当前位置:文档之家› SPWM控制单相三电平逆变器

SPWM控制单相三电平逆变器

SPWM控制单相三电平逆变器
SPWM控制单相三电平逆变器

三电平逆变器的主电路结构及其工作原理

所谓三电平是指逆变器交流侧每相输出电压相对于直流侧有三种取值,正端电压(+Vdc/2)、负端电压(-Vdc/2)、中点零电压(0)。二极管箱位型三电平逆变器主电路结构如图所示。逆变器每一相需要4个IGBT开关管、4个续流二极管、2个箱位二极管;整个三相逆变器直流侧由两个电容C1、C2串联起来来支撑并均衡直流侧电压,C1=C2。通过一定的开关逻辑控制,交流侧产生三种电平的相电压,在输出端合成正弦波。 三电平逆变器的工作原理 以输出电压A相为例,分析三电平逆变器主电路工作原理,并假设器件为理想器件,不计其导通管压降。定义负载电流由逆变器流向电机或其它负载时的方向为正方向。 (l) 当Sa1,、Sa2导通,Sa3、Sa4关断时,若负载电流为正方向,则电源对电容C1充电,电流从正极点流过主开关Sa1、Sa2,该相输出端电位等同于正极点电位,输出电压U=+V dc/2; 若负载电流为负方向,则电流流过与主开关管Sa1、Sa2反并联的续流二极管对电容C1充电,电流注入正极点,该相输出端电位仍然等同于正极点电位,输出电压U=+V dc/2。通常标识为所谓的“1”状态,如图所示。

“1”状态“0”状态 “-1”状态 (2) 当Sa2、Sa3导通,Sa1、Sa4关断时,若负载电流为正方向,则电源对电容C1充电,电流 从O点顺序流过箱位二极管D a1,主开关管Sa2:,该相输出端电位等同与0点电位,输出电压U=O;若负载电流为负方向,则电流顺序流过主开关管Sa3和箱位二极管D a2,电流注入O点,该相输出端电位等同于O点电位,输出电压U=0,电源对电容C2充电。即通常标识的“0”状态,如图所示。

(完整版)三电平逆变器的主电路结构及其工作原理

三电平逆变器的主电路结构及其工作原理 所谓三电平是指逆变器交流侧每相输出电压相对于直流侧有三种取值,正端电压(+Vdc/2)、负端电压(-Vdc/2)、中点零电压(0)。二极管箱位型三电平逆变器主电路结构如图所示。逆变器每一相需要4个IGBT开关管、4个续流二极管、2个箱位二极管;整个三相逆变器直流侧由两个电容C1、C2串联起来来支撑并均衡直流侧电压,C1=C2。通过一定的开关逻辑控制,交流侧产生三种电平的相电压,在输出端合成正弦波。 三电平逆变器的工作原理 以输出电压A相为例,分析三电平逆变器主电路工作原理,并假设器件为理想器件,不计其导通管压降。定义负载电流由逆变器流向电机或其它负载时的方向为正方向。 (l) 当Sa1,、Sa2导通,Sa3、Sa4关断时,若负载电流为正方向,则电源对电容C1充电,电流从正极点流过主开关Sa1、Sa2,该相输出端电位等同于正极点电位,输出电压U=+V dc/2; 若负载电流为负方向,则电流流过与主开关管Sa1、Sa2反并联的续流二极管对电容C1充电,电流注入正极点,该相输出端电位仍然等同于正极点电位,输出电压U=+V dc/2。通常标识为所谓的“1”状态,如图所示。

“1”状态“0”状态 “-1”状态 (2) 当Sa2、Sa3导通,Sa1、Sa4关断时,若负载电流为正方向,则电源对电容C1充电,电流 从O点顺序流过箱位二极管D a1,主开关管Sa2:,该相输出端电位等同与0点电位,输出电压U=O;若负载电流为负方向,则电流顺序流过主开关管Sa3和箱位二极管D a2,电流注入O点,该相输出端电位等同于O点电位,输出电压U=0,电源对电容C2充电。即通常标识的“0”状态,如图所示。 (3) 当Sa3、Sa4导通,Sa1、Sa2关断时,若负载电流为正方向,则电流从负极点流过与主开 关Sa3、Sa4反并联的续流二极管对电容C2进行充电,该相输出端电位等同于负极点电位,输出电压U=-V dc/2;若负载电流为负方向,则电源对电容C2充电,电流流过主开关管Sa3、Sa4注入负极点,该相输出端电位仍然等同于负极点电位,输出电压U=-V dc/2。通常标识为“-1”状态,如图所示。

