当前位置:文档之家› 图像轮廓线提取

图像轮廓线提取

图像轮廓线提取
图像轮廓线提取

数学实验报告

实验二图像轮廓线提取技术

学院

专业

姓名

学号

成绩单序号

提交日期

一、实验目的

1.了解对matlab的图像处理功能,掌握基本的图像处理方式;

2.掌握imread,imshow,imwrite,subplot,title等的基本使用方法。

3.掌握图像轮廓线提取的简单方法并上机实现。

4.了解matlab自带的边界检测算子的使用,提高对复杂图像处理的能力。

二、实验要求

1.任意选取一幅灰度图像和一幅彩色图像,对算法中若干关键语句中进行调整,得出不同的实验结果,对这些结果进行分析,并与MATLAB自带的边缘检测做对比。

2.提出其它的轮廓线提取方法,与简单阈值法进行比较分析。

三、实验过程

1.任意选取一幅灰度图像和一幅彩色图像,对算法中若干关键语句中进行调整,得出不同的实验结果,对这些结果进行分析。

⑴灰度图的轮廓线提取,M文件代码:

function gray(pix,n) %灰度图的轮廓线提取

A=imread(pix); %读取指定的灰度图%生成与图像对应的矩阵

[a,b]=size(A); %a,b分别等于矩阵A的行数和列数

B=double(A); %将矩阵A变为双精度矩阵

D=40*sin(1/255*B); %将矩阵B进行非线性变换

T=A; %新建与A同等大小矩阵

for p=2:a-1 %处理图片边框内的像素点

for q=2:b-1

if

(D(p,q)-D(p,q+1))>n|(D(p,q)-D(p,q-1))>n|(D(p,q)-D(p+1,q))>n|(D(p,q)-D(p-1,q))>n|( D(p,q)-D(p-1,q+1))>n|(D(p,q)-D(p+1,q-1))>n|(D(p,q)-D(p-1,q-1))>n|(D(p,q)-D(p+1,q +1))>n

T(p,q)=0; %置边界点为黑色%新建轮廓线矩阵

else

T(p,q)=255; %置非边界点为白色

end;

end;

end;

subplot(2,1,1); %将窗口分割为两行一列,下图显示于第一行

image(A); %显示原图像

title('灰度图原图'); %图释

axis image; %保持图片显示比例

subplot(2,1,2); %下图显示于第二行

image(T); %显示提取轮廓线后的图片

title('提取轮廓线'); %图释

axis image;

①调整算法中的灰度值差值n,得到图像如下:

图一n=1 图二n=5

图三n=10 图四n=20

②调整像素的灰度值T(p,q),实验图像如下:

图五边界点T(p,q)=0,非边界T(p,q)=255 图六边界点T(p,q)=20,非边界T(p,q)=120 ③调整非线性变化D=40*sin(1/255*B)中的系数,设其系数为A,所得实验图像如下:

图七系数A=100 图八系数A=400

图九系数A=15 图十系数A=40

实验结果分析:

①图一,二,三,四表明,灰度值差值在提取轮廓线中起到了决定性的作用,

调整灰度值差值可以修整轮廓线的提取效果,差值越大则满足条件的边界点越少,边界点与非边界点区分不明显,提取的轮廓线较为模糊;差值越小则满足条件的边界点越多,提取的轮廓线线条较粗,精度也较低且颜色较深。因此,在实际提取轮廓线时,为了达到最佳的提取效果,应该多次调整差值n,提高轮廓线的精度同时减少断点。

②图五,图六表明,调整像素的灰度值可以改变图像轮廓线的灰度级以及图

像本身的背景,即改变非边界点的灰度级。

③图七,八,九,十表明,提取轮廓线时改变算法中非线性变化的系数,其

效果相当于改变灰度值差值n。在灰度值差值n相同的情况下,非线性变换的系数越大,其效果相当于差值n越小;相反,非线性变换的系数越小,其效果相当于差值n越大

⑵彩色图的轮廓线提取,M文件代码:

function color(pix,n) %彩色图片轮廓线提取函数

A=imread(pix); %读取指定彩色图片

for i=1:3 %依次从三个矩阵中提取轮廓线

if i==1 %从红色矩阵提取

E=A(:,:,1); ;

else if i==2 %从绿色矩阵提取

E=A(:,:,2); ;

else E=A(:,:,3); ; %从蓝色矩阵提取

end;

end;

H=double(E); %将选择的矩阵变为双精度矩阵

F=40*sin(1/255*H); %进行非线性变换

[k,j]=size(E); % k,j分别为矩阵D的行数和列数

T=A;

for p=2:k-1

for q=2:j-1

if

(F(p,q)-F(p,q+1))>n|(F(p,q)-F(p,q-1))>n|(F(p,q)-F(p+1,q))>n|(F(p,q)-F(p-1,q))> n|(F(p,q)-F(p-1,q+1))>n|(F(p,q)-F(p+1,q-1))>n|(F(p,q)-F(p-1,q-1))>n|(F(p,q)-F( p+1,q+1))>n

T(p,q,1)=0;T(p,q,2)=0;T(p,q,3)=0; %置边界点黑色

else

T(p,q,1)=255;T(p,q,2)=255;T(p,q,3)=255;%置非边界点白色

end;

end;

end;

subplot(2,2,i+1); %将窗口分割为两行两列,下图显示于第i+1位置image(T);%显示轮廓线

if i==1 %从红色矩阵提取

title('从红色矩阵提取');

else if i==2 %从绿色矩阵提取

title('从绿色矩阵提取');

else title('从蓝色矩阵提取'); %从蓝色矩阵提取end; %图释

axis image; %保持图片显示比例end;

subplot(2,2,1); %下图显示于第1位置

image(A); %显示原彩色图片

title('彩色图原图'); %图释

axis image; %保持图片显示比例

end;

改变灰度值差值n,所得图像如下:

图十一n=1 图十二n=5

图十三n=10 图十四n=20

实验结果分析:

从图十一,十二,十三,十四可以看到,对于彩色图而言,由于其像素点都是由红、绿、蓝三色的强度值一起定义其颜色,因此,即使对于相同灰度值差值n,对同一彩色图的不同单色矩阵提取轮廓线时,其效果是十分不同的。例如在本实验中,蓝色矩阵提取效果最好,绿色次之,红色较差。灰度图差值n 的影响则与其对灰度图的影响相同

