当前位置:文档之家› 基因表达技术

基因表达技术

基因表达技术
基因表达技术

基因表达技术

https://www.doczj.com/doc/5b15602454.html, 2007年5月16日09:43 生物技术世界

目前,基因表达已经成为生物学、医学和药物开发研究中的主流技术。基因表达就是基因转录及翻译的过程。广义来说,基因表达有两类:分析型和功能型。前者是指检测和定量基因,尤其是在比较两个样本时,如处理/非处理,疾病/正常。功能型的基因表达,目的是获得一定数量的蛋白质。Invitrogen公司的JudyMacemon称,在她的顾客中,对研究基因功能的基因表达/敲除感兴趣的人是采用基因表达制造蛋白质的人的两倍。

cDNA过度表达优势大

经典的基因表达操作常对病变细胞或组织、以及用药治疗之后的情况进行比较。为了验证某种化合物对基因的效果,研究人员用siRNA或反义化合物返回去做敲除试验。这些技术可以让基因或者基因组表现出特殊的沉默现象。OpenBioSystems公司的PaulTodd博士指出,虽然基因敲除很流行,但它不是证实基因性能的唯一方法。

Todd博士把cDNA过度表达称之为基因敲除的“合理逆转”。siRNA是让基因沉默,以确定基因下游的效应,而cDNA 引入许多目标基因的复制样本,引起基因及其下游产物都超表达。很多时候,从cDNA获得的信息要比siRNA的信息要更好,Todd认为这与设计无关。

采用siRNA方法,研究人员必须确定短寡聚核苷酸序列,该方法可以最佳方式敲除目标基因。并非所有的寡聚物都能发挥效用,因此,就无法做到把所有基因的反应都准确预测出来。通常要敲除20~80%的序列,采用cDNA会出现过表达现象,这样就可以提供足够的目标基因用于插入。Todd认为,cDNA可以确保产生更多的信使RNA,也就会产生更多的蛋白质或下游产物。

cDNA优于siRNA的主要优势在于前者具有更广泛的潜在应用范围,可以用股票的短期销售或者是长期交易进行比喻。短期销售只可能赚到原来的股票价格,然而,长期购买,股票可能会翻两倍或者是三倍。siRNA试验的信号只限制于基因原始状态的性能,因为可能从最高水平降低为零。cDNA能正调节一个基因的性能,而且,把目标基因与绿色荧光蛋白相融合,可以直接观察到在活细胞中产生的蛋白质及其分布位置。

基因表达在药物发现上有许多应用。在最近纽约科学院的一次会议上,Avalon制药公司副总裁PaulYoung向大家

展示,使用简单的基因信号或标记可以对新的候选药物进行鉴定。Young及其团队首先观察到,在各种疾病的试验细胞中,siRNA敲除“坏因子”引起的特定的基因表达,并对观察到的现象进行了验证。采用标准的基因微阵列,他对基因进行了活化以及去活化,然后挑选了5~20个变化最稳定或者是可预测的基因。根据这些基因的活性,Young构建了一个“条形码”,作为断裂途径或者是目标的特异性分子标记。用新化合物对这组基因进行测试,与在药物发现过程中被敲除的基因具有类似的活性。传统的药店称毫不会怀疑自己应用这些技术的能力,因为他们不需要知道药物靶标的知识。

基因表达数据库加速研究

GeneLogic公司的DonnaMendrick博士认为,要解释基因表达的差异,背景内容很重要。他说:“许多大型数据库的价值就是了解一个参数的正常的差异性。在一个涉及数千个样品的实验中,你可以看到大量的基因变化或者是差别,结果可能显得很异常,但是这不能代表一切,因为可能只是一个特殊的基因波动较大罢了。”

GeneLogic公司维护着世界上最大的动物和人体组织产毒基因表达数据库。档案资料由活组织检查样品中的人体基因表达构建,数据来自于临床部分,或者是标准的鼠肝细胞毒理学和基因表达数据。利用这些数据资料,公司构建了统计学上有效的可预测模型,可以对候选药物进行优先次序排列,调查生物标记,或者是用于毒理学机制的研究。客户也可以在两个数据库中调查与预测性研究和临床研究都有关的过渡性生物标记。

在基因组时期的黑暗时代(大约8年前),方法要比现在慢得多,可靠度也更低。基因芯片提供了一个高水平测试方法。因为高通量方法不是真正的高通量,因此像基因芯片那样的工具就很昂贵,为了保证统计数据的可信度,生物学家需要不停的思考每个数据点所需的组织样品或动物的数量。

许多实验人员相信,通过数据整合,他们能克服那些统计学上的难题。国际生命科学协会健康和环境研究所(ILSI)的Mendrick博士认为,这样做主要还是因为成本问题,他们都认为不能采用统计学方法,除非真正存在重复并且测量到这些结果。

自制芯片难敌批量产品

自微阵列技术最初开始出现以来,学术机构以及部分企业的研究团体都是自己制作自己的基因和蛋白质微阵列。一旦研究团体拥有自己的点阵设备,芯片成本就可能转变为试剂、基质底物和研究生的工作时间。除了节约研究经费之外,自制芯片的灵活度要更大,可以为某些特殊的生物体、组织或有关基因和蛋白质定做芯片。

俄勒冈健康科学大学神经学教授PeterSpencer等人的研究结果表明,自制的基因表达芯片是不可靠的。在去年发表的一篇文章中,Spencer等人发现,从使用结果来看,市场上销售的基因芯片产品要比大学实验室自制的芯片更好。

点样技术、仪器使用以及技术人员操作水平的差异,导致了一块芯片与一块芯片之间,一批产品与一批产品之间的高变异性。

Spencer认为,只有所使用的技术是可靠的并且是可重复的技术,得出的结果才是可信的。研究数据表明,在早期的微阵列研究中,大部分的科学家采用的是自制芯片,因此发表的研究结果与批量制造的芯片相比,可能会显得比较特殊。

在Spencer看来,制造厂家在产品的制造控制方面要做得更好,尤其是在芯片-芯片的可重复方面。他们不断的改进,使微阵列变成了高科技产品。如Illumina生产的微珠芯片产品,以寡聚核苷酸微珠为基础,微珠通过自组装随机固定到蚀刻的孔中。微珠芯片是一种基于光导纤维的芯片系统,在直径3.5mm的光纤束中,有约50,000根光纤。在每根光纤的顶端蚀刻出一个洞,可以镶嵌3um的小珠。每束光纤可镶嵌1,536种小珠,每种有约30个重复。

瞬时表达系统多快好省

瞬时的基因表达系统至少发展了20年的时间。其实研究的思路很简单:把一个基因快速的插入一个细胞,并且希望该基因能找到通往细胞核的途径,在细胞核中,细胞的结构将把它的序列转换为RNA,并且最终转化为蛋白质。瞬时表达系统利用了整个转染过程,包括试剂,从感染细胞的病毒,到把基因插入到核中的机械装置及技术。

