故障。 任务目的 请制定工作计划,并利用诊断设备确定故障位置,并对故障部件进行检测维修, 必要时更换。 一、资讯 (一)、燃油供给系统 1.下图为燃油供给系统,请简述燃油供给系统的作用和基本组成。 作用: 组成: 2. 根据燃油供给系统的工作过程,完成下列方框图的填写。 燃油箱 燃油滤清器 输油管 低压回油管

(二)、电动燃油泵 1.安装位置:。 2.作用: 。 3.绘出节气门位置传感器与ECU电气连接图。 4.节气门位置传感器的检测。 (1)关闭点火开关,断开节气门位置传感器连接器。 (2)用欧姆表测量传感器每个端子之间的电阻,如下图所示,其电阻值为: 端子间开度°:0 10 20 30 40 50 70 80 全开V AT—E2 测量值 (电阻/ kΩ) V AT—E2 VC—E2 (3)打开点火开关,未起动发动机,测量节气门位置传感器动态数据。 端子间开度°:0 10 20 30 40 50 70 80 全开V AT—E2 测量值 (电压/ V) V AT—E2 VC—E2

(4)当节气门位置传器损坏(信号丢失)时,对电控发动机产生何影响。 (三)、ISC怠速控制阀 (1)按进气量调节方式分为:、。(2)按怠速控制阀结构与工作方式分:、、 。 (3)画出步进电机与ECU连接电路图: (4)步进电机检测参数: 传感器接口外形 检测参数脚号线色功能定义 线路状态工作状态电阻值A马达线圈A控制V ?B马达线圈 B控制V

飞机燃油系统

飞机上用来贮存和向发动机连续供给燃油的整套装置,又称外燃油系统。 分类燃油系统主要有两种型式:重力供油式和油泵供油式。前者是最简单的燃油系统,多用于活塞式发动机的轻型飞机。这种系统的油箱必须高于发动机,在正常情况下燃油靠重力流进发动机汽化器。现代喷气飞机都采用油泵供油式燃油系统。油箱内的燃油被增压油泵压向发动机主油泵。为了提高系统的可靠性和保证安全,燃油系统大都采用“余度设计”的原则,即系统中的关键元件和通路,如油泵和供油管路至少配置两套,一旦系统中某一元件有故障时,备用元件或通路自动接通。 组成喷气飞机耗油量大,燃油系统比较复杂。它一般由燃油箱、输油和供油管路、油箱通气增压分系统、油量指示和自动控制分系统等组成(图1 喷气飞机燃油系统)。 ①燃油箱:轻型低速飞机多采用铝合金焊接油箱。喷气飞机多用尼龙薄膜油箱或整体油箱。整体油箱直接利用机身和机翼结构内部的一部分空间作为油箱。为了保证油箱密封,结构缝隙均用弹性的密封胶堵塞。在每个油箱的最低点都装有汲油泵,用以向发动机或其他油箱供油。在歼击机上,为了使飞机在倒飞时供油不致中断,通常在主油箱的底部还设有倒飞油箱或倒飞装置(图2配重活门式倒飞油箱)。 ②压力加油系统:喷气飞机载油多,油箱数量也多,如果用注入的方式逐个油箱加油太费时间。为此在飞机上较低的部位设置一个压力加油口,用较粗的管子和各个油箱连通,由地面压力加油车迅速把全部油箱加满。 ③通气增压系统:飞机由高空急速俯冲到海平面时,油箱如没有通气增压管道与大气相通,油箱便会在强大的外界压力下压瘪。通气增压管道可使油箱内部始终保持比外界大气压略高的压力。 ④紧急放油系统:大型旅客机和轰炸机起飞时载油量很大(有的达总重的一半)。为了在紧急情况下(特别是在起飞后不久燃油尚未消耗时)安全着陆,油箱内的燃油应能尽快地排放掉。紧急放油管道应足够粗大,排放口的位置适当,不使放出的燃油喷洒在飞机机体上。 ⑤输油控制系统:飞机上众多的油箱分散布置在机身和机翼内。如果对各油箱的用油顺序不加控制,飞机的重心便会发生很大变化,影响飞机的平衡。控制系统根据各油箱内油量传感器提供的信息,按照规定(保证重心变化为最小)的要求自动安排用油顺序。 超音速飞机燃油系统特点飞机由亚音速转到超音速时,飞机气动中心后移,影响飞机的平衡。超音速运输机上由于带的燃油较多,可以把

电控燃油喷射系统图解

电控燃油喷射系统(EFI)图解EFI的优点: 1、在任何情况下都能获得精确的空燃比 2、混合气的各缸分配均匀性好 3、采用EFI的汽车加速性能好 4、充气效率高 5、良好的启动性能和减速减油或断油 EFI的工作原理: 电控汽油喷射系统主要由下列四部分组成: 进气系统供油系统控制系统点火系统 如下图:

1、进气系统如下图: 2、供油系统 主要由油压调节器、喷油器和喷油泵组成。

供油系统的工作原理图: 喷油泵工作原理 燃油泵装在油箱内,涡轮泵由电机驱动。当泵内油压超过一定值时,燃油顶开单向阀向油路供油。当油路堵塞时,卸压阀开启,泄出的燃油返回油箱。 如下图:

喷油器工作原理: 喷油器是电磁式的。当喷油器不工作时,针阀在回位弹簧作用下将喷油孔封住。当ECU的喷油控制信号将喷油器的电磁线圈与电源回路接通时,针阀才在电磁力的吸引下克服弹簧压力、摩擦力和自身重量,从静止位置往上升起,燃油喷出。 多点喷油系统中喷油器通过绝缘垫圈安装在进气歧管或进气道附近的缸盖上,并用输油管将其固定。多点喷油系统每缸有一个喷油器。英文称为multi point injection .简称为MP I。 如下图:

喷油器 单点喷油系统的喷油器安装在节气门体上,各缸共用一个喷油器。英文为single point inje ction. 简称为SPI。如下图:

油压调节器工作原理 油压力调节器的功能是调节喷油压力。喷油器喷出的油量是用改变喷油信号持续时间来进行控制的。由于进气歧管内真空度是随发动机工况而变化的,即使喷油信号的持续时间和喷油压力保持不变,工况变化时喷油量也会发生少量的变化,为了得到精确的喷油量,必须使油压A和进气歧管真空度B的总和保持不变。 如下图: 3、控制系统 控制系统由传感器、执行器和电子控制单元三部分组成 如下图:

发动机燃油供给系统的故障诊断解析

发动机燃油供给系统的故障诊断 一、柴油机燃油供给系统的故障诊断 1.柴油发动机不能起动 1)故障现象 ①发动机无起动迹象,排气管无烟排除。 ②发动机有起动迹象,排气管冒白烟,但不能起动。 ③发动机有起动迹象,排气管冒黑烟,但不能起动。 2)故障原因 ①低压油路原因 a)油箱内无油或存油不足; b)油箱开关未打开或油箱盖空气阀堵塞; c)油箱至喷油油泵管路堵塞; d)油箱到输油泵间管路中漏气部位、油路中渗入空气; e)燃油滤清器或输油泵滤网堵塞; f)油路中渗水或选择柴油的牌号不对; g)喷油泵出油阀密封不严; ②高压油路原因 a)喷油泵柱塞件磨损过甚,造成内泄量过大,使供油量达不 到起动时的需要。 b)喷油泵油量调节机构卡滞,使柱塞不能转动或转动量太小; c)出油阀密封不严,造成不供油或供油量不足; d)喷油针阀开启的压力过高;

e)喷油器针阀积碳或烧结而不能开启; f)喷油器喷孔堵塞; ③其他方面原因 a)低温起动预热装置失效,发动机气缸内温度过低; b)空气滤清器堵塞、排气管排气不畅; c)供油时间过早或过迟; d)气缸压缩压力低,压缩终了的温度和压力达不到柴油自然 温度。 3)故障诊断 a)发动机无起动迹象,排气管无烟排除。 提示:发动机无起动迹象,排气管无烟排除,主要是燃油供给系统不能向燃烧室喷油所致。因此,应重点查燃油供给系统的工作状况。 将喷油泵放气螺钉打开,用手扳动手油泵,观察放气螺钉处是否流油。若不流油或流出泡沫状柴油,而且长时间扳动手油泵也排不尽,表明低压油路故障。如果流油正常,则说明故障出在高压油路。 i.低压油路的故障诊断 ?松开手油泵的放气螺钉,扳动手油泵时放气螺钉处无油流出,说明油箱内无油或油路堵塞。此时,应检查油箱的油是否充足、油箱开关是否打开、油箱盖空气孔是否堵塞等。 若良好,再次扳动手油泵试验。如果拉手油泵拉扭时,明

燃油供给系统的常见故障与检修

摘要 随着世界汽车整车产业的发展,汽车运用技术的不断成熟,人们对汽车的性能要求不断的提高特别在燃油方面最为突出,人们大多喜欢采用节能环保的车型,针对这一发展趋势汽车生产厂商必须在燃油供给方面下大功夫,桑塔纳2000的燃油供给系统就是其中一部分,而燃油供给系统在汽车节能和环保方面起到了重要作用。但又会在行使过程中由于各种外界因素的影响,从而使燃油供给系统出现一系列故障。而燃油供给系统直接影响着汽车行使的稳定性和节能环保性,为此本文通过对桑塔纳2000燃油供给系统的元件介绍,分析故障和诊断排除。并与实例结合分析燃油供给系统常出现故障进行诊断排除。 关键词:燃油供给系统,元件检修,故障诊断排除 前言 随着时代的发展,社会的不断进步汽车电子技术也得到了迅速的发展,现代汽车电子技术已经成为一个国家汽车工业发展水平的标志。进入20世纪70 年代后,随着汽车数量的日益增多,汽车的节能和环保与汽车污染成为了各国政府关注的话题,能源危机的影响更加突出。在汽车工业发达国家相继制定了汽车燃油经济法规,为解决节能环保与污染这一问题。在现代的汽车中采用成熟电控技术是解决燃油供给系统问题的根本。电控燃油供给系统是汽车动力输出的主要源,在汽车中燃油供给系统工作状况的好坏就直接影响着汽车的动力性,经济性和环保性。随着世界经济的全球化,各个国家在对汽车燃油供给系统工作要求不断的提高,如电控燃油喷射系统取代传统化油器式燃料供给,从而提高汽车的动力性。准确的控制燃料供给系统供给的燃料,充分提高可燃混合气的浓度比使燃料充分燃烧,提高了汽车的燃料经济性。同时在排放系统中采用先进的三元转换装置,可以最大限度的降低汽车排出废气。提高了汽车的环保降低了汽车的排污性。总之在汽车技术的发展历程中燃油供给系统技术的不断提高和成熟,对整个社会效益和经济效益的提高有着重大的影响。