2.利用matlab自带的算子进行边缘检测

利用matlab中log算子,roberts算子,sobel算子进行边缘检测,M文件代码:

A=imread('C:\Users\wonder\Desktop\cc.JPG');

B=rgb2gray(f);

subplot(2,3,2);

imshow(A);

title(‘原始图像');

C=edge(B,'log');

subplot(2,3,4);

imshow(C);

title('log算子分割结果');

D=edge(B,'sobel','both');

subplot(2,3,5);

imshow(D);

title('sobel算子分割结果');

E=edge(B,'roberts');

subplot(2,3,6);

imshow(E);

title('roberts算子分割结果');

实验图像如下:

实验结果分析:

从实验图像可知,对于同一图片,采用matlab中不同算子进行边缘检测时,其轮廓线提取结果也是不同的,例如在本实验中,采用roberts算子提取的轮廓线效果最好,sobel次之,log算子提取结果则较差。在实际操作中,应该根据原始图像的具体情况采用合适的算子。

3.提出其它的轮廓线提取方法,与简单阈值法进行比较分析

㈠算法思路:将指针在像素矩阵上依次移动,每到达一点时,取出其自身及其周围共9个像素点进行分析。利用std函数计算这9个灰度值的标准

差,当该值大于预设阈值n时,判断该点为边界点。

⑵M文件代码:

clear;

clf;

a=imread('C:\Users\wonder\Desktop\cc.jpg');

[s1,s2,s3]=size(a);

n=30;

b=a(:,:,1);

b=b./2;

for i=2:1:s1-1

for j=2:1:s2-1

c=[b(i-1,j-1:j+1,1),b(i,j-1:j+1,1),b(i+1,j-1:j+1,1)]; %将9个像素点排成一行

s=std(double(c)); %计算九个像素点的标准差

if s>n %将标准差与阈值n比较

d(i,j,1)=0;

else d(i,j,1)=255;

end

end;

end;

size(d);

imshow(d);

⑶实验图像如下:

n=2 n=8

n=12 n=18

与简单阈值法进行比较分析:

本算法采用指针对相素矩阵进行提取,由于指针的灵活性,算法相对于简单阈值法而言更为灵活,效率更高。此外,算法采用像素点的标准差与阈值n 进行比较,而不是将其非线性变化后再与阈值n 比较,而标准差的误差较小,因此采用本算法提取轮廓线相对于简单阈值法而言,效果更好。

关于图像特征提取

关于图像特征提取 特征提取是计算机视觉和图像处理中的一个概念。它指的是使用计算机提取图像信息,决定每个图像的点是否属于一个图像特征。特征提取的结果是把图像上的点分为不同的子集,这些子集往往属于孤立的点、连续的曲线或者连续的区域。 特征的定义 至今为止特征没有万能和精确的定义。特征的精确定义往往由问题或者应用类型决定。特征是一个数字图像中“有趣”的部分,它是许多计算机图像分析算法的起点。因此一个算法是否成功往往由它使用和定义的特征决定。因此特征提取最重要的一个特性是“可重复性”:同一场景的不同图像所提取的特征应该是相同的。 特征提取是图象处理中的一个初级运算,也就是说它是对一个图像进行的第一个运算处理。它检查每个像素来确定该像素是否代表一个特征。假如它是一个更大的算法的一部分,那么这个算法一般只检查图像的特征区域。作为特征提取的一个前提运算,输入图像一般通过高斯模糊核在尺度空间中被平滑。此后通过局部导数运算来计算图像的一个或多个特征。 有时,假如特征提取需要许多的计算时间,而可以使用的时间有限制,一个高层次算法可以用来控制特征提取阶层,这样仅图像的部分被用来寻找特征。 由于许多计算机图像算法使用特征提取作为其初级计算步骤,因此有大量特征提取算法被发展,其提取的特征各种各样,它们的计算复杂性和可重复性也非常不同。 边缘 边缘是组成两个图像区域之间边界(或边缘)的像素。一般一个边缘的形状可以是任意的,还可能包括交叉点。在实践中边缘一般被定义为图像中拥有大的梯度的点组成的子集。一些常用的算法还会把梯度高的点联系起来来构成一个更完善的边缘的描写。这些算法也可能对边缘提出一些限制。 局部地看边缘是一维结构。 角 角是图像中点似的特征,在局部它有两维结构。早期的算法首先进行边缘检测,然后分析边缘的走向来寻找边缘突然转向(角)。后来发展的算法不再需要边缘检测这个步骤,而是可以直接在图像梯度中寻找高度曲率。后来发现这样有时可以在图像中本来没有角的地方发现具有同角一样的特征的区域。 区域 与角不同的是区域描写一个图像中的一个区域性的结构,但是区域也可能仅由一个像素组成,因此许多区域检测也可以用来监测角。一个区域监测器检测图像中一个对于角监测器来说太平滑的区域。区域检测可以被想象为把一张图像缩小,然后在缩小的图像上进行角检测。 脊 长条形的物体被称为脊。在实践中脊可以被看作是代表对称轴的一维曲线,此外局部针对于每个脊像素有一个脊宽度。从灰梯度图像中提取脊要比提取边缘、角和区域困难。在空中摄影中往往使用脊检测来分辨道路,在医学图像中它被用来分辨血管。 特征抽取 特征被检测后它可以从图像中被抽取出来。这个过程可能需要许多图像处理的计算机。其结果被称为特征描述或者特征向量。 常用的图像特征有颜色特征、纹理特征、形状特征、空间关系特征。 一颜色特征 (一)特点:颜色特征是一种全局特征,描述了图像或图像区域所对应的景物的表面性质。一般颜色特征是基于像素点的特征,此时所有属于图像或图像区域的像素都有各自的贡献。由于颜色对图像或图像区域的方向、大小等变化不敏感,所以颜色特征不能很好地捕捉图像中对象的局部特征。另外,仅使用颜色特

