当前位置:文档之家› 外压容器设计

外压容器设计

外压容器设计
外压容器设计

外压容器设计

一、外压容器的稳定性

1、外压容器的稳定性概念

外压容器的失效形式 强度不足 破裂

刚度不足 失稳

2、临界压力

(1)临界压力( P 临):导致筒体失稳时的外压。

临界压应力(σ临):筒体在P 临作用下筒体内存在 的环向应力。

(2)许用压应力

为保证外压容器的使用安全,设计压力应当满足如下条件:

∴ P 临≥mP P 临≥3P (3)影响临界压力的因素

①P 临与筒体尺寸的关系

(i)当L/D 相同时,S/D 抗弯曲 P 临 (ii)当S/D 相同时,L/D 圆筒越短 P 临

L/D 圆筒越长 P 临 短圆筒:能得到封头支撑作用的圆筒

长圆筒:得不到封头支撑作用的圆筒

∴ S/D 相同时,短圆筒的P 临高

(iii )当S/D 、 L/D 都相同时,有加强圈者P 临高

② P 临与材料性质的关系

因圆筒体失稳时,其压应力并没达到材料的屈服极限,

说明P 临与材料的屈服极限无直接关系。

而材料的弹性模量E 对

E —抗变形能力, P 临

各种材料的E 值相差不大,所以采用高强度钢代替一般碳钢制造外压容器并不能提高圆筒的P 临,相反还增加了容器的成本。

材料的组织不均匀性合同体的不圆度将使P 临下降。

][P m P p =≤临

二、外压容器的设计

1、理论公式计算法

(1)壁厚的计算

钢制长圆 : 钢制短圆筒: 将P 临≥3P 代入可得

1)钢制长圆筒: mm

2)钢制短圆筒: mm

3)刚性圆筒

一般:S L 的圆筒叫刚性圆筒

一般不存在失稳,因此只考虑强度即可

(2)临界长度 L 临

当短圆筒的长度大到某一临界值L 临时,封头对筒体的支撑作用将完全消失,这时短圆筒的P 临将下降到长圆筒的P 临,

即:

解得: 为区别长短圆筒的临界长度 当 L< L 临时, 为短圆筒

L>L 临时,为长圆筒

(3)用理论公式设计的步骤

①设理论壁厚为S 。,并选定材料

②计算L 临

③比较确定圆筒类型L 与L 临,确定圆筒类型

④根据圆筒类型计算P 临

⑤计算许用应力[P]= P 临/3

比较:设计压力P 与P 临

若P ≤[P],且接近,假设的S 。合适

若p>[p],这说明假设S 。过薄,需重新假设

⑥实际壁厚S=S 。+C

2、图算法

(1)算图的由来

临界压应力: 30)(2.2D S E p =临D L D S E P 5.20)(6.2=临C E P D S +=32.23C D L E P D S +?=4.0)6.23(D L D S E 5

.20)(6.230)(2.2D S E =017.1S D D L =临0

2S D P 临临=σ

应变: 长圆筒的应变:

短圆筒的应变:

可见:ε=f(D/S 。、L/D)

可得: 令: 则:

以 作曲线 02ES D P E 临临==σε2

005.20)(1.12)()(2.2D S E S D D S E ==εD L D S D L E S D D S E 5.1005.20)(3.1)(2()(6.2==ε002][2ES D P m ES D P E ===临临σεD

S E m P 0

)2(][ε=εE m

B 2=D

S B P 0

][=εE m

B 2=

(3)算图的应用

①假设S。,计算L/D。、D。/S。

②根据材料σ临确定线图

③根据L/D。、D。/S。确定ε

④根据ε和设计温度 B

⑤计算[P]=B S/D。

⑥比较:若P≤[P],且接近,假设S。合适

若P>[P],假设S。过薄,重设⑦实际壁厚S=S。+ C

(整理)锅炉压力容器课程设计

锅炉压力容器 课 程 设 计 设计题目压力容器设计 能源与安全工程学院安全工程专业(二)班 设计者 学号 指导老师田兆君 课程设计时间 2011 年5月29日起至2011年 6月 12日

一、 课程设计题目: 压力容器设计 二、 课程设计工作自 2011 年5月29日起2011年 6月 12 日止 三、 课程设计的内容及要求: 一)基本工艺参数 主要设计参数 二)学生完成的工作 1. 总装备图一张(1号图纸) 要求:图面布局合理,表达清晰,字迹工整,有标题栏、技术要求、技术特性表、管口表 2. 由指导老师指定零件图一张(要求同上) 3. 设计说明书一份 (1)根据工艺参数选定容器及夹套尺寸(包括直径、厚度、夹套与容器间距及连接尺

2.筒体形状 i i D H =1.2, 3.设计压力 P 设计=1.25P 操作 五、参考资料 1、《压力容器与化工设备实用手册》 2、《化工机械基础课程设计指导书》 3、《钢制石油化工压力容器设计规定》 4、《压力容器标准规范汇编》 指导教师: 田兆君 负责教师: 田兆君 学生签名: 程锋 附注:任务书应该附在已完成的课程设计说明书首页

锅炉压力容器课程设计 1 前言 锅炉、压力容器广发应用于电力、机械、化工、轻工、交通等运输部门及日常生活中, 与我们的日常生活息息相关。且随着社会经济的发展,对锅炉、压力容器的需求数量也日益增加。通过对锅炉压力容器的分析,运用锅炉压力容器应力分析、强度设计、制造质量控制及安全装置相关的知识,了解其工作原理与各个部分的相关作用及其工作原理,并分析锅炉中可能出现的相关问题和缺陷并作出预防,从而加强对锅炉的认识。 2 相关计算 一、筒体及封头的几何尺寸确定: (1)筒体及封头的形式:选择圆柱筒体及标准椭球形封头。 (2)确定筒体及封头直径: 由P 设计 =1.25P 操作 知 P 设计=1.25*0.4=0.5MPa 筒体直径确定: i i D H =1.2 D i =2r 得出 D=1.168m 封头直径确定:由上可知 D=1.168m (3)选定封头的尺寸: 封头内直径为1168mm 选取D N =1200mm 通过查询《压力容器与化工设备实用手册》第258页 选取直边高度为40mm (41m D V V H i i 089.131 .1271 .05.14 /2 封头 =-= -= π 取公称直径尺度为1H =1000mm (5)选取夹套直径:D=1400mm 。

内外压容器计算2008版昆明版资料

内外压容器——受压元件设计中国石化工程建设公司桑如苞 向全国压力容器设计同行问好!