电子控制燃油喷射系统

1 电子控制燃油喷射系统通过对燃油喷射时间的控制来调节喷油,是从而改变混合气浓度,要实现空燃比的高精度控制就必须对气缸中的空气进行精确计量! 电喷发动机是采用电子控制装置.取代传统的机械系统(如化油器)来控制发动机的供油过程。如汽油机电喷系统就是通过各种传感器将发动机的温度、空燃比.油门状况、发动机的转速、负荷、曲轴位置、车辆行驶状况等信号输入电子控制装置.电子控制装置根据这些信号参数.计算并控制发动机各气缸所需要的喷油量和喷油时刻,将汽油在一定压力下通过喷油器喷入到进气管中雾化。并与进入的空气气流混合,进入燃烧室燃烧,从而确保发动机和催化转化器始终工作在最佳状态。这种由电子系统控制将燃料由喷油器喷入发动机进气系统中的发动机称为电喷发动机。电喷发动机按喷油器数量可分为多点喷射和单点喷射。发动机每一个气缸有一个喷油咀,英文缩写为MPI,称多点喷射。发动机几个气缸共用一个喷油咀英文缩写SPI.称单点喷射。 2 原理喷油油路由电动油泵,燃油滤清器,油压调节器,喷射器等组成, 电控单元发出的指令信号可将喷射器头部的针阀打开,将燃油喷出。传感器好似人的眼耳鼻等器官,专门接受温度,混合气浓度,空气流量和压力,曲轴转速等数值并传送给“中枢神经”的电子控制单元。电子控制单元是一个微计算机,内有集成电路以及其它精密的电子元件。它汇集了发动机上各个传感器采集的信号和点火分电器的信号,在千分之几十秒内分析和计算出下一个循环所需供给的油量,并及时向喷射器发出喷油的指令,使燃油和空气形成理想的混合气进入气缸燃烧产生动力。 3电喷发动机与化油器式发动机有很大的区别,在使用 操作方法上也颇有不同。起动电喷发动机时(包括冷车起动),一般无需踩油门。因为电喷发动机都有冷起动加浓、自动冷车快怠速功能,能保证发动机不论在冷车或热车状态下顺利起动;在起动发动机之前和起动过程中,像起动化油器式发动机那样反复快速踩油门踏板的方法来增加喷油量的做法是无效的。因为电喷发动机的油门踏板只操纵节气门的开度,它的喷油量完全是电脑根据进气量参数来决定;在油箱缺油状态下,电喷发动机不应较长时间运转。因为电动汽油泵是靠流过汽油泵的燃油来进行冷却的。在油箱缺油状态下长时间运转发动机,会使电动汽油泵因过热而烧坏,所以如果您的爱车是电喷车,当仪表盘上的燃油警告灯亮时,应尽快加油;在发动机运转时不能拔下任何传感器插头,否则会在电脑中显现人为的故障代码,影响维修人员正确地判断和排除故障。

桑塔纳2000燃油供给系统的故障检修

桑塔纳2000燃油供给系统的诊断检修 摘要 随着世界汽车整车产业的发展,汽车运用技术的不断成熟,人们对汽车的性能要求不断的提高特别在燃油方面最为突出,人们大多喜欢采用节能环保的车型,针对这一发展趋势汽车生产厂商必须在燃油供给方面下大功夫,桑塔纳2000的燃油供给系统就是其中一部分,而燃油供给系统在汽车节能和环保方面起到了重要作用。但又会在行使过程中由于各种外界因素的影响,从而使燃油供给系统出现一系列故障。而燃油供给系统直接影响着汽车行使的稳定性和节能环保性,为此本文通过对桑塔纳2000燃油供给系统的元件介绍,分析故障和诊断排除。并与实例结合分析燃油供给系统常出现故障进行诊断排除。 关键词:燃油供给系统;元件检修;故障诊断排除

Santana 2000, the fuel supply system diagnostic maintenance Abstract As the world automobile industry, automotive use of technology matures, the performance requirements for motor vehicles by increasing the fuel, especially in the most prominent, most people prefer the use of energy saving and environmental protection model for the direction of this development, automobile production manufacturers must be big in the fuel supply-side efforts, Santana 2000, the fuel supply system is part of its energy-saving and environmental protection in the car played an important role. However, in the exercise of the course of the outside world as a result of various factors in the impact of the fuel supply system so that a series of failures. Fuel supply system and a direct impact on the exercise of a motor vehicle with the stability and energy saving and environmental protection, and to this end this article on the Santana 2000, the fuel supply system components, the analysis of fault and ruled out the diagnosis. Focuses on the 2000 Santa common fuel supply system fault diagnosis and maintenance. Key words: fuel supply system; component maintenance; fault diagnosis to exclude