图像轮廓线提取

数学实验报告 实验二图像轮廓线提取技术 学院 专业 姓名 学号 成绩单序号 提交日期

一、实验目的 1.了解对matlab的图像处理功能,掌握基本的图像处理方式; 2.掌握imread,imshow,imwrite,subplot,title等的基本使用方法。 3.掌握图像轮廓线提取的简单方法并上机实现。 4.了解matlab自带的边界检测算子的使用,提高对复杂图像处理的能力。 二、实验要求 1.任意选取一幅灰度图像和一幅彩色图像,对算法中若干关键语句中进行调整,得出不同的实验结果,对这些结果进行分析,并与MATLAB自带的边缘检测做对比。 2.提出其它的轮廓线提取方法,与简单阈值法进行比较分析。 三、实验过程 1.任意选取一幅灰度图像和一幅彩色图像,对算法中若干关键语句中进行调整,得出不同的实验结果,对这些结果进行分析。 ⑴灰度图的轮廓线提取,M文件代码: function gray(pix,n) %灰度图的轮廓线提取 A=imread(pix); %读取指定的灰度图%生成与图像对应的矩阵 [a,b]=size(A); %a,b分别等于矩阵A的行数和列数 B=double(A); %将矩阵A变为双精度矩阵 D=40*sin(1/255*B); %将矩阵B进行非线性变换 T=A; %新建与A同等大小矩阵 for p=2:a-1 %处理图片边框内的像素点 for q=2:b-1 if (D(p,q)-D(p,q+1))>n|(D(p,q)-D(p,q-1))>n|(D(p,q)-D(p+1,q))>n|(D(p,q)-D(p-1,q))>n|( D(p,q)-D(p-1,q+1))>n|(D(p,q)-D(p+1,q-1))>n|(D(p,q)-D(p-1,q-1))>n|(D(p,q)-D(p+1,q +1))>n T(p,q)=0; %置边界点为黑色%新建轮廓线矩阵 else T(p,q)=255; %置非边界点为白色 end; end; end; subplot(2,1,1); %将窗口分割为两行一列,下图显示于第一行 image(A); %显示原图像 title('灰度图原图'); %图释 axis image; %保持图片显示比例 subplot(2,1,2); %下图显示于第二行 image(T); %显示提取轮廓线后的图片

图象视觉特征的提取与表示

第1章图像视觉特征的提取和表示 1.1引言 图像视觉特征的提取和表示是将图像的视觉信息转化成计算机能够识别和处理的定量形式的过程,是基于视觉内容的图像分类与检索的关键技术,因此,图像视觉特征的提取和表示一直是图像内容分析领域中一个非常活跃的课题。 图像底层视觉特征一定程度上能够反映图像的内容,可以描述图像所表达的意义,因此,研究图像底层视觉特征是实现图像分类与检索的第一步。一般来说,随着具体应用的不同,选用的底层特征也应有所不同,在特定的具体应用中,不同底层视觉特征的选取及不同的描述方式,对图像分类与检索的性能有很大的影响。通常认为,一种良好的图像视觉特征的提取和表示应满足以下几个要求: (1)提取简单,时间和空间复杂度低。 (2)区分能力强,对图像视觉内容相似的图像其特征描述之间也应相近,反之,对于视觉内容不相似的图像其特征描述之间应有一定的差别。 (3)与人的视觉感知相近,对人的视觉感觉相近的图像其特征描述之间也相近,对人的视觉感知有差别的图像其特征描述之间也有一定的差别。 (4)抗干扰能力强,鲁棒性好,对图像大小,方向不敏感,具有几何平移,旋转不变性。 本章重点讨论当前比较成熟的特征提取方法,在此基础上选取合适的特征提取方法,用于图像分类与检索系统的特征提取模块。接下来,将依次介绍颜色,纹理,形状等特征的提取和表示方法,最后对各种特征的特点加以比较。 1.2颜色特征的提取和表示 颜色是图像视觉信息的一个重要特征,是图像分类与检索中最为广泛应用的特征之一。一般来说同一类别的图像之间颜色信息具有一定的相似性,不同类别的图像,其颜色信息具有一定的差异。相对几何特征而言,颜色特征稳定性好,有对大小、方向不敏感等特点。因此,颜色特征的提取受到极大重视并得到深入研究。本章首先介绍几种常用的颜色空间模型,然后介绍各种颜色特征提取和表示方法。 1.2.1颜色空间模型 为了正确地使用颜色这一特征,需要建立颜色空间模型,通常的颜色空间模型可用三个基本量来描述,所以建立颜色空间模型就是建立一个3-D坐标系,其中每个空间点都代表某一种颜色。通常来说,对于不同的应用,应该选取不同的颜色空间模型。常用的颜色空间模型主要有:RGB、HIS、HSV、YUV、YIQ、Munsell、Lu*v*和La*b*等。颜色空间模型的选取需要符合一定的标准,下面就这一标准和最常用的颜色空间模型作一些介绍。 文献[错误!未找到引用源。]中介绍了选择颜色空间模型的标准主要有以下几个: (1)观察角度的鲁棒性

最新Canny边缘检测与轮廓提取汇总

C a n n y边缘检测与轮 廓提取

摘要................................................................................................................................................... Abstract.......................................................................................................................................... I 1 绪论 0 2 设计内容与OpenCV简介 (1) 2.1 设计任务内容 (1) 2.2 OpenCV简介 (1) 3 理论分析 (2) 3.1 边缘检测 (2) 3.1.1 图像的边缘 (2) 3.1.2 边缘检测的基本步骤 (2) 3.2 轮廓提取 (3) 4 边缘检测的算法比较 (4) 4.1 Reborts算子 (4) 4.2 Sobel算子 (5) 4.3 Prewitt 算子 (5) 4.4 Kirsch 算子 (7) 4.5 LOG算子 (7) 4.6 Canny算子 (8) 5 实验仿真 (10) 5.1算法设计 (10) 5.2 实验结果 (11) 6 分析与总结 (12) 参考文献 (13) 附录 (14)