内外压容器——受压元件设计 压力容器都离不开一个为建立压力所必须的承压外壳—压力壳。 内外压容器设计即是指对组成压力壳的各种元件在压力作用下的设计计算。 压力壳必须以一定方式来支承: 当采用鞍式支座支承时成为卧式容器的形式,由于自重、物料等重力作用,在压力壳上(特别是支座部位)产生应力,其受力相当于一个两端外伸的简支梁,对其计算即为卧式容器标准的内容。 当采用立式支承时成为立(塔)式容器的形式,由于自重、物料重力、风载、地震等作用,在压力壳上产生应力,其受力相当于一个直立的悬臂梁,对其计算即为塔式容器标准的内容。 当压力壳做成球形以支腿支承时,即成为球罐,在自重、物料重力、风载、地震等作用下的计算即为球形储罐标准的内容。 一、压力容器的构成 圆筒—圆柱壳压力作用下,以薄膜应力 承载,为此整体上产生 球形封头—球壳一次薄膜应力,控制值1倍 许用应力。但在相邻元件连 壳体椭圆封头(椭球壳)接部位,会因变形协调产生 局部薄膜应力和弯曲应力, 碟封(球冠与环壳)称二次应力,控制值3倍 许用应力。 典型板壳锥形封头(锥壳) 结构 圆平板(平盖)压力作用下,以弯曲应力承 载,为此整体上产生一次弯 环形板(开孔平盖)曲应力,控制值1.5倍 平板许用应力。 环(法兰环) 弹性基础圆平板(管板)

二、压力容器受压元件计算 1.圆筒 1)应力状况:两相薄膜应力、环向应力为轴向应力的两倍。 2)壁厚计算公式:c i c ][2p D p t -=?σδ符号说明见GB 150。称中径公式:适用范围,K ≤1.5,等价于p c ≤0.4[σ]t ? 3)公式来由:内压圆筒壁厚计算公式是从圆筒与内压的静力平衡条件得出的。 设有内压圆筒如图所示(两端设封头)。 (1)圆筒受压力p c 的轴向作用: p c 在圆筒轴向产生的总轴向力: F 1= c 2i 4p D π 圆筒横截面的面积: f i =πD i δ 由此产生的圆筒轴向应力: σh = δδππ 44i c i c 2i D p D p D = 当控制σh ≤[σ]t ?时,则: δ1= ?σt D p ][4i c 此即按圆筒轴向应力计算的壁厚公式。 (2)圆筒受压力p c 的径向作用(见图) p c 对圆筒径向作用,在半个圆筒投影面上产生的合力(沿图中水平方向): F 2=p c ·D i ·l 承受此水平合力的圆筒纵截面面积: f 2=2δl

最新期末复习题答案——化工过程设备设计

《化工过程设备设计》期末复习题答案 一、名词解释 1.外压容器 内外的压力差小于零的压力容器叫外压容器。 2.边缘应力 由于容器的结构不连续等因素造成其变形不协调而产生的附加应力为边缘应力。 3.基本风压值 以一般空旷平坦的地面、离地面10米高处,统计得到的30年一遇10分钟平均最大风速为标准计算而得的值叫基本风压值。 4.计算厚度 由计算公式而得的壁厚叫计算壁厚。 5.低压容器 对内压容器当其设计压力为 1.6MPa P 1MPa 0<≤.时为低压容器。 6.等面积补强法 在有效的补强范围内,开孔接管处的有效补强金属面积应大于或等于开孔时减小的金属面积。 7.回转壳体 一平面曲线绕同一平面的轴旋转一周形成的壳体为回转壳体。 8.公称压力 将压力容器所受到的压力分成若干个等级,这个规定的标准等级就是公称压力。 9.计算压力 在相应设计温度下,用以确定容器壁厚的压力为计算压力。 10.20R 20表示含碳量为0.2%,R 表示容器用钢。 11.设计压力 设定在容器顶部的最高压力,与相应的设计温度一起作为设计载荷,其值不低于工作压力。 12.强制式密封 完全依靠螺栓力压紧垫片使之密封为强制式密封。 13.强度 构件在外力作用下不至发生过大变形或断裂的能力。

14.临界压力 导致外压圆筒失稳的外压为临界压力。 15.主应力 在单元体的三对相互垂直的平面上只作用有正应力而无剪应力,这样的平面为主平面。在主平面上作用的正应力为主应力。 16.内压容器 内外压力差大于零的压力容器叫内压容器。 17.强度 构件抵抗外力作用不致发生过大变形或断裂的能力。 18.无力矩理论 因为容器的壁薄,所以可以不考虑弯矩的影响,近似的求得薄壳的应力,这种计算应力的理论为无力矩理论。 19.压力容器 内部含有压力流体的容器为压力容器。 20.薄膜应力 由无力矩理论求得的应力为薄膜应力。 二、判断是非题(正确的划√,错误划×) 1.内压圆筒开椭圆孔时,其长轴应与轴线平行。(×) 2.设计压力为4MPa的容器为高压容器。(×) 3.容器的名义厚度与计算厚度的差值是壁厚附加量。(×) 4.受内压作用的容器必须按强度计算进行壁厚设计。(√) 5.一常压塔最大压应力应发生在安装检修时的设备迎风侧。(×) 6.在补强圈上开有一个M10的小螺纹孔。(√) 7.压力容器无论制造完毕后或检修完毕后,必须进行压力试验。(√) 8.边缘应力具有自限性和局限性。(√) 9.当焊缝系数一定时,探伤比例随焊缝系数的增加而减小。(×) 10.容器的强度反映了外压容器抵抗失稳的能力。(×) 11.压力容器的设计寿命是从腐蚀裕量中体现出来(√) 12.法兰密封中,法兰的刚度与强度具有同等重要的意义。(×) 13.当材质与压力一定时,壁厚大的容器的应力总是比壁厚小的容器应力小(×)14.塔的最大质量出现在其水压试验时(√) 15.塔的稳定性计算也可用计算法进行计算。(×)

化工压力容器的分类

安全管理编号:LX-FS-A97678 化工压力容器的分类 In the daily work environment, plan the important work to be done in the future, and require the personnel to jointly abide by the corresponding procedures and code of conduct, so that the overall behavior or activity reaches the specified standard 编写:_________________________ 审批:_________________________ 时间:________年_____月_____日 A4打印/ 新修订/ 完整/ 内容可编辑