第三节 电控燃油喷射系统的组成与基本原理

第三节电控燃油喷射系统的组成与基本原理 组成:按其部件功用来看,主要有进气系统(气路)、燃油控制系统(油路)和电子控制系统(电路)三部分。 一、进气系统 a) b) 图1进气系统原理图 作用:为发动机提供必要的空气。 组成:一般由空气滤清器、节气门体、节气门、空气阀、进气总管、进气歧管等部分组成。另外,为了随时调节进气量,进气系统中还设置了进气量的检测装置。 如图所示:在L型EFI系统中,采用装在空气滤清器后的空气流量计(空气流量传感器)直接测量发动机发动机吸入的进气量。其测量的准确度高于D型EFI系统,可以精确的控制空燃比。“L”是德文“空气”的第一个字母。 D型EFI系统是根据进气歧管压力传感器进行检测。由于进气管内的空气压力在波动,所以控制的测量精度稍微差些。“D”是德文“压力”的第一个字母。 空气阀只是在发动机温度低时用来调节进气量,控制发动机的怠速转速。 节气门总成包括控制进气量的节气门通道和怠速运行的空气旁通道。节气门位置传感器与节气门轴相连接,用来检测节气门的开度。 二、燃油供给系统

图2燃油供给系统工作流程图 作用:向气缸提供燃烧所需要的燃油。 组成:如图所示,燃油供给系统通常由电动汽油泵、汽油滤清器、压力调节器、脉动阻尼器、 喷油器和冷起动喷油器组成。 工作原理:如图所示,在电控汽油喷射系统中,汽油由电动汽油泵从油箱中泵出,经汽油滤清器等输送到电磁喷油器和冷起动喷油器调节器与喷油器并联,保证供给电磁喷油器内的汽油压力与喷射环境的压力之差(喷油压差)保持不变。燃油泵按其安装位置可以分为外装泵和内装泵两种。外装泵将泵装载油箱之外的输油管路中,内装泵则是将泵安装在燃油箱内。与外装泵相比,内装泵不易产生气阻和燃油泄露,而且嘈声小。目前多数EFI采用内装泵。 脉动阻尼器可以消除喷油时油压产生的微小波动,进一步稳定油压。电磁喷油器按照发动机控制的喷油脉冲信号把汽油喷入进气道。当冷却水温度低时,冷起动喷油器将汽油喷入进气总管,以改善发动机低温时的起动性能。 三、电子控制系统 功用:根据各种传感器的信号,由计算机进行综合分析和处理,通过执行装置控制喷油量等,使发动机具有最佳性能。 组成:如图所示,从控制原理来看,电控汽油喷射系统由传感器、ECU和执行器三大部分组成。 传感器是感知信息的部件,功能是向ECU提供汽车的运行状况和发动机工况。ECU接收来自传感器的信息,经信息处理后发出相应地控制指令给执行器。执行器即执行元件,其功用是执行ECU的专项指令,从而完成控制目的。 ECU根据空气流量计(L)型和进气歧管压力传感器(D)型和转速传感器的信号确定空气流量,在根据传感比要求即进气量信号就可以确定每一个循环的基本供油量,然后根据各种传感器的信号进行点火提前角、温度、节气门开度、空燃比等各种工作参数的修正,最后确定某一工况下的最佳喷油量。

燃油供给系统的常见故障与检修

燃油供给系统原理故障与检修 随着时代的发展,社会的不断进步汽车电子技术也得到了迅速的发展,现代汽车电子技术已经成为一个国家汽车工业发展水平的标志。进入20世纪70年代后,随着汽车数量的日益增多,汽车的节能和环保与汽车污染成为了各国政府关注的话题,能源危机的影响更加突出。在汽车工业发达国家相继制定了汽车燃油经济法规,为解决节能环保与污染这一问题。在现代的汽车中采用成熟电控技术是解决燃油供给系统问题的根本。电控燃油供给系统是汽车动力输出的主要源,在汽车中燃油供给系统工作状况的好坏就直接影响着汽车的动力性,经济性和环保性。随着世界经济的全球化,各个国家在对汽车燃油供给系统工作要求不断的提高,如电控燃油喷射系统取代传统化油器式燃料供给,从而提高汽车的动力性。准确的控制燃料供给系统供给的燃料,充分提高可燃混合气的浓度比使燃料充分燃烧,提高了汽车的燃料经济性。同时在排放系统中采用先进的三元转换装置,可以最大限度的降低汽车排出废气。提高了汽车的环保降低了汽车的排污性。总之在汽车技术的发展历程中燃油供给系统技术的不断提高和成熟,对整个社会效益和经济效益的提高有着重大的影响。 1燃油供给系统的组成与功能 1.1燃油供给系统的组成 燃油供给系统的作用是向气缸内供给并调节燃烧过程中所需要的燃油量。桑塔纳2000型电控燃油喷射系统中的燃油供给系统主要由燃油箱、电动燃油泵、燃油滤清器、油压调节器及喷油器等组成。 电动燃油泵将燃油从燃油箱中吸出,如图3-7所示,经燃油滤清器过滤后,再经压力调节器的调节,使油路中的油压比进气管内负压约高250千帕并经输油管分配给各缸喷油器。喷油器根据电控单元的指令将燃油适时地喷人进气管中。当发动机冷启动时.冷启动喷油器按电控单元的指令喷油,以改善发动机低温启动性能。当油路中油压升高时,压力调节器自动调节,将多余燃油返回油箱,从而保持送给喷油器的燃油压力基本不变。