边缘检测是图像处理和计算机视觉中的基本问题,它的目的是标识出数字图像中亮度变化明显的点。图像经过边沿检测处理之后,不仅大幅度地减少了数据量,并且剔除了可以认为不相关的信息,保留了图像重要的结构属性。 事实上,边缘存在于图像的不规则结构和不平稳现象中,也即存在于信号的突变点处,这些点给出了图像轮廓的位置。这些轮廓常常是我们在图像边缘检测时,所需要的非常重要的一些特征条件,这就需要我们对一幅图像检测并提取出它的边缘。 可用于图像边缘检测和轮廓提取的方法有很多,其中包括有常见的Robert边缘算子、Prewitt 边缘算子、Sobel边缘算子等等。本文首先将会从数字图像处理的角度,对几种边缘检测算法进行详细的分析,然后会并选择其中一种边缘检测算法进行实验。考虑到以后进一步的学习,本文将会使用openCV对算法进行实现。最后,本文将会把实验获得的实际效果,与理论分析的结果进行比对,并以此对本次实验进行总结。 关键字:边缘检测轮廓提取图像处理openCV

图像特征提取总结

图像常见特征提取方法简介 常用的图像特征有颜色特征、纹理特征、形状特征、空间关系特征。 一、颜色特征 (一)特点:颜色特征是一种全局特征,描述了图像或图像区域所对应的景物的表面性质。一般颜色特征是基于像素点的特征,此时所有属于图像或图像区域的像素都有各自的贡献。由于颜色对图像或图像区域的方向、大小等变化不敏感,所以颜色特征不能很好地捕捉图像中对象的局部特征。另外,仅使用颜色特征查询时,如果数据库很大,常会将许多不需要的图像也检索出来。颜色直方图是最常用的表达颜色特征的方法,其优点是不受图像旋转和平移变化的影响,进一步借助归一化还可不受图像尺度变化的影响,基缺点是没有表达出颜色空间分布的信息。 (二)常用的特征提取与匹配方法 (1)颜色直方图 其优点在于:它能简单描述一幅图像中颜色的全局分布,即不同色彩在整幅图像中所占的比例,特别适用于描述那些难以自动分割的图像和不需要考虑物体空间位置的图像。其缺点在于:它无法描述图像中颜色的局部分布及每种色彩所处的空间位置,即无法描述图像中的某一具体的对象或物体。 最常用的颜色空间:RGB颜色空间、HSV颜色空间。 颜色直方图特征匹配方法:直方图相交法、距离法、中心距法、参考颜色表法、累加颜色直方图法。 (2)颜色集 颜色直方图法是一种全局颜色特征提取与匹配方法,无法区分局部颜色信息。颜色集是对颜色直方图的一种近似首先将图像从RGB颜色空间转化成视觉均衡的颜色空间(如HSV 空间),并将颜色空间量化成若干个柄。然后,用色彩自动分割技术将图像分为若干区域,每个区域用量化颜色空间的某个颜色分量来索引,从而将图像表达为一个二进制的颜色索引集。在图像匹配中,比较不同图像颜色集之间的距离和色彩区域的空间关系 (3)颜色矩 这种方法的数学基础在于:图像中任何的颜色分布均可以用它的矩来表示。此外,由于颜色分布信息主要集中在低阶矩中,因此,仅采用颜色的一阶矩(mean)、二阶矩(variance)和三阶矩(skewness)就足以表达图像的颜色分布。 (4)颜色聚合向量 其核心思想是:将属于直方图每一个柄的像素分成两部分,如果该柄内的某些像素所占据的连续区域的面积大于给定的阈值,则该区域内的像素作为聚合像素,否则作为非聚合像素。(5)颜色相关图 二纹理特征 (一)特点:纹理特征也是一种全局特征,它也描述了图像或图像区域所对应景物的表面性质。但由于纹理只是一种物体表面的特性,并不能完全反映出物体的本质属性,所以仅仅利用纹理特征是无法获得高层次图像内容的。与颜色特征不同,纹理特征不是基于像素点的特征,它需要在包含多个像素点的区域中进行统计计算。在模式匹配中,这种区域性的特征具有较大的优越性,不会由于局部的偏差而无法匹配成功。作为一种统计特征,纹理特征常具有旋转不变性,并且对于噪声有较强的抵抗能力。但是,纹理特征也有其缺点,一个很明显的缺点是当图像的分辨率变化的时候,所计算出来的纹理可能会有较大偏差。另外,由于有可能受到光照、反射情况的影响,从2-D图像中反映出来的纹理不一定是3-D物体表面真实

CCD图像的轮廓特征点提取算法

第33卷第4期电子科技大学学报V ol.33 No.4 2004年8月Journal of UEST of China Aug. 2004 CCD图像的轮廓特征点提取算法 侯学智,杨平,赵云松 (电子科技大学机械电子工程学院成都 610054) 采用最大方差法将图像二值化,用图像形态学的梯度细化和修剪算法来提取边缘轮廓,利用十一【摘要】﹑ 点曲率法得到轮廓的角点和切点的大致位置。提出了一种基于最小二乘拟合的改进算法,来进一步确定角点和切点,并对轮廓分段识别。该算法应用在基于图像处理的刀具测量系统中,实际结果表明具有良好的抗噪声性能,能准确提取出图像的特征点。 关键词刀具测量; 细化; 曲率; 最小二乘拟合; 角点 中图分类号TP391 文献标识码 A Contour Feature Point Detection Algorithm of CCD Image Hou Xuezhi,Yang Ping,Zhao Yunsong (School of Mechatronic Engineering, UEST of China Chengdu 610054) Abstract The image is segmented to Bi-value image with max variance algorithm, and then the edge is detected by a series of image morphology algorithm including grads, thinning and cutting. The eleven point curvature-computing method is used to locate the area of corner and point of tangency. An improved algorithm based on least square fitting is given to search corner and point of tangency. This algorithm is applied to the cutting tools measurement system based on image processing and the actual result proves it has a good noise-resisted performance and can detect feature points accurately. Key words cutting tools measurement; thinning; curvature; least square fitting; corner 目前数控加工精度已达到微米级,对刀精度要求愈来愈高。传统的刀具测量方式采用人眼瞄准,容易带来主观误差,使对刀精度降低。在基于图像处理的刀具测量系统中,CCD数码相机将对刀状态的图像摄入,通过USB接口输入计算机。首先提取出刀具轮廓的特征点,再对轮廓曲线进行分段,从而测量刀具的长度﹑半径﹑角度等参数。通常利用曲率信息来提取轮廓特征点,三点曲率法对噪声较敏感,十一点曲率法能较好地估算出轮廓的曲率,并能简单提取出轮廓的角点与切点区域[1, 2]。本文提出利用最小二乘法拟合角点和切点区域的曲线,根据计算的斜率和曲率的特点能有效确定角点和切点。 1 图像预处理 被测刀具的图像如图1所示。CCD相机采集到刀具的彩色图像,将其转化为256色的灰度图像,如图1a 所示,采用最大方差阈值法将图像二值化。由于刀具表面存在油污,光线散射等原因,图像二值化后,在刀具部分有颗粒状噪声,而刀具以外有细小孔洞存在,所以在提取轮廓前,采用形态学算子滤波。在图像形态学中,最基本的运算是腐蚀和膨胀运算,通过腐蚀和膨胀可以构成开运算与闭运算。开闭运算都能够平滑边缘,其中开运算能够消除细小物体,闭运算能够填充物体孔洞。本文采用方形结构元素,对图像先闭运算后开运算,有效地滤除了图像的细小孔洞和噪声,而刀具的结构和面积基本保持不变。图1b所示为 收稿日期:2003 ? 07 ? 24 作者简介:侯学智(1980 ? ),男,硕士生,主要从事工业测控技术方面的研究.

