当前位置:文档之家› 相似矩阵

相似矩阵

矩阵的合同-等价与相似的联系与区别

矩阵的合同,等价与相似的联系与区别 一、基本概念与性质 (一)等价: 1、概念。若矩阵A 可以经过有限次初等变换化为B ,则称矩阵A 与B 等价,记为A B ?。 2、矩阵等价的充要条件: A B ?.{P Q A B ?同型,且人r(A)=r(B)存在可逆矩阵和,使得PAQ=B 成立 3、向量组等价,两向量组等价是指两向量组可相互表出,有此可知:两向量组的秩相同,但两向量组各自的线性相关性却不相同。 (二)合同: 1、概念,两个n 阶方阵A,B ,若存在可逆矩阵P ,使得A B ?P T AP B =成立,则称A,B 合同,记作A B ?该过程成为合同变换。 2、矩阵合同的充要条件:矩阵A,B 均为实对称矩阵,则A B ??二次型x T Ax 与x T Bx 有相等的E 负惯性指数,即有相同的标准型。 (三)相似 1、概念:n 阶方阵A,B ,若存在一个可逆矩阵P 使得1B P AP -=成立,则称矩阵A,B 相似,记为~A B 。 2、矩阵相似的性质:

~A B 11~,~,~(,) |E-A |||,()(),T T k k A B A B A B A B E B A B tr A tr B A B λλ--=-?=前提,均可逆即有相同的特征值(反之不成立) r(A)=r(B) 即的逆相等 |A|=|B| 3、矩阵相似的充分条件及充要条件: ①充分条件:矩阵A,B 有相同的不变因子或行列式因子。 ②充要条件:~()()A B E A E B λλ?-?- 二、矩阵相等、合同、相似的关系 (一)、矩阵相等与向量组等价的关系: 设矩阵 12(,,,)n A λλλ=L ,12(,,,)m B βββ=L 1、若向量组(12,,,m βββL )是向量组(12,,,n λλλL )的极大线性无关 组,则有m n ≤,即有两向量等价,而两向量组线性相关性却不同,钱者一定线性无关,而后者未必线性无关。而矩阵B 与A 亦不同型,虽然()()r A r B =但不能得出A B ?。 2、若m=n ,两向量组(12,,,n λλλL )?(12,,,m βββL )则有矩阵A,B 同型且()()~,,r A r B A B A B A B =??;r()()A r B A B =??。 3、若r()()A B A r B ??=?两向量组秩相同,?两向量组等价,即有1212(,,,)(,,,)n n A B λλλβββ?≠>?L L 综上所述:矩阵等价与向量等价不可互推。 (二)、矩阵合同。相似,等价的关系。 1、联系:矩阵的合同、相似、等价三种关系都具有等价关系,因为三者均具有自反性、对称型和传递性。 2、合同、相似、等价之间的递推关系

线性代数关于等价、相似、合同的对比

定义2.5.3如果一个矩阵A经过有限次的初等变换变成矩阵B,则称A与B等价,记为A~B。 等价具有反身性即对任意矩阵A,有A与A等价; 对称性若A与B等价,则B与A等价 传递性若A与B等价,B与C等价,则A与C等价。 2.5.5用矩阵的初等变换求解矩阵方程 最常见的方程有以下两类: (1)设A是n阶可逆矩阵,B是n×m矩阵,求出矩阵X满足AX=B 原理:AX=B时 (2)设A是n阶可逆矩阵,B是m×n矩阵,求出矩阵X满足XA=B。 解:由方程XA=B XAA-1=B A-1解为x= B A-1 要注意的是,矩阵方程XA=B的解为x= B A-1,而不可以写成x= A-1B。 因为X满足XA=B X T满足A T X T=B T从而有X T=(A T)-1 B T=(BA-1)T 所以,可以先用上述方法求解A T X T=B T,再把所得结果X T转置即得所需的X=BA-1。 定义3.3.2(向量组的等价)如果向量组R能由向量组S线性表出,反之,向量组S也能由向量组R线性表出,则称向量组R与S等价。 向量组之间的等价关系有下列基本性质:设A,B,C为三个同维向量组,则有 定义5.2.1 设A和B是两个n阶方阵,如果存在某个n阶可逆矩阵p使得B=p-1AP。则称A 和B是相似的,记为A~B。

当两个n阶方阵A和B之间存在等式B=P-1AP时,我们就说A经过相似变换变成了B。 同阶方阵之间的相似关系有以下三条性质: (1)反身性 A~A,这说明任意一个方阵都与自己相似。 事实上,有矩阵等式 (2)对称性若A~B则B~A,这说明A和B相似与B和A相似是一致的。 事实上,有 (3)传递性若A~B,B~C则A~CP,这说明当A和B相似,B和C相似时,A和C一定相似。 事实上,由B=P-1AP,C=Q-1BQ即可推出C=Q-1P-1APQ=(PQ)-1A(PQ) 定理5.2.1 相似矩阵必有相同的特征多项式,因而必有相同的特征值,相同的迹和相同的行列式。需注意的是A与B不一定有相同的特征向量。 定理5.2.2n阶方阵A与对角阵P-1AP =相似的充分必要条件是A有n个线性无关的特征向量。 两个重要结论:(1)任意一个无重特征值的方阵一定相似于对角矩阵;(2)对角元两两互异的三解矩阵一定相似于对角矩阵;(3)若A中任一k的特征根对应有k个线性无关特征向量,则A一定与对角阵∧相似. 定义5.3.4 如果一个同维向量组不含零向量,且其中任意两个向量都正交(两两正交),则称该向量组为正交向量组。 定义5.3.5 若是 R n中的一个正交向量组,且其中每个向量都是单位向量,则称这个向量组为标准正交向量组。(正交单位向量组) 定理5.3.1 正交向量组必线性无关。 必有向量组正交,且是标准正交组。(正交单位向量组) 定义5.3.5 如果n阶实方阵A满足,则称A为正交矩阵。 定义5.4.1 设A,B都是n阶方阵,若存在正交阵P使得,则称A与B正交相似。定理5.4.3 (对称矩阵基本定理)对于任意一个n阶实对称矩阵A,一定存在n阶正交矩 阵P,使得对角矩阵中的n个对角元就是A 的n个特征值。反之,凡是正交相似于对角矩阵的实方阵一定是对称矩阵。 定理5.4.4 两个有相同特征值的同阶对称矩阵一定是正交相似矩阵 定义6.1.3 设A,B都是n阶方阵,若存在可逆阵P使得。则称A与B合同。