电控燃油喷射系统发展历程简介

1.1电控燃油喷射系统发展历程简介 1934年德国研制成功第一架装用汽油喷射发动机的军用战斗机。第二世界大战后期,美国开始采用机械式喷射泵向气缸内直接喷射汽油的供油方式。 1952年,曾用于二战德军飞机的机械式汽油喷射技术被应用于轿车,德国戴姆乐-奔驰(Daimler-Benz)300L型赛车装用了德国博世(Bosch)公司生产的第一台机械式汽油喷射装置。它采用气动式混合气调节器控制空燃比,向气缸直接喷射。 1957年,美国本迪克斯(Bendix)公司的电子控制汽油喷射系统问世,并首次装于克莱斯勒(Chrysler)豪华型轿车和赛车上。 由于汽油喷射系统比起化油器来,计量更精确、雾化燃油更精细、控制发动机工作更为灵敏,因此,在经济性、排放性、动力性上表现出明显的优势。人们的注意力越来越集中在汽油喷射系统上。 1967年,德国博世公司研制成功K-Jetronic机械式汽油喷射系统,并进而成功开发增加了电子控制系统的KE-Jetronic机电结合式汽油喷射系统,使该技术得到了进一步的发展。1967年,德国博世公司率先开发出一套D-Jetronic全电子汽油喷射系统并应用于汽车上,于20世纪70年代首次批量生产,在当时率先达到了美国加利福尼亚州废气排放法规的要求,开创了汽油喷射系统的电子控制的新时代。 D型喷射系统在汽车发动机工况发生急剧变化时,控制效果并不理想。 1973年,在D型汽油喷射系统的基础上,博世公司开发了质量流量控制的L-Jetronic型电控汽油喷射系统。之后,L型电控汽油喷射系统又进一步发展成为LH-Jetronic系统,后者既可精确测量进气质量,补偿大气压力,又可降低温度变化的影响,而且进气阻力进一步减小,使响应速度更快,性能更加卓越。 1979年,德国博世公司开始生产集电子点火和电控汽油喷射于一体的Motronic数字式发动机综合控制系统,它能对空燃比、点火时刻、怠速转速和废气再循环等方面进行综合控制。 为了降低汽油喷射系统的价格,从而进一步推广电控汽油喷射系统,1980年,美国通用(GM)公司首先研制成功一种结构简单价格低廉的节流阀体喷射(TBI)系统,它开创了数字式计算机发动机控制的新时代。TBI系统是一种低压燃油喷

电子控制燃油喷射系统

第1章电子控制燃油喷射系统简介 1.1引言 1.1.1电子燃油喷射系统国内外的发展概况 上个世纪60年代以前,汽车燃油输送系统,绝大多数采用构造简单的化油器,随着汽车工业的飞速发展,世界汽车的保有量在60年代有了急剧的增长,由于传统化油器混合气调节不精确,汽车尾气排放废气含量过高(CO, HC,NO化合物等),对大气、环境的污染也日益严重,因此西方各国都制定了严格的汽车排放法规法案,相继推出欧I、欧II、欧III排放标准,目前己经制定出欧IV 标准。同时受能源危机的冲击以及电子技术、计算机技术等的飞速发展,促进了电子控制燃油喷射发动机的诞生。1953年美国Bendix公司首先开发了电子喷射器(Electrojector), 1957年正式问世,开创了电控燃油喷射的先河。1967年,博世公司在购买美国Bendix公司专利的基础上,推出了速度密度型的D-Jetronic电控燃油喷射装置,并在各大汽车公司得到应用,电子控制燃油喷射技术得到了较大发展。D-Jetronic燃油喷射装置己经具有现代电子燃油喷射的全部要素,是现代电子燃油喷射的先驱。1973年之后,博世公司又相继开发了质量流量式(massflow) L-Jetronic电子控制非连续喷射、K-jetroni机械式连续喷射、LH-Jetronic电控燃油喷射等系统。随着电子技术集成电路的发展,微电脑技术飞速发展,汽车电子控制电脑也从模拟时代进入到了数字时代。利用数字技术控制发动机首推1976年通用汽车公司研发的点火时间控制(MASIR )。它能更好的根据发动机运转工况,对点火提前角作出精确的点火时间控制。由于微电脑的运用,以及微电脑计算、储存、分析等功能的发展,可以进行复杂的逻辑、智能控制计算,对发动机运转速度和进气流量及其它工况的变化能作出敏捷的反应,使微电脑控制型燃油喷射渐渐成为主要的喷射方式。近年来,国外进一步加强了对电喷系统的研究,性能显著提高,发动机油耗进一步降低,装配部分高档轿车的排放可达到欧洲IV 标准。到目前为止,电控系统不仅能够控制所有的喷油参数(喷油量、喷油正时、