图像特征提取方法

图像特征提取方法 摘要 特征提取是计算机视觉和图像处理中的一个概念。它指的是使用计算机提取图像信息,决定每个图像的点是否属于一个图像特征。特征提取的结果是把图像上的点分为不同的子集,这些子集往往属于孤立的点、连续的曲线或者连续的区域。 至今为止特征没有万能和精确的图像特征定义。特征的精确定义往往由问题或者应用类型决定。特征是一个数字图像中“有趣”的部分,它是许多计算机图像分析算法的起点。因此一个算法是否成功往往由它使用和定义的特征决定。因此特征提取最重要的一个特性是“可重复性”:同一场景的不同图像所提取的特征应该是相同的。 特征提取是图象处理中的一个初级运算,也就是说它是对一个图像进行的第一个运算处理。它检查每个像素来确定该像素是否代表一个特征。假如它是一个更大的算法的一部分,那么这个算法一般只检查图像的特征区域。作为特征提取的一个前提运算,输入图像一般通过高斯模糊核在尺度空间中被平滑。此后通过局部导数运算来计算图像的一个或多个特征。 常用的图像特征有颜色特征、纹理特征、形状特征、空间关系特征。当光差图像时,常 常看到的是连续的纹理与灰度级相似的区域,他们相结合形成物体。但如果物体的尺寸很小 或者对比度不高,通常要采用较高的分辨率观察:如果物体的尺寸很大或对比度很强,只需 要降低分辨率。如果物体尺寸有大有小,或对比有强有弱的情况下同事存在,这时提取图像 的特征对进行图像研究有优势。 常用的特征提取方法有:Fourier变换法、窗口Fourier变换(Gabor)、小波变换法、最 小二乘法、边界方向直方图法、基于Tamura纹理特征的纹理特征提取等。

设计内容 课程设计的内容与要求(包括原始数据、技术参数、条件、设计要求等):一、课程设计的内容 本设计采用边界方向直方图法、基于PCA的图像数据特征提取、基于Tamura纹理特征的纹理特征提取、颜色直方图提取颜色特征等等四种方法设计。 (1)边界方向直方图法 由于单一特征不足以准确地描述图像特征,提出了一种结合颜色特征和边界方向特征的图像检索方法.针对传统颜色直方图中图像对所有像素具有相同重要性的问题进行了改进,提出了像素加权的改进颜色直方图方法;然后采用非分割图像的边界方向直方图方法提取图像的形状特征,该方法相对分割方法具有简单、有效等特点,并对图像的缩放、旋转以及视角具有不变性.为进一步提高图像检索的质量引入相关反馈机制,动态调整两幅图像相似度中颜色特征和方向特征的权值系数,并给出了相应的权值调整算法.实验结果表明,上述方法明显地优于其它方法.小波理论和几个其他课题相关。所有小波变换可以视为时域频域的形式,所以和调和分析相关。所有实际有用的离散小波变换使用包含有限脉冲响应滤波器的滤波器段(filterbank)。构成CWT的小波受海森堡的测不准原理制约,或者说,离散小波基可以在测不准原理的其他形式的上下文中考虑。 通过边缘检测,把图像分为边缘区域和非边缘区域,然后在边缘区域内进行边缘定位.根据局部区域内边缘的直线特性,求得小邻域内直线段的高精度位置;再根据边缘区域内边缘的全局直线特性,用线段的中点来拟合整个直线边缘,得到亚像素精度的图像边缘.在拟合的过程中,根据直线段转角的变化剔除了噪声点,提高了定位精度.并且,根据角度和距离区分出不同直线和它们的交点,给出了图像精确的矢量化结果 图像的边界是指其周围像素灰度有阶跃变化或屋顶变化的那些像素的集合,边界广泛的存在于物体和背 景之间、物体和物体之间,它是图像分割所依赖的重要特征.边界方向直方图具有尺度不变性,能够比较好的 描述图像的大体形状.边界直方图一般是通过边界算子提取边界,得到边界信息后,需要表征这些图像的边 界,对于每一个边界点,根据图像中该点的梯度方向计算出该边界点处法向量的方向角,将空间量化为M级, 计算每个边界点处法向量的方向角落在M级中的频率,这样便得到了边界方向直方图. 图像中像素的梯度向量可以表示为[ ( ,),),( ,),)] ,其中Gx( ,),),G ( ,),)可以用下面的