矩阵的相似变换

§1-2 矩阵的相似变换,酉变换和正交变换 重点:正交矩阵,酉矩阵 第2节 矩阵的相似变换 酉矩阵和正交变 一、特殊的矩阵介绍

1、实矩阵:若 []n m A ?, 则 []A 实矩阵 元素为实数! [] m n T R A ?∈* 正交矩阵:若 [][][][][] 1-==A A I A A T T 或 (是一种实矩阵!) 则称[A]为正交矩阵! 若 [][]()[][](),,ji ij T ji ij T a a A A a a A A -=-===为实对称方阵 为反对称方阵 []A []A 第2节 矩阵的相似变换 酉矩阵和正交变 正交矩阵与正交相似变换密切有关! 即正交矩阵用于正交相似变换!

2、复矩阵:特别注意这两种复矩阵: Hermite 矩阵酉矩阵两种重要的复矩阵!若 []n m C A ?∈则 A 复线性空间 元素为复数! []221 1c id A c id ?-??=??+??例如:—复数矩阵。 第2节 矩阵的相似变换 酉矩阵和正交变 []A —为复数单位。 1 i = -

* Hermite 矩阵 是对称复数矩阵! 注:这两种复矩阵的区别! [][][] A A A ==H T 即 共轭转置! 若 [] [] A A H -=则[]A 称为反对称Hermite 矩阵。 第2节 矩阵的相似变换 酉矩阵和正交变 若 则:[]A ——称为Hermite 矩阵。 221 1c id A c id ?+????=????-? ?,1,2 ji ij a a i j ==

若 [][][][] [] 1 -==A A I A A H H 或则[A]称为酉矩阵! 例: []?? ? ???-=-ααααcos sin sin cos id id e e A 是一酉矩阵。显然:酉矩阵是复矩阵,但复矩阵不一定是酉矩阵!实的酉矩阵是正交矩阵。酉矩阵用于酉变换! 第2节 矩阵的相似变换 酉矩阵和正交变 * 酉矩阵定义: []n n C A ?∈[]A ——n 阶复方阵

相似矩阵的性质及应用

华北水利水电大学相似矩阵的性质及应用 课程名称:线性代数 专业班级: 成员组成: 联系方式: 2013年11月6 日

摘要:若矩阵P可逆,则矩阵P-1AP与A称为相似。矩阵相似的概念是为深入研 究矩阵特性而提出的,其中一部分的问题可以转化为与一个对角化矩阵相似问题进而使问题研究简化,而另一些矩阵不能与一个对角矩阵相似,那么这类问题就只能用定义或者若而当标准型来解决。相似矩阵有很多应用。例如:利用相似矩阵的性质来确定矩阵中未知元素方法的完整性;两个相似矩阵属于同一个特征值的特征向量之间的关系;矩阵相似与特征多项式的等价条件及相关结果;尤其是矩阵的标准形及其对角化问题,在高等代数和其他学科中都有极其广泛的应用。本文将讨论相似矩阵的有关性质及其应用。 关键词:相似矩阵;对角化;Jordan标准型;特征向量;特征值 英文题目:The properties and application of similar matrix Abstract:There are a lot of applications about similar matrix. Matrix for further research is the concept of similarity matrix characteristics, and that part of the problem can be converted into similar problems with a diagonalization matrix to simplify the problem study, while others matrix cannot be similar to a diagonal matrix, so this kind of problem can only use a definition or if and when the standard to solve.For example, we can discuss the integrality of the method by using the properties of similar matrices to confirm unknown elements and characteristic subspaces of similar matrices belong to the same characteristic value are isomorphism. Also we may discuss the equivalent conditions for similar matrices and their characteristic polynomial and their corresponding results, especially, applications of digitalization matrices in advanced algebra theory and other subjects are probed into.In this paper I will give out some corresponding properties of similar matrices and show their appliance. Key words:similar matrices; diagonal matrix; Jordan’s normal form; characteristic value; characteristic vector

矩阵的合同,等价与相似的联系与区别

矩阵的合同,等价与相似的联系与区别 200509113 李娟娟 一、基本概念与性质 (一)等价: 1、概念。若矩阵A 可以经过有限次初等变换化为B ,则称矩阵A 与B 等价,记为A B ?。 2、矩阵等价的充要条件: A B ?.{P Q A B ?同型,且人r(A)=r(B)存在可逆矩阵和,使得PAQ=B 成立 3、向量组等价,两向量组等价是指两向量组可相互表出,有此可知:两向量组的秩相同,但两向量组各自的线性相关性却不相同。 (二)合同: 1、概念,两个n 阶方阵A,B ,若存在可逆矩阵P ,使得A B ?P T AP B =成立,则称A,B 合同,记作A B ?该过程成为合同变换。 2、矩阵合同的充要条件:矩阵A,B 均为实对称矩阵,则A B ??二次型x T Ax 与x T Bx 有相等的E 负惯性指数,即有相同的标准型。 (三)相似 1、概念:n 阶方阵A,B ,若存在一个可逆矩阵P 使得1B P AP -=成立,则称矩阵A,B 相似,记为~A B 。 2、矩阵相似的性质:

~A B 11~,~,~(,) |E-A |||,()(),T T k k A B A B A B A B E B A B tr A tr B A B λλ--=-?=前提,均可逆即有相同的特征值(反之不成立) r(A)=r(B) 即的逆相等 |A|=|B| 3、矩阵相似的充分条件及充要条件: ①充分条件:矩阵A,B 有相同的不变因子或行列式因子。 ②充要条件:~()()A B E A E B λλ?-?- 二、矩阵相等、合同、相似的关系 (一)、矩阵相等与向量组等价的关系: 设矩阵 12(,,,)n A λλλ= ,12(,,,)m B βββ= 1、若向量组(12,,,m βββ )是向量组(12,,,n λλλ )的极大线性无关 组,则有m n ≤,即有两向量等价,而两向量组线性相关性却不同,钱者一定线性无关,而后者未必线性无关。而矩阵B 与A 亦不同型,虽然()()r A r B =但不能得出A B ?。 2、若m=n ,两向量组(12,,,n λλλ )?(12,,,m βββ )则有矩阵A,B 同型且()()~,,r A r B A B A B A B =?? r()()A r B A B =??。 3、若r()()A B A r B ??=?两向量组秩相同,?两向量组等价,即有1212(,,,)(,,,)n n A B λλλβββ?≠>? 综上所述:矩阵等价与向量等价不可互推。 (二)、矩阵合同。相似,等价的关系。 1、联系:矩阵的合同、相似、等价三种关系都具有等价关系,因为三者均具有自反性、对称型和传递性。 2、合同、相似、等价之间的递推关系

矩阵相似的性质:矩阵相似例题

1 矩阵的相似 1 定义2性质3定理(证明)4 相似矩阵与若尔当标准形 2 相似的条件 3 相似矩阵的应用(相似矩阵与特征矩阵相似矩阵与矩阵的对角化相似矩阵在微分方程中的应用【1 】) 矩阵的相似及其应用1 矩阵的相似 定义1设A,B为数域P上两个n级矩阵,如果可以找到数域P上的n级可逆矩阵X,使得B?X?1AX,就说A相似于B记作A∽B 2 相似的性质 (1)反身性A∽A;这是因为A?E?1AE. (2)对称性如果A∽B,那么B∽A;如果A∽B,那么有X,使B?X?1AX,令Y?X?1,就有A?XBX?1?Y?1BY,所以B∽A。 (3)传递性如果A∽B,B∽C,那么A∽C。已知有X,Y使B?X?1AX, C?Y?1BY。令Z?XY,就有C?Y?1X?1AXY?Z?1AZ,因此,A∽C。 3 相似矩阵的性质若A,B?Cn?n,A∽B,则(1)r(A)?r(B);

Q是n?n可逆矩阵,引理A是一个s?n矩阵,如果P是一个s?s可逆矩阵,那么秩(A) =秩(PA)=秩(AQ) 证明设A,B相似,即存在数域P上的可逆矩阵C,使得B?C?1AC,由引理2可知,秩 ?1 (B)=秩(B?CAC)=秩(AC)=秩(A) (2)设A相似于B,f(x)是任意多项式,则f(A)相似于f(B),即 P?1AP?B?P?1f(A)P?f(B) 证明设f(x)?anx?an?1x nn n?1

a1x?a0 a1A?a0E a1B?a0E 于是,f(A)?anAn?an?1An?1? f(B)?anB?an?1B n?1 kk 由于A相似于B,则A相似与B,(k为任意正整数),即存在可逆矩阵X,使得 Bk?X?1AkX, ?1?1 anAn?an?1An?1?因此Xf?A?X?X ?a1A?a0E?X

合同与相似概念区别

代数中“合同”与“相似”概念的区别辨析 在《高等代数》中队与多个矩阵有“合同”与“相似”的概念,关于这两组概念在定义上有很多相似的地方(合同——'B C A C =,相似——-1B C AC =),并且在《高等代数》在讲到“(欧式空间下)实对称矩阵的标准形”时有如下的定理: 因此在这里给我们一种印象,即矩阵间的合同与相似在某种条件下画了=“”,这究竟是怎么回事,为此我们应该去深入的探求矩阵“合同”与“相似”之间的联系。这个过称是循序渐进的,在学习“双线性函数”后,又对这个问题有了更深刻的理解,并且大胆的估计,“合同”与“相似”在概念上的区别会是代数问题上的一类大问题,现在对这个问题的思考结果归纳如下 让我们先从线性变换这一概念出发,我们知道在对线性空间上的线性变换的有关性质直接的进行研究是不好做的,为此我们引进了“线性变换的矩阵”这一概念,即在一个线性变换,n 维空间的一组基,一个n 阶矩阵之间建立起了一对一的关系,关系如图 而我们知道同一个线性变换在不同的一组基下,它所对应的矩阵是不同的,而这些矩阵之间的关系我们把它定义为“相似”,并且我们可以知道这些相似矩阵之间有这样的关系1B X AX -=,X 为这两组基之间的过渡矩阵,回顾“相似”概念,我们可以看出,“相似”的提出时基于“线性变换”。“相似”是同一个线性变换在不同基下的矩阵之间的关系,我们在提炼一下,“相似”的出现是同一个线性变换在不同背景之下的不同的表现形式之间的关系,这对后面区别“合同”与“相似”有很重要的意义 下面我们再来看看“合同”概念。《高等代数》在二次型的章节中对二次型化标准形的过程中首次提出了“合同“的概念。对一个二次型进行非退化的线性替换,这样的二次型的不同矩阵之间的关系定义为“合同”,即'B C A C =。而回顾“合同”的概念,我们可以发现,“合同”的概念是基于二次型的化简中产生的概念,而当我们学习了双线性函数的内容后就会发现“合同”的概念是基于双线性函数提出的,因此在这里我们有必要提出双线性函数的有关内容: 双线性函数类比欧式空间中的线性变换是线性空间上的一种映射,所谓的“双线性”是指在固定一个自变量的情况下,另一个自变量满足“线性”的关系。为了研究着这种特殊的映射在空间下的性质,我们有引进了双线性函数的“度量矩阵”,并以此矩阵来研究双线性函数的有关性质。于是双线性函数与空间的一组基、一个n 阶矩阵也建立起了一种一一对应的关系,如图 1'n A n T T AT T AT -=对于任意一个级实对称矩阵,都存在一个级正交矩阵,使得 → 对空间元素的作用直接体现在基上变换的运算可反映在矩阵的运算上线性变换空间的一组基一个矩阵线性变换→ 对空间元素的作用直接体现在基上变换的运算可反映在矩阵的运算上双线性函数空间的一组基一个矩阵双线性函数