化工压力容器的分类 使用说明:本安全管理资料适用于日常工作环境中对安全相关工作进行具有统筹性,导向性的规划,并要求相关人员共同遵守对应的办事规程与行动准则,使整体行为或活动达到或超越规定的标准。资料内容可按真实状况进行条款调整,套用时请仔细阅读。 a.按用途分类 压力容器按用途分为反应容器(R)、传热容器 (H)、分离容器(S)和储运容器(T)。 (1)反应容器 主要用来完成工作介质的物理、化学反应的容器称为反应容器。如:反应器、发生器、聚合釜、合成塔、变换炉等。 (2)传热容器 主要用来完成介质的热量交换的容器称为传热容器。如:热交换器、冷却器、加热器、硫化罐等。 (3)分离容器

主要用来完成介质的流体压力平衡、气体净化、分离等的容器称为分离容器。如:分离器、过滤器、集油器、缓冲器、洗涤塔、铜洗塔、干燥器等。 (4)储运容器 主要用来盛装生产和生活用的原料气体、液体、液化气体的容器称为储运容器。如:储槽、储罐、槽车等。 b.按压力分类 按照设计压力的大小,压力容器可分为低压、中压、高压和超高压4类。其划分界限见表1对气瓶而言,设计压力P<12.25MPa为低压,P≥ 12.25MPa为高压。 表1 压力等级划分Pa c.按危险性和危害性分类

第三章-内压薄壁容器设计

第三章内压薄壁容器设计 第一节内压薄壁圆筒设计 【学习目标】通过内压圆筒应力分析和应用第一强度理论,推导出内压圆筒壁厚设计公式。掌握内压圆筒壁厚设计公式,了解边缘应力产生的原因及特性。 一、内压薄壁圆筒应力分析 当圆筒壁厚与曲面中径之比δ/D≤0.1或圆筒外径、内径之比K=D0/D i≤1.2时,可认为是薄壁圆筒。 1、基本假设 ①圆筒材料连续、均匀、各向同性; ②圆筒足够长,忽略边界影响(如筒体两端法兰、封头等影响); ③圆筒受力后发生的变形是弹性微小变形; ④壳体中各层纤维在受压(中、低压力)变形中互不挤压,径向应力很小,忽略不计; ⑤器壁较薄,弯曲应力很小,忽略不计。 2、圆筒变形分析 图3-1 内压薄壁圆筒环向变形示意图 筒直径增大,说明在其圆周的切线方向有拉应力存在,即环向应力(周向应力) 圆筒长度增加,说明在其轴向方向有轴向拉应力存在,即经向应力(轴向应力)。 圆筒直径增大还意味着产生弯曲变形,但由于圆筒壁厚较薄,产生的弯曲应力相对环向应力和经向应力很小,故忽略不计。 另外,对于受低、中压作用的薄壁容器,垂直于圆筒壁厚方向的径向应力相对环向应力和经向应力也很小,忽略不计。 3、经向应力分析 采用“截面法”分析。 根据力学平衡条件,由于内压作用产生的轴向合力(外力)与壳壁横截面上的轴向总应

力(内力)相等,即: 124 δσππ D p D = 由此可得经向应力: δ σ41pD = 图3-2 圆筒体横向截面受力分析 4、环向应力分析 采用“截面法”分析。 图3-3 圆筒体纵向截面受力分析 根据力学平衡条件,由于内压作用产生的环向合力(外力)与壳壁纵向截面上的环向总应力(内力)相等,即: 22δσL LDp = (3-3) 由此可得环向应力: δ σ22pD = (3-4) 5、结论 通过以上分析可以得到结论:122σσ=,即环向应力是经向应力的2倍。因此,对于圆筒形内压容器,纵向焊接接头要比环向焊接接头危险程度高。在圆筒体上开设椭圆形人孔或手孔时,应当将短轴设计在纵向,长轴设计在环向,以减少开孔对壳体强度的影响。 6、薄壁无力矩理论 在以上薄壁圆筒应力分析过程中,只考虑由于内压作用在筒壁产生的环向拉伸应力和经向拉伸应力,而由于弯曲应力值很小忽略不计、径向应力值很小忽略不计,采用这一近似方

压力容器设计习题答案

“压力容器设计”习题答案 一、选择题: 1.我国钢制压力容器设计规范<>采用的强度理论为: ( A ) (A )Ⅰ; (B )Ⅱ; (C )Ⅲ; (D )Ⅳ。 2.毒性为高度或极度危害介质PV ≥0.2MPa ·m 3的低压容器应定为几类容器? ( C ) (A )Ⅰ类; (B )Ⅱ类; (C )Ⅲ类; (D )其他。 3.一空气贮罐,操作压力为0.6Mpa ,操作温度为常温,若设计厚度超过10毫米,则下列碳素钢材中不能够使用的钢种为: ( A ) (A )Q235AF (A3F );(B )Q235A (A3);(C )20R 。 4.在弹性力学平面应力问题中,应力和应变分量分别为: ( C ) (A )бZ ≠0、εZ =0;(B )бZ ≠0、εZ ≠0 ;(C )бZ =0、εZ ≠0。 5.受均匀内压作用的球形容器,经向薄膜应力σ?和周向薄膜应力σθ的关系为 ( C ) (A )σ? < σθ (B )σ? > σθ (C )σ?=σθ=pR/2t (D )σ?=σθ=pR/t 6.受均匀内压作用的圆柱形容器,经向薄膜应力σ?和周向薄膜应力σθ的关系为 ( B ) (A )σθ=2σ?=pR/2t ;(B )σθ=2σ?=pR/t ;(C )σ?=2σθ=pR/t ;(D )σ?=2σθ=pR/2t 7.均匀内压作用的椭圆形封头的顶点处,经向薄膜应力σ?和周向薄膜应力σθ的关系为 ( A )。 A 、σ?=σθ B 、σ? < σθ C 、σ? > σθ D 、σ? > 1/2σθ 8.由边缘力和弯矩产生的边缘应力,影响的范围为 (A )Rt ; (B )Rt 2; (C )Rt 2; (D )Rt 9.受均布横向载荷作用的周边简支圆形薄平板,最大径向弯曲应力在: ( A ) (A ) 中央; (B )周边;( C )1/2半径处; D. 3/8半径处。 10.受均布横向载荷作用的周边固支圆形薄平板,板上最大应力为周边径向弯曲应力,当载荷一定时,降低最大应力的方法有: ( A ) (A ). 增加厚度;(B )采用高强钢;(C )加固周边支撑;(D )增大圆板直径。 11.容器下封头采用圆平板,由于封头与筒体和裙座全部焊牢,其受力状态近似于固支,工作时,板上最大应力和挠度变形为: ( C ) (A )最大应力为径向应力σr ,位于封头中心,最大挠度变形位于封头周边;