三电平逆变器中点电位平衡电路的设计与仿真_陶生桂

收稿日期:2004-02-24 作者简介:陶生桂(1940-),男,江苏常熟人,教授,博士生导师.E 2mail :hb9139@https://www.doczj.com/doc/5b12961779.html, 三电平逆变器中点电位平衡 电路的设计与仿真 陶生桂,龚熙国,袁登科 (同济大学沪西校区电气工程系,上海 200331) 摘要:多电平逆变器在中高压大功率场合得到了广泛的研究和应用.二极管中点箝位三电平逆变器是一种简单实用的多电平逆变器,但是三电平逆变器直流侧中点电位偏移问题影响着逆变器及其电机调速系统的可靠性.为此提出了一种用于三电平逆变器中点电位平衡的硬件电路,详细介绍了其工作原理以及参数设定,并用Matlab/ Simulink 仿真工具对系统进行了研究,给出了较好的仿真结果. 关键词:三电平逆变器;中点电位平衡;二极管箝位 中图分类号:TM 464 文献标识码:A 文章编号:0253-374X (2005)03-0395-05 Design and Simulation of Novel Circuit for Neutral 2Point Voltage Balance in Three 2Level Inverter TA O S heng 2gui ,GON G Xi 2guo ,Y UA N Deng 2ke (Department of Electrical Engineering ,Tongji University West Campus ,Shanghai 200331,China ) Abstract :The multilevel inverter has been studied and used widely in high power applications for medium or high voltage.Diode 2clamped three 2level inverter is a simple and practical kind of inverter.But the deviation of neutral point voltage is one of the key aspects that affects the reliability of the three 2level inverter and its electric drive system.This paper presents a novel circuit for neutral 2point voltage balance in the three 2level inverter.The operation principle and parameters setting are analyzed in detail.Simulation results based on Matlab/Simulink are supplied to confirm the validity of the pro 2posed circuit. Key words :three 2level inverter ;neutral 2point voltage balancing ;diode 2clamped 近几年来,多电平逆变器成为人们研究的热点课题.三电平逆变器是多电平逆变器中最简单又最实用的一种电路.三电平逆变器与传统的两电平逆变器相比较,主要优点是:器件具有2倍的正向阻断电压能力,并能减少谐波和降低开关频率,从而使系统损耗减小,使低压开关器件可以应用于高压变换器中[1].但是三电平逆变器控制策略复杂,并要考 虑中点电位平衡的问题.若逆变器直流母线上串联的2个电容的中点电压出现偏移,将引起三电平逆变器输出电压波形发生畸变而增大谐波及损耗[2].抑制三电平逆变器中点电位偏移的方法有硬件和软件两类.从软件出发将会增加控制的复杂性.笔者提出了一种抑制三电平逆变器中点电位偏移的硬件电路的实现方法.详细介绍了其工作原理和电路设计, 第33卷第3期2005年3月 同济大学学报(自然科学版) JOURNAL OF TON G J I UN IVERSITY (NATURAL SCIENCE )Vol.33No.3  Mar.2005

三电平逆变器的主电路结构及其工作原理

三电平逆变器的主电路结构 及其工作原理 -标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

三电平逆变器的主电路结构及其工作原理 所谓三电平是指逆变器交流侧每相输出电压相对于直流侧有三种取值,正端电压 (+Vdc/2)、负端电压(-Vdc/2)、中点零电压(0)。二极管箱位型三电平逆变器主电路结构如图所示。逆变器每一相需要4个IGBT开关管、4个续流二极管、2个箱位二极管;整个三相逆变器直流侧由两个电容C1、C2串联起来来支撑并均衡直流侧电压,C1=C2。通过一定的开关逻辑控制,交流侧产生三种电平的相电压,在输出端合成正弦波。 三电平逆变器的工作原理 以输出电压A相为例,分析三电平逆变器主电路工作原理,并假设器件为理想器件,不计其导通管压降。定义负载电流由逆变器流向电机或其它负载时的方向为正方向。 (l) 当Sa1,、Sa2导通,Sa3、Sa4关断时,若负载电流为正方向,则电源对电容C1充电,电流从正极点流过主开关Sa1、Sa2,该相输出端电位等同于正极点电位,输出电压 U=+V dc/2;若负载电流为负方向,则电流流过与主开关管Sa1、Sa2反并联的续流二极管对电容C1充电,电流注入正极点,该相输出端电位仍然等同于正极点电位,输出电压U=+V dc/2。通常标识为所谓的“1”状态,如图所示。

“1”状态“0”状态 “-1”状态 (2) 当Sa2、Sa3导通,Sa1、Sa4关断时,若负载电流为正方向,则电源对电容C1充电,电流 从O点顺序流过箱位二极管D a1,主开关管Sa2:,该相输出端电位等同与0点电位,输出电压U=O;若负载电流为负方向,则电流顺序流过主开关管Sa3和箱位二极管D a2,电流注入O点,该相输出端电位等同于O点电位,输出电压U=0,电源对电容C2充电。即通常标识的“0”状态,如图所示。 (3) 当Sa3、Sa4导通,Sa1、Sa2关断时,若负载电流为正方向,则电流从负极点流过与主开 关Sa3、Sa4反并联的续流二极管对电容C2进行充电,该相输出端电位等同于负极点电位,输出电压U=-V dc/2;若负载电流为负方向,则电源对电容C2充电,电流流过主开关管Sa3、Sa4注入负极点,该相输出端电位仍然等同于负极点电位,输出电压U=-V dc/2。通常标识为“-1”状态,如图所示。