只要转染细胞系还有活力,它们就能产生蛋白质,这个过程通常很短,在转染后很快就爆发出强大效应。因为外源基因不是细胞基因组的成分,所以新基因不能传给后代。在转染3~5天内,瞬时技术可以产生成百上千的蛋白质。根据参数来看,实际的产量可能会有所改变,会比细胞培养多得多。

近10年来,宾夕法尼亚州立大学的WayneCurtis教授一直从事快速转染基因表达技术的研究,把基因递送到植物组织生物反应器中生长,2004年获得了专利。系统采用了缺乏1种或更多种生长因子的土壤杆菌属营养缺陷型突变菌株。通过一种特殊的t-DNA传递体机制,重组质粒转化脓杆菌把基因转入植物中。Curtis表示,研究小组正在设法创建杆状病毒系统__用于组织培养的瞬时转化表达载体,可以快速的获得所需蛋白质。

Curtis认为,作为一种生产平台,瞬时的基因表达无法与固定转染相竞争,但细胞培养的顶级科学家FlorianWurm 博士认为两者可以进行比较。Wurm成功构建了2个简单的转染系统,根据磷酸钙系统,把基因转入哺乳细胞中,并且把规模扩大到了100升。

基因表达推动药物研究

最重要的是基因表达研究在哪里都不过时。在后基因组时期,大家对基因表达的兴趣迅速升温。即使是美国FDA,也正打算采取行动。2005年3月,当局发布了一份针对制药企业的《药理基因资料审查》指导,该文件也许是过去10年来最重要的药物管理准则。在文件中,FDA鼓励制药公司定期将产生的基因组信息数据提交给FDA。至少在目前,当局不会根据药物基因组学数据提供的不利信息就把正处于研究阶段的新药物应用研究终止掉,因为可能说明药物具有毒性或是在某种基因型中的效果更差,那些数据其实对新药物的应用是不利的。FDA似乎对制药公司使用药物基因组学数据十分上心,其实是为了生产更好更安全的药物。GeneLogic的DonnaMendrick认为,推出这个指导,表明当局已经把基因表达技术真正应用到“活”的化合物上了。■

(译自《BioscienceTechnology》)

基因表达的分析技术

第二篇细胞的遗传物质 第三章基因表达的分析技术 生物性状的表现均是通过基因表达调控实现的。对基因结构与基因表达调控进行研究,是揭示生命本质的必经之路。在基因组研究的过程中,逐步建立起一系列行之有效的技术。针对不同的研究内容,可建立不同的研究路线。 第一节PCR技术 聚合酶链反应(polymerase chain reaction,PCR)技术是一种体外核酸扩增技术,具有特异、敏感、产率高、快速、简便等突出优点。。PCR技术日斟完善,成为分子生物学和分子遗传学研究的最重要的技术。应用PCR技术可以使特定的基因或DNA片段在很短的时间内体外扩增数十万至百万倍。扩增的片段可以直接通过电泳观察,并作进一步的分析。 一、实验原理 PCR是根据DNA变性复性的原理,通过特异性引物,完成特异片段扩增。第一,按照欲检测的DNA的5'和3'端的碱基顺序各合成一段长约18~24个碱基的寡核苷酸序列作为引物(primer)。引物设计需要根据以下原则:①引物的长度保持在18~24bp之间,引物过短将影响产物的特异性,而引物过长将影响产物的合成效率;②GC含量应保持在45~60%之间;③5'和3'端的引物间不能形成互补。第二,将待检测的DNA变性后,加入四种单核苷酸(dNTP)、引物和耐热DNA聚合酶以及缓冲液。通过95℃变性,在进入较低的温度使引物与待扩增的DNA链复性结合,然后在聚合酶的作用下,体系中的脱氧核苷酸与模板DNA链互补配对,不断延伸合成新互补链,最终使一条DNA双链合成为两条双链。通过变性(92~95℃)→复性(40~60℃)→引物延伸(65~72℃)的顺序循环20至40个周期,就可以得到大量的DNA片段。理论上循环20周期可使DNA扩增100余万倍。

基因表达谱芯片的数据分析

基因表达谱芯片的数据分析(2012-03-13 15:25:58)转载▼ 标签:杂谈分类:生物信息 摘要 基因芯片数据分析的目的就是从看似杂乱无序的数据中找出它固有的规律, 本文根据数据分析的目的, 从差异基因表达分析、聚类分析、判别分析以及其它分析等角度对芯片数据分析进行综述, 并对每一种方法的优缺点进行评述, 为正确选用基因芯片数据分析方法提供参考. 关键词: 基因芯片; 数据分析; 差异基因表达; 聚类分析; 判别分析 吴斌, 沈自尹. 基因表达谱芯片的数据分析. 世界华人消化杂志2006;14(1):68-74 https://www.doczj.com/doc/5b15602454.html,/1009-3079/14/68.asp 0 引言 基因芯片数据分析就是对从基因芯片高密度杂交点阵图中提取的杂交点荧光强度信号进行的定量分析, 通过有效数据的筛选和相关基因表达谱的聚类, 最终整合杂交点的生物学信息, 发现基因的表达谱与功能可能存在的联系. 然而每次实验都产生海量数据, 如何解读芯片上成千上万个基因点的杂交信息, 将无机的信息数据与有机的生命活动联系起来, 阐释生命特征和规律以及基因的功能, 是生物信息学研究的重要课题[1]. 基因芯片的数据分析方法从机器学习的角度可分为监督分析和非监督分析, 假如分类还没有形成, 非监督分析和聚类方法是恰当的分析方法; 假如分类已经存在, 则监督分析和判别方法就比非监督分析和聚类方法更有效率。根据研究目的的不同[2,3], 我们对基因芯片数据分析方法分类如下: (1)差异基因表达分析: 基因芯片可用于监测基因在不同组织样品中的表达差异, 例如在正常细胞和肿瘤细胞中; (2)聚类分析: 分析基因或样本之间的相互关系, 使用的统计方法主要是聚类分析; (3)判别分析: 以某些在不同样品中表达差异显著的基因作为模版, 通过判别分析就可建立有效的疾病诊断方法. 1 差异基因表达分析(difference expression, DE) 对于使用参照实验设计进行的重复实验, 可以对2样本的基因表达数据进行差异基因表达分