化工压力容器设计单位管理办法.doc

化工压力容器设计单位管理办法[失效] 发文单位:化工部 文号:[90]化生字第217号 发布日期:1990-4-11 执行日期:1990-4-11 生效日期:1994-12-20 第一章总则 第二章压力容器设计单位条件 第三章压力容器设计单位的申请和审批 第四章设计单位的日常管理 第五章《压力容器设计单位批准书》的更换 第六章附则 第一章总则

第一条为贯彻国务院发布的《锅炉压力容器安全监察暂行条例》(以下简称《条例》)和原劳动人事部颁发的《(锅炉压力容器安全监察暂行条例)实施细则》(以下简称《细则》),加强化工压力容器设计单位的管理,提高压力容器设计质量,确保安全技术性能,特制定本办法。 第二条化工系统勘察、设计、施工、制造、生产、科研等企事业单位从事压力容器设计,必须按本办法进行取证和管理。 第三条化工系统容器设计单位资格的受理、审批、发证和管理工作职责分工: 一、制造、生产、科研、院校单位压力容器设计资格的受理、审批、发证和管理,由部生产综合司负责归口管理。 勘察、设计、施工企事业单位压力容器设计资格的受理、审批、发证和管理,由部基建司负责归口管理。 二、部直属企事业单位的一、二、三类压力容器设计资格,

经主管司局初审合格后,由部生产综合司和基建司按归口管理范围进行审批、发证、并由主管司局负责管理。 非直属专业设计单位的三类部管品种(液态气体槽车、超高压容器、特种用途容器及第三类反应容器、贮运容器)和其它非直属企事业单位的三类压力容器的设计资格,经各省、自治区、直辖市化工厅(局)初审合格后报部,由部生产综合司和基建司按归口管理范围进行审批、发证和管理;一、二类和非直属专业设计单位除部管品种以外的三类压力容器的设计资格由各省、自治区、直辖市化工厅(局)负责审批、发证和管理。 三、压力容器设计的综合管理工作,由部生产综合司负责,安全技术监督由部劳动安全司负责。 第四条化工系统使用的压力容器原则上应由持有《化工工程设计证》并具有压力容器设计资格的单位设计。具有压力容器设计资格但没有《化工工程设计证》的压力容器制造单位,只能按批准设计的类别和品种,进行自制的压力容器产品设计;生产、科研等非专业设计单位设计压力容器的类别、品种范围,应与本单位所从事的生产、科研等工作范围相适应。 第二章压力容器设计单位条件

外压容器设计

外压容器设计 一、外压容器的稳定性 1、外压容器的稳定性概念 外压容器的失效形式 强度不足 破裂 刚度不足 失稳 2、临界压力 (1)临界压力( P 临):导致筒体失稳时的外压。 临界压应力(σ临):筒体在P 临作用下筒体内存在 的环向应力。 (2)许用压应力 为保证外压容器的使用安全,设计压力应当满足如下条件: ∴ P 临≥mP P 临≥3P (3)影响临界压力的因素 ①P 临与筒体尺寸的关系 (i)当L/D 相同时,S/D 抗弯曲 P 临 (ii)当S/D 相同时,L/D 圆筒越短 P 临 L/D 圆筒越长 P 临 短圆筒:能得到封头支撑作用的圆筒 长圆筒:得不到封头支撑作用的圆筒 ∴ S/D 相同时,短圆筒的P 临高 (iii )当S/D 、 L/D 都相同时,有加强圈者P 临高 ② P 临与材料性质的关系 因圆筒体失稳时,其压应力并没达到材料的屈服极限, 说明P 临与材料的屈服极限无直接关系。 而材料的弹性模量E 对 E —抗变形能力, P 临 各种材料的E 值相差不大,所以采用高强度钢代替一般碳钢制造外压容器并不能提高圆筒的P 临,相反还增加了容器的成本。 材料的组织不均匀性合同体的不圆度将使P 临下降。 ][P m P p =≤临

二、外压容器的设计 1、理论公式计算法 (1)壁厚的计算 钢制长圆 : 钢制短圆筒: 将P 临≥3P 代入可得 1)钢制长圆筒: mm 2)钢制短圆筒: mm 3)刚性圆筒 一般:S L 的圆筒叫刚性圆筒 一般不存在失稳,因此只考虑强度即可 (2)临界长度 L 临 当短圆筒的长度大到某一临界值L 临时,封头对筒体的支撑作用将完全消失,这时短圆筒的P 临将下降到长圆筒的P 临, 即: 解得: 为区别长短圆筒的临界长度 当 L< L 临时, 为短圆筒 L>L 临时,为长圆筒 (3)用理论公式设计的步骤 ①设理论壁厚为S 。,并选定材料 ②计算L 临 ③比较确定圆筒类型L 与L 临,确定圆筒类型 ④根据圆筒类型计算P 临 ⑤计算许用应力[P]= P 临/3 比较:设计压力P 与P 临 若P ≤[P],且接近,假设的S 。合适 若p>[p],这说明假设S 。过薄,需重新假设 ⑥实际壁厚S=S 。+C 2、图算法 (1)算图的由来 临界压应力: 30)(2.2D S E p =临D L D S E P 5.20)(6.2=临C E P D S +=32.23C D L E P D S +?=4.0)6.23(D L D S E 5 .20)(6.230)(2.2D S E =017.1S D D L =临0 2S D P 临临=σ