电压型单相全桥逆变电路

1.引言 逆变电路所谓逆变,就是与整流相反,把直流电转换成某一固定频率或可变频率的交流电(DC/AC)的过程。 当把转换后的交流电直接回送电网,即交流侧接入交流电源时,称为有源逆变;而当把转换后的交流电直接供给负载时,则称为无源逆变。通常所讲的逆变电路,若不加说明,一般都是指无源逆变电路。 1. 电压型逆变器的原理图 当开关S1、S4闭合,S2、S3断开时,负载电压u o为正;当开关S1、S4断开,S2、S3闭合时,u o为负,如此交替进行下去,就在负载上得到了由直流电变换的交流电,u o的波形如图7.4(b)所示。输出交流电的频率与两组开关的切换频率成正比。这样就 t (b) (a) u o t3 t2 t1 i o u o Z u o i o U d _ + S3 S2S 4 S1

实现了直流电到交流电的逆变。 2. 电压型单相全桥逆变电路 它共有4个桥臂,可以看成由两个半桥电路组合而成。 两对桥臂交替导通180°。 输出电压和电流波形与半桥电路形状相同,幅值高出一倍。 改变输出交流电压的有效值只能通过改变直流电压U d来实现。 输出电压定量分析 u o成傅里叶级数 基波幅值 基波有效值 ? ? ? ? ? + + + = t t t U uω ω ω π 5 sin 5 1 3 sin 3 1 sin 4 d o d d o1m 27 .1 4 U U U= = π d d 1o 9.0 2 2 U U U= = π

当u o为正负各180°时,要改变输出电压有效值只能改变U d 来实现 可采用移相方式调节逆变电路的输出电压,称为移相调压。 各栅极信号为180o正偏,180o反偏,且T1和T2互补,T3和T4互补关系不变。T3的基极信号只比T1落后q ( 0

[三电平逆变器的主电路结构及其工作原理]三电平逆变器工作原理

[三电平逆变器的主电路结构及其工作原理]三电平逆变器 工作原理 三电平逆变器的主电路结构及其原理 所谓三电平是指逆变器侧每相输出电压相对于直流侧有三种取值,正端电压(+Vdc/2)、负端电压(-Vdc/2)、中点零电压(0)。二极管箱 位型三电平逆变器主电路结构如图所示。逆变器每一相需要4个IGBT 开关管、4个续流二极管、2个箱位二极管;整个三相逆变器直流侧由两个电容C1、C2串联起来来支撑并均衡直流侧电压,C1=C2。通过一定的开关逻辑控制,交流侧产生三种电平的相电压,在输出端合成正弦波。 三电平逆变器的工作原理 以输出电压A相为例,分析三电平逆变器主电路工作原理,并假 设器件为理想器件,不计其导通管压降。定义负载电流由逆变器流向电机或其它负载时的方向为正方向。 (l) 当Sa1、Sa2导通,Sa3、Sa4关断时,若负载电流为正方向,则电源对电容C1充电,电流从正极点流过主开关Sa1、Sa2,该相输出端电位等同于正极点电位,输出电压U=+Vdc/2;若负载电流为负方向,则电流流过与主开关管Sa1、Sa2反并联的续流二极管对电容C1

充电,电流注入正极点,该相输出端电位仍然等同于正极点电位,输出电压U=+Vdc/2。通常标识为所谓的“1”状态,如图所示。 “1”状态“0”状态 “-1”状态 (2) 当Sa2、Sa3导通,Sa1、Sa4关断时,若负载电流为正方向,则电源对电容C1充电,电流从O点顺序流过箱位二极管Da1,主开关管Sa2:,该相输出端电位等同与0点电位,输出电压U=O;若负载电流为负方向,则电流顺序流过主开关管Sa3和箱位二极管Da2,电流注入O点,该相输出端电位等同于O点电位,输出电压U=0,电源对电容C2充电。即通常标识的“0”状态,如图所示。 (3) 当Sa3、Sa4导通,Sa1、Sa2关断时,若负载电流为正方向,则电流从负极点流过与主开关Sa3、Sa4反并联的续流二极管对电容C2进行充电,该相输出端电位等同于负极点电位,输出电压U=-Vdc/2;若负载电流为负方向,则电源对电容C2充电,电流流过主开关管Sa3、Sa4注入负极点,该相输出端电位仍然等同于负极点电位,输出电压U=-Vdc/2。通常标识为“-1”状态,如图所示。 三电平逆变器工作状态间的转换

单相全桥逆变器matlab仿真

用MATLAB 仿真一个单相全桥逆变器,采用单极性SPWM 调制、双极性SPWM 调制或者单极倍频SPWM 调制的任意一种即可,请注明仿真参数,并给出相应的调制波波形,载波波形,驱动信号波形、输出电压(滤波前)波形。 本文选用双极性SPWM 调制。 1双极性单相SPWM 原理 SPWM 采用的调制波的频率为s f 的正弦波t U U s sm S ωsin =,s s f πω2=;载波c u 是幅值为cm U ,频率为c f 的三角波。载波信号的频率与调制波信号的频率之比称为载波比,正弦调制信号与三角波调制信号的幅值之比称为深度m 。通常采用调制信号与载波信号相比较的方法生成SPWM 信号.当Us>Uc 时,输出电压Uo 等于Ud,当Us