基因表达的检测的几种方法

基因表达检测的最终技术目标是能确定所关注的任何组织、细胞的 RNA的绝对表达量。可以先从样本中抽提RNA,再标记RNA, 然后将这些标记物作探针与芯片杂交,就可得出原始样本中不同 RNA的量。然而用于杂交的某个特定基因的RNA的量与在一个 相应杂交反应中的信号强度之间的关系十分复杂,它取决于多种 因素,包括标记方法、杂交条件、目的基因的特征和序列。所以 芯片的方法最好用于检验两个或多个样本中的某种RNA的相对 表达量。样本之间某个基因表达的差异性(包括表达的时间、空 间特性及受干扰时的改变)是基因表达最重要的,而了解RNA 的绝对表达丰度只为进一步的应用或多或少地起一些作用。 基因表达的检测有几种方法。经典的方法(仍然重要)是根据在 细胞或生物体中所观察到的生物化学或表型的变化来决定某一 特定基因是否表达。随着大分子分离技术的进步使得特异的基因 产物或蛋白分子的识别和分离成为可能。随着重组DNA技术的 运用,现在有可能检测.分析任何基因的转录产物。目前有好几 种方法广泛应用于于研究特定RNA分子。这些方法包括原位杂交.NORTHERN凝胶分析.打点或印迹打点.S-1核酸酶分 析和RNA酶保护研究。这里描述RT-PCR从RNA水平上检查 基因表达的应用。8 f3 f- |2 L) K) b7 ]- ~- | RT-PCR检测基因表达的问题讨论

关于RT-PCR技术方法的描述参见PCR技术应用进展,在此主要讨论它在应用中的问题。理论上1μL细胞质总RNA对稀有mRNA扩增是足够了(每个细胞有1个或几个拷贝)。1μL差不多相当于50-100,000个典型哺乳动物细胞的细胞质中所含RNA的数量,靶分子的数量通常大于50,000,因此扩增是很容易的。该方法所能检测的最低靶分子的数量可能与通常的DNAPCR相同;例如它能检测出单个RNA分子。当已知量的转录RNA(用T7RNA聚合酶体外合成)经一系列稀释,实验结果表明通过PCR的方法可检测出10个分子或低于10个分子,这是反映其灵敏度的一个实例。用此技术现已从不到1个philadelphia染色体阳性细胞株K562中检测到了白血病特异的MRNA的转录子。因此没必要分离polyA+RNA,RNA/PCR法有足够的灵敏度来满足绝大多数实验条件的需要。 7 H+ F& _* S6 W( a8 p: [, @- d, { 将PCR缓冲液同时用于反转录酶反应和PCR反应,可简化实验步骤。我们发现整个反应过程皆用PCR缓冲液的结果相当于或优于先用反转录缓冲液合成CDNA,然后PCR缓冲液进行PCR扩增循环。当然,值得注意的是PCR缓冲液并不最适合第一条DNA链的合成。我们对不同的缓冲液用于大片段DNA 合成是否成功还没有进行过严格的研究。

13 生物化学习题与解析基因表达调控

基因表达调控 一、选择题 (一) A 型选择题 1 .基因表达调控的最基本环节是 A .染色质活化 B .基因转录起始 C .转录后的加工 D .翻译 E .翻译后的加工 2 .将大肠杆菌的碳源由葡萄糖转变为乳糖时,细菌细胞内不发生 A .乳糖→ 半乳糖 B . cAMP 浓度升高 C .半乳糖与阻遏蛋白结合 D . RNA 聚合酶与启动序列结合 E .阻遏蛋白与操纵序列结合 3 .增强子的特点是 A .增强子单独存在可以启动转录 B .增强子的方向对其发挥功能有较大的影响 C .增强子不能远离转录起始点 D .增强子增加启动子的转录活性 E .增强子不能位于启动子内 4 .下列那个不属于顺式作用元件 A . UAS B . TATA 盒 C . CAAT 盒 D . Pribnow 盒 E . GC 盒 5 .关于铁反应元件( IRE )错误的是 A .位于运铁蛋白受体 (TfR) 的 mRNA 上 B . IRE 构成重复序列 C .铁浓度高时 IRE 促进 TfR mRNA 降解 D .每个 IR E 可形成柄环节构 E . IRE 结合蛋白与 IRE 结合促进 TfR mRNA 降解 6 .启动子是指 A . DNA 分子中能转录的序列 B .转录启动时 RNA 聚合酶识别与结合的 DNA 序列 C .与阻遏蛋白结合的 DNA 序列 D .含有转录终止信号的 DNA 序列 E .与反式作用因子结合的 RNA 序列 7 .关于管家基因叙述错误的是 A .在同种生物所有个体的全生命过程中几乎所有组织细胞都表达 B .在同种生物所有个体的几乎所有细胞中持续表达 C .在同种生物几乎所有个体中持续表达 D .在同种生物所有个体中持续表达、表达量一成不变 E .在同种生物所有个体的各个生长阶段持续表达 8 .转录调节因子是 A .大肠杆菌的操纵子 B . mRNA 的特殊序列 C .一类特殊的蛋白质 D .成群的操纵子组成的凋控网络 E .产生阻遏蛋白的调节基因 9 .对大多数基因来说, CpG 序列高度甲基化 A .抑制基因转录 B .促进基因转录 C .与基因转录无关 D .对基因转录影响不大 E .既可抑制也可促进基因转录 10 . HIV 的 Tat 蛋白的功能是 A .促进 RNA po l Ⅱ 与 DNA 结合 B .提高转录的频率

基因表达系列分析技术及其应用

万方数据

万方数据

万方数据

基因表达系列分析技术及其应用 作者:党冬梅, 魏晓萍, 惠起源, 符兆英 作者单位:延安大学医学院,陕西,延安,716000 刊名: 延安大学学报(医学科学版) 英文刊名:JOURNAL OF YANAN UNIVERSITY(MEDICAL SCIENCE EDITION) 年,卷(期):2005,3(1) 被引用次数:0次 参考文献(8条) 1.Velculescu E查看详情 1995 2.Menssen A.Hermeking H Characterization of the c-MYC regulated transcriptome by SAGE:Identification and analysis of target genes 2002(09) 3.Levens D Disentangling the MYC web 2002(09) 4.Matsumura H.Nirasawa S.Terachi R Transcript profiling in rice (Oryzn sation L.) seedlings using serial analysis of gene expression 1999(06) 5.Margulies E H.Kardia S L R.Innis J W查看详情 2001 6.Du Z.Scott A D.May G D Expression profiling of UV-and Gamma-irradiated Ambidopsis plantlets through serial analysis of gene expression 2001 7.Inadera H.Hashimot0 S.Dongi H Y WISP-2 as a novel estrogen-responsive gene in human breast cancer cell 2000(01) 8.Xu L L.Shanmugan N.Sesterhenn I A A novel androgen regulated gene,PMEPAI.Iocated on chromosome 20113 exhibit high level expression in protstate 2000(03) 本文链接:https://www.doczj.com/doc/5b15602454.html,/Periodical_yadxxb-yxkxb200501045.aspx 授权使用:西安交通大学(xajtdx),授权号:fa53fce6-7ae2-4ac8-b779-9e9900a7d328 下载时间:2011年3月1日

