当前位置:文档之家› 300吨转炉车间设计设计书

300吨转炉车间设计设计书

300吨转炉车间设计设计书
300吨转炉车间设计设计书

目录

摘要 .............................................................................................................................................. V A BSTRACT...................................................................................................................................... V I 第1章绪论.. (1)

1.1中国炼钢生产技术的发展 (1)

1.2转炉高效吹炼工艺技术 (1)

1.3电炉兑铁水高效冶炼工艺 (2)

1.4转炉顶底复合吹炼工艺 (2)

1.5煤气回收与负能炼钢 (3)

1.6结论 (4)

第2章炼钢过程的物料平衡和热平衡计算 (5)

2.1物料平衡计算 (5)

2.1.1 计算原始数据 (5)

2.1.2 物料平衡基本项目 (6)

2.1.3 计算步骤 (7)

2.2热平衡计算 (13)

2.2.1 计算所需原始数据 (13)

2.2.2 计算步骤 (14)

第3章 300吨氧气顶吹转炉设计 (18)

3.1转炉炉型及各部分尺寸 (18)

3.1.1 转炉炉型及其选择 (18)

3.1.2转炉炉型各部分尺寸的确定 (18)

3.2转炉炉衬 (20)

3.2.1炉衬材质选择 (20)

3.2.2转炉炉型各部分尺寸的确定 (20)

3.3砖型选择 (20)

3.4转炉高宽比 (21)

第4章氧枪设计 (22)

4.1氧枪喷头设计 (22)

4.1.1 原始条件 (22)

4.2氧枪水冷系统 (24)

4.2.1氧枪枪身尺寸的确定 (24)

第5章氧气顶吹转炉炼钢车间设计 (26)

5.1转炉车间组成与生产能力计算 (27)

5.1.1转炉车间组成 (27)

5.2转炉车间主厂房工艺布置 (28)

5.3主厂房主要尺寸的确定 (29)

5.3.1 炉子跨主要尺寸的确定 (29)

5.3.2 加料跨主要尺寸的确定 (34)

5.3.3 浇铸跨主要尺寸的确定 (36)

第6章连铸设备的选型及计算 (41)

6.1钢包允许的最大浇注时间 (41)

6.2铸坯断面 (41)

6.3拉坯速度 (42)

6.4连铸机流数的确定 (42)

6.5铸坯的液相深度和冶金长度 (43)

6.5.1铸坯的液相深度 (43)

6.5.2连铸机的冶金长度 (43)

6.6弧形半径的确定系数 (44)

6.7连铸机生产能力的确定 (44)

6.7.1连铸机与炼钢炉的合理匹配和台数的确定 (44)

6.7.2连铸浇注周期计算 (45)

6.7.3连铸机的作业率 (45)

6.7.4连铸坯收得率 (46)

6.7.5连铸机生产能力的计算 (47)

第7章炼钢车间烟气净化系统及精炼设备的设计 (49)

7.1烟气净化设备设计 (49)

7.1.1烟气特征 (49)

7.1.2烟尘的特征 (49)

7.1.3氧气转炉炉烟气净化系统 (50)

7.1.4烟气净化系统的主要设备 (51)

7.2炉外精炼设备设计 (52)

7.2.1选择炉外精炼技术的依据 (52)

7.2.2炉外精炼设备的选择 (53)

7.2.3 LF炉设备及其配置 (54)

7.2.4 VOD设备组成 (55)

7.2.5 LFV法精炼工艺 (56)

7.2.6钢包精炼过程对温度的控制 (56)

参考文献 (57)

致谢 (58)

附录 (59)

摘要

本文主要介绍了300吨顶吹转炉及炼钢车间设计。炼钢过程就是铁水向钢水转变的过程,这对加入料及产物的成分、数量都有严格要求。本设计简要介绍了我国炼钢技术的发展历程。然后从物料平衡和热平衡方面进行计算,以100千克单位铁水量为基础进行计算确定了合理的原料成分及原料加入量,以确保物质和能量的守恒;再依给定的300吨氧气顶吹转炉设计出其炉型及相应的氧腔及水冷装置等。然后对连铸的生产能力进行计算,采用四炉连浇、一机二流的四台连铸机进行同时生产,使连铸生产能力达到了预计的产量要求,确定炼钢厂的布置,最后简单设计烟气净化系统及精炼设备,最终完成设计。

关键词:物料平衡和热平衡,氧气顶吹转炉,氧枪,炼钢车间,精炼设备

Abstract

This paper introduces 300-ton BOF and steel-making plant design .Steel-making process is the process of transformation of hot metal to the molten steel, which materials and products by adding ingredients, quantity, there are stringent requirements. The design briefly describes the history of steelmaking technology. And from the material balance and heat balance calculation to 100 kg units of iron water, calculated on the basis to determine a reasonable raw material components and raw materials by adding volume to ensure that materials and energy conservation; then follow the given 300 tons of BOF and the corresponding design of the furnace chamber and the water of oxygen devices. Then calculated the production capacity of continuous casting, continuous casting furnace with five, four second-rate one machine simultaneously casting machine production, the production capacity of continuous casting production reached the expected requirements, determine the layout of steel mills, and finally simple flue gas purification system design and refining equipment, complete the design requirements.

Key words: material balance and heat balance, BOF, oxygen lance, making workshop, refining equipment

太原科技大学毕业设计(论文)

第1章绪论

1.1 中国炼钢生产技术的发展

我国炼钢生产工艺技术的发展,大致可划分为3个发展阶段:自力更生阶段、改革开放阶段和集成创新阶段。

自力更生阶段:新中国成立后,在自力更生、艰苦奋斗的方针指导下,新中国的炼钢生产得到了迅速恢复和较快发展。但由于受到西方工业发达国家的技术封锁,我国炼钢生产技术与国际先进水平有很大差距,炼钢生产仍以落后的平炉一模铸工艺为主,中小型钢铁企业占相当大的比例。对20世纪50~60年代国际上开发投产并迅速推广的氧气转炉、连铸、钢水炉外精炼和铁水预处理【1】等新工艺、新技术国内迟迟未能大量采用。这一阶段建设了新中国钢铁工业的脊梁,培养了优良的作风和大批优秀的技术、管理人才,为中国钢铁工业的振兴奠定了基础。

改革开放阶段:这一历史时期我国采取对外开放的基本国策,通过学习、引进、

消化和吸收国外先进技术使我国炼钢生产技术逐步实现现代化。

集成创新阶段:20世纪90年代中期国内开始学习并引进美国溅渣护炉技术,通过不断的技术再创新和集成创新形成了具有中国特色的溅渣护炉技术,在全国广泛推广,获得巨大成绩。这标志着我国炼钢生产技术的发展开始从单纯学习、引进国外先进技术为主,逐渐转移到以国内自主创新和集成创新为主的发展道路。随着国内炼钢生产技术的发展,我国钢产量快速增长,从1966年的1亿t增到2005年的3.49亿t,约占世界钢产量的三分之一,

其生产技术的发展令全世界目。

1.2 转炉高效吹炼工艺技术

总结国内小转炉强化冶炼的基本经验归纳为:

(1)采用高速供氧技术,强化冶炼。小转炉的供氧强度(在标准状态下)一般在3.5 m3/(t2min)以上,其中济钢、莱芜、唐钢二炼等十余家钢厂的供氧强度(在标准状态下)达到4.0 m3/(t2rain)以上,使纯吹氧时间缩短到11.8 min,冶炼周期缩短到24 min。

(2)加快生产节奏,提高转炉作业率。小转炉采用各种措施,减少热停时间,避免各类事故,保证转炉高效、有序稳定地生产。

(3)采用复合吹炼工艺,加快炉渣熔化速度,保证吹炼平稳是提高供氧强度的技术保证。随着供氧强度的提高,吹炼时间明显缩短,要求用更短的时间实现化渣,并尽可能减

小炉渣金属喷溅。实践证明,采用底吹强搅拌技术可以加速转炉初渣的熔化,避免中期炉渣返干,减少喷溅。

(4)适当扩大装入量。对于小转炉扩大装入量相对容易,但对大、中型转炉难以实现扩装。同时扩大装入量带来的问题使炉容比变小,给平稳吹炼造成困难。传统的观点认为提高转炉供氧强度受到炉容比的严格限制,但采用以下技术有利于进一步提高供氧强度,提高转炉的生产效率:

(1)大幅度减少渣量,对于少渣冶炼转炉由于渣量减少,可以大幅度提高供氧强度;