高等代数与解析几何第七章(1-3习题)线性变换与相似矩阵答案

第七章线性变换与相似矩阵 习题 7.1 习题 7.1.1 判别下列变换是否线性变换? (1)设是线性空间中的一个固定向量, (Ⅰ),, 解:当时,显然是的线性变换; 当时,有,,则 ,即此时不是的线性变换。 (Ⅱ),; 解:当时,显然是的线性变换; 当时,有,,则 ,即此时不是的线性变换。 (2)在中, (Ⅰ), 解:不是的线性变换。因对于,有,,所以。 (Ⅱ); 解:是的线性变换。设,其中,,则有 ,

。 (3)在(Ⅰ)解:是中, , 的线性变换:设,则 , ,。 (Ⅱ)解:是 ,其中 的线性变换:设 是中的固定数; ,则 , ,。 (4)把复数域看作复数域上的线性空间, 共轭复数; 解:不是线性变换。因为取,时,有 ,即。,其中是的 , (5)在中,设与是其中的两个固定的矩阵,,。 解:是的线性变换。对,,有 , 。 习题7.1.2 在中,取直角坐标系,以表示空间绕轴由 轴向方向旋转900的变换,以表示空间绕轴由轴向方向

旋转 900的变换,以表示空间绕轴由轴向方向旋转900的变换。证明(表示恒等变换), , ; 并说明是否成立。 证明:在中任取一个向量,则根据,及的定义可 知:, ,, ; ; , , , ,即,故。 因为因为 , ,所以 , ,所以 。 。 因为, ,所以。 习题 7.1.3 在中,,,证明。证明:在中任取一多项式,有 。所以。 习题 7.1.4 设,是上的线性变换。若,证明 。 证明:用数学归纳法证明。当时,有

命题成立。假设等式对成立,即。下面证明等式对 也成立。因有 ,即等式对也成立,从而对任意自然数都成立。习题 7.1.5 证明(1)若是上的可逆线性变换,则的逆变换唯一; (2)若,是上的可逆线性变换,则也是可逆线性变换,且 。 证明:(进而(2)因1)设 ,都是 都是的逆变换,则有, 。即的逆变换唯一。 上的可逆线性变换,则有 。 ,同理有 由定义知是可逆线性变换,为逆变换,有唯一性得 。 习题7.1.6 设是上的线性变换,向量,且,,,都不是零向量,但。证明,,, 线性无关。 证明:设,依次用可得 ,得,而, 故即得 ;同理有: ;依次类推可得,即得 ,得, ,进而得。

矩阵相似的性质

1 矩阵的相似 1.1 定义 1.2性质 1.3定理(证明) 1.4 相似矩阵与若尔当标准形 2 相似的条件 3 相似矩阵的应用(相似矩阵与特征矩阵 相似矩阵与矩阵的对角化 相似矩阵在微分方程中的应用 【1 】) 矩阵的相似及其应用 1.1 矩阵的相似 定义 1.1:设,A B 为数域P 上两个n 级矩阵,如果可以找到数域P 上的n 级可逆矩阵X ,使得1B X AX -=,就说A 相似于B 记作A B ∽ 1.2 相似的性质 (1)反身性A A ∽:;这是因为1A E AE -=. (2)对称性:如果A B ∽,那么B A ∽;如果A B ∽,那么有X ,使1B X AX -=,令1Y X -=,就有11A XBX Y BY --==,所以B A ∽。 (3)传递性:如果A B ∽,B C ∽,那么A C ∽。已知有,X Y 使1B X AX -=, C 1Y BY -=。令Z XY =,就有111C Y X AXY Z AZ ---==,因此,A C ∽。 1.3 相似矩阵的性质 若,n n A B C ?∈,A B ∽,则: (1)()()r A r B =; 引理:A 是一个s n ?矩阵,如果P 是一个s s ?可逆矩阵,Q 是n n ?可逆矩阵, 那么秩(A )=秩(PA )=秩(AQ ) 证明:设,A B 相似,即存在数域P 上的可逆矩阵C ,使得1B C AC -=,由引理2可知,秩 (B )=秩(1 B C AC -=)=秩(AC )=秩(A ) (2)设A 相似于B ,()f x 是任意多项式,则()f A 相似于()f B ,即 11()()P AP B P f A P f B --=?= 证明:设1110()n n n n f x a x a x a x a --=+++ 于是,1 110()n n n n f A a A a A a A a E --=+++ 1 110()n n n n f B a B a B a B a E --=++ + 由于A 相似于B ,则k A 相似与k B ,(k 为任意正整数),即存在可逆矩阵X ,使得