三电平逆变电路硬件设计

毕业设计(论文)开题报告题目:三电平逆变器硬件电路设计与仿真 院(系)电信学院 专业电气工程及其自动化 班级050413 姓名张天东 学号050413124 导师毕雪芹 2009年3 月5 日

毕业设计(论文)开题报告

参考文献 [1] 张杰,邹云屏,张贤,丁凯.二极管箝位式三电平控制策略研究[D].武汉:华中科技大 学,2002. [2] Yo-Han Lee, et al. A Novel PWM Scheme for a Three-Level V oltage Source Inverter with GTO Thyristors[J] IEEE Transactions on Industry Applications, V ol. 32, No.2, March/April. 1996 [3] 刘凤君正弦波逆变器[M]. 北京:科学出版社,2002 [4] 倪红基于SVPWM的中频变频器的研究[D].上海:东华大学,2000.

[5] 王长兵三电平逆变器SVPWM控制算法的研究[D].哈尔滨: 哈尔滨工业大学,2002 [6] 易荣, 吴浩烈.三电平逆变器异步电机空间矢量控制技术与仿真研究[A]. [7] 吴守箴,臧英杰.电气传动的脉宽调制控制技术[M].北京:机械工业出版社,1998 [8] 李夙. 异步电机直接转矩控制技术[M]. 北京:机械工业出版社,1998 [9] 钟彦儒,高永军,曾光采用空间电压矢量PWM方法三电平逆变器研究[J].电力电子技术,2000,1:10-13 [10] Fei Wang, et al. Sine-Triangle versus Space-Vector Modulation for Three-Level PWM V oltage-Source Inverters[J] IEEE Transactions on Industry Application, V ol.38, No.2, March/April. 2002 [11] https://www.doczj.com/doc/5b12961779.html,/matlabintro.htm [12] https://www.doczj.com/doc/5b12961779.html,/ruanjian/ruanjian000001.html [13] 胡兵三电平逆变器中点控制策略的研究[D].上海:同济大学,2002. [14] 康劲松三电平逆变器交流传动系统及其控制策略[D].上海:同济大学,2003.

单相全桥逆变电路原理

单相全桥型逆变电路原理 电压型全桥逆变电路可瞧成由两个半桥电路组合而成,共4个桥臂,桥臂1与4为一对,桥臂2与3为另一对,成对桥臂同时导通,两对交替各导通180° 电压型全桥逆变电路输出电压uo 的波形与半桥 电路的波形uo 形状相同,也就是矩型波,但幅值 高出一倍,Um=Ud 输出电流io 波形与半桥电路的io 形状相同,幅值增加一倍 VD1 、V1、VD2、V2相继导通的区间,分别对应VD1与VD4、V1与V4、VD2与VD3、V2与V3相继导通的区间 + - VD 3 VD 4

单相半桥电压型逆变电路工作波形 全桥逆变电路就是单相逆变电路中应用最多的, 对电压波形进行定量分析将幅值为Uo 的矩形波 uo 展开成傅里叶级数,得 其中基波幅值Uo1m 与基波有效值Uo1分别为 上述公式对半桥逆变电路也适用,将式中的ud 换成Ud /2 uo 为正负电压各为180°的脉冲时,要改变输出电压有效值只能通过改变输出直流电压Ud 来实现 d d o1m 27.14U U U == π d d 1o 9.022U U U == π O ON u o U - U m i o VD 1 VD 2 VD 1 VD 2 ?? ? ??+++= t t t U u ωωωπ5sin 513sin 31sin 4d o

t 1时刻前V 1与V 4导通,输出电压u o 为u d t 1时刻V 3与V 4栅极信号反向,V 4截止,因i o 不能突变,V 3不能立即导通,VD 3导通续流,因V 1与VD 3同时导通,所以输出电压为零 各 IGBT 栅极信号uG1~uG4及输出电压uo 、输出电流io 的波形 u u u u u i o o ? 各IGBT 栅极信号为180°正 偏,180°反偏,且V 1与V 2栅极信号互补,V 3与V 4栅极信号互补 ? V 3的基极信号不就是比V 1落后 180°,而就是只落后θ ( 0< θ <180°) ? V 3、V 4的栅极信号分别比V 2、V 1 采用移相方式调节逆变电路的输出电压

T型三电平逆变器课程设计..