(2)优化改进氧枪结构,提高喷枪化渣速度,减少熔池喷溅和避免产生大量FeO粉尘是大幅度提高供氧强度的技术关键;

(3)采用底吹强搅拌工艺,促进初渣熔化,实现渣钢反应平衡是提高熔池供氧强度的基础;

(4)采用计算机终点动态控制,实现不倒炉出钢以及提高出钢口寿命,缩短出钢时间,进而缩短转炉辅助作业时间,也是提高转炉生产效率的重要技术措施。

1.3 电炉兑铁水高效冶炼工艺

实践证明各国电炉生产技术的发展深受地区资源特点的影响,例如瑞典水、电发达,电价便宜,通常采用超高功率电炉冶炼技术,比功率每吨钢高达1 000 kVA,不采用强化供氧技术,冶炼周期可以缩短到1 h。而日本电价较高,通常采用高功率电炉强化供氧技术,也使电炉的冶炼周期缩短到1 h。而德国通常采用炉壁烧嘴、熔池吹氧、二次燃烧和废钢预热等综合供氧技术,达到降低电耗,缩短冶炼时间的目的。我国大型电炉最初的发展受德国的影响较深,曾大量引进直流电弧炉、交流高阻抗电炉、竖炉电炉和Consteel等国际上最先进的电炉装备技术,综合采用了超高功率供电、炉门氧枪和炉壁烧嘴以及废预热等先进工艺技术,但并未达预期的效果。由于我国煤炭资源丰富,炼铁成本较低。结合国内的这一资源特点,为进一步缩短电炉冶炼周期,降低电耗,推广采用了电炉兑铁水冶炼工艺,取得了明显的效果。

电炉采用兑铁水冶炼工艺不仅仅是增加了铁水的物理热,更重要的是改变了废钢的熔化方式,基本解决了传统电炉熔池缺乏搅拌,炉渣上部供热充足,电炉上、下部热量传递困难的主要弊病。

1.4 转炉顶底复合吹炼工艺

从表1.1中可以看出:复吹转炉结合了顶吹、底吹转炉的优点,却避免二者的缺点。因而,成为非常有效的精炼工艺。

表1.1 顶吹转炉、底吹转炉和项底复吹转炉冶金特点的比较

(1) 渣中Fe降低2.5~5.0%;

(2) 石灰消耗减少3~10kg/t;

(3)金属收得率提高0.5~1.5%;

(4)氧气消耗减少4~6Nm/t;

(5)残锰含量提高0.02~0.06%。

复吹转炉的经济效益,因冶炼的品种、炉子大小和各钢厂具体情况不同而有差异。一般说来,在欧洲约为20.6马克/t:在美国约为0.25~1.5美元/t;在中国为6~15元/t。

1.5 煤气回收与负能炼钢

转炉炼钢属于“自热式”冶炼,依靠铁水中C,Si、Mn、P等元素的氧化反应放热,完成精炼过程,并生成大量高温CO燃气,燃气温度(物理热)约为1500摄氏度,燃气热值(化学潜热)约为2100kcal/Nm3,煤气发生量波动在97.1 15Nm3/t之间。

采用煤气回收技术回收转炉烟气的化学潜热;采用余热锅炉回收烟气的物理热。当炉气回收的总热量>转炉生产消耗的能量时(如动力电、钢包烘烤燃料、氧气等),实现了转炉“负能炼钢”.当炉气回收的总热量>炼钢厂生产消耗的总能量时(包括炼钢、精炼、连铸等工序的能量消耗.实现了炼钢厂“负能炼钢”。 1978年到1998年20年间,我国吨钢能耗下降48.8%,节能效果显著。据1998年统计,我国大中型钢铁企业吨钢的可比能耗为901kg标准煤,仍比日本吨钢能耗高245kg标准煤(为37%)。炼钢节能潜力巨大。炼钢厂节能的技术措施是:

(1)降低铁钢比。每降低0.1%铁钢比,可降低吨钢能耗70~85kg标准煤;

(2)提高连铸比。和模铸相比,连铸可降低能耗50~80%,提高成材率7~18%折合标准煤63~162kg/t;

(3)回收利用转炉煤气,可降低吨钢能耗3~llkg标准煤;

(4)提高连铸坯热送比,可降低吨钢能耗1.9~2.1kg标准煤;

(5)提高转炉作业率,可降低工序能耗3kg标准煤。

1.6 结论

本文追朔了20世纪氧气转炉炼钢从诞生走向成熟的发展历程。总结出现代转炉炼钢的几项重大技术:渐渣护炉与长寿复吹转炉工艺技术、转炉高效吹炼技术、电炉对铁水高效冶炼技术、少渣冶炼、转炉顶底复吹冶炼工艺、煤气回收与负能炼钢等工艺技术。

第2章炼钢过程的物料平衡和热平衡计算

炼钢过程的物料平衡和热平衡计算是建立在物质与能量守恒的基础上的。其主要目的是比较整个过程中物料、能量的收入项和支出项,为改进操作工艺制度,确定合理的设计参数和提高炼钢技术经济指标提供定量依据。

在组织炼钢生产中,为了制定合理的工艺制度和进行计算机控制,首先要知道各种物料的加入量和产生的产物量是多少。为了确定合理的热工制度,确定合适的废钢加入量,需要知道炉子有多少的富余热量(因为转炉的热量除能满足出钢要求外还有富余,着部分富余热量可以用来多吃废钢,以降低炼钢成本)。

总之,不论从设计方面讲,还是从工艺方面讲都需要知道一定的数据。这些数据都是通过转炉物料平衡计算得来的。因此做好物料平衡和热平衡计算,对于设计转炉炼钢车间及其主要设备(转炉,氧枪和除尘设备等),指导和组织炼钢生产、分析、研究和改进冶炼工艺,实现计算机自动化控制等都有着极其重要的意义。由于转炉内进行着极其复杂而又激烈的物理化学反应,不可能做到十分精确的计算,因此要结合生产实际情况进行一些假设处理,做近似计算,然后在实际生产中修正。

2.1物料平衡计算

2.1.1 计算原始数据

基本原始数据有:冶炼钢种及其成分,铁水和废钢的成分,终点钢水成分(见表2.1);造渣用溶剂【2】及炉衬等原材料的成分(见表2.2):脱氧和合金化用铁合金的成分及其回收率(表2.3);其他工艺参数(表2.4)。

表2.1 钢种、铁水、废钢和终点钢水的成分设定值

② [C]和[Si]按实际生产情况选取;[Mn]、[P]、[S]分别按铁水中相应成分含量的30%、10%、60%留在钢水中设定。

表2.2 原料成分

表2.3 铁合金成分(分子)及其回收率(分母)

注:上表中的C中10%于氧生成CO2

表2.4 其他工艺参数设定值

收入项有:铁水、废钢、溶剂(石灰、萤石、轻烧白云石)、氧气、炉衬蚀损、铁合

金。

支出项有:钢水、炉渣、烟尘、渣中铁珠、炉气、喷溅。

2.1.3 计算步骤

以100Kg铁水为基础进行计算。

第一步:计算脱氧和合金化前的总渣量及其成分。

总渣量包括铁水中元素氧化、炉衬蚀损和计入溶剂的成渣量。其各项成渣量分别列于表2.5、2.6和2.7。总渣量及其成分列于表2.8中。

第二步:计算氧气消耗量。

氧气实际耗量系消耗项目与供入项目之差。见表2.9。

表2.5 铁水中元素的氧化产物及其渣量

表2.6 加入溶剂的成渣量

注:①石灰加入量计算如下:由表4.6~4.8可知,渣中已含=-0.014+0.004+0.002+0.910=0.902㎏;渣中

已含(SiO 2)=1.350+0.009+0.028+0.020=1.407㎏。因设定的终渣碱度R =3.5;故石灰的加入量为: [R Σω(SiO 2)- Σω(CaO )]/ [ω(CaO 石灰)-R 3ω(SiO 2石灰)]=4.022/(88.0%-3.532.50%)=5.076kg

② (石灰中CaO 含量)-(石灰中S →CaS 消耗的CaO 量)。 ③ 由CaO 还原出来的氧量,计算方法同表2-6的注。

表2.7 炉衬蚀损的成渣量

235.461+1.557+1.013+0.115+0.486+0.440+0.420+0.029=9.521Kg ,而终渣Σω(FeO )=15%(表2.5),故总渣量为9.521÷86.75%=10.975Kg 。