浅谈化工设备压力容器的规范设计与发展前景

浅谈化工设备压力容器的规范设计与发展前景 发表时间:2018-10-01T12:22:55.293Z 来源:《基层建设》2018年第25期作者:郑卫群张素霞裴元虎 [导读] 摘要:压力容器直接关系到化工企业安全生产,产品设计阶段要考虑整个设备的安全可靠性,生产过程中控制每个环节质量。 河南豫光金铅集团有限责任公司河南济源 459000 摘要:压力容器直接关系到化工企业安全生产,产品设计阶段要考虑整个设备的安全可靠性,生产过程中控制每个环节质量。压力容器设计时需要设计人员保持严谨的态度,选择合适的设计与计算方法,提高压力容器设计的质量与安全性,本文就此展开论述。 关键词:化工设备;压力容器;规范设计;发展前景 1化工设备压力容器设计的理论基础 化工压力容器设计通常采用弹性失效准则,该理论下认为压力容器最大应力点就是超出屈服上限后便会进入塑性条件,直到纯粹弹性状态最终失去为止。通过应力分析,基础内容计算选择材料力学与板壳薄理论,对于边缘与局部性应力状况下不予考虑,每种类型的应力状况都应选择相应的许用应力值,但出于安全考虑,则应该选择略高于许用应力的应力,避免有效部分应力分析不足的情况,确保设计的安全性。随着化工设备压力容器的参数不断增加,特别是随着计算机技术发展及高强度钢材料的应用,传统设计中的弹性失效准则己经不能满足实际需求,传统常规设计方法整体过于保守,针对这类问题要采取新的失效观点来解决。分析设计中引入弹塑性与塑性失效准则,打破传统应力计算的局限性,促进许用应力值的提升,确保压力容器的安全性。压力容器设计过程中,通常会使用多种准则,以失效准则为基础,增加弹性失效、弹塑性失效准则等,确保化工压力容器设计安全的准确性。 2化工设备压力容器规范设计措施 2.1选择合适的设计材料 化工产品本身具有毒性、易燃、易爆等特性,很容易出现火灾或爆炸等事故,必须按照国家规定控制化工压力容器设计,提高化工容器的安全性与质量。具体如下。①材料的重要性。在设备加工过程中为了保证设备质量和功能性良好,通常会使用多种材料共同满足设计需求。每种材料的性能和加工水平对整体设备质量的形成都会有直接关系。只有通过合理的材料选择和加工技术,才能保证每个环节的加工质量,最终在保证设备性能的基础上,合理控制成本,在市场上获得足够的竞争力。因此设备加工过程中,设备性能要求是关键指标,成本控制也是重要的方面,这就对材料选择提出更高的要求。②选择合适材料。在压力容器设计过程中,为保证能够合理对材料做出选择,需要充分了解材料一的属性和利用价值,从而做到材料性能的比较并达到设计需要的性能指标。金属材料是压力容器设计中常用的材料,但随着化工材料的不断发展,在压力容器设计中使用有机材料代替金属材料也变成了可能。在压力容器设计中,为保证设备的性能指标,需要对材料的性能进行严格的筛选。材料本身的用途也会决定材料的性能。以金属材料为例,金属强度高、性能优越是其主要优点,但金属材料也存在抗腐蚀能力弱、容易变形等缺点。因此在加工过程中应该根据设计的具体情况,根据材料在设备中的性能对材料做出合理的选择。 2.2压力容器结构设计规范性 前文中己经提过,现代测试技术解决容器耐压系数过低问题时普遍采用弹性失效方法,这种设计方法相对陈旧,很多问题得不到有效解决,这也是传统设计不先进的具体体现。为了改变这一情况,充分满足压力容器快速发展的现实需求,需要引入新的失效观点解决这些难点问题。钢材选用之初需要考虑到温度条件、压力条件、介质腐蚀条件、介质的危害性、材料特性、焊接过程中的接头强度问题,还要考虑到生产成本问题,不能盲目的设计和生产。受压程度过高也不是最好的设计选择,因为当压力较高,整体尺寸较大就会使得容器外壳厚重,这样就会给制造、运输乃至以后的产品安装带来很多不便,从而提高了总的生产成本,给企业带来损失。为了进一步节省生产材料、降低化工设备压力容器的产出和维修成本,对于那些顶盖需要经常进行拆卸的容器,在设计过程中可以采用快拆式的密闭结构,如此就能在最大程度上减少使用主螺栓式连接方法。而对于那些需要定期进行清洗和内件维修的容器产品,在设计过程中就需要提前在适当位置设置手孔或人孔结构,便于工作人员入内进行清理,如此不仅便于清洁为维修,还可以最大程度上降低生产所需材料和容器的产出、维护成本。在化工设备设计过程中,设计人员要具有一定的化学应用知识,并加强对细节的管理和控制,不仅能有效提高设计质量,降低成本,还便于设计人员对设备整个质量和性能的控制,确保设计方案的可行性。 3化工设备压力容器设计的前景分析 3.1设计技术的进步 随着经济与技术发展,化工设备压力容器设计的方法不断进步与发展,如我国学者通过大量计算分析,得出计算管壳式换热器管板的公式。通过大量实践结果表明,研究出的公式符合结构受力的实际情况,同时理论支持内容也较为完善。相比于传统计算公式,我国学者总结出的计算公式更具有普遍性与适合性,可以提高设备的安全性与科学性,最大程度降低设计厚度与直径,实现降低成本、提高安全性的目的,有力推动我国化工设备压力容器行业的进步与发展。我国学者研究出的公式优势显著,该公式的基本特点如下:首先把换热器看作多种元件构成的弹性体系,采用应用力学理论对其进行分析,对相应元件在实际操作工况情况下和对管板实际作用情况下的荷载情形进行了综合考虑。其次,在计算当量板的削弱系数时,每个管板单元不仅包含边界为六角形(或正方形)的孔板,还包括管孔中的圆柱壳以及连接二者的圆环。推动行业技术发展,具有推广价值。 3.2选择合适的新.功能材料 在选择压力容器制作材料时,现代先进科学技术为我们提供了支持与选择。例如,纳米材料,作为当前最先进也是最受欢迎的一种微观材料,纳米技术就为我们提供了一种不仅韧性好、耐热度高而且质地轻薄、强度高的新型材料,在压力容器制作中具有不可替代的功能。而且最新研究表明,我国科学家正在研究一种能够自动对摩损和裂痕进行修复的智能材料,而且在不久的将来就能用于实际测验中。纳米粉体的粒径、光波波长以及超导态的相关长度形成透射深度等物理特征尺寸,对于分析材料的化学性质、磁学性质、力学性质以及热学性质具有非常重要的应用。通过纳米颗粒可以实现高效率光热以及光电的转换。相信随着相关学科技术水平进一步发展,将会有力带动材料化学工程的发展与进步,市场上将会出现更多的符合现实需求且可以实现节能保护与降低成本的目的,为推动材料化学类企业发展贡献力量,进而为国民经济发展提供更多的支持。 4结语 综上所述,压力容器设计过程中依托相关设计方案,合理的设计方案并严格接受监督部门监管,确保压力容器设计的质量,又可以节