基因差异表达技术

基因差异表达技术 真核生物中,从个体的生长、发育、衰老、死亡,到组织的得化、调亡以及细胞对各种生物、理化因子的应答,本质上都涉及基因的选择性表达。高等生物大约有30000个不同的基因,但在生物体内任意8细胞中只有10%的基因的以表达,而这些基因的表达按特定的时间和空间顺序有序地进行着,这种表达的方式即为基因的差异表达。其包括新出现的基因的表达与表达量有差异的基因的表达。生物体表现出的各种特性,主要是由于基因的差异表达引起的。 由于基因的差异表达的变化是调控细胞生命活动过程的核心机制,通过比较同一类细胞在不同生理条件下或在不同生长发育阶段的基因表达差异,可为分析生命活动过程提供重要信息。研究基因差异表达的主要技术有差别杂交(differential hybridization)、扣除(消减)杂交(subtractive hybridization of cDNA,SHD)、mRNA差异显示(mRNA differential display,DD)、抑制消减杂交法(suppression subtractive hybridization,SSH)、代表性差异分析(represential display analysis,RDA)、交互扣除RNA差别显示技术(reciprocal subtraction differential RNA display)、基因表达系列分析(serial analysis of gene expression,SAGE)、电子消减(electronic subtraction)和DNA微列阵分析(DNA microarray)等。 一、差别杂交与扣除杂交 差别杂交(differential hybridization)又叫差别筛选(differential screening),适用于分离经特殊处理而被诱发表达的mRNA的cDNA克隆。为了增加这种方法的有效性,后来又发展出了扣除杂交(subtractive hybridization)或扣除cDNA克隆(subtractive cDNA cloning),它是通过构建扣除文库(subtractive library)得以实现的。 (一)差别杂交 从本质上讲,差别杂交也是属于核酸杂交的范畴。它特别适用于分离在特定组织中表达

基因表达系列分析(Serial Analysis of Gene Expression,SAGE)技术

SAGE 技术 MRNA 结合到微珠子上(Microscopic Bead and mRNA) mRNA 转录成DNA(mRNA binds to bait and is copied into DNA)

用酶切开DNA的一小段(An enzyme cuts the DNA) 另一个酶定在DNA末端以便切下一小段(An enzyme locks onto the DNA and cuts off a short tag),这一小段就被视为这个基因的标签 两个标签连在一起(Two tags are linked together)

在末端的定位分子被切掉(Enzymes cut off the "Docking Molecules") 都连成一条线(Di-Tags are combined into large concatemers)

DNA上所携带的遗传信息,需要通过RNA为中介体,合成出组织和正常生理功能所需要的蛋白质,这个过程被称为基因的表达。在生物体中不同的组织和器官所表达的基因群是不一样的,我们把基因群的表达状况称为基因表达谱。目前,高通量地研究基因表达谱的方法主要有两种,即生物芯片和基因表达串联分析(serial analysis of gene expression, SAGE)。基因芯片所能检测的基因必须是已知的基因,放在芯片上几种基因的探针就只能检测这几种基因的表达谱;相比之下,SAGE能以远高于DNA芯片的精确度和重复性来检测在病理条件下基因表达谱的改变,而不必考虑所检测的基因是已知的还是未知的。因此在检测疾病相关的新基因,特别是无法用基因芯片进行检测的低表达量致病基因时,SAGE是目前的最佳手段,无可取代。 SAGE技术为Genzyme公司所拥有的专利技术。其技术简介如下: SAGE技术得以建立的理论基础 首先,一段来自于任一转录本特定区域的"标签"(Tag),即长度仅9-14bp的短核苷酸序列,就已包含足够的信息以特异性地确定该转录本。例如:一个9碱基的序列能有49=262144种不同的排列组合,而人类基因组据估计仅编码80000种转录本,因此在理论上每一个9碱基标签就能够代表一种转录本的特征序列。 第二,如果将短片段标签相互连接、集中形成长的DNA分子,则对该克隆进行

基因表达分析

基因表达分析 1、EST(Expressed Sequence Tag)表达序列标签(EST)分析 1、EST基本介绍 1、定义: EST是从已建好的cDNA库中随机取出一个克隆,进行5’端或3’端进行一轮单向自动测序,获得短的cDNA部分序列,代表一个完整基因的一小部分,在数据库中其长度一般从20到7000bp不等,平均长度为400bp。 EST来源于一定环境下一个组织总mRNA所构建的cDNA文库,因此,EST也能说明该组织中各基因的表达水平。 2、技术路线: 首先从样品组织中提取mRNA,在逆转录酶的作用下用oligo(dT)作为引物进行RT-PCR 合成cDNA,再选择合适的载体构建cDNA文库,对各菌株加以整理,将每一个菌株的插入片段根据载体多克隆位点设计引物进行两端一次性自动化测序,这就是EST序列的产生过程。

3、EST数据的优点和缺点: (1)相对于大规模基因组测序而言,EST测序更加快速和廉价。 (2)EST数据单向测序,质量比较低,经常出现相位的偏差。 (3)EST只是基因的一部分,而且序列里有载体序列。 (4)EST数据具有冗余性。 (5)EST数据具有组织和不同时期特异性。 4、EST数据的应用 EST作为表达基因所在区域的分子标签因编码DNA序列高度保守而具有自身的特殊性质,与来自非表达序列的标记(如AFLP、RAPD、SSR等)相比,更可能穿越家系与种的限制。因此,EST标记在亲缘关系较远的物种间比较基因组连锁图和比较质量性状信息是特别有用的。同样,对于一个DNA序列缺乏的目标物种,来源于其他物种的EST也能用于该物种有益基因的遗传作图,加速物种间相关信息的迅速转化。具体说,EST的作用表现在:

基因表达及分析技术

基因表达及其分析技术 生命现象的奥秘隐藏在基因组中,对基因组的解码一直是现代生命科学的主流。基因组学研究可以说是当今生命科学领域炙手可热的方向。从DNA 测序到SNP、拷贝数变异(copy number variation , CNV)等DNA多态性分析,到DNA 甲基化修饰等表观遗传学研究,生命过程的遗传基础不断被解读。 基因组研究的重要性自然不言而喻。应该说,DNA 测序技术在基因组研究 中功不可没,从San ger测序技术到目前盛行的新一代测序技术(Next Gen eration Seque ncing NGS)到即将走到前台的单分子测序技术,测序技术是基因组解读最重要的主流技术。而基因组测序、基因组多态性分析、DNA 甲基化修饰等表观遗传分析等在基因组研究中是最前沿的课题。但是基因组研究终究类似“基因算命”,再清晰的序列信息也无法真正说明一个基因的功能,基因功能的最后鉴定还得依赖转录组学和蛋白组学,而转录作为基因发挥功能的第一步,对基因功能解读就变得至关重要。声称特定基因、特定SNP、特定CNV、特定DNA修饰等与某种表型有关,最终需要转基因、基因敲除、突变、 RNAi 、中和抗体等技术验证,并必不可少要结合基因转录、翻译和蛋白修饰等数据。 基因实现功能的第一步就是转录为mRNA或非编码RNA,转录组学主要研究基因转录为RNA 的过程。在转录研究中,下面几点是必须考虑的: 1,基因是否转录(基因是否表达)及基因表达水平高低(基因是低丰度表达还是中、高丰度表达)。特定基因有时候在一个细胞中只有一个拷贝的表达,而表达量会随细胞类型不同或发育、生长阶段不同或生理、病理状态不同而改变。因此任何基

生物化学:基因表达调控(名词解释)

1. 顺式作用元件(cis-acting element)是指可以影响自身基因表达活 性的真核DNA序列。 2. 反式作用因子(trans-acting factor).指调控转录的蛋白质因子。它们由某一基因表达后通过与特异的顺式作用元件相互作用,反式激活另一基因的转录。 3. 管家基因(housekeeping gene).某些基因产物对生命全过程都是 必需的或必不可少的。这类基因在一个生物个体的几乎所有细胞中均表达,被称为管家基因。 4. 基因表达的时空性.即基因表达的时间、空间特异性。时间特异性:按功能需要某一特定基因的表达严格按特定的时间顺序发生。在多细胞生物基因表达的时间特异性又称阶段特异性。空间特异性:在个体生长全过程,某种基因产物在个体在不同组织或器官表达,即按空间顺序出现。 5. 启动子(promoter)启动子指RNA聚合酶结合位点周围的一组 转录调控组件,包括至少一个转录起始点以及一个以上的功能组件。 6. 增强子(enhancer)指远离转录起始点(1~30kb),决定基因的时间,空间特异性表达,增强启动子转录活性的DNA序列,其发挥作用的方式通常与方向,距离无关。 7. 沉默子(silencer)是某些基因含有负性调节元件,当其结合特异蛋白质因子时,对基因转录起阻遏作用。

8. 基本转录因子基本转录因子(general transcription factor)为RNA 聚合酶结合启动子所必需的一组蛋白质因子,决定三种RNA(tRNA、mRNA及rRNA)转录的类别。 9. 特异转录因子特异转录因子(special transcription factor):为个 别基因转录所必需,决定该基因的时间、空间特异性表达,故称特异转录因子 10.基因组基因组(genome):指一个细胞或病毒所携带的全部遗 传信息或整套基因。 11.基因表达基因表达:指储存遗传信息的基因转录及翻译合成蛋 白质,或者经转录合成RNA的过程。

基因表达数据分析

第8章基因表达数据分析 基因芯片或DNA微阵列等高通量检测技术的发展,可以从全基因组水平定量或定性检测基因转录产物mRNA,获取基因表达的信息。由于生物体中的细胞种类繁多,同时基因表达具有时空特异性,因此,基因表达数据要比基因组数据更为复杂、数据量更大、数据的增长速度更快。基因表达数据中蕴含着基因调控的规律,可以反映细胞当前的生理状态,例如(??)是否恶化、(??)是否对药物有效等。对基因表达数据的分析是生物信息学的重大挑战之一,也是DNA微阵列能够推广应用的关键环节之一。 基因表达数据分析的对象是在不同条件下,全部或部分基因的表达数据所构成的数据矩阵。通过对数据矩阵的分析,回答一些生物学问题,例如,基因的功能是什么?在不同条件或不同细胞类型中,哪些基因的表达存在差异?在特定的条件下,哪些基因的表达发生了显著改变,这些基因受到哪些基因的调节,或者调控哪些其它的基因?哪些基因的表达是条件特异性的,根据它们的行为可以判断细胞的状态(正常或癌变)????等等。对这些问题的回答,结合其他生物学知识和数据有助于阐明基因的调控路径和基因之间的调控网络。揭示基因调控路径和网络是生物学和生物信息学共同关注的目标,是系统生物学(Systems Biology,在附录中增加解释条目!)研究的核心内容。目前,对基因表达数据的分析主要是在三个逐渐复杂的层次上进行:1、分析单个基因的表达水平,根据在不同实验条件下,该基因表达水平的变化,来判断它的功能,例如可以确定肿瘤类型特异基因。采用的分析方法可以是统计学中的假设检验等。2、考虑基因组合,将基因分组,研究基因的共同功能、相互作用以及协同调控等。多采用聚类分析等方法。3、尝试推断潜在的基因调控网络,从机理上解释观察到的基因表达谱。多采用反工程的方法。 本章首先介绍基因表达数据的来源和预处理方法;然后介绍基因表达数据分析的主要方法,即表达差异分析和聚类分析;最后简单介绍从基因表达数据出发研究基因调控网络的一些经典模型。 8.1 基因表达数据的获取 基因表达数据反映的是直接或间接测量得到的基因转录产物mRNA在细胞中的拷贝数或者水平(转录??),这些数据可以用于分析哪些基因的表达发生了改变,它们有何相关性,在不同条件下基因是如何受影响的。它们在医学临床诊断、药物疗效判断、揭示疾病发生机制等方面有重要的应用。目前检测mRNA水平的方法有DNA微阵列、基因芯片、基因表达串行化分析(Serial analysis of gene expression,SAGE)、RT-PCR、EST测序等。目前,最主要的表达数据来自于基因芯片或cDNA微阵列,它们的原理是相同的,利用4种核苷酸之间两两配对互补的特性,使两条在序列上互补的单链形成双链,这个过程被称为杂交。基本技术是:在一个约1cm2大小的玻璃片上,将称为探针的核苷酸片段固定在上面,这个过程称为芯片制备;从细胞或组织中提取mRNA,通过RT-PCR合成荧光标记的cDNA,与芯片杂交;用激光显微镜或荧光显微镜检测杂交后的芯片,获取荧光强度,分析细胞中的mRNA的相对水平。

基因表达调控

第十三章基因表达调控 一、名词解释 1.基因表达 2.HRE 3.CAP 4.操纵子 5.启动子 二、填空 1.基因表达调控可发生在遗传信息传递的任何环节,但是基因表达 的基本控制点。 2.操纵子包括______________及______________。 3.基因表达包括______________和______________。 三、问答 简述乳糖操纵子的结构及其调节机制。 参考答案 一、名词解释 1.遗传信息表现为有功能的蛋白质,包括转录和翻译。 2.即激素反应元件,能与激素-受体复合物二聚体结合的DNA特定序列,结合后 可调节(促进或抑制)相邻基因的转录,进而调节该基因编码蛋白的合成。 3.CAP即分解代谢物基因激活蛋白,为同二聚体,分子内部有DNA结合区和cAMP 结合位点,可与乳糖操纵子启动序列中的CAP结合位点结合,正性调节乳糖操纵子的表达。 4.结构基因及其上游的调控序列。 5.σ因子辨认结合的部位。 二、填空 1.转录起始 2.结构基因上游调控序列 3.转录翻译