②ω(FeO )=10.9738.25%=0.905Kg 。同理ω (Fe 2O 3)=10.97535%-0.026-0.005-0.008=0.510Kg 。

表2.9 实际耗氧量

2第三步:计算炉气量及其成分。

炉气中含有CO 、CO 2、N 2、SO 2和H 2O 。其中CO 、CO 2、SO 2和H 2O 可由表2.5~2.7查得,O 2和N 2则由炉气总体积来确定。现计算如下。 炉气总体积V ∑:

311.850

.98324.22002.0790.77.0214.89950.98Vx -Gs 7.0V 99V Vx 0.5%V Gs 32

4

.229910.5%V Vg V g =÷?-?+?=+=-+++=∑∑∑∑)

(m 3

式中 V g —CO 、CO 2、SO 2和H 2O 各组分总体积,m 3。本设计中,其值为8.572322.4/28+2.635322.4/44+0.009322.4/64+0.010322.4/18=8.215m 3;

G S —不计自由氧的氧气消耗量,Kg 。其值为:7.388+0.062+0.34=7.790Kg ; V X —石灰中的S 与CaO 反应还原出的氧气量(其质量为:0.002Kg ); 99—由氧气纯度99%转换得来; 0.5%—炉气中自由氧含量。

表2.10 炉气量及其成分

注:① 炉气中2的体积为8.31130.5%=0.042m 3;质量为0.042332/22.4=0.060。

② 炉气中N 2的体积系炉气总体积与其他成分的体积之差;质量为0.067328/22.4=0.084 kg 。

第四步:计算脱氧和合金化前的钢水量。

钢水量Q g =铁水量-铁水中元素的氧化量-烟尘、喷溅、和渣中的铁损 =100-6.353-[]%6975.101)160/112%2072/56%755.1?++?+??( =90.904 kg

据此可以编制出未加废钢、脱氧与合金化前的物料平衡表2.11。

2.11 未加废钢时的物料平衡表

表2.12 废钢中元素的氧化量及其成渣量

如同“第一步”计算铁水中元素氧化量一样,利用表2.1的数据先确定废钢中元素的氧化量及其耗氧量和成渣量(表2.12),再将其与表2.11归类合并,遂得加入废钢后的物料平衡表2.13和表2.14.

表2.13 加入废钢的物料平衡表(以100Kg铁水为基础)

表2.14 加入废钢的物料平衡表(以100Kg (铁水+废钢)为基础)

先根据钢种成分设定值(表2.1)和铁合金成分及其烧损率(表2.3)算出锰铁和硅铁的加入量,再计算其元素的烧损量。将所得结果与表2.14归类合并,即得冶炼一炉钢的总物料平衡表。 锰铁加入量Mn W 为:

[][]钢水量回收率

锰铁含锰量终点

钢种??-=

Mn Mn Mn W Mn ωω

=g 08.098.91%

80%80.67%

5.0%55.0K =??-

硅铁加入量Si W 为:

[][][]回收率含量硅加锰铁后的钢水量

钢种Si Si 铁中Si )Si Si (n

e 终点Si ?-?-=

M F ωωW ω

=

kg 42.0%

75%73002

.0071.098.91%25.0=?-+?)(

铁合金中元素的烧损量和产物量列于表2.15

表2.15 铁合金中元素烧损量及其产物量

脱氧和合金化后的钢水成分如下:

%61.0%10038

.92005

.0%60.0C =?+

=)(ω %25.0%10038

.92230

.0003.0Si =?+=

)(ω

%55.0%10038.92002

.0043.0%50.0Mn =?++

=)(ω

%020.0%10038

.920004

.0%020.0P =?+=)(ω

%021.0%10038

.92002

.0%021.0S =?+

=)(ω 可见,含碳量尚未达到设定值。为此需要在钢包内加焦炭粉增碳。其加入量W 1为:

(%)

C (%)C 0.61)%-(0.63回收率量焦炭含刚水量

??=

Wj

=0.03Kg

焦粉生成的产物如下:

表2.16 总物料平衡表

①可近似认为(0.102+0.016)的氧量系出钢水时二次氧化所带入的氧量。

2.2热平衡计算

2.2.1 计算所需原始数据

计算所需基本原始数据有:各种入炉料及产物的温度(表2.17);物料平均热容(表2.18);反应热效应(表2.19);溶入铁水中的元素对铁熔点的影响(表2.20)。其他数据参照物料平衡选取。

表2.17 入炉料及产物的温度设定值【3】

表2.18 物料平均热容

以100Kg

铁水为基础。 第一步:计算热收入Q s 。

热收入项包括:铁水物理热;元素氧化热及成渣热;烟尘氧化热;炉衬中碳的氧化热。 (1)铁水物理热Q w :先根据纯铁熔点、铁水成分以及溶入元素对铁熔点的降低值(见表2.17、2.2和2.19)计算铁水熔点T t ,然后由铁水温度和生铁热容(见表2.17和表2.18)确定Q w 。

表2.20 溶入铁水中的元素对铁熔点的降低值

制材车间设计说明书

制材车间设计说明书 一、设计目的 掌握制材工艺设计的基本内容和方法步骤,深化所学理论知识和实习经验,熟悉制材工艺设备选型及人员配置。 二、设计题目 年产锯材万立方米制材车间工艺设计。 三、原始数 1、原木明细表

2、锯材明细表 四、设计条件 1、锯材为三等材,即最大钝棱率K=40%; 2、制材车间单班生产; 3、班工作时间为8小时; 4、锯路宽按 m=2.5mm 取; 5、年工作日为220天; 6、其它条件参考“制材学课程设计例”取用。 五、设计要求

1、完成制材工艺设计计算; 2、绘出制材车间工艺设计平面图; 3、编制设计说明书。 六、设计计算 (一)、计算原木和锯材平均尺寸 1、原木平均尺寸 (1)原木总需求量 因为题目中给定的是年锯材量,故需要估计原木耗量,取平均出材率60%,则年耗原木量为 3 =÷≈ Q m 1350065%20760 原 由此可得出原木数据表

(2)平均直径 ()∑∑= n n D D n p /2 取39.7740p D cm =? (3)平均单根材积 查原木材积表30.597p Q m = (4)平均根数 /13500/0.59722610p N Q Q ===原根

2、锯材平均尺寸 (1)平均厚度 由∑ =1n n p A C A 得: 29.37p A mm =, 取30mm 式中:n C 为该厚度占总材积的百分数 (2)平均宽度 由∑ =1n n p B C B 得 209.4p B mm =,取200mm 式中:n C 为该宽度占总材积的百分数 (二)、设计下锯图 1、判断单双方 锯材平均宽度200p B mm =,则2400mm p p D B ==。 因为2p B =400mm>p D ,所以应该采用单方下锯。 2、毛方部分出板块数: 11.01N = =, 取11快 其中,p D =400mm ,p B =200mm ,M=2.5mm ,H=30mm 。 可取主产11块。 3、毛方部分出副产品 因为毛方主产剩余部分少,故略去不计。 4、板皮部分出主产块数

@单层厂房课程设计

单层工业厂房结构课程设计计算书一.设计资料 1.某金工车间,单跨无天窗厂房,厂房跨度L=21m,柱距为6m,车间总 长度为150m,中间设一道温度缝,厂房剖面图如图所示: 2.车间内设有两台中级工作制吊车,吊车起重量为200/50kN。 3.吊车轨顶标高为9.0m。 4.建筑地点:哈尔滨市郊。 5.地基:地基持力层为e及I L 均小于0.85的粘性层(弱冻胀土),地基 承载力特征值为f ak =180kN/m2。标准冻深为:-2.0m。 6.材料:混凝土强度等级为C30,纵向钢筋采用HRB400级,(360N/mm2) 箍筋采用HPB300级。(270N/mm2) 二. 选用结构形式 1.屋面板采用大型预应力屋面板,其自重标准值(包括灌缝在内)为 1.4kN/m2。 2.屋架采用G415(二)折线型预应力钢筋混凝土屋架,跨度为21m,端 部高度为2.3m,跨中高度为33.5m,自重标准值为83.0kN。 3.吊车梁高度为0.9m,自重30.4kN;轨道与垫层垫板总高度为184mm, 自重0.8kN/m。 4.柱下独立基础:采用锥形杯口基础。 三、柱的各部分尺寸及几何参数 采用预制钢筋混凝土柱