外压容器的设计计算

外压容器的设计计算 哈尔滨市化工学校 徐 毅 李喜华 在外压容器设计时,筒体的壁厚计算按文献 〔1〕和〔3〕应采用图算法。图算法要先假设筒体 的壁厚,通过查图表后计算使P≤〔P〕且较接 近,则所设壁厚可用;否则应重新假设,直至满足 为止。为简化设计计算,本文将外压容器的解析法 与图算法结合,使外压容器的壁厚的假设一次完 成。 1 壁厚的计算 按文献〔2〕外压容器壁厚的计算公式 S≥D0( m pL 2.6ED0 )0.4+C(1) 式中S———外压容器筒体的壁厚,mm;D0———外压容器的外径,mm;L———外压容器的计算长度, mm;C———壁厚附加量, mm;m———稳定系数, m=3;P———设计压力, MPa;E———材料在设计温度时的弹性模量, MPa; 设壁厚为S,计算步骤如下: 1.计算壁厚S0=S-C,算出所要设计筒体的L/D0和D0/S0值; 2.按文献〔2〕在图6-10(文献〔2〕)的左侧纵坐标上找到L/D0值,由此点引水平线向右与相应D0/S0线相交。若L/D0>50,则按L/D0=50查图,由交点沿铅垂方向向下求得横坐标系数A(即ε); 3.根据筒体材料选用相应的材料温度线。文献〔2〕中的图6-12、6-13、6-14,在图的下方横坐标找到由2求得的系数A,若A在材料温度线的右方,则由此点沿铅垂上移,与材料温度线相交,再将此点沿水平方向向右求得纵坐标系数B; 4.按系数B用式〔P〕=BS0/D0〔2〕求得许用外压〔P〕; 5.比较设计外压P与许用外压〔P〕,若P≤〔P〕,则所假设的壁厚可用。 6.根据钢板规格,最后确定所用钢板厚度。2 计算实例 设计氨合成塔的内筒,已知筒体外径D0= 410mm,计算长度L=4m,材料为oCr18Ni19Ti,弹性模量E=1.58×105MPa,壁温为480℃,壁厚附加量C=0.8m m,所受外压P=0.5MPa,试确定其壁厚。 由(1)式得: S≥D0(m pL 2.6ED0 )0.4+C=410 ( 3×0.5×4×103 2.6×1.58×105×410 )0.4+0.8=7.6mm 假设壁厚S=7.6mm,计算S0=S-C=7.6-0.8 =6.8mm,L/D0=4/0.41=9.75D0/S0=410/6.8 =60.28 按文献〔2〕在图6-10查得A=0.00032 按文献〔2〕在图6-14查得B=34MPa  按文献〔2〕式〔P〕=BS0/D0=34×6.8/410 =0.57MPa 比较P<〔P〕,即0.5MPa<0.57MPa,即假设壁厚可用。 按文献〔4〕,最后确定所用钢板厚度为8mm。3 结语 筒体的壁厚计算是外压容器设计中重要的内容,但按文献〔1〕和〔3〕进行设计计算时,一般至少要试算3~5次,若运用本文的方法可使筒体的壁厚计算一次成功。 参考文献 1 钢制石油化工压力容器设计规定,全国压力容器标准化技术委员会, 1993 2 余国琼.化工容器的设备.化学工业出版社, 1980 3 全国压力容器标准化技术委员会.G B150-89钢制压力容器.学苑出版社, 1989 4 《化工设备设计手册》.上海人民出版社, 1993 (编辑 毛丽青) ? 7 1 ? 《机械工程师》 1997. 2

第十四章液体的压强学案教案修订稿

第十四章液体的压强学 案教案 集团标准化工作小组 [Q8QX9QT-X8QQB8Q8-NQ8QJ8-M8QMN]

九年级物理第十四章第二节《液体的压强》教学案 【教学目标】 一、知识与技能 1.理解液体内部压强的规律 2.理解船闸的工作原理并能运用所学知识解释日常生活中的一些现象. 3.学会探究问题的一般方法 二、过程与方法 1.通过多媒体演示及生活中的经验说明液体压强的存在. 2.通过学生实验探究液体压强的大小与哪些因素有关. 3.通过对生活现象的分析进一步加深对液体压强的理解 三、情感态度价值观 1.通过课堂上的观察分析活动,养成善于观察思考的良好学习习惯。 2.通过了解生活实际中物理知识的应用,增强学习物理、学习科学知识的兴趣。 3.激发学生对于科学探究的兴趣,养成与同学合作交流的意识,体验利用知识解决问题的喜悦,培养创新意识。 【教学过程】 一:预习导学: 1.、将水倒入上端开口、下端和侧壁开口处扎有橡皮膜的圆筒内,发现橡皮膜凸出,表明液体对容器底(填有或没有)压强,并且看到下面一个橡皮膜比上面橡皮膜凸出明显,说明。 2、关于液体内部的压强,可以得出的结论是: (1)液体内部向各个方向(都有/都没有)压强; (2)在液体内同一深度处,液体向各个方向的压强大小; (3)液体内部的压强,随深度的增加而; (4)液体内部的压强大小还与液体的有关,在不同液体的同一深度处,液体的密度越大,压强 . 3、据报道,由于长江上游的植被受到破坏,造成大量水土流失,江水浑浊,致使江水的增大,故相同深度的江水对堤坝的会增大,从而使堤坝受到破坏的可能性增加 二、课内探究: (一)引入新课: 1、带鱼生活在深海中。你见过活的带鱼吗为什么 2、潜水艇都用抗压能力很强的厚钢板制成,为什么 (二)液体压强的特点:

最新压力容器设计基本知识

压力容器设计基本知识 (讲稿) 北京 二零零六年三月制订

目录 一.基本概念 1.1 压力容器设计应遵循的法规和规程 1.2 标准和法规(规程)的关系。 1.3 压力容器的含义(定义) 1.4 压力容器设计标准简述 1.5 D1级和D2级压力容器说明 二.GB150-1998《钢制压力容器》 1.范围 2.标准 3.总论 3.1 设计单位的资格和职责 3.3 GB150管辖的容器范围 3.4 定义及含义 3.5 设计参数选用的一般规定 3.6 许用应力 3.7 焊接接头系数 3.8 压力试验和试验压力 4.对材料的要求 4.1 选择压力容器用钢应考虑的因素 4. 2 D类压力容器受压元件用钢板 4.3 钢管 4.4 钢锻件 4. 5 焊接材料 4.6 采用国外钢材的要求 4.7 钢材的代用规定 4.8 特殊工作环境下的选材 5.内压圆筒和内压球体的计算 5. 1 内压圆筒和内压球体计算的理论基础5.2 内压圆筒计算 5.3 球壳计算 6.外压圆筒和外压球壳的设计 6.1 受均匀外压的圆筒(和外压管子)6.2 外压球壳 6.3 受外压圆筒和球壳计算图的来源简介6.4 外压圆筒加强圈的计算 7.封头的设计和计算 7.1 封头标准 7.2 椭圆形封头 7. 3 碟形封头 7.4 球冠形封头 7.5 锥壳