03 第三节 相似矩阵

第三节 相似矩阵 分布图示 ★ 相似矩阵与相似变换的概念 ★ 例1 ★ 相似矩阵的性质 ★ 例2 ★ 相似矩阵的特征值与特征向量 ★ 矩阵与对角矩阵相似的条件 ★ 例3 ★ 例4 ★ 矩阵可对角化的条件 ★ 矩阵对角化的步骤 ★ 例5 ★ 例6 ★ 利用矩阵对角化计算矩阵多项式 ★ 矩阵对角化在微分方程组中的应用 ★ 例7 ★ 约当形矩阵的概念 ★ 例8 ★ 例9 ★ 例10 ★ 内容小结 ★ 课堂练习 ★ 习题4-3 内容要点 一、相似矩阵的概念 定义1 设B A ,都是n 阶矩阵, 若存在可逆矩阵P ,使 B AP P =-1 , 则称B 是A 的相似矩阵, 并称矩阵A 与B 相似.记为B A ~. 对A 进行运算AP P 1-称为对A 进行相似变换, 称可逆矩阵P 为相似变换矩阵. 矩阵的相似关系是一种等价关系,满足: (1) 反身性: 对任意n 阶矩阵A ,有A A 与相似; (2) 对称性: 若B A 与相似, 则B 与A 相似; (3) 传递性: 若A 与B 相似, 则B 与C 相似, 则A 与C 相似. 两个常用运算表达式: (1) ))((111BP P AP P ABP P ---=; (2) BP lP AP kP P lB kA P 111)(---+=+, 其中l k ,为任意实数. 二、相似矩阵的性质 定理1 若n 阶矩阵A 与B 相似,则A 与B 的特征多项式相同,从而A 与B 的特征值亦相同. 相似矩阵的其它性质: (1) 相似矩阵的秩相等; (2) 相似矩阵的行列式相等; (3) 相似矩阵具有相同的可逆性, 当它们可逆时,则它们的逆矩阵也相似. 三、矩阵与对角矩阵相似的条件

矩阵等价相似合同的关系

矩阵等价相似合同的关系 等价指的是两个矩阵的秩一样。 合同指的是两个矩阵的正定性一样,也就是说,两个矩阵对应的特征值符号一样。 相似是指两个矩阵特征值一样。 相似必等价,合同必等价。 1.等价矩阵:同型矩阵A,B的秩相等,那么A,B等价,即是随意两个秩相等的同型矩阵通过初等变换都可以相互转化相等与另一个。 2.相似矩阵的定义是:存在可逆矩阵P,使得P--1AP=B,则称B是A的相似矩阵。 原因:A与B相似有一个必要条件就是A与B的特征值相同,即|B-aE|=|A-aE| 所以|B-aE|=|P--1||A-aE||P|,所以|B-aE|=|P--1AP-aP--1EP|,即|B-aE|=|P--1AP-aE|所以B=P--1AP 3.合同矩阵定义:若存在可逆矩阵C,使得C T AC=B,即A与B合同。对于合同矩阵要从二次型说起,二次型为:f=X T AX。可通过X=CY变换,即把X=CY带入, 于是f=(CY)T A(CY)=Y T[C T AC]Y,其中令C T AC=B,即A与B合同。 首先相似不一定合同,合同也不一定相似,但是如果相似或者合同则必然等价,而等价却不能反推出相似或者合同,原因是前者只能是对方阵,而后者则只需要同型。相似合同和等价都具有反身性。对称性和传递性,合同和相似能推出等价是因为他们的秩相等。 而对于矩阵A只有当他是实对称矩阵时,存在C T AC=C--1AC,即这个时候矩阵合同和相似可以等价,这个时候C是正交矩阵,然而当C 不是正交矩阵时,则只能满足其中一个条件,或者说如果P--1AP=B,即A与B相似,但如果P不是正交矩阵,则不能称A与B合同,如果P T AP=B,即A与B合同,但是PP T≠I,则一样不能推出相似。 相似必合同,合同必等价。 等价就是矩阵拥有相同的r。 矩阵合同,C T AC=B,矩阵乘以可逆矩阵他的r不变,r(B)=r(C T AC)=r(AC)=r(A),等价。同理两矩阵相似一定等价。矩阵相似一定合同,因为两矩阵相似,有相同的特征多项式和特征根,就一定有相同的r,惯性系数一定相同,可以化成相同的标准形,矩阵合同的充要条件是有相同的r和规范形(A、B都有其对应的对角形矩阵,结合定义即可推出),标准形相等规范形一定相等,所以相似一定合同。