三、问答 乳糖操纵子含Z、Y、及A三个结构基因,编码降解乳糖的酶,此外还有一个操纵序列O、一个启动序列P和一个调节基因I,在P序列上游还有一个CAP 结合位点。由P序列、O序列和CAP结合位点共同构成lac操纵子的调控区,三个编码基因由同一个调控区调节。 乳糖操纵子的调节机制可分为三个方面: (1)阻遏蛋白的负性调节没有乳糖时, 阻遏蛋白与O序列结合,阻碍RNA 聚合酶与P序列结合,抑制转录起动;有乳糖时,少量半乳糖作为诱导剂结合阻遏蛋白,改变了它的构象,使它与O序列解离,RNA聚合酶与P序列结合,转录起动。 (2) CAP的正性调节没有葡萄糖时,cAMP浓度高,结合cAMP的CAP与lac操纵子启动序列附近的CAP结合位点结合,激活RNA转录活性;有葡萄糖时,cAMP浓度低,cAMP与CAP结合受阻,CAP不能与CAP结合位点结合,RNA转录活性降低。 (3)协调调节当阻遏蛋白封闭转录时,CAP对该系统不能发挥作用;如无CAP存在,即使没有阻遏蛋白与操纵序列结合,操纵子仍无转录活性。

基因表达分析

荧光定量PCR 在基因表达分析中的应用 所谓基因表达就是指在特定的时刻某种我们感兴趣的基因在组织或细胞中的mRNA 的表达数量。众所周知,很多的疾病(如肿瘤)的发生发展、很多药物的作用机理、很多生物的代谢调控作用等都和基因表达的变化有关,因此对基因表达进行精确定量是十分重要的。过去为了对mRNA 进行定量有了各种各样的方法,如Southern 杂交、Northern 杂交、原位杂交、传统PCR 等,但是我们也都知道这些技术灵敏性较差,重复性不好,操作比较烦琐,已经无法满足现在科研和检测的需要,于是荧光定量PCR 技术也就应运而生了。荧光定量PCR 技术能对核酸进行精确定量,因此大大提高了在基因表达的准确性和灵敏度,深受用户的青睐,广泛的应用于肿瘤研究、药物筛选、功能基因组研究等各个领域,目前已经成了很多科研文章发表的重要实验内容。 基因表达分析中常见到的重要问题 1、要检测的基因 基因表达分析的目的就是检测某种我们感兴趣的基因在不同组织或细胞中的表达差异。荧光定量PCR 技术可以对核酸物质的含量进行精确的定量,也就成了研究基因表达差异的一把利器。 在基因表达分析实验中要检测两个基因,一个是目的基因和另一个是看家基因。之所以要引入看家基因是由于不能确定要比较的样品所用的组织起始量相同。就是说比如有的老师提取正常样品的基因时用了100个细胞,而提取病变样品时只用了10个细胞,这时候的基因表达差异可能是由于提取时候的样品细胞数不同引起的,为了纠正这种误差,我们选用认为在两个样本中表达量不变的基因作为内参照,来去除这带来的干扰。例如,要研究某个基因在肿瘤样品和正常样品中的基因表达差异。我们在实验中发现我们选择研究的正常样品中的看家基因的表达量是肿瘤样品中的10倍,就认为正常样品的细胞数就是肿瘤样品细胞数的10倍,那么在肿瘤样品中目的基因的基因表达量应该乘以10倍,才能和正常样品进行比较。 2、计算基因表达差异 基因表达差异的计算是通过所得到的Ct 值来计算的,要计算两个样品(待测样品和对照样品)的目的基因的表达差异必须检测得到4个Ct 值:待测样品和对照样品中目的基因和看家基因的Ct 值。 那么基因表达差异应该计算为 基因表达差异=2(△Ct1-△Ct2) 目的基因 看家基因 待测样品 对照样品 △Ct1 △Ct2

基因表达谱分析技术

基因表达谱分析技术 1微阵列技术(microarray) 这是近年来发展起来的可用于大规模快速检测基因差别表达、基因组表达谱、DNA序列多态性、致病基因或疾病相关基因的一项新的基因功能研究技术。其原理基本是利用光导化学合成、照相平板印刷以及固相表面化学合成等技术,在固相表面合成成千上万个寡核苷酸“探针”(cDNA、ESTs或基因特异的寡核苷酸),并与放射性同位素或荧光物标记的来自不同细胞、组织或整个器官的DNA或mRNA反转录生成的第一链cDNA进行杂交,然后用特殊的检测系统对每个杂交点进行定量分析。其优点是可以同时对大量基因,甚至整个基因组的基因表达进行对比分析。包括cDNA芯片(cDNA microarray)和DNA芯片(DNA chips)。 cDNA芯片使用的载体可以是尼龙膜,也可以是玻片。当使用尼龙膜时,目前的技术水平可以将20000份材料点在一张12cm×18cm的膜上。尼龙膜上所点的一般是编好顺序的变性了的双链cDNA片段。要得到基因表达情况的数据,只需要将未知的样品与其杂交即可。杂交的结果表示这一样品中基因的表达模式,而比较两份不同样品的杂交结果就可以得到在不同样品中表达模式存在差异的基因。杂交使用的探针一般为mRNA的反转录产物,标记探针使用32PdATP。如果使用玻片为载体,点阵的密度要高于尼龙膜。杂交时使用两种不同颜色的荧光标记不同的两份样品,然后将两份样品混合起来与一张芯片杂交。洗去未杂交的探针以后,能够结合标记cDNA的点受到激发后会发出荧光。通过扫描装置可以检测各个点发出荧光的强度。对每一个点而言,所发出的两种不同荧光的强度的比值,就代表它在不同样品中的丰度。一般来讲,显示出来的图像中,黄色的点表示在不同的样品中丰度的差异不大,红色和绿色的点代表在不同样品中其丰度各不相同。使用尼龙膜为载体制作cDNA芯片进行研究的费用要比玻片低,因为尼龙膜可以重复杂交。检测两种不同的组织或相同组织在不同条件下基因表达的差异,只需要使用少量的尼龙膜。但是利用玻片制作的cDNA芯片灵敏度更高,而且可以使用2种探针同时与芯片杂交,从而降低了因为杂交操作带来的差异;缺点是无法重复使用还必须使用更为复杂的仪器。 Guo等(2004)将包含104个重组子的cDNA文库点在芯片上,用于检测拟南芥叶片衰老时的基因表达模式,得到大约6200差异表达的ESTs,对应2491个非重复基因。其中有134个基因编码转录因子,182个基因预测参与信号传导,如MAPK级联传导路径。Li等(2006)设计高密度的寡核苷酸tiling microarray方法,检测籼稻全基因组转录表达情况。芯片上包含13,078,888个36-mer寡核苷酸探针,基于籼稻全基因组shot-gun测序的序列合成,大约81.9%(35,970)的基因发生转录事件。Hu等(2006)用含有60,000寡核苷酸探针(代表水稻全部预测表达基因)的芯片检测抗旱转基因植株(过量表达SNAC1水稻)中基因的表达情况,揭示大量的逆境相关基因都是上升表达的。 2基因表达系列分析(Serial analysis of gene expression,SAGE) 基因表达系列分析(SAGE)是一种转录物水平上研究细胞或组织基因表达模式的快速、有效的技术,也是一种高通量的功能基因组研究方法,它可以同时将不同基因的表达情况进行量化研究(Velculescu et al.,1995)。SAGE的基本原理是:每一条mRNA序列都可以用它包含的9bp的小片段(TAG)代替,因此考查这些TAGs出现的频率就能知道每一种mRNA 的丰度。首先利用生物素标记的oligo(dT)引物将mRNA反转录成双链cDNA,然后利用NlaIII 酶切双链cDNA。NlaIII酶的识别位点只有4bp,因此cDNA都被切成几十bp的小片段。带有生物素标记的小片段cDNA被分离出来,平均分成2份。这2份cDNA分别跟2个接头连接,2个接头中均有一个FokI酶切位点。FokI是一种II S型核酸内切酶,其识别位点不对称,切割位点位于识别位点下游9bp且不依赖于特异的DNA序列。FokI酶切分成2份的cDNA之