图像特征提取综述

图像特征提取的定位是计算机视觉和图像处理里的一个概念,表征图像的特性。输入是一张图像(二维的数据矩阵),输出是一个值、一个向量、一个分布、一个函数或者是信号。提取特征的方法千差万别,下面是图像特征的一些特性: 边缘 边缘是两个区域边界的像素集合,本质上是图像像素的子集,能将区域分开。边缘形状是任意的,实践中定义为大的梯度的像素点的集合,同时为了平滑,还需要一些算法进行处理。角 顾名思义,有个突然较大的弧度。早起算法是在边缘检测的基础上,分析边缘的走向,如果突然转向则被认为是角。后来的算法不再需要边缘检测,直接计算图像梯度的高度曲率(合情合理)。但会出现没有角的地方也检测到角的存在。 区域 区域性的结构,很多区域检测用来检测角。区域检测可以看作是图像缩小后的角检测。 脊 长形的物体,例如道路、血管。脊可以看成是代表对称轴的一维曲线,每个脊像素都有脊宽度,从灰梯度图像中提取要比边缘、角和区域都难。 特征提取 检测到特征后提取出来,表示成特征描述或者特征向量。 常用的图像特征:颜色特征、 纹理特征 形状特征 空间关系特征。 1.颜色特征 1.1特点:颜色特征是全局特征,对区域的方向、大小不敏感,但是不能很好捕捉局部特征。 优点:不受旋转和平移变化的影响,如果归一化不受尺度变化的影响。 缺点:不能表达颜色空间分布的信息。 1.2特征提取与匹配方法 (1)颜色直方图 适用于难以自动分割的图像,最常用的颜色空间:RGB和HSV。 匹配方法:直方图相交法(相交即交集)、距离法、中心距法、参考颜色表法、累加颜色直方图法。 对颜色特征的表达方式有许多种,我们采用直方图进行特征描述。常见的直方图有两种:统计直方图,累积直方图。我们将分别实验两种直方图在图像聚类和检索中的性能。 统计直方图 为利用图像的特征描述图像,可借助特征的统计直方图。图像特征的统计直方图实际是一个1-D的离散函数,即: 上式中k代表图像的特征取值,L是特征可取值个数,是图像中具有特征值为k的像素的个数,N是图像像素的总数,一个示例如下图:其中有8个直方条,对应图像中的8种灰度像素在总像素中的比例。

静态图像人体轮廓提取方法的研究

静态图像人体轮廓提取方法的研究 静态图像人体轮廓提取是指从静态图像中将人体轮廓分割出来,它在计算机视觉中的人体行为识别、背景分割与替换等多个方面都有着广泛的应用。静态图像人体轮廓提取面临着巨大的挑战,包括人体姿态的多样性,衣着的各异性,光线的变化以及复杂的背景等多个方面。 近年来,随着深度学习的快速发展,图像处理领域中基于传统特征提取的方法逐渐被深度学习所取代,而卷积神经网络在图像特征提取方面体现出了很大的优势。因此,采用卷积神经网络进行人体轮廓提取具有重要意义。 本文的主要研究内容如下:1.针对传统特征提取无法精准分割人体轮廓的问题,采用一种基于深度学习的人体轮廓提取方法。该方法设计了特定的卷积神经网络结构,在模型中引入了全卷积神经网络,反卷积与网络中网络的相关技术,实现了对静态图像在像素级别的人体轮廓提取。 2.为了提高模型的性能,在本文所构建卷积神经网络的基础上提出了一种改进方法,将原始图像经过Gabor滤波器进行预处理后再传入卷积神经网络,利用Gabor特征与卷积神经网络相结合实现了更精确的人体轮廓提取。 3.分别借助VOC2012数据集和百度人体分割数据集来验证本文所提出方法的有效性。 并将改进后的模型应用于具有隐私保护功能的视频监控系统,选择CAVIAR 视频监控数据集中的视频进行测试,并对结果进行分析。实验结果表明:(1)基于卷积神经网络的人体轮廓提取方法实现了对人体轮廓的快速有效分割,体现了利用深度学习进行实验的可行性;(2)改进后的模型在VOC2012数据集上的吻合度测试结果比原始模型提高了 10.96%;(3)在百度数据集上的测试结果表明该改进方法相比于其他现有方法,在准确度和处理速度等方面都能体现出合理性和有效

图像特征提取matlab程序

%直接帧间差分,计算阈值并进行二值化处理(效果不好) clc; clear; Im1 = double(imread('lena.TIF')); %读取背景图片 Im2 = double(imread('lena.TIF'); %读取当前图片 [X Y Z] = size(Im2); %当前图片的各维度值 DIma = zeros(X,Y); for i = 1:X for j = 1:Y DIma(i,j) =Im1(i,j) - Im2(i,j); %计算过帧间差分值 end end figure,imshow(uint8(DIma)) %显示差分图像 title('DIma') med = median(DIma); %计算二值化阈值:差值图像中值 mad = abs(mean(DIma) - med); %中值绝对差 T = mean(med + 3*1.4826*mad) %初始阈值 Th =5*T; %调整阈值 BW = DIma <= Th; %根据阈值对图像进行二值化处理 figure,imshow(BW) %se = strel('disk',2); %膨胀处理 %BW = imopen(BW,se); %figure,imshow(BW) %title('BW') [XX YY] = find(BW==0); %寻找有效像素点的最大边框 handle = rectangle('Position',[min(YY),min(XX) ,max(YY)-min(YY),max(XX)-min(XX)]); set(handle,'EdgeColor',[0 0 0]); hei = max(XX)-min(XX); %边框高度 mark = min(YY)+1; while mark < max(YY)-1 %从边框左边开始到右边物质循环,寻找各个人体边缘 left = 0;right = 0; for j = mark:max(YY)-1 ynum = 0; for i = min(XX)+1 : max(XX)-1 if BW(i,j) == 0; ynum = ynum + 1;

边缘检测和轮廓提取方法和VC++程序

边沿检测和轮廓提取方法和程序 1 边沿检测 我们给出一个模板和一幅图象。不难发现原图中左边暗,右边亮,中间存在着一条明显的边界。进行模板操作后的结果如下: 。 可以看出,第3、4列比其他列的灰度值高很多,人眼观察时,就能发现一条很明显的亮边,其它区域都很暗,这样就起到了边沿检测的作用。 为什么会这样呢?仔细看看那个模板就明白了,它的意思是将右邻点的灰度值减左邻点的灰度值作为该点的灰度值。在灰度相近的区域内,这么做的结果使得该点的灰度值接近于0;而在边界附近,灰度值有明显的跳变,这么做的结果使得该点的灰度值很大,这样就出现了上面的结果。 这种模板就是一种边沿检测器,它在数学上的涵义是一种基于梯度的滤波器,又称边沿算子,你没有必要知道梯度的确切涵义,只要有这个概念就可以了。梯度是有方向的,和边沿的方向总是正交(垂直)的,例如,对于上面那幅图象的转置图象,边是水平方向的,我们可以用 梯度是垂直方向的模板检测它的边沿。 例如,一个梯度为45度方向模板,可以检测出135度方向的边沿。 1.Sobel算子