轨道与垫层垫板总高m h a 184.0= , 吊车梁高m h b 9.0= , 故 牛腿顶面标高=轨顶标高m h h b a 916.79.0184.00.9=--=-- 由附录12查得,吊车轨顶只吊车顶部的高度为m 3.2,考虑屋架下弦至吊车顶部所需空隙高度为mm 220,故柱顶标高=m 520.1122.03.20.9+=++ 基础顶面至室外地坪的距离取m 0.1,则 基础顶面至室内地坪的高度为m 15.115.00.1=+,故 从基础顶面算起的柱高m H 67.1215.152.11=+=, 上部柱高m 60.3,604.3916.752.11取为m H u =-= 下部柱高m 07.9,066.9604.367.12取为m H l =-= 上部柱采用矩形截面mm mm h b 400400?=?; 下部柱采用Ⅰ型截面mm mm mm mm h b h b f f 150100900400???=???。 上柱: mm mm h b 400400?=? (m kN g /0.41=) 25106.1mm h b A u ?=?= 4931013.212mm bh I u ?== 下柱: )/69.4(1501009004002m kN g mm mm mm mm h b h b f f =???=??? [])100400()1752900()1502900(4009001-??-+?--?=A 2510875.1mm ?= 33 3)3/25275(253005.0212 60030012400900+????+?-?= l I 4101095.1mm ?= 109.0105.191013.29 9 =??==l u I I n m H m H u 67.12,6.3==

炼钢车间×T转炉三次除尘技术方案

秦皇岛宏兴钢铁有限公司 炼钢车间2×60T转炉三次除尘项目 技 术 方 案 张家口市宣化天洁环保科技有限公司 2016年5月

1.序言 秦皇岛宏兴钢铁有限公司技改炼钢车间三次除尘项目尘源点包括2×60t转炉两座加料跨配顶吸罩,600T混铁炉一座配顶吸罩,散装料上料系统一套配集中除尘。我公司根据秦皇岛宏兴钢铁有限公司提供的资料,编制了本方案,其目的在于为该除尘提供成套的、优化的、建设性的解决方案,确保符合国家环保要求,达标排放的前提下降低投资及运行成本。 2.尘源点概述 2.1需治理的扬尘点 本方案治理的尘源点配套除尘罩范围如下: 1)、2×60T转炉加料跨顶吸罩; 2)、600T混铁炉兑铁口、出铁口工位除尘罩; 3)、散装料地坑料仓卸料口除尘罩; 4)、散装料皮带机机头、机尾除尘罩; 5)、转运站皮带机头除尘罩、振动筛除尘罩; 6)、通廊皮带机头、皮带机尾除尘罩; 7)、高跨散装料仓皮带布料口除尘罩。 3.设计原则及依据 3.1设计原则 ●达标排放,保证除尘效果; ●不影响冶炼操作工艺; ●最大限度地降低运行费用及一次投资; ●利于维护管理,长期、有效、稳定地运行。 3.2 设计依据 ●国家有关环保要求及环境指标:(获县以上环保部门的验收) 排放浓度≤15mg/Nm3 岗位粉尘浓度≤10mg/Nm3(扣除背景值) 三次除尘捕集率≥95%(屋顶不冒黄烟),混铁炉捕捉率≥60% 除尘效率≥99%。 ●国家有关设计规范

4.除尘工艺流程及设计说明 4.1除尘工艺流程 本套系统采用低阻、大流量系统工艺原则,其目的在于以最低的系统阻力,控制系统管道流速(18~20m/s),通过选取管道经济流速,尽量降低系统阻力损失从而能明显降低长期电耗。换言之,追求的是在相同电机的情况下,最大限度地取得处理风量,提高捕集率。在相同风量满足捕集效果的前提下,尽可能少地消耗电能,降低运行费,并合理组织烟气,使系统长期、可靠、稳定地运行在既不烧滤袋又不易于结露的中温状态。烟气捕集是本系统的关键所在,设备其生产工艺不同、设备布置各异,因此,选用何种捕集罩型式成为本次方案的重点。 4.2除尘罩设计说明 1)、2×60T转炉加料跨顶吸罩: 60T转炉的烟尘基本处于持续产生过程,大量高温烟气受热膨胀和特抬升力影响从炉前二次除尘罩逃逸冲上加料跨车间顶部,由于现有车间全部密封,烟气淤积在车间顶部无法流通,必须在尘源上方利用现有厂房结构设置高悬伞形罩,捕集加料和兑铁水以及冶炼过程产生的三次烟气,被捕集的烟气通过系统管网汇合后进入低压脉冲除尘器进行过滤,最后满足排放达标的烟气通过引风机排入大气。 2)、600T混铁炉烟尘顶吸罩: 600T混铁炉产生的烟气基本处于间断产生过程,主要是混铁炉兑铁水、出铁水及铁包倒罐工位产生的大量烟尘。 混铁炉是贮存从高炉运来供炼钢转炉用的铁水,当混铁炉兑铁水和混铁炉向铁水罐倒铁水时在一定温度下部分碳析成石墨粉尘,混杂着氧化铁粉末随热气流扩散到车间内,大量高温烟气受热膨胀和特抬升力影响从炉前二次除尘罩逃逸冲上加料跨车间顶部,由于现有车间全部密封,烟气淤积在车间顶部无法流通,必须在尘源上方利用现有厂房结构设置高悬伞形罩。 由于石墨粉尘非常轻,在随热气流上升的过程中就受到车间横向野风的影响飘散到车间各个角落,因此采取高悬伞形罩的形式捕捉此类粉尘的话想对转炉三次除尘顶吸罩效率较低。 建议应该在最靠近尘源点的位置设计低悬伞形罩或者尘源点侧吸罩进行有效捕捉才能明显提高集尘效果。 3)、散装料上料系统除尘罩

《单层工业厂房》课程设计

《单层工业厂房》课程设计 姓名: 班级: 学号:

一.结构选型 该厂房是广州市的一个高双跨(18m+18m)的机械加工车间。车间长90m,柱矩6米,在车间中部,有温度伸缩逢一道,厂房两头设有山墙。柱高大于8米,故采用钢筋混凝土排架结构。为了使屋架有较大的刚度,选用预应力混凝土折线形屋架及预应力混凝土屋面板。选用钢筋混凝土吊车梁及基础梁。厂房的各构选型见表1.1 表1.1主要构件选型 由图1可知柱顶标高是10.20米,牛腿的顶面标高是6.60米,室内地面至基础顶面的距离0.5米,则计算简图中柱的总高度H,下柱高度H l和上柱的高度Hu分别为: H=10.2m+0.6m=10.8m H l=6.60m+0.6m=7.2m Hu=10.8m-7.2m=3.6m 根据柱的高度,吊车起重量及工作级别等条件,确定柱截面尺寸,见表1.2。 1.恒载

图1 求反力: F1=116.92 F2=111.90 屋架重力荷载为59.84,则作用于柱顶的屋盖结构的重力荷载设计值: G A1=1.2×(116.92+59.84/2)=176.81KN G B1=1.2×(111.90×6+59.84/2)=170.18 KN (2)吊车梁及轨道重力荷载设计值 G A3=1.2×(27.5+0.8×6)=38.76KN G B3=1.2×(27.5+0.8×6)=38.76KN (3)柱重力荷载的设计值 A,C柱 B柱 2.屋面活荷载 屋面活荷载的标准值是0.5KN/m2,作用于柱顶的屋面活荷载设计值: Q1=1.4×0.5×6×18/2=37.8 KN 3,风荷载 风荷载标准值按ωk=βzμsμzω0计算其中ω0=0.5KN/m2, βz=1, μz根据厂房各部分及B类地面粗糙度表2.5.1确定。 柱顶(标高10.20m)μz=1.01 橼口(标高12.20m)μz=1.06 屋顶(标高13..20m)μz=1.09 μs如图3所示,由式ωk=βzμsμzω0可得排架的风荷载的标准值: ωk1=βzμs1μzω0=1.0×0.8×1.01×0.5=0.404 KN/m2 ωk2=βzμs2μzω0=1.0×0.4×1.01×0.5=0.202 KN/m2

二零二零年钢铁车间设计完整版word可直接编辑

内蒙古科技大学 本科生毕业设计说明书(毕业论文) 题目:设计年产136万吨的 4100mm宽厚板车间 学生姓名:董振华 学号:1076806536 专业:材料成型及控制工程 班级: 10级成型5班 指导教师:曹建刚(教授)

设计年产量136万吨的宽厚板厂 摘要 关键词:宽厚板;生产工艺;车间设计;轧制

Design of heavy plate plant with 136million ton annual output Abstract Key words:

第一章总论 宽厚板主要用于造船、桥梁、建筑、汽车制造、容器制造、机械制造等行业,并且随着国民经济的增长,需求量也大为增加,品种范围也十分广泛。 1.1国内外宽厚板生产发展概况 1.1.1国内宽厚板生产发展概况 新中国成立之后,苏联的援助建设下,我国的宽厚板轧机有了很大的发展,在质量和性能上都有了明显提高。我国先后又在武钢建成3800mm宽厚板轧机、济钢3500mm宽厚板轧机等13套三辊劳特式轧机,为我国以后的板材发展提供了坚实的基础。70年代以后,由于国外市场的限制对我国出口先进设备技术,我国开始了自行研制板材的生产,并逐步向宽板方向发展研制。在1978年舞阳钢厂自行研制设计制造了第一套4200mm宽厚板轧机;首钢从国外引进国外已淘汰不用的二手设备3300mm宽厚板轧机,但这俩套轧机设备也满足那个时候我国国防建设的需要[1]。 改革开放后,我国的宽厚板轧机大多在原有的基础之上再稍加改进和引进国外先进设备进行改装,能解决基本上的轧机的尺寸偏小、长度偏短、宽度偏窄、板型质量差、偏差大以及在经济效益上有了很大的提高。最后,我国通过十几年的改进、发展和引进国外较先进技术,不断的提高了轧机的产能、生产技术和生产设备,并且我国的轧机也具备较先进电控设备、热处理工艺和控制轧制控制冷却的装备技术水平。 进入21世纪以后,我国的经济水平达到前所未有的提高,国内GDP也迅速提高。我国的钢铁企业开始了雨后春笋大量从国外引进新的宽厚板轧机生产设备和生产技术,使得生产的品种范围扩宽,生产的领域范围也更大。十一五期间,酒钢引进了一套具有高强度的3800mm宽厚板轧机,并且实现了厚度自动控制和过程自动化生产。宝钢5000mm轧机投产,鞍钢、济钢、武钢进行宽厚板轧机的改造和自主技术设备的应用。最近些年,我国首钢、宝钢、鞍钢通过自主研发和引进国外先进的技术设备相结合,建成了一批4000mm以上的大型宽厚板轧机,继承了世界上国外先进企业宽厚板轧制技术和设备,同时结合我国自主研发的关

年产330万吨转炉炼钢车间设计

年产330万吨全连铸坯的转炉炼钢车间工艺设计 专业:冶金工程 姓名:朱江江 指导老师:折媛 摘要 本设计的主要任务是设计一座年产330万吨方坯的转炉炼钢车间。本设计从基础的物料平衡和热平衡计算开始,主要包括以下几部分:转炉炉型设计、氧枪设计、转炉车间设计、连铸设备的选型及计算、以及炼钢操作制度和工艺制度,其中,转炉炼钢车间设计是本设计的重点与核心。 本设计设有转炉两座,转炉大小均为150t,平均吹氧时间为38min,纯吹氧时间为 18min,转炉作业率为80%,转炉的原料主要有铁水、废钢以及其它一些辅助原料。连铸坯的 收得率为98%,另外本车间炉外精炼主要采用了喂丝以及真空脱气手段。本车间的浇注方式为全连铸。车间的最终产品为方坯。 此次的设计任务更加巩固了我所学的专业知识,与此同时也更加了解了转炉炼钢车间的各道工艺流程,为以后的工作打下了良好的基础。 关键词:顶底复吹转炉炼钢车间精炼连铸 Abstact The main task of this design is designing a plant wich perduce 3.3 million tons of steel per year. It is become the foundation of the material and thermal calculation, mainly include the following parts: the bof model designing, oxygen lance designing, equipment selection and calculation of continuous caster ,besides,also including operating and process system of steelmaking ,the core of the design is ing This design has two 150t converter for steelmaking, the average time of oxygen applying is 38min ,pure oxygen applying time is 18min, the efficient of the bof is 80% , scrap metal and other auxiliary materials. The rate of casting billet is 98%, in addition , refining mainly adopts wire feeding and vacuum deairing, The final product is billet. The design more strengthened my major knowledge, at the same time also understand more about the converter steelmaking of each process , laiding a good foundation for the work of future. Keywords: converter steelmaking refining casting

(完整版)工厂设计说明书

说明书目录第一章总论 第一节设计依据和范围 第二节设计原则 第三节建筑规模和产品方案 第四节项目进度建议 第五节主要原辅料供应情况 第六节厂址概述 第七节公用工程和辅助工程 第二章总平面布置及运输 第一节总平面布置 第二节工厂运输 第三章劳动定员 第四章车间工艺 第一节工艺流程及相关工艺参数 第二节物料衡算 第三节车间设备选型配套明细表 第五章管道设计 第一节管道计算与选用 第二节管道附件与选用 第三节管路布置 第六章项目经济分析 第一节产品成本与售价 第二节经济效益 第三节投资回收期

第一章总论 第一节设计依据和范围 一、设计依据 设计依据食品工厂建设的国家标准,拟建工厂所在地理位置、地势环境、水源充足、原料来源,交通运输、消费市场等进行设计。工厂的设计符合经济建设的总原则、长远规划和地区发展,符合各行业开发发展政策,同时也符合本行业的法规政策。 二、建筑制图标准 建筑制图标准符合中华人民共和国建设部颁布的 《房屋建筑制图统一标准》GB/T 50001-2001、 《总图制图标准》GB/T 50103-2001、 《建筑制图标准》GB/T 50104-2001、 《建筑结构制图标准》GB/T 50105-2001、 《给水排水制图标准》GB/T 50106-2001 《暖通空调制图标准》GB/T 50114 《建筑中水设计规范》GB50336—2002 三、生产用水 工厂应有足够的生产用水,水压和水温均应满足生产需要;水质应符合GB5749的规定。如需配备贮水设施,应有防污染措施,并定期清洗、消毒。 非饮用水不与产品接触的冷却用水、制冷用水、消防用水、蒸汽用水等必须用单独管道输送,不得与生产(饮用)用水系统交叉连接,或倒吸入生产用水系统中。这些管道应有明显的颜色区别。 蒸汽用水直接或间接用于加工产品的蒸汽用水,不得含有影响人体健康或污染产品的物质。 四.厂区道路 厂区路面应坚硬(如混凝土或沥青路面)无积水。停车场及其他场地的地面为混凝土。其他地带应绿化,应有良好的排水系统。

单层工业厂房设计说明书

理工大学 科技学院 课程设计说明书 课程名 称: 设计题 目: 系 部: 专 业: 学生: 学号: 指导老 师:

2008 年 7 月

一设计资料 (1) 二构件选型 (3) 2.1 屋面板 (3) 2.2 屋架 (3) 2.3 天沟板 (3) 2.4 吊车梁 (4) 2.5 吊车轨道联结 (4) 2.6 基础梁 (5) 2.7 过梁(GL)、圈梁(QL)、连系梁(LL) (5) 2.8 门窗 (6) 三柱设计 (7) 3.1 尺寸的确定 (7) 3.2 材料的选用 (7) 四荷载计算 (9) 4.1 荷载作用位置 (9) 4.2 屋盖荷载 (9) 4.3 上柱自重 (9) 4.4 下柱自重 ................................................ 错误!未定义书签。 4.5 吊车梁等自重 (9) 4.6 吊车荷载标准值 (10) 4.7 围护墙等永久荷载 (10) 4.8 风荷载 (11) 五横向排架力分析 (13) 5.1 恒载作用下的力计算 (13) 5.2 活载作用下的力计算 (16) 六荷载组合及最不利力组合 (23) 6.1 Ⅰ—Ⅰ截面 .............................................. 错误!未定义书签。 6.2 Ⅱ—Ⅱ截面 .............................................. 错误!未定义书签。 6.3 Ⅲ—Ⅲ截面 .............................................. 错误!未定义书签。七柱配筋计算 (25) 八柱在排架平面外承载力验算 (31) 九斜截面抗剪和裂缝宽度验算 (32)

单层工业厂房课程设计计算书(完整版)