飞机各个系统的组成及原理

一、外部机身机翼结构系统 二、液压系统 三、起落架系统 四、飞机飞行操纵系统 五、座舱环境控制系统 六、飞机燃油系统 七、飞机防火系统 一、外部机身机翼结构系统 1、外部机身机翼结构系统组成:机身机翼尾翼 2、它们各自的特点和工作原理 1)机身 机身主要用来装载人员、货物、燃油、武器和机载设备,并通过它将机翼、尾翼、起落架等部件连成一个整体。在轻型飞机和歼击机、强击机上,还常将发动机装在机身内。 2)机翼 机翼是飞机上用来产生升力的主要部件,一般分为左右两个面。 机翼通常有平直翼、后掠翼、三角翼等。机翼前后缘都保持基本平直的称平直翼,机翼前缘和后缘都向后掠称后掠翼,机翼平面形状成三角形的称三角翼,前一种适用于低速飞机,后两种适用于高速飞机。近来先进飞机还采用了边条机翼、前掠机翼等平面形状。

左右机翼后缘各设一个副翼,飞行员利用副翼进行滚转操纵。 即飞行员向左压杆时,左机翼上的副翼向上偏转,左机翼升力下降;右机翼上的副翼下偏,右机翼升力增加,在两个机翼升力差作用下飞机向左滚转。为了降低起飞离地速度和着陆接地速度,缩短起飞和着陆滑跑距离,左右机翼后缘还装有襟翼。襟翼平时处于收上位置,起飞着陆时放下。 3)尾翼 尾翼分垂直尾翼和水平尾翼两部分。 1.垂直尾翼 垂直尾翼垂直安装在机身尾部,主要功能为保持飞机的方向平衡和操纵。 通常垂直尾翼后缘设有方向舵。飞行员利用方向舵进行方向操纵。当飞行员右蹬舵时,方向舵右偏,相对气流吹在垂尾上,使垂尾产生一个向左的侧力,此侧力相对于飞机重心产生一个使飞机机头右偏的力矩,从而使机头右偏。同样,蹬左舵时,方向舵左偏,机头左偏。某些高速飞机,没有独立的方向舵,整个垂尾跟着脚蹬操纵而偏转,称为全动垂尾。 2.水平尾翼 水平尾翼水平安装在机身尾部,主要功能为保持俯仰平衡和俯仰操纵。低速飞机水平尾翼前段为水平安定面,是不可操纵的,其后缘设有升降舵,飞行员利用升降舵进行俯仰操纵。即飞行员拉杆时,升降舵上偏,相对气流吹向水平尾翼时,水平尾翼产生

大众电控燃油系统论文

大众轿车电控燃油喷射系统 【摘要】:我们下面介绍了汽油电控燃油喷射系统的类型、结构组成、工作原理,具有较强实用性。根据电控燃油喷射系统的常见故障现象。控燃油喷射系统透彻的分析常见故障原因和解决方法。用科学的方法去解决汽车的故障,更有效快速地诊断和解决汽车故障,缩短了维修时间。总结出电控燃油喷射系统常见故障的的诊断与排除过程.以大众轿车电控燃油喷射系统为例,根据电控燃油喷射系统的电路图,有针对性的讲述电控燃油喷射系统常见故障的诊断与排除步骤。 [关键词]:电控燃油喷射系统故障现象故障排除 一.电控汽油喷射系统的发展史 从60年代后半期开始,随着半导体技术的高速发展,尤其是微型计算机的出现导致电控燃油喷射系统的产生,使汽车发动机进入一个电子控制的新时代。 1967年,德国Bosch公司研制成D型电子控制汽油喷射系统,随后又开发了L型电子控制喷射系统,后来这些技术被不断改进、完善。以及电子及技术,计算机技术等飞速发展,到1979年,发动机电子控制技术己达到相当高的程度。电控汽油喷射系统经历了从晶体管,集成电路到微机控制,从模拟计算机到数字计算机控制的发展过程,正朝微型化,微集成化,模块化,智能化薇电脑集中控制方向发展。 二.电控燃油喷射系统的功用 现代汽车发动机电子控制燃油喷射系统EFI(Electronic Fuel Injection)简称电控燃油喷射系统,它的主要功能是控制汽油喷射、电子点火、怠速、排放、进气增压、发电机负荷、巡航、警告指示、自我诊断与报警、安全保险、备用功能。

三.电控汽油喷射系统的分类 电喷系统发展至今,已有多种类型。根据其结构特点分为以下几种类型。 (1)按系统控制模式分类 在发动机电喷控制系统中,按系统控制模式可分为开环控制和闭环控制两种类型。 a.开环控制 就是把根据试验确定的发动机各种运行工况所对应的最佳供油量的数据事先存入计算机中,发动机在实际运行过程中,主要根据各个传感器的输入信号,判断发动机所处的运行工况,再找出最佳供油量,并发出控制信号。 b.闭环控制 闭环控制系统又称为反馈控制系统,其特点是加入了反馈传感器,输出反馈信号,反馈给控制器,以随时修正控制信号。 闭环控制系统在排气管上加装了氧传感器,可根据排气管中氧含量的变化,测出发动机燃烧室内混合气的空燃比值,并把它输入计算机中再与设定的目标空燃比值进行比较,将偏差信号经功率放大器放大后再驱动电磁喷油器喷油,使空燃比保持在设定的目标值附近。因此,闭环控制可达到较高的空燃比控制精度,并可消除因产品差异和磨损等引起的性能变化对空燃比的影响,工作稳定性好,抗干扰能力强。 (2) 按喷油实现的方式分类 在发动机电子控制系统中,按喷油实现的方式进行分类,可分为机械式、机电混合式和电子控制式三种燃油喷射系统。 a.电子控制式燃油喷射系统如图1-3 燃油的计量通过电控单元和电磁喷油器来实现。 该系统采用了全电子控制方式,即电子控制单元通过各种传感器来检测发动机运行参数(包括发动机的进气量、转速、负荷、温度、排气中的氧含量等)的变化,再由ECU根据输入信号和数学模型来确