基因表达与调控教学大纲

《基因表达与调控》研究生课程教学大纲 。 课程目标 鉴于研究生已在本科生阶段学习基因工程和细胞生物学基础,本课程的主要目标是以基因表达的转录水平调控和分子生物学基本技术为重点,帮助一年级研究生通过对经典教科书的阅读,深入了解基因表达与调控的基本内容、形成分子生物学基本思维方式和研究方法,为其今后的研究工作提供必要的背景知识。 课程组织 课程讲解:根据教学大纲,以J.D沃森等所编写的基因的分子生物学为参考,并引物最新的研究发现,对真核细胞中基因的转录调控过程进行讲解。 课堂报告和讨论:为每一位同学分发一份基因转录相关的最新科研报道,让同学进行详细阅读和理解,并且制作成ppt形式,在课堂上进行报告,全体同学对报告内容进行学习和讨论,堂报告本身根据主题是否明确、资料是否充分、组织十分艰巨、报告是否生动、回答问题是否准确等加以评分,报告成绩分数占总成绩的50%。 读书报告:每位同学在课程中除了阅读相应的教科书及文献;在课堂报告的准备、报告、回答问题活动后,还需根据所报告的内容以及所查阅的资料在学期结束前上交一份读书报告。读书报告成绩占整个课程成绩的30%。 课堂成绩:根据每位同学的出勤情况和上课参与讨论的积极程度酌情评分,成绩占整个课程的20%。 学分与课时安排 本课程2学分,共40课时,其中教师主讲30课时,学生报告10课时。 序号 教学内容 学时 1 引言:对基因转录和调控的简单介绍 2 2 一.中心法则 2

二.基因,基因组和染色体 2 4 三.染色体的复制和分离 2 5 四.核小体 4 6 五.RNA转录 4 7 六.基因表达转录水平调控的研究I(操纵子模型、启动子和增强子)4 8 七.基因表达转录水平调控的研究II(转录因子) 4 9

生物化学试题及答案-基因表达调控

基因表达调控 一、单项选择题 1.基因表达产物是 A.RNA B.DNA C.蛋白质 D.DNA和蛋白质 E.RNA和蛋白质 2. 基因表达调控可在多级水平上进行,但其基本控制点是: A.基因活化, B.转录起始 C.转录后加工D.翻译 E.翻译后加工 3. 关于管家基因叙述错误的是 A. 在生物个体的几乎各生长阶段持续表达 B. 在生物个体的几乎所有细胞中持续表达 C. 在生物个体全生命过程的几乎所有细胞中表达 D. 在生物个体的某一生长阶段持续表达 E. 在一个物种的几乎所有个体中持续表达 4. 下列情况不属于基因表达阶段特异性的是,一个基因在 A. 胚胎发育过程不表达,出生后表达 B. 胚胎发育过程表达,在出生后不表达 C.分化的骨骼肌细胞表达,在未分化的心肌细胞不表达 D. 分化的心肌细胞表达,在未分化的心肌细胞不表达 E. 分化的心肌细胞不表达,在未分化的心肌细胞表达 5. 一个操纵子通常含有 A. 数个启动序列和一个编码基因 B. 一个启动序列和数个编码基因 C. 一个启动序列和一个编码基因 D. 两个启动序列和数个编码基因 E. 数个启动序列和数个编码基因 6. 操纵子的基因表达调节系统属于: A. 复制水平调节 B. 转录水平调节 C. 逆转录水平调节 D. 翻译水平调节 E. 翻译后水平调节 7.在乳糖操纵子的基因表达中,乳糖的作用是: A.作为阻遏物结合于操纵基因 B.作为辅阻遏物结合于阻遏物 C.使阻遏物变构而失去结合DNA的能力 D.抑制阻遏基因的转录 E.使RNA聚合酶变构而活性增加

8. Lac操纵子的阻遏蛋白由 A. Z基因编码 B. Y基因编码 C. A基因编码 D. I基因编码 E. 以上都不是 9. 阻遏蛋白识别操纵子的 A 启动基因 B 结构基因 C 操纵基因 D 内含子 E 外显子 10. 分解代谢物基因激活蛋白(CAP)对乳糖操纵子表达的影响是: A 正性调控 B 负性调控 C 正/负调控 D 无控制作用 E 可有可无 11.cAMP与CAP结合、CAP介导正性调节发生在 A 葡萄糖及cAMP浓度极高时 B 没有葡萄糖及cAMP较低时 C 没有葡萄糖及cAMP较高时 D 有葡萄糖及cAMP较低时 E 有葡萄糖及CAMP较高时 12.与DNA结合并阻止转录进行的蛋白质是 A.正调控蛋白 B.反式作用因子 C.诱导物 D.分解代谢基因活化蛋白 E.阻遏物 13. 色氨酸操纵子调节过程涉及 A. 转录水平调节 B. 转录延长调节 C. 转录激活调节 D. 翻译水平调节 E. 阻遏蛋白和“衰减子”调节 14.当培养基中色氨酸浓度较大时,色氨酸操纵子处于: A.诱导表达 B.阻遏表达 C.基本表达 D.组成表达 E.协调表达 15.顺式作用元件是指 A. 非编码序列 B. TATA盒 C. GC盒 D.具有调节功能的特异DNA序列 E. 具有调节功能的蛋白质 16. 反式作用因子是指 A. 对自身基因具有激活功能的调节蛋白 B. 对另一基因具有激活功能的调节蛋白 C. 具有激活功能的调节蛋白 D. 具有抑制功能的调节蛋白 E. 对特异基因转录具有调控作用的一类调节蛋白 17.关于启动子的叙述下列哪一项是正确的? A.开始被翻译的DNA序列 B.开始转录成mRNA的DNA序列 C.开始结合RNA聚合酶的DNA序列 D.产生阻遏物的基因 E.阻遏蛋白结合的DNA序列