《单层工业厂房混凝土排架课程设计》1.1 柱截面尺寸确定 由图2可知柱顶标高为12.4 m,牛腿顶面标高为8.6m ,设室内地面至基础顶面的距离为0.5m ,则计算简图中柱的总高度H、下柱高度 l H、上柱高度Hu分别为: H=12.4m+0.5m=12.9m, l H=8.6m+0.5m=9.1m Hu=12.9m-9.1m=3.8m 根据柱的高度、吊车起重量及工作级别等条件,可由表2.4.2并参考表2.4.4确定柱截面尺寸,见表1。 表1 柱截面尺寸及相应的计算参数 计算参数柱号截面尺寸 /mm 面积 /mm2 惯性矩 /mm4 自重 /(KN/ m) A , B 上柱矩400×400 1.6×10521.3×108 4.0 下柱I400×900×100×150 1.875×105195.38×108 4.69 本例仅取一榀排架进行计算,计算单元和计算简图如图1所示。

1.2 荷载计算 1.2.1 恒载 (1).屋盖恒载: 两毡三油防水层0.35KN/m2 20mm厚水泥砂浆找平层20×0.02=0.4 KN/m2 100mm厚水泥膨胀珍珠岩保温层4×0.1=0.4 KN/m2 一毡二油隔气层0.05 KN/m2 15mm厚水泥砂浆找平层;20×0.015=0.3 KN/m2 预应力混凝土屋面板(包括灌缝) 1.4 KN/m2 2.900 KN/m2 天窗架重力荷载为2×36 KN /榀,天沟板2.02 KN/m,天沟防水层、找平层、找坡层1.5 KN/m,屋架重力荷载为106 KN /榀,则作用于柱顶的屋盖结构重力荷载设计值为: G1=1.2×(2.90 KN/m2×6m×24m/2+2×36 KN/2+2.02 KN/m×6m +1.5 KN/m×6m+106 KN/2) =382.70 KN (2) 吊车梁及轨道重力荷载设计值: G3=1.2×(44.2kN+1.0KN/m×6m)=50.20 KN

课程设计说明书-2

制药设备与车间工艺设计课程设计说明书 课题名称制剂工程 专业班级化工与制药 学生学号201110901164 学生姓名孔凤媚 学生成绩 指导教师邱建华 课题工作时间 广西师范大学化学与化工学院 制药工程设计任务书 专业:化工与制药学号: 201110901164 姓名:孔凤媚一、设计题目:年产2.5亿粒胶囊(硬胶囊)生产车间工艺设计 设计时间:2013.11.22-2013.12.18 指导老师:邱建华 二、设计内容和要求: 1、确定工艺流程及净化区域划分; 2、设计说明书中叙述所选用胶囊生产设备的工作原理、结构组成。 3、物料衡算、设备选型(按年生产工作日300天;2班/天、每 班8小时;片重按0.5 g/粒计;要求用湿法制粒;铝塑包装要求:10粒/板×2板/小盒,20小盒/中盒,200小盒/箱)。 4、按GMP规范要求设计车间工艺平面图; 5、编写设计说明书。

三、设计成果: 1、设计说明书一份,包括工艺概述、工艺流程及净化区域划分说 明、物料衡算、工艺设备选型说明、工艺主要设备一览表、车间工艺平面布置图、车间技术要求。 2、工艺平面布置图一套(1#图纸); 3、车间工艺平面布置图一套(1:100)。

第1章硬胶囊剂生产工艺概述 1.1 项目概述 硬胶囊剂是指食用明胶为主要原料的胶液,制成空心的干硬胶囊(分为囊体和囊帽),然后将一定量的药材提取物、药材提取物加药材细粉或辅料制成的均匀粉末或颗粒,充填于空心胶囊中制成的制剂。 硬胶囊剂的制备方法可归纳(1)湿法制粒工艺、(2)干法制粒工艺 本次课程使用湿法制粒工艺。生产工艺流程图见附件1。 生产设备主要有抛光机、填充机、粉碎设备、筛分设备、制粒设备、干燥设备、包装设备、混合设备。 1.2 设计依据 (1)、设计任务书 (2)、设计规范和标准,如《工矿企业总平面设计规范》、《化工企业总图运输设计规范》、《厂矿道路设计规范》、《建筑设计防火规范》、《化工企业供电设计技术规定》、《爆炸和火灾危险环境电力装置设计规定》、《化工管道设计规范》、《洁净厂房设计规范》、《采暖通风和空气调节设计规范》、《化工企业安全卫生设计标准》、《国家污水综合排放标准》、《工业“三废”排放试行标准》等。 (3)、有关的设计基础资料,如设计规模、产品方案、生产工艺流程、车间组成、运输要求、劳动定员等生产工艺资料,以及厂址的地形、地势、地质、水文、气象、面积等自然条件资料。 1.3 设计内容 1.设计工艺路线的选择 通过文献的调研对设计产品或单元反应的路线进行评价,提出拟采用路线的依据及合理性,巩固文献检索知识,培养科学决策能力。 2.工艺设计计算 通过单元反应的物料衡算、热量衡算对所需设备进行初步选型,进而根据特定工

设计一座公称容量为3215;200t吨的氧气转炉炼钢车间毕业设计

设计一座公称容量为3×200t吨的氧气转炉炼钢车间毕业设计 目录 摘要.............................................. 错误!未定义书签。ABSTRACT ............................................ 错误!未定义书签。引言. (1) 1 设计方案的选择即确定 (2) 1.1车间生产规模、转炉容量及座数的确定 (2) 1.2车间各主要系统所用方案的比较及确定 (2) 1.2.1 转炉冶炼工艺及控制 (2) 1.2.2 铁水供应系统 (2) 1.2.3 铁水预处理系统 (3) 1.2.4 废钢供应系统 (4) 1.2.5 散装料供应系统 (4) 1.2.6 转炉烟气净化及回收工艺流程 (6) 1.2.7 铁合金供应系统 (7) 1.2.8 炉外精炼系统 (7) 1.2.9 钢水浇注系统 (8) 1.2.10 炉渣处理系统 (10) 1.3炼钢车间工艺布置 (11) 1.3.1 车间跨数的确定 (11) 1.3.2 各跨的工艺布置 (12) 1.4车间工艺流程简介 (12) 1.5原材料供应 (15) 1.5.1 铁水供应 (15) 1.5.2 废钢供应 (15) 1.5.3 散装料和铁合金供应 (15) 2设备计算 (16) 2.1转炉计算 (16)

2.1.2 转炉空炉重心及倾动力矩 (22) 2.2氧抢设计 (24) 2.2.1 技术说明 (24) 2.2.2 喷头设计 (25) 2.2.3 枪身设计 (27) 2.3净化及回收系统设计与计算 (33) 2.3.1吹炼条件 (33) 2.3.2参数计算 (34) 2.3.3流程简介 (36) 2.3.4 主要设备的设计和选择 (36) 2.3.5 计算资料综合 (39) 2.4炉外精练设备的选取及主要参数 (39) 2.4.1主要设计及其特点 (39) 2.4.2 主要工艺设备技术性能 (40) 3车间计算 (50) 3.1原材料供应系统 (50) 3.1.1 铁水供应系统 (50) 3.1.2 废钢场和废钢斗计算 (51) 3.1.3 散状料供应系统 (52) 3.1.4 合金料供应系统 (54) 3.2浇铸系统设备计算 (55) 3.2.1钢包及钢包车 (55) 3.2.2连铸机 (56) 3.3渣包的确定 (64) 3.4车间尺寸计算 (67) 3.4.1 炉子跨 (67) 3.4.2 其余各跨跨度 (62) 3.5天车 (63) 4 新技术和先进工艺、设备的应用 (64) 4.1铁水预处理脱硫 (64)

冷轧车间设计

轧钢车间设计 课程教案 ~ ¥ 井玉安 教案用纸

^ 内容 重点、要点 1.车间设计总论 摘要:本章主要讲两个大问题,即车间设计(工艺设计)的主要内容和车间设计的基本程序,通过对这两个问题的掌握使学生对轧钢车间有一个总体认识,为毕业设计打基础。 1.1车间设计的基本内容 1.1.1轧钢车间设计的基本内容 通常由生产工艺设计、机械设备设计、厂房与基础设计、供水与排水,热力(供气)与电力,通风与照明,运输等设计所组成。 其中车间生产工艺设计是整个轧钢车间设计的总体部分。主要任务是根据设计任务书,确定生产工艺过程,确定轧机组成,选择所需各种设备,画出车间工艺平面布置图,最后对水、电、动力、热力、通风照明、厂房建筑等设计提出要求。最后形成文件即车间设计说明书。 1.1.2/ 1.1.3轧钢车间工艺设计(车间设计说明书)的主要内容 一.总论(前言、综述、概况)(对该产品生产有一全面了解) 1.车间年产量、产品品种规格等 2.原材料、动力、燃料的来源及市场情况 3.本设计与同类企业相比具有的特点 4.目前建设的内容与远景规划 5.车间的劳动组织、建设投资、经济与社会效益 6.遗留问题与解决意见 7.: 8.若扩建需说明现状、扩建理由,并提出充分利用现有设备及构筑物挖潜革新的措施 9.其它要说明的问题 注:对毕业设计综述应从以下几个方面论述、阐述: 1.品名称、品种、规格、用途、生产方法等 2.xxxx产品生产的发展历史(主要指生产方法重要的工艺变革及设备改进等) 3.目前的生产状况、主要指生产该产品目前采用的新工艺、新设备等技术生产展望,发展方向、对未来的预测(提出那里应改进,应向何方向发展)@ — $ 深入理解车间工艺设计的步骤及其内容。