相似,合同,正交

相似,合同与等价 1 等价的意思就是秩相等 PA=B 说明行向量组秩相等 AP=B 是列。当A为方阵时候 PAQ=B 秩相等 2正交就是说里面的行(列)全部正交 3相似说明AB 等秩,行列式一样,特征值一样但是特征向量不同,相似能推出合同 实数对称矩阵一定能有N个正定的特征向量(其他矩阵只能推出线性无关)一定有对角矩阵与其对应。 A行列式=0 说明有秩为0 4A合同B (等秩)就是说正负惯性指数一样,其他的都可能不同就是说A秩是正数个数和B一样负的个数也一样, 0 非负非正。 也可以数二次型的平方的系数正负的数量是一样的,用这2种方法解题目。求秩,求二次型系数 5正定(等秩)说明实对称矩阵的特征值全部大于0 ,主子式也大于0 ,相互间的行列式符号一样,对角线上的数全为正 6对于实对称矩阵,相似一定合同,但是合同不一定相似。 考察合同关键看正负惯性指数。所以只要判断出两个秩相等的实对称矩阵的特征值符号就行了。 7矩阵的三种关系: 1等价:s*n矩阵A,B等价<=>存在可逆的s阶P和n阶Q使得B=PAQ. 2合同:A,B,均为数域P上的n阶方阵,若存在数域P上的n阶可逆矩阵P使得PAP=B。3相似:A,B,均为数域P上的n阶方阵,若存在数域P上的n阶可逆矩阵P使得P-1AP=B。(若P正交,则为正交相似矩阵) 4三种关系的联系:a,相似矩阵一定是等价矩阵,反之不然。 b,A,B,均为数域P上的n阶方阵,若存在数域P上的n阶可逆矩阵P,Q,使得PAQ=B,且PQ=E,则A与B相似。 c,正交矩阵必为合同矩阵,正交合同矩阵比为相似矩阵;相似阵,合同阵必为等价阵,反之不然;相似阵为正交相似,合同阵为正交合同,此时相思和合同一致。 d,相似与合同矩阵之等价TH: 1、A与B都是n阶实对称矩阵,且有相同的特征根,则A与B既 相似又合同。(实对称矩阵可以正交对角化) 2、n阶矩阵A与B中只有一个正交矩阵,则AB与BA相似且合同。 3、A与B相似且合同,C与D相似且合同,则(A O/OC)与(BO/OD) 既相似又合同。

线性代数习题相似矩阵及二次型

5-1向量的内积与方阵的特征值 1.设λ为矩阵A 的特征值,且0≠λ,则 λ A 为 的特征值。 ;.;.;.;.1*1--A d A c A b A a λλ 2.设A 为n 阶实对称阵,21,x x 为A 的不同特征值对应的特征向量,则 。 1.21=x x a T 1.x b 与2x 线性相关; 1.x c 与2x 线性无关; 0.21=+x x d 3.设21,λλ都为n 阶矩阵A 的特征值)(21λλ≠,且21,x x 分别为对应于21,λλ的特征向量,则当 满足时,2211x k x k x +=必为A 的特征向量。 0.1=k a 且02=k ; 0.1=k b 且02≠k ; 0.1≠k c 且02≠k ; 0.21=?k k d 4.设n 阶方阵A 的特征值全不为零,则 。 n A r d n A r c n A r b n A r a <≤≠=)(.;)(.;)(.;)(. 5.设矩阵??? ? ? ??--=314020 112A ,求A 的特征值及特征向量.

6.试用施密特法把向量组?? ??? ???? ???---=011 101110 11 1),,(321a a a 正交化。 7.设A 与B 都为n 阶正交阵,证明:AB 也是正交阵。 8.证明:正交阵的行列式必定等于1或—1。 9.设x 为n 维列向量且1=x x T ,而T xx E H 2-=,试证H 是对称的正交矩阵。

习题5-2 相似矩阵与对称矩阵的对角化 1.设A 与B 为n 阶方阵,则B A =是A 与B 相似的 。 .a 充分条件; .b 必要条件; .c 充要条件; .d 无关条件 2.对实对称阵?? ? ???-=???? ??=1001,1001B A ,有A 与B 。 .a 互为逆矩阵; .b 相似; .c 等价; .d 正交 3. n 阶矩阵A 与对角阵相似的充要条件是 。 a. 矩阵A 有n 个特征值; b. 矩阵A 有n 个线性无关的特征向量; c. 矩阵A 的行列式0≠A ; d. 矩阵A 的特征多项式有重根 4. 设n 阶矩阵A 与B 相似,则 。 a.A 与B 正交; b. A 与B 有相同的特征向量; c. A 与B 等价; d. A 与B 相同的特征值。 5.若A 与B 是相似矩阵,证明T A 与T B 也相似。 6.设方阵??????????------=12 4 22421x A 与?? ?? ? ???? ?-=Λ45 y 相似,求x 与y 。

矩阵的合同,等价与相似的联系与区别

矩阵的合同,等价与相似的联系与区别 一、基本概念与性质 (一)等价: 1、概念。若矩阵A 可以经过有限次初等变换化为B ,则称矩阵A 与B 等价,记为A B ?。 2、矩阵等价的充要条件: A B ?.{P Q A B ?同型,且人r(A)=r(B)存在可逆矩阵和,使得PAQ=B 成立 3、向量组等价,两向量组等价是指两向量组可相互表出,有此可知:两向量组的秩相同,但两向量组各自的线性相关性却不相同。 (二)合同: 1、概念,两个n 阶方阵A,B ,若存在可逆矩阵P ,使得A B ?P T AP B =成立,则称A,B 合同,记作A B ?该过程成为合同变换。 2、矩阵合同的充要条件:矩阵A,B 均为实对称矩阵,则A B ??二次型x T Ax 与x T Bx 有相等的E 负惯性指数,即有相同的标准型。 (三)相似 1、概念:n 阶方阵A,B ,若存在一个可逆矩阵P 使得1B P AP -=成立,则称矩阵A,B 相似,记为~A B 。 2、矩阵相似的性质:

~A B 11~,~,~(,) |E-A |||,()(),T T k k A B A B A B A B E B A B tr A tr B A B λλ--=-?=前提,均可逆即有相同的特征值(反之不成立) r(A)=r(B) 即的逆相等 |A|=|B| 3、矩阵相似的充分条件及充要条件: ①充分条件:矩阵A,B 有相同的不变因子或行列式因子。 ②充要条件:~()()A B E A E B λλ?-?- 二、矩阵相等、合同、相似的关系 (一)、矩阵相等与向量组等价的关系: 设矩阵 12(,,,)n A λλλ=,12(,,,)m B βββ= 1、若向量组(12,,,m βββ)是向量组(12,,,n λλλ)的极大线性无关 组,则有m n ≤,即有两向量等价,而两向量组线性相关性却不同,钱者一定线性无关,而后者未必线性无关。而矩阵B 与A 亦不同型,虽然()()r A r B =但不能得出A B ?。 2、若m=n ,两向量组(12,,,n λλλ)?(12,,,m βββ)则有矩阵A,B 同 型且()()~,,r A r B A B A B A B =??r()()A r B A B =??。 3、若r()()A B A r B ??=?两向量组秩相同,?两向量组等价,即有1212(,,,)(,,,)n n A B λλλβββ?≠>? 综上所述:矩阵等价与向量等价不可互推。 (二)、矩阵合同。相似,等价的关系。 1、联系:矩阵的合同、相似、等价三种关系都具有等价关系,因为三者均具有自反性、对称型和传递性。 2、合同、相似、等价之间的递推关系

等价、相似、合同的关系

矩阵等价、相似与合同的区别与联系 等价、相似与合同是矩阵的三大变换.应了解其定义,关系及有关性険. 1)定义及相互之间的关系 设川,舟是曲X并矩璋.若花 S阶可逆矩阵卩和用阶可逆矩阵0,使得PAQ=B t则称£与j?等价,记为A=B■设〃是科谕方阵,若存在用阶可龙矩阵尸,使^P-i AP = Bf则称Z 与苏祸似,记为A -肌若存在闯阶可湮矩阵P使猱戸AP= E贝U称』与舟合同-记为4R ;若存总艸阶正交矩阵0 使得Q l AQ= Q^AQ= B则称M与E正交相f以.由定文可知其关系*如下图所示* 2)性质 (1)等价、相似与合同都具有反身性、对称性及传递性,即 A - At At A a A (反身性); 若A", A~ R,则丹=』,E- A A{对称性); 若』卷R, 若A", K?C则貝?C;若, B^C则/ = C(传递性)? (2) A = E O A 与耳司型>且rank A = rank S?若rank 4 = F *则(£A= r,称旨者为矩阵』的等价标准形 O O ⑶rank A= rank B ? det A - det B J A与E的释3E 澄7冃司“ 注听给閔都是必要条件,即由rank A= rank B?或det A = dctB ,或J4 与必的特征值相同不能筆知』?J!.但若/与J?都可对兔址,旦特花值相同,则4- J?.

(3)用正交相似变换可将/化简成 Q J AQ=Q-l AQ^ 对实对称矩阵/的这三种变换,一个比一个特殊,一个比一个限毛:更多,各有其优诀点?总的来说则为:限制越少则化简后的形式越简单,但变换后丢掉原矩阵的性质就越多.如(1)的形式量简单.但变换后只保留了秩不变:(2)的形式虽然比(1)稍复杂.叵变换后保留秩不变,对称性不变,正、负惯性指数不变;(3)的形式又更复杂一点,但变换后保留秩不变,对称性不变,正、负惯性指数不变,特征值不变.

第5章-矩阵的相抵与相似Word版

§5.1 等价关系与集合的划分 本节只做简单介绍,考试不考此部分,在以后抽象代数 中还会讲到。 §5.2 矩阵的相抵(也叫等价) 第一章§1已经证明,任何一个矩阵A J 。如果再对J 那么能变成什么样的最简单的矩阵?看例子: 13213213212101101124601010000A ---?????? ? ? ?=--→-→- ? ? ? ? ? ?--?????? 10101100 0?? ?→- ? ? ? ? ? (以上行变换); 再经过列变换100010000A ?? ?→ ? ??? 。 最后这个矩阵非常简单,把它写成分块矩阵的形式就是: 2 00 0I ?? ?? ? 。 任何一个矩阵经过初等行、列变换是否都可以化成 这种简单形呢?

定义1 数域K 上的矩阵A 经过一系列初等行变换和初等 列变换变成矩阵B ,则称A 与B 是相抵的或等价的,记作 A B 相抵 ,或A B 等价 。 矩阵的相抵关系满足 1°反身性:A A 相抵 , 即A 与自己相抵; 2°对称性:若A B 相抵,则B A 相抵 ; 3°传递性:若A B 相抵 ,B C 相抵 , 则A C 相抵 . 因此,矩阵的相抵关系是一种等价关系。 事实 1 ?A 经过初等行变换和初等列变换变成矩阵B ?存在K 上的s 阶初等矩阵12,, ,t P P P 与n 阶初等 矩阵12,,,m Q Q Q , 使得 2112 t m P P P AQ Q Q B = (1) 定理1 设数域K 上的s n ?矩阵A 的秩为r 。如果0r >, 则A 相抵于下述形式的矩阵 00 0r I ?? ??? , (2)