8.开孔和开孔补强 8.1 开孔的作用 8.2 开检查孔的要求 8.3 开孔的形状和尺寸限制 8.4 补强要求 8.5 有效补强范围及补强面积 8.6 多个开孔的补强 9 法兰连接 9.1 简介 9.2 法兰连接密封原理 9. 3 法兰密封面的常用型式及优缺点 9.4 法兰型式 9.5 法兰连接计算要点 9.6 管法兰连接 10.压力容器的制造、检验和验收 10.1 制造许可 10.2 材料验收及加工成形 10. 3 焊接 10.4 D类压力容器热处理 10.5 试板和试样 10.8 无损检测 10. 9 液压试验 10.10 容器出厂证明文件。 11.安全附件和超压泄放装置 11.1 安全附件 11.2 超压泄放装置 11.3 压力容器的安全泄放量 11.4 安全阀 GB151-1999《管壳式换热器》 01 简述 02 标准与GB150-1998《钢制压力容器》的关系。03基本章节 1 适用范围 2 组成 3 型号表示法 4 有关参数的确定 5焊接接头系数 6试验压力和试验温度 7 其它要点 8 管板计算 9 制造、检验与验收

设备设计课程设计(卧式内压容器)

目录 第1章设计数据及设备简图------------------------------------------- 1第2章设计计算------------------------------------------------------ 3 2.1圆筒厚度的设计------------------------------------------------ 3 2.2封头厚度的计算------------------------------------------------ 4 第3章应力校核------------------------------------------------------ 5 3.1 计算容器的重量载荷与支座反力 --------------------------------- 5 3.2 计算筒体的轴向应力 ------------------------------------------- 5 3.3 鞍座切应力校核 ----------------------------------------------- 7 3.4 鞍座筒体的周向应力校核 --------------------------------------- 7 3.5 鞍座腹板应力校核 --------------------------------------------- 8 第4章设计结果汇总------------------------------------------------- 10参考文献------------------------------------------------------------ 12

化工压力容器设计中的热处理问题分析

化工压力容器设计中的热处理问题分析 发表时间:2019-07-31T14:54:58.700Z 来源:《防护工程》2019年8期作者:张杰[导读] 在压力容器的设计与制作过程中,为了能够满足压力容器强度等指标的需求,在容器成型之后就需要进行热处理技术的预处理。上海森松压力容器有限公司 201323 摘要:现阶段,在石油、化工等行业中,压力容器得到了较为广泛的应用,是一种常用的设备。一般来说,压力容器有两个基础特性,分别是抗腐蚀性和密闭性,进而可以承受多种物理、化学反应。热处理是使用压力容器之前的准备工作,能够有效的提高压力容器的性能,提高压力容器的使用效率。近年来,压力容器的发展趋于多元化。人们对压力容器的性能提出了更高的要求,相应的热处理问题已 经成为人们关注的焦点问题。随着科技的发展,压力容器的技术材料性能逐渐提高,进而对热处理技术水平的要求有了明显的提升。关键词:压力容器;设计;热处理问题 引言 在压力容器的设计与制作过程中,为了能够满足压力容器强度等指标的需求,在容器成型之后就需要进行热处理技术的预处理。因此,热处理就成为压力容器设计不可忽视的一项关键技术。1化工压力容器设计中需进行焊后热处理的条件1.1通用条件 化工压力容器设计中,金属热处理就是将金属材质的零部件放在介质中加热,一直到适宜的温度时并在这个温度中保持一段时间,再以不同的速度进行冷却,这就是机械制造中较为重要的技术,同其他工艺相比,热处理技术不会改变零部件的形状与化学成分,而是改变内部显微组织和表面的化学成分,从而改善部件的性能。化工压力容器设计中,人们在应用热处理的时候也意识到焊接应力对容器会造成危害,很难判断出焊接应力应该限制成什么水平。因此,化工压力容器设计中需要进行热处理的通用条件如下:①材质,钢材强度级别随着科学技术的进步而不断提高,钢材中合金含量有所增加,焊接性能开始变差,一样的焊接工艺下会有焊接缺陷产生;②钢材的厚度,厚度越大,焊接就越深,等到冷却之后收缩倾向就会越强,合金含量增加导致钢材的刚性加大,抵抗局部收缩变形的能力加强,焊接残余应力就会比较大;③化工压力容器设计中热处理时有预热温度,在焊接之前进行预热可以减缓焊接处和其他部位的温度差,减缓高峰值焊接应力的出现。因此,在我国相关化工压力容器设计热处理工艺标准中,各种钢材材质、钢材厚度以及预热温度的设定就成为化工压力容器设计进行热处理的通用条件。 1.2特殊条件 除了以上三种通用条件,还有两种特殊条件,不管化工压力容器设计中钢材的材质、厚度以及预热温度是什么情况,都需要对钢材进行焊后热处理,这两种特殊条件中,第一种是图样上标明有应力腐蚀的容器,第二种是图样上标明承装毒性极强或者危害程度较高的容器。这两种情况下,一旦焊接热处理工艺应用的不到位,发生事故的后果是极其严重的。焊接残余应力会导致钢材腐蚀开裂,假如化工压力容器中承装的是液化石油气,这些液体中含有H2S,其中的杂质会对钢材起到腐蚀的作用,如果是没有杂质的液化石油气,里面的丙烷与丁烷不会有应力腐蚀,它的应力腐蚀和浓度有关,与含水量也有关联,因为只有液态的成分才会有应力腐蚀的存在。2热处理基本工艺技术 开展热处理,需要在加热、保持温度、冷却阶段进行相互的协作,并且也是一门工序要求紧凑的工艺,其主要包含:第一,加热方式。一般的加热包含了直接加热和间接加热两个方面,其直接加热包含了液体、气体、电加热等,间接加热则包含利用液态金属或者是盐的浮动粒子来进行间接的加热。第二,在选择温度值以及控制温度的时候,就需要在制造压力容器的时候,在不同的反应段作为温度的控制,确保其处于相应的区域范围,这样才能确保最大限度的提升金属物料的材料强度,满足压力容器成品的质量需求。第三,冷却工艺。压力储存设备因为不同的用途、不同结构类型以及不同的制造材料,所以在设计与制作中,就需要按照上述的规范,实施不同速度的冷却,一般会选择淬火,因为其冷却速度最快,不仅可以让钢件马氏体组织得到保障,也可以提升工作本身的耐磨性、强度以及硬度,这样就可以让热处理的后续工作能够顺利的实施。而正火冷却的速度相对较慢,其可以改善材料的加工与切削性能,也可以提升器低碳钢的整体力学性能。 3热处理技术以及压力容器热处理的重要性随着科学技术的发展,我国很多生产方面的问题都得到了有效的解决。石油、化工行业是我国经济发展的支撑行业,而这些行业都对压力容器有着广泛的应用。换而言之,压力容器的性能和使用质量直接影响到行业的效率与质量。在机械生产制造过程中,热处理技术是一种重要的工艺,可以有效的提高压力容器的性能和使用坚固性,直接影响到压力容器的安全运行。具体而言,热处理技术指的是在某种介质中对金属材料进行加热,使材料达到一定的温度,并恒温保持一段时间,进而使金属材料的快速冷却速度有所降低。热处理技术能有效的改善工件的性能,提高工件的使用质量。热处理技术主要改变了工件表面的化学成分和工件内部纤维组织,并保持工件的整体化学成分以及外形不发生改变。热处理技术主要有三个环节,分别是加热、保温和冷却。这三个环节相互促进、相互衔接,最终使压力容器的设计更加安全和经济。针对加热环节,这是一项较为重要的工序,有着多种操作方法,在热处理基础中发挥着重要的作用。值得强调的是,热处理过程中一个至关重要的参数就是加热温度。压力容器的设计要在一定的参数和工作条件下,综合考虑安装、制造等多个因素,全面的分析压力容器制造使用材料的性能,保证压力容器的可靠性,因此在压力容器的设计中进行热处理有着重要的意义。压力容器的应用范围一般是石油、化工等行业,危险性较高,一旦出现意外,就会对国家和个人带来难以承受的损失。热处理技术可以有效的提高金属材料的性能,能够对金属材料和金属设备的性能进行较为显著的改善。因此,相关人员在进行压力容器设计的过程中,要重视检验材料性能和设计性能,并有效的利用热处理技术,提高压力容器的安全性和稳固性,使压力容器的设计更加可靠。压力容器设计的质量与压力容器密切相关,换而言之,压力容器的热处理的质量和效果对压力容器有着直接的影响作用。在此情况下,工作人员必须重视提高热处理的质量。 4压力容器设计中的热处理分析4.1奥氏体不锈钢材料