摘要 三相三电平逆变器具有输出电压谐波小,/ dv dt小,EMI小等优点,是高压大功率逆变器应用领域的研究热点,三相二极管中点箝位型三电平逆变器是三相三电平逆变器的一种主要拓扑,已经得到了广泛的应用。三相T型三电平逆变器,是基于三相二极管中点箝位型三电平逆变器的一种改进拓扑。这种逆变器中,每个桥臂通过反向串联的开关管实现中点箝位功能,是逆变器输出电压有三种电平。该拓扑比三相二极管中点箝位型三电平拓扑结构每相减少了两个箝位二极管,可以降低损耗并且减少逆变器体积,是一种很有发展前景的拓扑。 本设计采用正弦脉宽调制(SPWM),本文介绍了三相T型三电平逆变器的设计,介绍其结构和基本工作原理,及SPWM控制法的原理,并利用SPWM控制的方法对三电平逆变器进行设计与仿真。本设计采用SIMULINK对T型三电平逆变电路建立模型,并进行仿真。 关键词: T型三电平逆变器、正弦脉宽调制、SIMULINK仿真

目录 第一章绪论 (6) 1.1研究背景及意义 .. 1.2三电平逆变器拓扑分类 第一章 T型三电平逆变器工作原理分析 (6) 1.1逆变器的结构 1.2本章小结 第二章正弦脉波调制(SPWM) (7) 3.1 PWM与SPWM的工作原理 3.2三电平逆变电路SPWM的实现 3.3本章小结 第三章电路仿真与参数计算 (10) 4.1逆变器的基本要求 4.2电路图 4.3调制电路 4.4L-C滤波电路 4.5结果分析 第四章课程设计小结 (14) 参考文献 (15)

第一章绪论 1.1 研究背景及意义 近年来,随着经济的飞速发展,人类对能源的需求也大幅度增加,而传统能源面临着枯竭的危机。在这种情况下,我们不得不加速开发新型能源。各国的专家致力于新能源的开发与利用,光伏发电、风力发电、生物发电等各种新型发电技术已经得到了一定的应用,并且正在蓬勃的发展,尤其是光伏发电,因其成本低、稳定性较好,控制简单等优点,在各国得到了广泛的应用。受地区气象条件的影响,太阳能光伏电池板输出的直流电压极不稳定,而且电压幅值低,容量小。为了高效利用太阳能,需要将不稳定的光伏电池串、并联组合,并且经过多级电力电子变换器组合输出恒频交流电压并网运行。而把这些初始能源转化为可用电能的桥梁就是逆变器。随着开关器件的不断发展,逆变器的拓扑、调制方式和控制策略也在不断发展,控制理论在逆变器的控制上得到了很好的应用,这一切都保证了优良的供电质量。在一些高电压、大功率的应用场合,传统的两电平逆变器由于开关器件耐压限制,无法满足需求。在这种情况下,如何将低耐压开关器件应用于高电压大功率场合成为各国专家研究的热点,由此,多电平逆变器技术应运而生。多电平的概念最早是由日本专家南波江章(A.Nabae)等人在 1980 年提出的[1],通过改变主电路的拓扑结构、增加开关器件的方式,在开关器件关断的时候将直流电压分散到各个器件两端,实现了低耐压开关器件在大功率场合应用。 1.2三电平逆变器拓扑分类 常见的多电平的电路拓扑主要有三种:二极管箝位型逆变器、飞跨电容箝位型逆变器和具有独立直流电源的级联型逆变器。本文研究的 T 型三电平逆变器可以说是中点箝位型逆变器的改进拓扑,其优势主要体现在减少了电流通路中的开关器件数量,减少了传导损耗。而且与二极管箝位型三电平逆变器相比,T 型三电平逆变器的每个桥臂少用了两个箝位二极管,其控制方法和二极管箝位型三电平逆变器类似[2]。T 型三电平逆变器融合了两电平和三电平逆变器的优势,既有两电平逆变器传导损耗低,器件数目少的优点,又有三电平逆变器输出波形好,效率高的优点,是很有发展前景的一种三电平逆变器拓扑。

单相全桥逆变电路毕业设计

2008级应用电子技术 毕业设计报告 设计题目单相电压型全桥逆变电路设计姓名及 学号 学院 专业应用电子技术 班级2008级3班 指导教师老师 2011年05月1日

题目:单相电压型全桥逆变电路设计

目录 第一章绪论 1.1整流技术的发展概况 (4) 第二章设计方案及其原理 2.1电压型逆变器的原理图 (5) 2.2电压型单相全桥逆变电路 (6) 第三章仿真概念及其原理简述 3.1 系统仿真概述 (6) 3.2 整流电路的概述 (8) 3.3 有源逆变的概述 (8) 3.4逆变失败原因及消除方法 (9) 第四章参数计算 4.1实验电路原理及结果图 (10) 第五章心得与总结 (14) 参考文献 (15)