第五章 相似矩阵

第五章 相似矩阵 1.教学目的和要求: (1) 理解矩阵的特征值和特征向量的概念及性质,会求矩阵的特征值与特征向量. (2) 了解相似矩阵的概念、性质及矩阵可相似对角化的充分必要条件,会将矩阵化为相似对角矩阵. (3) 简单了解Jordan 标准形. 2.教学重点: (1) 方阵的特征值与特征向量. (2) 矩阵的相似对角化. 3.教学难点:矩阵的相似对角化. 4.本章结构:线性方程组和线性组合都涉及方阵A 和向量X 的运算:AX .从矩 阵上提出的问题是:能否找一个数λ和一个非零向量X ,使 X AX λ=,化简运算.从而引出特征值与特征向量,接着讨论特征 向量的性质,为矩阵相似对角化作准备,最后简单介绍一下Jordan 标准形. 5.教学内容: §5.1 方阵的特征值与特征向量 1. 特征值与特征向量的概念 在一些应用问题中常会用到一系列的运算: .,,,,2 X A X A AX k 为了简化运算,希望能找到一个数λ和一个非零向量X ,使X AX λ=,这样的数λ 和向量X 就是方阵的特征值与特征向量. 定义:对于n 阶方阵A , 若有数λ和向量0≠x 满足x x A λ=, 称λ为A 的特征值, 称x 为A 的属于特征值λ的特征向量. 下面给出特征值与特征向量的求法: 特征方程: 0)(=-?=x E A x x A λλ 或者 0)(=-x A E λ 0)(=-x E A λ有非零解0)(det =-?E A λ 0)(det =-?A E λ 特征矩阵:E A λ-或者 A E -λ

特征多项式: λλλλλ?---= -=nn n n n n a a a a a a a a a E A 2 1 22221112 11)(det )( ])1([01110n n n n n a a a a a -=++++=--λλλ A 的特征值与矩阵A 又有什么关系呢? 定理1:设 n 阶方阵)(ij a A =的n 个特征值为n λλλ ,,21 则 (1) nn n a a a +++=++ 221121λλλ ) (1A tr a n i ii ==∑= 称为矩阵A 的迹。(主对角元素之和) (2)A n n i i ==∏=λλλλ 211 例1 求 ?? ??? ?????--=201034011A 的特征值与特征向量. 例2,例3 见书第136、137页. 2. 特征向量的性质 方阵A 关于特征值i λ的特征向量是齐次线性方程组0)(=-X A I i λ 的非零解。由齐次线性方程组解得性质得:当21,X X 是A 对应于i λ 的特征向量时,它们的任何非零线性组合:)0(2211≠+X k X k 仍是A 关于i λ的特征向量。在此,我们重点关注矩阵A 的特征向量的线性 相关性。 定理2:设r X X X ,21,是矩阵A 的不同特征值所对应的特征向量, 则r X X X ,21,是线性无关的。 定理3:矩阵A 的s 个不同特征值所对应的s 组各自线性无关的特征 向量并在一起仍是线性无关的。 定理4:设0λ是n 阶方阵A 的一个t 重特征值,则0λ对应的特征向量中 线性无关的最大个数.t ≤ 由以上定理可知,若A 有n 个互异的特征值:,,,21n λλλ 则每个i λ仅 对应一个线性无关的特征向量,从而A 共有n 各线性无关的特征向量。

矩阵的等价,合同,相似的联系与区别

目录 摘要 ............................................................................................................... I 引言 . (1) 1矩阵间的三种关系 (1) 1.1 矩阵的等价关系 (1) 1.2 矩阵的合同关系 (1) 1.3. 矩阵的相似关系 (2) 2 矩阵的等价、合同和相似之间的联系 (3) 3矩阵的等价、合同和相似之间的区别 (5) 结束语 (6) 参考文献 (6)

摘要:等价、合同和相似是矩阵中的三种等价关系,在矩阵这一知识块中占有举足轻重的地位.矩阵可逆性、矩阵的对角化问题、求矩阵特征根与特征向量、化二次型的标准形等诸多问题的解决都要依赖于这三种等价关系. 根据等价、合同和相似的联系的研究的结论是其一可利用等价矩阵的性质来确定相似矩阵或合同矩阵的性质.其二可利用正交相似与正交合同的一致性,得到二者间彼此的转化. 关键词:矩阵的等价;矩阵的相似;矩阵的合同;等价条件

引言: 在高等代数中,讨论了矩阵的三种不同关系,它们分别为矩阵的等价、矩阵的相似和矩阵的合同等关系.本文首先介绍了这三种关系以及每种关系的定义,性质,相关定理及各自存在的条件,然后给出了这三种矩阵关系间的联系,即相似矩阵、合同矩阵必为等价矩阵,相似为正交相似,合同为正交合同时,相似与合同一致.还有矩阵的相似与合同之等价条件.并对这些结论作了相应的理论证明,最后给出了他们的区别和不变量. 1矩阵间的三种关系 1.1 矩阵的等价关系 定义1 两个s n ?矩阵,A B 等价的充要条件为:存在可逆的s 阶矩阵p 与可逆的 n 阶矩阵Q ,使B PAQ = 由矩阵的等价关系,可以得到矩阵A 与B 等价必须具备的两个条件: (1)矩阵A 与B 必为同型矩阵(不要求是方阵). (2)存在s 阶可逆矩阵p 和n 阶可逆矩阵Q , 使得B PAQ =. 性质1 (1)反身性:即A A ?. (2)对称性:若A B ?,则B A ? (3)传递性:即若A B ?,B C ?,则A C ? 定理1 若A 为m n ?矩阵,且()r A r =,则一定存在可逆矩阵P (m 阶)和 Q (n 阶),使得00 0r m n I PAQ B ??? == ???.其中r I 为r 阶单位矩阵. 推论1 设A B 、是两m n ?矩阵,则A B ?当且仅当()()r A r B =. 1.2 矩阵的合同关系 定义2 设,A B 均为数域p 上的n 阶方阵,若存在数域p 上的n 阶可逆矩阵 p ,使得T P AP B =,则称矩阵为合同矩阵(若数域p 上n 阶可逆矩阵p 为正交矩 阵),由矩阵的合同关系,不难得出矩阵A 与B 合同必须同时具备的两个条件: (1) 矩阵A 与B 不仅为同型矩阵,而且是方阵. (2) 存在数域p 上的n 阶矩阵p ,T P AP B =

相关主题
文本预览
相关文档 最新文档