单层工业厂房课程设计

单层工业厂房课程设计 某金工厂房设计 一、设计资料 1、该车间为一单跨厂房,柱距15m,长度75m,跨度27m,剖面如图,设有工作级别A4桥式吊车,吊车起重量20/5,轨顶标高9.6m。吊车的有关参数见下表1-1。 吊车有关参数表1-1 吊车 起重量 Q/t 跨度 Lk/m 吊车宽 B (mm) 轮距 K (mm) 最大轮压 max P (KN) 最小轮压 min P (t) 起重机总 质量 M1(t) 小车总质 量 M2(t) 轨顶以 上高度 H (m) 20/5 25.5 6400 5250 230 5.3 30.5 7.5 2300 2、恒载:屋盖自重设计值750KN(6m=300KN,9m=450KN,12m=600KN,15m=750KN),吊车梁 自重(吊车梁自重标准值44.2KN,轨道及零件重标准值0.8KN/m),柱自重。 3、活载部分:仅计入吊车部分荷载。 4、最不利荷载组合:恒载+吊车荷载组合下对应内力值。 二、材料的选用 1、混凝土:采用C30) / 01 .2 , / 3. 14 (2 2mm N f mm N f tk c = =。 2、钢筋:纵向受力钢筋采用HRB335级 ) / 10 2 , 55 .0 ξ, / 300 (2 5 2mm N E mm N f s b y × = = =。 3、箍筋:采用HPB235级) / 210 (2 mm N f y =。

三、排架柱高计算 1、由吊车资料表可查得:H =2300mm,轨顶垫块高为200mm ,吊车梁高为1.2m 。 牛腿顶面标高 =轨顶标高-吊车梁-轨顶垫块高 =9.600-1.200-0.200 =8.200m 柱顶标高 =牛腿顶面标高+吊车梁高+轨顶垫块高+H+0.220 =8.200+1.200+0.200+2.300+0.220 =12.120m (取12.300m) 上柱高 u H =柱顶标高-牛腿顶面标高 =12.300-8.200=4.100m 全柱高H =柱顶标高-基顶标高 =12.300-(-0.500)=12.800m 下柱高l H =全柱高-上柱高 =12.800-4.100=8.700m 实际轨顶标高=牛腿顶面标高+吊车梁高+轨顶垫块高 =9.800m 则 (9.8m -9.6m)÷9.0m =0.022<0.200 满足要求。 2、排架截面尺寸计算 截面尺寸需要满足的条件为:b ≧1.1×l H /25=383mm.h ≥1.1×l H /12=797mm 取柱截面尺寸为:上柱:b ×h =400×400 下柱:b f ×h ×b ×h f =400×900×100×150 根据柱子的截面尺寸可求得: 上柱截面积 A u =1.6×1055 m m 22 上柱惯性矩 I u =2.13×109m m 4 下柱截面积 l A =1.875×1055 m m 22 下柱惯性矩 l I =19.54×1099 m m 44 四、 荷载计算 1、屋盖自重计算 G 1=0.5×750=375K N 150-2/400150-2/1==u h e )(50与上柱中心线的偏心距mm = 2、柱自重

设计年产300万吨合格铸坯的转炉炼钢车间指导书

毕业设计指导书 指导教师孔辉学生姓名 ## 班级冶081 一、设计(论文)的题目: 设计一个年产300万吨合格铸坯的转炉炼钢车间 二、设计(论文)的目的: 进行钢铁厂设计需要花费大量精力和时间,且独立性强,因此对提高学生的综合能力(查阅文献能力、独立设计选型与计算能力、Autocad制图能力等)很有帮助。通过教师制定每一阶段的明确目标,在督促学生完成任务的同时,与学生共同商讨,共同学习有教学相长的作用。 三、设计(论文)的内容及要求: 1、文献调研及生产现场考察。 要求查阅近年相关文献20篇以上,其中外文资料不少于3篇,一篇外文译成中文。2、设计说明书内容: (1)设计原则和依据 (2)产品大纲的制定 (3)工艺流程的选择与论证 (4)物料平衡与热平衡计算 (5)车间主体设备的计算与选择 (6)车间工艺布置 (7)车间厂房的布置 (8)采用新工艺说明 3、工程制图: (1)车间工艺平面布置图一张 (2)车间横剖视图一张 (3)转炉炉体图一张,为CAD制图。 四、时间安排: 第1周:查阅设计资料及生产调研,了解不同钢种的成分、用处、生产要点;了解本单位的设备条件及工艺过程 第2-4周:设计方案的确定与论证 第5-6周:转炉冶炼典型钢种的物料平衡和热平衡计算 第7-9周:车间主体设备的设计

第10-11周:车间主厂房的设计 第12-14周:用计算机绘制车间平面布置图、剖面图及炉体本体图 第15-16周:编写设计说明书 第17周:准备答辩 五、推荐参考文献: [1] 冯聚合.艾立群,刘建华.铁水预处理和炉外精炼.冶金工业出版社,2006; [2] 张树勋.钢铁厂设计原理. 冶金工业出版社,2005年第一版; [3] 胡会军.田正宏. 宝钢分公司炼钢厂:上海,2009;

板蓝根颗粒剂提取车间设计说明书

板蓝根颗粒剂提取车间设计说明书 专业制药工程 班级制药101 姓名梁楠 学号 3100822039 指导教师刘广钧 二零一三年七月

第一部分 设计任务 某药厂拟建年产2.5亿袋(10g/袋,合2500吨/年)板蓝根颗粒剂的提取车间,年工作日300天,三班生产,日有效工作时间20小时。 第二部分 生产工艺选择及流程设计 一、板蓝根的前处理 将板蓝根净选除杂、清洗、润药。处理过的板蓝根切厚片后干燥,再经紫外消毒后去提取区域提取。 二、板蓝根的水提和浓缩 取前处理合格的板蓝根,至多能在提取罐中加饮用水煎煮二次,第一次加药材6倍量饮用水煎煮2小时,第二次加药材4倍量饮用水煎煮1小时,合并煎液,过120目筛。 将滤液用外循环浓缩器(真空度0.06—0.07Mpa ,温度70℃--80℃)浓缩至药液相对密度为1.20(50℃)备用。 三、板蓝根的醇沉和粗品浸膏的收集 将浓缩液加工业乙醇使醇含量达60%,离心,除去蛋白质,回收乙醇,并浓缩药液至适量。取上清液经减压浓缩罐(真空度0.06Mpa 左右,温度80℃以下)回收乙醇直至药液相对密度为1.26—1.28(70℃--80℃)。 浸膏在浸膏收集车(净化级别为三十万级)中装入密封的容积内。若24小时不能转入下道工序则需要入库贮存,冷库贮存时间不得超过5天。 四、工艺方框流程图 图1:板蓝根前处理方框工艺流程图 除杂 板蓝根原药材 清洗 切厚片干燥 紫外消毒 提取区域 润药

图2:板蓝根水提方框工艺流程图 图3:板蓝根醇沉方框工艺流程图 五、工艺流程图 见附图(1)。 三十万洁净区 上 清 液 浓缩液 60%工业乙醇 离心除蛋白 浓缩回收乙醇 减压浓缩罐浓缩 浸膏收集车装密 封容器 冷库储存 三十万级洁净区 提取罐2水提 净板蓝根 提取罐1水提 过120目筛 外循环浓缩器浓缩 存放