第一章绪论 1.1整流技术的发展概况 正电路广泛应用于工业中。整流与逆变一直都是电力电子技术的热点之一。桥式整流是利用二极管的单向导通性进行整流的最常用的电路。常用来将交流电转化为直流电。从整流状态变到有源逆变状态,对于特定的实验电路需要恰到好处的时机和条件。基本原理和方法已成熟十几年了,随着我国交直流变换器市场迅猛发展,与之相应的核型技术应用于发展比较将成为业内企业关注的焦点。 目前,整流设备的发展具有下列特点:传统的相控整流设备已经被先进的高频开关整流设备所取代。系统的设计已经由固定式演化成模块化,以适应各种等级、各种模块通信设备的要求。加上阀控式密封铅酸蓄电池的广泛应用,为分散供电创造了条件。从而大大提高了通信网运行可靠和通信质量。高频开关整流器采用模块化设计、N1配置和热插拨技术,方便了系统的扩展,有利于设备的维护。由于整流设备和配电设备等配备了微机监控器,使系统设备具有了智能化管理功能和故障保护及自保护功能。新旗舰、新技术、新材料的应用,使高频开关整流器跃上了一个新台阶。

三电平逆变器的分析与控制

三电平逆变器的分析与控制 薄保中 苏彦民 西安交通大学 摘要:三电平逆变器在中压大功率场合应用很广泛。由于中点电位波动等问题使三电平逆变器的控制较复杂。文章分析了空间矢量对中点电位波动的影响,仿真结果说明采用空间电压矢量控制方法时,通过选择多余的小矢量来控制中点电位波动是一个有效的方法。 关键词:三电平逆变器 中点电位波动 控制方法 Analysis and Control of Three-level Inverters Bo Baozhong Su Yanmin Abstract:T hree-level inver ters have found w ide applications in mediu m-voltage h igh-pow er applications. Du e to neutral-point poten tial flu ctuation th e in verters are difficult to control.In the paper th e in fluence of s pace vectors on the neutral-point potential fluctuation is investigated.It is verified b y simulation r esu lts that selecting redu ndant sm all s pace vectors is an effective way of control n eutral-point potential fluctuation w hen usin g s pace vector PWM techniqu e. Keywords:th ree-level inverters neutral-point p otential flu ctuation control tech nique 1 前言 三电平逆变器1981年由A.Nabae等人率先提出[1],在牵引等领域采用GT O元件的中压变频器得到了广泛的应用。近年来出现了基于晶闸管机理的GCT(门极换流晶闸管Gate Commu-tated Thyrister)器件,例如IGCT(集成门极换流晶闸管)和对称SGCT(对称GCT),前者适用于多电平逆变器,后者适用于电流源逆变器,二者的性能均比相应的GT O元件性能大幅提高。目前国内中压大功率调速装置市场发展很快,大部分厂家采用IGBT器件的逆变单元串联多电平结构。而在中压大功率调速领域,三电平逆变器采用IGCT器件,电路结构简单,装置体积小,因此一般认为GT O以及IGCT器件的三电平逆变器更有发展前途。 中压电机变频驱动与低压电机相比,电机控制策略很相似,区别主要是由于PWM方法和多电平带来的逆变器的控制问题。三电平逆变器现有产品采用直接转矩控制和转子磁场定向矢量控制,不管采用哪种电动机控制方法,逆变器的可靠控制是其核心问题,本文分析了三电平逆变器的空间矢量对中点电位的影响,通过仿真结果对提出的控制方法进行了验证。 2 三电平逆变器主电路 三电平逆变器主电路如图1所示,三电平逆变器每一相桥臂4个开关元件有3种正常的开关模式,以X相为例,S x1和S x2导通时,X相输出正电平,S x3和S x4导通时,X相输出负电平,S x2和S x3导通时,X相输出零电平,故称之为三电平 逆变 图1 三电平逆变器主电路 14

电流源型单相全桥逆变电路

电流源型单相全桥逆变电路的设计 摘要 本次设计说明书首先介绍了电流源型单相全桥逆变电路的特点和原理,用单相桥式电流型逆变电路的原理图说明了该电路是采用负载换相方式工作的,要求负载电流略超前于负载电压,又详细分析该电路的工作过程,并用图给出该逆变电路的工作波形。最后根据以上分析运用仿真软件PSIM对电路进行仿真设计,得到波形图。 关键词:电流源型单相电路,逆变电路,PSIM仿真 ' 目录

. 1.电流源型单相全桥逆变电路研究-----------------------------------------3 逆变电路介绍----------------------------------------------------3 电流型逆变电路的主要特点----------------------------------------3 电流源型单相全桥逆变电路----------------------------------------3 电流源型单相全桥逆变电路工作过程--------------------------------4 2.电流源型单相全桥逆变电路设计------------------------------------------7 电路设计原理----------------------------------------------------7 电路仿真图------------------------------------------------------7 3.参数设定及仿真结果----------------------------------------------------8 直流侧仿真------------------------------------------------------8 ) 参数设定-------------------------------------------------8 仿真结果-------------------------------------------------8交流侧仿真------------------------------------------------------8 参数设定-------------------------------------------------8 仿真结果-------------------------------------------------9 4.小结------------------------------------------------------------------9 5.参考文献--------------------------------------------------------------10 :

T型三电平逆变器课程设计..