电控燃油喷射系统的控制原理解析

.-电控燃油喷射系统的控制原理解析

————————————————————————————————作者:————————————————————————————————日期:

.2.1 喷射正时的控制 1. 同时喷射 各缸喷油器同时打开,同时关闭。 (1)同时喷射控制电路:一根电源线,一个驱动回路。 (2)同时喷射信号波形:曲轴转一圈,喷油一次,一工作循环,喷油两次,根据曲轴位置信号确定喷射时刻。 (3)同时喷射正时图:各缸同喷,一缸两喷,有储存。 (4)优点和缺点 优点:控制回路简单,成本低,易维修。 缺点:有储存,喷射时刻不是最佳,各缸混合气不均匀。高速无影响,低速时因各缸雾化不同,怠速不稳。 2. 分组喷射

(3)分组喷射正时图:各组同喷,一缸一喷,有储存,基准缸1、4,非基准缸3、2。 (4)优点和缺点 优点:控制回路简单,成本低,易维修,性能比同时喷射提高。 缺点:有储存,怠速不稳。 3. 顺序喷射 按点火顺序各缸在最佳时刻独立喷射。 (1)顺序喷射控制电路:一根电源线,各缸独立驱动回路。 (2)顺序喷射信号波形:各缸一个工作循环喷油一次,根据曲轴位置信号和凸轮轴位置信号确定喷射时刻。

(3)顺序喷射正时图:顺序喷射,一缸一喷,无储存。 (4)优点和缺点 优点:

喷射时刻最佳,各缸混合气雾化好,性能最好。 缺点: 控制回路复杂,成本高。 3.2.2 喷油量(脉宽)的控制 1.起动时喷油量的控制 冷车起动时,温度低,转速低,应加浓; 起动喷油脉冲宽度(ms)=由发动机冷却液温度决定的喷油脉冲宽度(ms)+无效喷射时间(ms)根据起动装置的开关信号和发动机转速信号(一般400r/min以下)判定起动工况。 (1)通过冷起动喷油器加浓 冷起动喷油器安装在节气门后总进气歧管上,一个;温度-时间开关安装在发动机缸体上; 喷油器不受ECU控制,由温度-时间开关控制,喷射时间决定于水温和接通时间;只在冷起动时起作用,热起或起动后不喷油。 工作原理: 1)冷却液温度低于50℃时且起动开关ON(<15s),触点闭合,喷油; 冷却液温度越低,加热时间越长,喷油越多,最长喷射时间7.5s。 2)冷却液温度高于50℃(热起)时,或起动ON>15s,或起动OFF,触点断开,不喷油。

电控燃油喷射系统故障诊断综合分析

建东职业技术学院 毕业设计说明书 题目:电控燃油喷射系统故障综合分析 二级学院(直属学部):机电工程学院 班级: 09汽车专业: 汽车检测与维修 二 学生姓名:周建伟学号:0 指导教师姓名:桑楠职称:副教授 评阅教师姓名: 桑楠职称:硕士 2010年6月 摘要

从60年代后半期开始,随着半导体技术的高速发展,尤其是微型计算机的出现导致电控燃油喷射系统的产生,使汽车发动机进入一个电子控制的新时代。 1967年,德国Bosch公司研制成D型电子控制汽油喷射系统,随后又开发了L 型电子控制喷射系统,后来这些技术被不断改进、完善。到1979年,发动机电子控制技术己达到相当高的程度。 电控燃油喷射系统(Electronic fuel injection简称EFI)就是用计算机控制燃油供应量的装置。 电控燃油喷射系统中的计算机综合各种不同传感器送来的信息作出判断,控制喷油器以一定的压力,正确迅速地把燃油喷射到发动机进气歧管里,与吸入的空气混合后,进入发动机气缸,配合电于控制点火在最佳时刻点燃可燃混合气。 电子燃油喷射(Electronic Fuel Injection)系统,是用电子控制器(EC U)控制燃油喷射代替传统化油器的系统,简称为EFI系统。 电控燃油喷射发动机的控制原则是以电控单元为控制核心,以空气流量和发动机转速为控制基础,以喷油器和点火时刻为控制对象,使发动机在各种工况下都能得到与工况相匹配的最佳空燃比和最佳点火时刻。显然,电控燃油喷射系统能实现空燃比和点火的高精度控制。 现代电控汽油喷射系统采用闭环控制的供油特性,在电控汽油喷射系统的控制过程中,有结果参与的反馈控制,这使得电控燃油喷射系统的发动机功率得到了较大的提高,降低燃料消耗,使废气排放量减少到了最低。 本文主要介绍了电控燃油喷射系统常见故障的现象、故障原因、解决方法,电控汽油喷射系统的组成和工作原理,电控燃油喷射系统故障诊断,电控燃油喷射系统维修实例,电控发动机启动困难分析等。电控燃油喷射系统对电控汽车起着关键性的作用,ECU通过对燃油喷射系统的控制,不断的调节喷油量使其达到最佳的空燃比。电控燃油喷射系统故障主要分为:供油系统故障、点火高压电路故障、其他机械故障等。 关键字:电控燃油喷射系统半导体故障组成分析空燃比