化工设备基础-第四章-王绍良-教案

第四章压力容器 一、容器的分类与结构 (一)结构 图2-1卧式容器的结构简图 (二)分类 第一种:按设计压力分类 按承压方式,压力容器可分为压容器与外压容器。压容器又可按设计压力(P)大小分为四个压力等级。 外压容器中,当容器的压力小于0.1MPa时又称为真空容器。 第二种:按作用原理(即用途)分类 第三种:按安全技术管理分类 第四种:按容器壁温分类,可分为常温、中温、高温和低温容器四种。 第五种:按壁厚分类,分为薄壁容器(δ/D i≤0.1)和厚壁容器δ/D i>0.1 二、容器机械设计的基本要求 在进行压力容器机械设计时,它的总体尺寸、零部件尺寸由工艺条件决定或由经验所得,因此我们这里主要是指结构设计。 要求有以下几个方面。 (一)安全性 1、强度:强度就是容器抵抗外力破坏的能力。容器应有足够的强度,否则造成事故。 2、刚度:是指容器或构件在外力作用下维持原有形状的能力。承受压力的容器或构件,必须保证足够的稳定性,以防止被压瘪或出现折皱。 3、密封性:设备密封的可靠性是安全生产的重要保证之一,因为化工厂中所处理的物料中很多是易燃、易爆或有毒的, 设备的物料如果泄漏出来,不但会造成生产上的损失,更重要的是会使操作人员中毒,甚至引起爆炸; 反过来,如果空气混入负压设备,亦会影响工艺过程的进行或引起爆炸事故。 因此,化工设备必须具有可靠的密封性,以保证安全和创造良好的劳动环境以及维持正常的操作条件。

4、耐久性:化工设备的设计使用年限一般为10年一15年,但实际使用年限往往超过这个数字, 腐蚀、疲劳、蠕变或振动等,都会影响耐久性,尤其是腐蚀,所以以后的设计中会看到考虑腐蚀余量。 (二)可行性 包括制造、安装、操作、维修及运输的可能性、方便性。 (三)经济性指五个方面。 ①单位生产能力; ②消耗系数; ③设备价格; ④管理费用:包括劳动工资、维护和检修费用等。管理费用降低,产品成本也随之降低。但管理费用不是一个孤立的因素, 例如有时采用高度自动化的设备,管理费用是降低了,但投资则会增加。 ⑤产品总成本:是生产中一切经济效果的综合反映。一般要求产品的总成本愈低愈好,但如果一个化工设备是生产中间产品, 则为了使整个生产的最终产品的总成本为最低,此中间产品的成本就不一定选择最低的指标,而应从整个生产系统的经济效果来确定。 三、容器零部件的标准化 1.标准化的意义 ①组织现代化生产的重要手段之一。实现标准化,有利于成批生产,缩短生产周期,提高产品质量,降低成本从而提高产品的竞争能力。 ②标准化为组织专业化生产提供了有利条件。有利于合理地利用国家资源,节省原材料,能够有效地保障人民的安全与健康; 采用国际性的标准化.可以消除贸易障碍提高竞争能力,实现标准化可以增加零部件的互换性。 有利于设计、制造、安装和检修,提高劳动生产率。我国有关部门已经制定了一系列容器零部件的标准, 例如圆简体、封头、法兰、支座、人孔、手孔、视镜和液面计等。 2、容器零部件标准化的基本参数——公称直径DN和公称压力PN。 ①公称直径:是将容器及管子直径加以标准化以后的标准直径。 A.压力容器(筒体、封头)的公称直径:由钢板卷制的筒体,公称直径是指它的径; B.当筒体的直径较小,直接采用无缝钢管制作时,容器的公称直径应是指无缝钢管的外径; 封头的公称直径与筒体一致。 B.管子:公称直径既不是它的径,也不是外径,而是小于管于外径的一个数值。

相关主题
文本预览
相关文档 最新文档