摘要 三相三电平逆变器具有输出电压谐波小,/ dv dt小,EMI小等优点,是高压大功率逆变器应用领域的研究热点,三相二极管中点箝位型三电平逆变器是三相三电平逆变器的一种主要拓扑,已经得到了广泛的应用。三相T型三电平逆变器,是基于三相二极管中点箝位型三电平逆变器的一种改进拓扑。这种逆变器中,每个桥臂通过反向串联的开关管实现中点箝位功能,是逆变器输出电压有三种电平。该拓扑比三相二极管中点箝位型三电平拓扑结构每相减少了两个箝位二极管,可以降低损耗并且减少逆变器体积,是一种很有发展前景的拓扑。 本设计采用正弦脉宽调制(SPWM),本文介绍了三相T型三电平逆变器的设计,介绍其结构和基本工作原理,及SPWM控制法的原理,并利用SPWM控制的方法对三电平逆变器进行设计与仿真。本设计采用SIMULINK对T型三电平逆变电路建立模型,并进行仿真。 关键词: T型三电平逆变器、正弦脉宽调制、SIMULINK仿真

目录 第一章绪论…………………………………………………………………………6 1.1研究背景及意义 .. 1.2三电平逆变器拓扑分类 第一章T型三电平逆变器工作原理分析…………………………………………6 1.1逆变器的结构 1.2本章小结 第二章正弦脉波调制(SPWM) (7) 3.1PWM与SPWM的工作原理 3.2三电平逆变电路SPWM的实现 3.3本章小结 第三章电路仿真与参数计算………………………………………………………10 4.1逆变器的基本要求 4.2电路图 4.3调制电路 4.4L-C滤波电路 4.5结果分析 第四章课程设计小结.....................................................................14 参考文献 (15) 第一章绪论

单相电压型全桥逆变电路及其simulink仿真(含开题报告)

电力电子技术课程设计单相电压型全桥逆变电路及其simulink仿真

开题报告 课题名称:单相电压型全桥逆变电路及其simulink仿真 完成时间:2012.12.14 指导老师:刘彬 (一)简要背景说明 随着电力电子技术的发展,逆变电路具有广泛的应用范围。交流电机调速用变频器、不间断电源、感应加热电源等电力电子装置的核心部分都是逆变电路。由于电压型逆变电路具有直流侧为电压源或并联大电容,直流侧电压基本无脉动;输出电压为矩形波,输出电流因负载阻抗不同而不同;阻感负载时需要提供无功功率,为了给交流侧向直流侧反馈的无功提供通道,逆变桥各臂并联反馈二极管等特点而具有广泛的应用范围。电压型逆变电路主要用于两方面:①笼式交流电动机变频调速系统。由于逆变电路只具有单方向传递电能的功能,故比较适用于稳态运行、无需频繁起制动和加、减速的场合。②不停电电源。该电源在逆变输入端并接蓄电池,类似于电压源。 图1 单相电压型全桥逆变电路

(二)研究的目的及其意义 在教学及实验基础上,设计单相电压型全桥逆变电路及其控制与保护电路,并通过使用simulink对课程中理论对电路进行仿真实现,进一步了解单相电压型全桥逆变电路的工作原理、波形及计算。 培养学生运用所学知识综合分析问题解决问题的能力。 在电力电子技术的应用中,逆变电路是通用变频器核心部件之一,起着非常重要的作用。逆变电路是与整流电路相对应,把直流电变成交流电的电路。逆变电路的基本作用是在控制电路的控制下将中间直流电路输出的直流电源转换为频率和电压都任意可调的交流电源。无源逆变电路的应用非常广泛。在已有的各种电源中,蓄电池、太阳能电池等都是直流电源,当需要这些电源向交流负载供电时,需要通过无源逆变电路;无源逆变电路与其它电力电子变换电路组合形成具有特殊功能的电力电子设备,如无源逆变器与整流器组合为交-直-交变频器(来自交流电源的恒定幅度和频率的电能先经整流变为直流电,然后经无源逆变器输出可调频率的交流电供给负载)。当电网提供的50 Hz 工频电源不能满足负载的需要,就需要用交-直-交变频电路进行电能交换。如感应加热需要较高频率的电源;交流电动机为了获得良好的调速特性需要频率可变的电源。 (三)研究的主要内容 1单相电压型全桥逆变电路的原理。 2单相电压型全桥逆变电路的结构。 3单相电压型全桥逆变电路及其控制电路、保护电路的设计(画出原理图,标明器件的选择)。 4完成单相电压型全桥逆变电路的数学模型的设计。 5建立simulink仿真系统进行建模,并对模型参数进行设置。 6仿真结果与分析。 (四)研究的主要方法和手段 首先建立单相电压型全桥逆变电路的电路拓扑图,在MATLAB中使用simulink工具箱建立相关控制模型,设置模型参数后,通过仿真得到电路的电压、电流结果,并对该结果进行分析。