在边沿检测中,常用的一种模板是Sobel 算子。Sobel 算子有两个,一个是检测水平边沿的 ;另一个是检测垂直平边沿的。与和 相比,Sobel算子对于象素的位置的影响做了加权,因此效果更好。 Sobel算子另一种形式是各向同性Sobel(Isotropic Sobel)算子,也有两个,一个是检测水平边 沿的,另一个是检测垂直平边沿的。各向同性Sobel 算子和普通Sobel算子相比,它的位置加权系数更为准确,在检测不同方向的边沿时梯度的幅度一致。 下面的几幅图中,图7.1为原图;图7.2为普通Sobel算子处理后的结果图;图7.3为各向同性Sobel算子处理后的结果图。可以看出Sobel算子确实把图象中的边沿提取了出来。 图7.1 原图

(完整版)图像特征特点及常用的特征提取与匹配方法

图像特征特点及常用的特征提取与匹配方法 常用的图像特征有颜色特征、纹理特征、形状特征、空间关系特征。 一颜色特征 (一)特点:颜色特征是一种全局特征,描述了图像或图像区域所对应的景物的表面性质。一般颜色特征是基于像素点的特征,此时所有属于图像或图像区域的像素都有各自的贡献。由于颜色对图像或图像区域的方向、大小等变化不敏感,所以颜色特征不能很好地捕捉图像中对象的局部特征。另外,仅使用颜色特征查询时,如果数据库很大,常会将许多不需要的图像也检索出来。颜色直方图是最常用的表达颜色特征的方法,其优点是不受图像旋转和平移变化的影响,进一步借助归一化还可不受图像尺度变化的影响,基缺点是没有表达出颜色空间分布的信息。 (二)常用的特征提取与匹配方法 (1) 颜色直方图 其优点在于:它能简单描述一幅图像中颜色的全局分布,即不同色彩在整幅图像中所占的比例,特别适用于描述那些难以自动分割的图像和不需要考虑物体空间位置的图像。其缺点在于:它无法描述图像中颜色的局部分布及每种色彩所处的空间位置,即无法描述图像中的某一具体的对象或物体。 最常用的颜色空间:RGB颜色空间、HSV颜色空间。 颜色直方图特征匹配方法:直方图相交法、距离法、中心距法、参考颜色表法、累加颜色直方图法。 (2) 颜色集 颜色直方图法是一种全局颜色特征提取与匹配方法,无法区分局部颜色信息。颜色集是对颜色直方图的一种近似首先将图像从RGB颜色空间转化成视觉均衡 的颜色空间(如HSV 空间),并将颜色空间量化成若干个柄。然后,用色彩自动分割技术将图像分为若干区域,每个区域用量化颜色空间的某个颜色分量来索引,从而将图像表达为一个二进制的颜色索引集。在图像匹配中,比较不同图像颜色集之间的距离和色彩区域的空间关系 (3) 颜色矩

图像轮廓提取

OpenCV笔记9:提取并显示图像轮廓 01#include 02#include 03#include 04#include 05void main() 06{ 07int i=0; 08int mode=CV_RETR_CCOMP; //提取轮廓的模式 09int contoursNum=0; //提取轮廓的数目 10CvScalar externalColor; 11CvScalar holeColor; 12CvMemStorage*storage=cvCreateMemStorage(0); //提取轮廓需要的储存容量0为默认64KB 13CvSeq*pcontour=0; //提取轮廓的序列指针 14IplImage*pImg=NULL; 15IplImage*pContourImg=NULL; 16IplImage*src=cvLoadImage("pic3.png",-1); 17pImg=cvCreateImage(cvGetSize(src),src->depth,1); 18pContourImg=cvCreateImage(cvGetSize(pImg),IPL_DEPTH_8U,3); 19cvCvtColor(src,pImg,CV_RGB2GRAY); //将图像转换为灰度 20cvNamedWindow("src",CV_WINDOW_AUTOSIZE); 21cvNamedWindow("pcontour",CV_WINDOW_AUTOSIZE); 22cvShowImage("src",src); 23cvThreshold(pImg,pImg,180,255,CV_THRESH_BINARY); //二值化 24//--------------查找轮廓---------------- 25mode=CV_RETR_LIST; 26 contoursNum=cvFindContours(pImg,storage,&pcontour,sizeof(CvContour),mode,CV_CHAIN_APPRO X_NONE); 27cout<h_next) 30{ 31holeColor=CV_RGB(rand()&255,rand()&255,rand()&255); 32externalColor=CV_RGB(rand()&255,rand()&255,rand()&255); 33cvDrawContours(pContourImg,pcontour,externalColor,holeColor,1,2,8); 34} 35cvShowImage("pcontour",pContourImg); 36cvWaitKey(0); 37cvReleaseImage(&src); 38cvReleaseImage(&pImg); 39cvReleaseImage(&pContourImg); 40}