3.2-电控燃油喷射系统的控制原理解析

.2.1 喷射正时的控制 1. 同时喷射 各缸喷油器同时打开,同时关闭。 (1)同时喷射控制电路:一根电源线,一个驱动回路。 (2)同时喷射信号波形:曲轴转一圈,喷油一次,一工作循环,喷油两次,根据曲轴位置信号确定喷射时刻。 (3)同时喷射正时图:各缸同喷,一缸两喷,有储存。 (4)优点和缺点 优点:控制回路简单,成本低,易维修。 缺点:有储存,喷射时刻不是最佳,各缸混合气不均匀。高速无影响,低速时因各缸雾化不同,怠速不稳。 2. 分组喷射

(3)分组喷射正时图:各组同喷,一缸一喷,有储存,基准缸1、4,非基准缸3、2。 (4)优点和缺点 优点:控制回路简单,成本低,易维修,性能比同时喷射提高。 缺点:有储存,怠速不稳。 3. 顺序喷射 按点火顺序各缸在最佳时刻独立喷射。 (1)顺序喷射控制电路:一根电源线,各缸独立驱动回路。 (2)顺序喷射信号波形:各缸一个工作循环喷油一次,根据曲轴位置信号和凸轮轴位置信号确定喷射时刻。

(3)顺序喷射正时图:顺序喷射,一缸一喷,无储存。 (4)优点和缺点 优点:

喷射时刻最佳,各缸混合气雾化好,性能最好。 缺点: 控制回路复杂,成本高。 3.2.2 喷油量(脉宽)的控制 1.起动时喷油量的控制 冷车起动时,温度低,转速低,应加浓; 起动喷油脉冲宽度(ms)=由发动机冷却液温度决定的喷油脉冲宽度(ms)+无效喷射时间(ms)根据起动装置的开关信号和发动机转速信号(一般400r/min以下)判定起动工况。 (1)通过冷起动喷油器加浓 冷起动喷油器安装在节气门后总进气歧管上,一个;温度-时间开关安装在发动机缸体上; 喷油器不受ECU控制,由温度-时间开关控制,喷射时间决定于水温和接通时间;只在冷起动时起作用,热起或起动后不喷油。 工作原理: 1)冷却液温度低于50℃时且起动开关ON(<15s),触点闭合,喷油; 冷却液温度越低,加热时间越长,喷油越多,最长喷射时间7.5s。 2)冷却液温度高于50℃(热起)时,或起动ON>15s,或起动OFF,触点断开,不喷油。

项目三 燃油供给系统故障诊断(一)

教学方案设计(首页)

教学方案设计

涡轮式电动燃油泵结构示意图 1—前轴承2—电动机定子3—后轴承4—出油阀5—出油口6—卸压阀 7—电动机转子 8—叶轮 9—进油口 10—泵壳体 11—叶片3)优点 泵油量大、泵油压力较高、供油压力稳定、运转噪声小、使用寿命长等优点。此外,由于不需要消声器所以可以小型化,因此广泛的应用在轿车上。如捷达、本田雅阁。 (2)滚柱式电动燃油泵 1)结构:主要由燃油泵电动机、滚柱式燃油泵、出油阀、卸压阀等组成。 2)原理 当转子旋转时,位于转子槽内的滚柱在离心力的作用下,紧压在泵体内表面上,对周围起密封作用,在相邻两个滚柱之间形成工作腔。在燃油泵运转过程中,工作腔转过出油口后,其容积不断增大,形成一定的真空度,当转到与进油口连通时,将燃油吸入;而吸满燃油的工作腔转过进油口后,容积不断减小,使燃油压力提高,受压燃油流过电动机,从出油口输出。 二、燃油滤清器 功用:滤清燃油中的杂质和水分,防止燃油系统堵塞,减小机件磨损,保证发动机正常工作。 一般采用纸质滤心,每行驶20000~40000㎞或1到2年应更换,安装

的环隙或喷孔中喷出;当电磁线圈断电时,电磁吸力消失,回位弹簧迅速使针阀关闭,喷油器停止喷油。 5.类型:高阻(电阻13~16Ω)和低阻(电阻2~3Ω)。 6.驱动方式:电流驱动和电压驱动 (二)各部件控制电路及检修 一、燃油泵控制 (1)ECU控制的燃油泵控制电路 燃油泵ECU控制电路 工作原理: 起动或重负荷时:发动机ECU通过FPC端子向燃油泵ECU发出高电平信号,燃油泵ECU向燃油泵输出高电压(约12V),燃油泵高速运转。 怠速或轻负荷时:发动机ECU通过FPC端子向燃油泵ECU发出低电平信号,燃油泵ECU向燃油泵输出低电压(约9V),燃油泵低速运转。 (2)燃油泵开关控制的燃油泵控制 主要用于装用叶片式空气流量计的L型EFI系统中。如图所示:

相关主题
文本预览
相关文档 最新文档