基因表达谱分析技术

基因表达谱分析技术 1、微阵列技术( microarray) 这是近年来发展起来的可用于大规模快速检测基因差别表达、基因组表达谱、DNA 序列多态性、致病基因或疾病相关基因的一项新的基因功能研究技术。其原理基本是利用光导化学合成、照相平板印刷以及固相表面化学合成等技术,在固相表面合成成千上万个寡核苷酸探针”(cDNA、ESTs或基因特异的寡核苷酸),并与放射性同位素或荧光物标记的来自不同细胞、组织或整个器官的DNA 或mRNA 反转录生成的第一链cDNA 进行杂交,然后用特殊的检测系统对每个杂交点进行定量分析。其优点是可以同时对大量基因,甚至整个基因组的基因表达进行对比分析。包括cDNA芯片(cDNA microarray)和DNA 芯片( DNA chips)。 cDNA 芯片使用的载体可以是尼龙膜,也可以是玻片。当使用尼龙膜时,目前的技术水平可以将20000份材料点在一张12cmxi8cm的膜上。尼龙膜上所点的一般是编好顺序的变性了的双链cDNA 片段。要得到基因表达情况的数据,只需要将未知的样品与其杂交即可。杂交的结果表示这一样品中基因的表达模式,而比较两份不同样品的杂交结果就可以得到在不同样品中表达模式存在差异的基因。杂交使用的探针一般为mRNA的反转录产物,标记探针使用 32PdATP。如果使用玻片为载体,点阵的密度要高于尼龙膜。杂交时使用两种不同颜色的荧光标记不同的两份样品,然后将两份样品混合起来与一张芯片杂交。洗去未杂交的探针以后,能够结合标记cDNA 的点受到激发后会发出荧光。通过扫描装置可以检测各个点发出荧光的强度。对每一个点而言,所发出的两种不同荧光的强度的比值,就代表它在不同样品中的丰度。一般来讲,显示出来的图像

第十章 基因表达与调控参考答案

第十章基因表达与调控 1.经典遗传学和分子遗传学关于基因的概念有何不同? 答:孟德尔把控制性状的因子称为遗传因子;约翰生提出基因(gene)这个名词,取代遗传因子;摩尔根等对果蝇、玉米等的大量遗传研究,建立了以基因和染色体为主体的经典遗传学。 经典遗传学认为:基因是一个最小的单位,不能分割;既是结构单位,又是功能单位。具体指:⑴. 基因是化学实体:以念珠状直线排列在染色体上;⑵. 交换单位:基因间能进行重组,而且是交换的最小单位。⑶. 突变单位:一个基因能突变为另一个基因。⑷. 功能单位:控制有机体的性状。 分子遗传学认为:⑴. 将基因概念落实到具体的物质上,并给予具体内容:一个基因是DNA分子上的一定区段,携带有特殊的遗传信息。⑵. 基因不是最小遗传单位,而是更复杂的遗传和变异单位:例如在一个基因区域内,仍然可以划分出若干起作用的小单位。现代遗传学上认为:①.突变子:是在性状突变时,产生突变的最小单位。一个突变子可以小到只有一个碱基对,如移码突变。②.重组子:在性状重组时,可交换的最小单位称为重组子。一个交换子只包含一个碱基对。③.顺反子:表示一个作用的单位,基本上符合通常所描的基因大小或略小,包括的一段DNA与一个多链的合成相对应,即保留了基因是功能单位的解释。⑶. 分子遗传学对基因概念的新发展:结构基因:指可编码RNA或蛋白质的一段DNA序列。调控基因:指其表达产物参与调控其它基因表达的基因。重叠基因:指在同一段DNA顺序上,由于阅读框架不同或终止早晚不同,同时编码两个以上基因的现象。隔裂基因:指一个基因内部被一个或更多不翻译的编码顺序即内含子所隔裂。跳跃基因:即转座因子,指染色体组上可以转移的基因。假基因:同已知的基因相似,处于不同的位点,因缺失或突变而不能转录或翻译,是没有功能的基因。 2.有一个双突变杂合二倍体,其基因型是+ a // b + ,如果有互补作用表示什么?如果无互补作用,表示什么? 答:有互补作用:表示该表现型为野生型,a、b两突变不是等位的,是代表两个不同的基因位点。 无互补作用:表示该表现型为突变型,a、b两突变是等位的,是代表同一个基因位点的两个基因座。

基因表达数据分析的方法

基因表达数据分析的方法 摘要:基因表达数据的一个重要应用是给疾病样本分类,如鉴别白血病的类型。而对成千上万个基因表达进行分析,必产生总量巨大的数据集。近年来,支持向量机(SVM)的理论已经取得重大进展,其算法实现策略以及实际应用也发展迅速,开始成为克服“维数灾难”和“过学习”等传统困难的有力手段。利用这一技术分析与整理这些基因表达数据,已有效地解决了生物信息学上这一海量数据的瓶颈问题。本文就支持向量机在基因表达数据分析方面的算法和应用进行了介绍和分析。 关键词:生物信息学;基因表达数据;支持向量机 Methods of gene expression data analysis Abstract:Gene expression data has an important application to the classification of disease samples, such as identifying the types of leukemia. The analysis of thousands of gene expression data, will produce a tremendous amount of data sets. In recent years, support vector machine (SVM) theory that significant progress has been made towards its strategy and practical applications of algorithms has been developing rapidly and became overcome the "Dimension disaster" and "Over-study", a powerful means of the traditional difficulties. Using this technology analysis and collation of these gene expression data have been effectively solved bottleneck on the enormous bioinformatics data. This paper discusses the algorithms and application of support vector machine in gene expression data analysis. Keywords:Bioinformatics ;Gene expression data; Support vector machine

相关主题
文本预览
相关文档 最新文档