图像特征特点及其常用的特征提取与匹配方法

图像特征特点及其常用的特征提取与匹配方法 [ 2006-9-22 15:53:00 | By: 天若有情 ] 常用的图像特征有颜色特征、纹理特征、形状特征、空间关系特征。 一颜色特征 (一)特点:颜色特征是一种全局特征,描述了图像或图像区域所对应的景物的表面性质。一般颜色特征是基于像素点的特征,此时所有属于图像或图像区域的像素都有各自的贡献。由于颜色对图像或图像区域的方向、大小等变化不敏感,所以颜色特征不能很好地捕捉图像中对象的局部特征。另外,仅使用颜色特征查询时,如果数据库很大,常会将许多不需要的图像也检索出来。颜色直方图是最常用的表达颜色特征的方法,其优点是不受图像旋转和平移变化的影响,进一步借助归一化还可不受图像尺度变化的影响,基缺点是没有表达出颜色空间分布的信息。 (二)常用的特征提取与匹配方法 (1)颜色直方图 其优点在于:它能简单描述一幅图像中颜色的全局分布,即不同色彩在整幅图像中所占的比例,特别适用于描述那些难以自动分割的图像和不需要考虑物体空间位置的图像。其缺点在于:它无法描述图像中颜色的局部分布及每种色彩所处的空间位置,即无法描述图像中的某一具体的对象或物体。 最常用的颜色空间:RGB颜色空间、HSV颜色空间。 颜色直方图特征匹配方法:直方图相交法、距离法、中心距法、参考颜色表法、累加颜色直方图法。 (2)颜色集 颜色直方图法是一种全局颜色特征提取与匹配方法,无法区分局部颜色信息。颜色集是对颜色直方图的一种近似首先将图像从RGB颜色空间转化成视觉均衡的颜色空间(如HSV 空间),并将颜色空间量化成若干个柄。然后,用色彩自动分割技术将图像分为若干区域,每个区域用量化颜色空间的某个颜色分量来索引,从而将图像表达为一个二进制的颜色索引集。在图像匹配中,比较不同图像颜色集之间的距离和色彩区域的空间关系 (3)颜色矩 这种方法的数学基础在于:图像中任何的颜色分布均可以用它的矩来表示。此外,由于颜色分布信息主要集中在低阶矩中,因此,仅采用颜色的一阶矩(m ean)、二阶矩(variance)和三阶矩(skewness)就足以表达图像的颜色分布。(4)颜色聚合向量 其核心思想是:将属于直方图每一个柄的像素分成两部分,如果该柄内的某些像素所占据的连续区域的面积大于给定的阈值,则该区域内的像素作为聚合像素,否则作为非聚合像素。 (5)颜色相关图 二纹理特征 (一)特点:纹理特征也是一种全局特征,它也描述了图像或图像区域所对应景物的表面性质。但由于纹理只是一种物体表面的特性,并不能完全反映出物体的本质属性,所以仅仅利用纹理特征是无法获得高层次图像内容的。与颜色特征不同,纹理特征不是基于像素点的特征,它需要在包含多个像素点的区域中进行统计计算。在模式匹配中,这种区域性的特征具有较大的优越性,不会由于局

一种医学图像的轮廓提取方法

—218 — ·图形图 36卷 第5期 ol.36 No.5 2010年3月 March 2010 像处理· 文章编号:1000—3428(2010)05—0218—03 文献标识码:A 中图分类号:TP391 一种医学图像的轮廓提取方法 罗三定,王建军 (中南大学信息科学与工程学院,长沙 410083) 摘 要:针对医学图像的模糊性和灰度不均导致目标轮廓难以准确提取的问题,提出使用改进的遗传算法控制主动轮廓模型完成边界提取的方法。采用保优算子保留遗传性状,选择适当的交叉算子,在进化后期可实现由整体寻优到局部寻优的转变。实验结果证明,该方法在提取目标轮廓时抗模糊能力强、鲁棒性好。 关键词:主动轮廓模型;轮廓提取;改进的遗传算法 Contour Extraction Method for Medical Images LUO San-ding, WANG Jian-jun (School of Information Science and Engineering, Central South University, Changsha 410083) 【Abstract 】Medical images with fuzzy and non-uniform characteristics make it difficult to accurately extract target contour, aiming at this problem, this paper adopts an improved genetic algorithm to make active contour model finish boundary extraction. It adopts prepotent operator to keep inheritance of quantitative characteristic and select proper crossover operator. In the anaphase stage of the improved genetic algorithm, it solves its changeover from global optimization to local optimization. Experimental results show that it is anti-fuzzy with good robustness in extracting contour of targets. 【Key words 】active contour model; contour extraction; improved genetic algorithm 计 算 机 工 程 Computer Engineering 第V 1 概述 医学图像由于其成像方式及特定环境的原因,具有模糊和不均匀的特点,主要体现为在同一组织中密度值和均匀度出现大幅度的变化。医学图像的几何性状较为模糊,在感兴趣区域的边界位置、拐角以及凸出点难以精确描述,边缘无法明确确定,这在很大程度上影响了图像的分割。在计算机视觉系统中,医学图像分割的方法主要分为阈值分割方法、区域生长法、结合特定理论工具的方法和基于主动轮廓模型的方法。 阈值分割法是处理分离目标与背景的最常见的图像处理方法,采用单一的全局阈值难以正确完成感兴趣区域的分割。基于直方图法的全局阈值分割是图像分割[1]的常用方法,直方图反映了图像全局的灰度分布,在目标和背景的灰度有明显差别时效果较好。局部阈值分割法是在局部范围内求取各子块的最佳阈值,经典OTSU 法的阈值求取计算量较大,不能很好地处理部分灰度均匀的区域,且区域划分大小难以 确定。 文献[2]的区域生长法根据预定义的标准,提取图像中相互连通的区域。该方法一般应用于序列图像处理过程,描绘面积小且拓扑结构简单的区域,但在提取每个区域的过程中,必须人工相应给出一个种子点。这种方法对噪声很敏感,可能会产生孔状或不连续的区域;局部影响较大的地方也可能会使原本应该连通的区域分离开来。 结合特定理论工具的分割方法有模式识别、模糊技术等。模式识别虽有较高的效率,但需要人工交互的方式获得训练数据,对大量的图像数据使用相同的训练样本而没有考虑不同的物理特性可能导致结果不准确。模糊技术的方法不考虑空间建模,对噪声和非同质的灰度很敏感[3]。 基于主动轮廓模型的方法[4]的特点是将图像数据、初始轮廓、收敛轮廓和基于先验知识的约束条件统一于特征提取的过程中。 本文对医学图像的特征进行研究分析后,采用改进的遗传算法作为外部约束力,控制曲线在能量最小化的作用下收敛,直至提取目标边缘。 2 Snake 模型 主动轮廓模型又称为Snake 模型,主要思想是定义一条初始能量函数曲线,将其初始化在待分割轮廓周围,在能量函数的极小值条件约束下,经过不断地演化曲线,最终收敛到图像轮廓[4-5]。 Snake 模型定义为 [][]()(),(); 0,1v s x s y s s =∈ (1) 它由一组控制点组成,这些点首尾相连构成轮廓线。其中()x s 和表示每个控制点在图像中的坐标位置,()y s s 是以傅里叶变换形式描述边界的自变量。 在控制点上定义的能量函数为 2221 image total 20()()()()(())d E s v s s v s E v s s s αβs ?????? =+ +∫???????? (2)

相关主题
文本预览
相关文档 最新文档