单层工业厂房设计11

单层工业厂房设计 1.设计资料 1.金加工车间跨度21m ,总长60 m ,柱距6 m 。 2.车间内设有2台200/50kN 中级工作制吊车,其轨顶设计标高9 m 。 3.建筑地点:信阳市郊区。屋面活荷载标准值为0.5KN/ m 2 基本风压W=0.45KN/ m 2,基本雪压S=0.40KN/m 2。 4.车间所在场地:低坪下0.8 m 内为填土,填土下4 m 内为均匀亚黏土,地基承载力设计值2200/a f kN m =,地下水位-4.05 m ,无腐蚀。 5.厂房中标准构件选用情况: (1).屋面板采用G410(一)标准图集中的预应力混凝土大型屋面板,板重(包括灌浆在内)标准值1.4KN/m 2,屋面板上做二毡三油,标准值为20.35/kN m 。 (2).天沟板采用G410(三)标准图集中的TGB77—1,板重标准值为2.02/kN m 。 (3).屋架采用G410(三)标准图集中的预应力混凝土折线型屋架YWJA —21,屋架辎重标准值91KN 每榀。 (4).吊车梁采用G425标准图集中的先张发预应力混凝土吊车梁YXDL6—8,吊车梁高1200 m m ,翼缘宽500 m m ,梁腹板宽200 m m ,自重标准值45KN/根,轨道及零件重1/kN m ,轨道及垫层构造要求200 m m 。 (5)材料: A.柱:混凝土C30 B.基础.混凝土C30 C.钢筋.Ⅱ级。 2.结构构件选型及柱截面尺寸确定 选用钢筋混凝土吊车梁及基础梁。厂房各主要构件选型见下表: 主要承重构件选型表

因该厂房跨度在15-36m之间,且柱顶标高大于8m,所以采用钢筋混凝土排架结构。为了是屋盖具有较大刚度,选用预应力混凝土折线形屋架及预应力混凝土屋面板。 低坪下0.8 m内回填土,假设基础顶部到室内地坪的距离为600m. 由于工艺要求,轨顶标高为9m,又吊车梁高度1.2m。吊车轨道及垫层高度0.2。由设计资料取柱牛腿顶面高度为7.6m,查表,吊车轨顶至桥架顶面的高度为2300m,假设安全距离为0.6m,满足模数要求,则柱顶的标高为11.4m,H=11.4+0.6=12m.则计算简图、柱子总高度H、下柱高度Hl和上柱高 Hu=11.4-7.6=3.8m Hl=7.6+0.6=8.2m 采用实腹式矩形柱子,由表12-3得:h≧h k/14=657mm>600mm,则下柱采用工字型截面,根据柱的高度、吊车起重量及工作级别等条件,可查表确定柱截面尺寸: 表4.2柱截面尺寸及相应的计算参数 3.荷载计算 3.1恒载

生产车间设计原则

关于实木生产线作业区规划的若干建议: 作业区是指各车间、班组从事生产作业的工作现场。作业区的规划如何,将直接影响作业效果。 生产作业每天都在进行着,工作现场也处在一种不断变化的状态之中,材料、半成品的种类、数量和位置时刻都不同,人员要走动、物料要运送、工序间要进行交接,如果场地不够大,标志不清楚就会造成生产秩序的混乱,严重影响工作效率。 作业区域可从功能和用途上去划分,同时又是互相依附关系。 1、按车间划分 车间划分是作业区规划的第一项工作,车间划分首先决定于企业的产品特点,其次与企业的管理习惯和管理模式有关。 (1)车间划分的依据 车间划分应依据以下条件和原则进行: a.总空间大小 厂区规划方案确定以后,作业区的总面积便固定下来,各车间、工序的划分只能在总面积之内进行,某一个车间如果过大,其它的车间就只能变小,所以,必须进行总体协调和妥善分配。 b.产能设计 车间规划的结果必须可以满足设计产能要求,要满足这一要求,必须有足够的机位、操作位、半成品存放空间、周转台、材料暂存区等硬件设施。在进行车间划分时,要将设计总产能按工序能力进行分配,以保证各工序产能之和满足要求。 c.工序平衡原则 工序平衡是指各车间所生产的半成品数量在安装环节具有配套性,或者在完成单位数量产品的生产时,各工序具有相同的生产能力。因为同样生产能力时,不同工序所需要的员工数量、设备数量、工作台所占面积、作业空间的要求都是不同的,所以场地大小的要求也是不同的,工序平衡是车间划分时应该遵守的重要原则。 d.半成品库存

半成品库存量的多少受以下因素影响: ◆生产线的顺畅程度; ◆生产流程的特点; ◆企业的营销策略; ◆管理能力; ◆生产决策; ◆生产周期。 要根据以上因素,对各车间、各工序的半成品常规数量进行分析,从而得到半成品的存放区域的大小,在车间划分时给予充分考虑。 e.管理模式 不同的管理模式对车间的划分有不同的要求,车间的划分要结合企业管理的需要,而进行车间的设立、分割、合并。 f.设备特点 设备数量、体积大小、功能等对车间规划都有着一定影响。 g.工序间的相互影响 家具制造企业,很多车间的作业会产生大量的粉尘、噪音等污染,这将对其它车间的产品质量、生产安全、作业者产生影响,在进行车间划分时应给予考虑。 2、按区域划分 区域划分是指在各车间内部,按照各种功能需要所进行的场地分配,这些区域包括: (1)材料暂存区 用于临时存放车间领来待用的材料,尤其是象木材、板材、铁管等大型材料,一定要留有充足的材料暂存区,材料是一定要有地方存放的,不会因为没有划出这一区域就可以节省空间,只会使作业区混乱和拥挤。 大型材料暂存区主要在备料工序的前端,其它工序的材料以小件的为主,材料暂存区面积较小,但应配置物品架、材料箱,使材料的存放立体化,以节省空间。 (2)作业区 是车间中最大的区域,是生产作业的场所,在区域划分时,作业区往往按照作业用途被进一步细化,如备料车间可分为:断料作业区、平刨作业区、压刨作业区、拼板作业区、指接作业区等。 作业区应为以下工作和项目留出充分的空间:

转炉炼钢

转炉炼钢文献综述

内蒙古科技大学毕业设计说明书(毕业论文) 摘要 根据炼钢厂设计要求及设计任务书的要求,本设计阐述了230万吨合格铸坯的转炉车间的设计工艺,并且介绍了近年来国内外转炉炼钢的现状和发展。本设计主要对转炉炼钢生产的生产规模、产品方案、工艺流程、车间组成和车间布置进行设计,并对120吨转炉炉型、原料供应系统进行了详细计算。对厂房各跨宽度,长度进行了估算。此外,对转炉车间的一些主要的附属设备进行了选择并对其技术性能进行讲解。 随着现代炼钢技术的发展,新建转炉炼钢车间要求炼钢过程洁净、高效、负能耗、设备可靠等等。设计中为实现上述目标,借鉴了国内外大中型转炉炼钢厂的一系列先进且成熟的技术,同时参阅了大量的文献资料。设计的炼钢车间理论上能够生产绝大多数钢种,但是结合实际考虑经济效益,主要生产重轨钢和一部分高附加值的碳素结构钢及合金结构钢等,以满足230万吨合格铸坯全连铸炼钢厂的匹配。 关键词:转炉炼钢重轨钢冶炼

文献综述 1.1 引言 21世纪钢铁工业的发展面临着机遇和挑战。根据市场预测:至2010年发达国家钢材消费年均增长量为0.7%;而发展中国家将达到3.8%;太平洋地区的增长为4.57%。世界钢材市场消费量的缓慢增长,为钢铁工业发展,特别是太平洋地区发展中国钢铁工业发展提供了良好的机遇。 21 世纪国际钢铁工业发展面临的严峻挑战, 主要来自三个方面: (1)钢铁生产能力过剩,残酷的市场竞争将使一些落后的钢铁厂倒闭; (2)环境保护对钢铁工业发展产生巨大压力,一些污染严重的落后工艺将被强制淘汰;(3)世界钢材价格呈下降趋势。 进入21 世纪, 面对机遇和挑战,钢铁企业必须努力发展高效生产工艺,降低生产成本,提高产品质量和减轻对环境的污染,才可能立于不败之地[1]。 1.2 我国转炉炼钢的发展及现状 1.2.1我国钢产量 作为转炉炼钢主要炉料的生铁逐年增长, 为转炉炼钢钢产量的大幅度增长提供了良好而充裕的原料条件, 与世界各主要产钢国家相比, 我国铁钢比较高, 近年来我国生铁产量及铁钢比如表1.1所示。

相关主题
文本预览
相关文档 最新文档