三电平逆变器的设计

三电平逆变器的设计 摘要:多电平逆变器是近年来电力电子领域中中高压大功率应用场合研究的一个热点,这种逆变器用小容量的器件输出高容量、高质量的电能,因此在中高压变频调速、交流柔性输电系统等场合得到广泛的关注。 本文从二极管箝位型三电平的拓扑电路出发,详细分析了三电平的SVPWM原理,介绍了三电平的电压空间矢量控制策略(SVPWM),用电压空间矢量方程求解了每个扇区内四个小三角形的电压空间矢量和三电平母线箝位电压空间矢量控制策略,在母线箝位SVPWM方法中由于存在每一个小扇区中有一个开关状态保持不变,从而使得开关频率最小化。最后仿真实验证实了这种空间矢量控制策略的特点,并将这种方法与一般的SPWM方法进行比较,发现其开关损耗小,电流畸变也小。关键词:三电平逆变器;中点箝位三电平逆变器;母线箝位SVPWM Clamp Diode-type Inverter Design Abstract: During recent years, multilevel inverter has been widely researched in high power level application with high voltage output. Power energy with characteristic of high capacity and high quality can be achieved by this type of inverter, in which relatively small capability and low voltage switches are adopted. So this technique has been widely concentrated in such application as medium-high voltage transducer and Flexible AC Transmission System In this paper, the principle of the three-level SVPWM is specified consequently based on the circuit topology of NPCTLI three-level inverter. And the three-level SVPWM is introduced, and then the voltage space vector of four small triangles in each sector is solved using the voltage space vector equation. Because a switch isn’t changed in the small triangle of each in bus clamped SVPWM, switching frequency of use makes minimum. At last, achievement of the SVPWM driving signal by using the tool of SIMULINK is discussed. The loss of switch and THD of current can be reduced compared with usual SPWM technique. Key words: Three-level Inverter; NPCTLI ,Bus Clamped Space Vector Pulse Width Modulation

第五章--单相并网逆变器

第5章单相并网逆变器 后级的DC- AC部分,采用单相全桥逆变电路,将前级 DC- DC输出的400V 直流电转换成220V/50Hz 正弦交流电,完成逆变向电网输送功率。光伏并网逆变器实现并网运行必须满足要求:输出电压与电网电压同频同相同幅值,输出电流与电网电压同频同相(单位功率因数),而且其输出还应满足电网的电能质量要求,这些都依赖于逆变器的有效并网控制策略。 光伏并网逆变器拓扑结构 按逆变器主电路的拓扑结构分类,主要有推挽逆变器、半桥逆变器和全桥逆变器。 5.1.1推挽式逆变电路 推挽式逆变电路由两只共负极的功率开关元件和一个原边带有中心抽头的升压变压器组成。它结构简单,两个功率管可共同驱动,两个开关元件的驱动电路具有公共地,这将简化驱动电路的设计。 U 图5-1 推挽式逆变器电路拓扑 推挽式电路的主要缺点是很难防止输出变压器的直流饱和,另外和单电压极性切换的全桥逆变电路相比,它对开关器件的耐压值也高出一倍。因此适合应用于直流母线电压较低的场合。此外,变压器的利用率较低,驱动感性负载困难。推挽式逆变器拓扑结构如图5-1 所示。 5.1.2半桥式逆变电路 } 半桥式逆变电路使用的功率开关器件较少,电路结构较为简单,但主电路的交流输出电压幅值仅为输入电压的一半,所以在同等容量条件下,其功率开关的额定电流要大于全桥逆变电路中功率元件额定电流,数值为全桥电路的2 倍。由于分压电容的作用,该电路具有较强的抗电压输出不平衡能力,同时由于半桥

式逆变电路控制较为简单,且使用元件少、成本低,因此在小功率等级的逆变电源中常被采用。其主要缺点是直流侧电压利用率低,在同样的开关频率下电网电流的谐波较大。 图5-2 半桥式逆变器电路拓扑 5.1.3全桥式逆变电路 全桥逆变电路可以认为是由2 个半桥逆变电路组成的,在单相电压型逆变电路中是应用最多的电路,主要用于大容量场合。在相同的直流输入电压下,全桥逆变电路的最大输出电压是半桥式逆变电路的2 倍。这意味着输出功率相同时,全桥逆变器的输出电流和通过开关元件的电流均为半桥式逆变电路的一半。 本文采用的是单相全桥式逆变器,其拓扑结构如图5-3 所示,它结构简单且易于控制,在大功率场合中广为应用,可以减少所需并联的元件数。其不足是要求较高的直流侧电压值。 图5-3 单相全桥逆变器电路拓扑 光伏并网逆变器的控制 光伏并网逆变器按控制方式分类,可分为电压源电压控制、电压源电流控制、电流源电压控制和电流源电流控制四种方法。以电流源为输入的逆变器,其直流侧需要串联大电感提供稳定的直流电流输入,但由于此大电感往往会导致系统动态响应差,因此当前大部分并网逆变器均采用以电压源输入为主的方式,即电压型逆变器。采用电压型逆变主电路,可以实现有源滤波和无功补偿的控制,在实际中已经得到了广泛的研究和应用,同时可以有效地进行光伏发电、提高供电质

相关主题
文本预览
相关文档 最新文档