当前位置:文档之家› 管壳式换热器试压工艺

管壳式换热器试压工艺

管壳式换热器试压工艺
管壳式换热器试压工艺

管壳式换热器试压工艺

永鑫建设工程有限责任公司

谢锡彬 罗红飞

摘 要 讨论了管壳式换热器试压系统的设置和试压工装的设计、制作以及试压程序。关键词 管壳式换热器;试压系统;试压工装;试压程序

0 引 言

管壳式换热器是石油化工生产装置中的常用设备,主要分为固定管板式、浮头式和U 型管式,在生产装置建设阶段以及检修期间需对其进行试

压检查,针对该类设备的特点,结合现场安装、检修的经验,以下对管壳式换热器试压系统的设置和试压工装的设计、制作以及相应的试压程序进

行探讨。1 试压系统

1.1 系统组成

换热器试压系统由换热器、试压泵、金属软管、压力表、盲板和试压环等组成。以浮头式换热器壳程试压为例,系统布置见图1

图1 试压系统布置图

1 管箱侧试压环;2、6 压力表;3 盲板;4 浮头侧试压环;5 盲板(带阀门);7 金属软管(或钢管);8 试压泵

1.2 系统设置注意事项

(1)试压工装的设计、制作要具有一定的通用性,不要局限在单台设备上。

(2)试压泵最好选用活塞式或柱塞式电动试压泵,尽量不要使用手动试压泵。

(3)试压泵与试压盲板间的连接最好采用两端为活接形式的金属软管,以减少现场的施工工作量,同时也便于多台设备的试压。

(4)试压系统上必须安装2个量程相同、经过校验并在有效期内的压力表(量程为试验压力的1.5~3倍,最宜量程为试验压力的2倍,精度

不得低于1.5级,表盘直径不得小于100mm )。压力表应安装在换热器的最高处和最低处,试验压力值以最高处的压力表读数为准,并用最低处的压力表读数进行校核。

(5)最好在换热器最高点和最低点设置排放阀,便于系统中空气和试压水的排放。2 试压工装2.1 试压环

固定管板式、浮头式和U 型管式换热器管箱侧试压环的结构及装配见图2。浮头式换热器浮头侧试压环的结构及装配见图3。

17

2010年第1期 川 化

图2 管箱侧试压环结构及装配

1 试压环;

2 管箱侧管板;

3 石棉垫;4

筒体法兰

图3 浮头管板侧试压环结构及装配

1 石棉垫;

2 试压环;

3 盘根;

4 浮头管板;

5 压盖;

6 筒体法兰

试压环的结构设计和装配应注意以下几点。(1)试压环与筒体法兰通过筒体螺栓连接,两者间使用石棉垫作为密封元件;浮头管板与试压工装间使用盘根作为密封元件,通过压盖上的螺栓预紧力将盘根压缩变形达到密封的目的。

(2)在安装试压环进行试压时,试压环受力远小于原有管箱或外头盖受力,因此连接螺栓的数量可相应减少。参考法兰标准J B 4703 2000,由于同一公称直径1.6MPa 、2.5M Pa 、4.0M Pa 等级的法兰其螺栓孔是不重合的,因此可在同一法兰上钻出3种压力等级法兰的螺栓孔,以提高试压环的通用性。

(3)由于各浮头式换热器厂家采用的标准不尽相同,使得浮头管板伸出筒体法兰的长度也不相同,因此在设计制作浮头侧试压环时,应尽量考虑大多数设备的情况,以便盘根能准确压在浮头管板上。

2.2 试压盲板

换热器接管试压盲板应根据试验压力选择合适的厚度,考虑到其通用性,在需与金属软管连接

的盲板上设置活接头和外丝接头,以便在遇到不

同规格的接管法兰时,只需更换盲板法兰。接试压金属软管处试压盲板结构见图4。

图4 试压盲板结构

1 法兰盲板;

2 丝扣活接头;

3 压力表;

4 压力表接管;

5 外丝接头(接金属软管);

6 阀门;

7 无缝钢管接管

3 试压程序3.1 正常试压程序

拆除管程(或壳程)进出口法兰 安装盲板和试压接头 按规范要求程序试压 试压合格后

管线恢复确认。3.2 特殊情况下的试压程序

在试压过程中若出现换热管泄漏或焊缝泄漏,应在堵管或处理焊缝后按下列试压程序试压。

(1)固定管板式换热器

拆除前、后管箱 壳程加压 检查壳体、换热管与管板间的连接部位 合格后安装管箱 管程加压 检查两端管箱和有关部位。

(2)U 型管板式换热器

拆除管箱 安装试压环 壳程加压 检查壳体、换热管与管板间的连接部位 合格后拆除试压环 安装管箱 管程加压 检查管箱有关部位。

(3)浮头式换热器

拆除管箱、外头盖和浮头盖 安装试压环 壳程加压 检查壳体、换热管与管板间的连接部位 合格后拆除试压环 安装管箱和浮头盖 管程加压 检查管箱和浮头有关部位 合格后安装外头盖 壳程加压 检查壳体、外头盖及有关部位。

3.3 试压中的注意事项

(1)在系统的最高处必须要有排气点,可利用高处的压力表接管进行排气,待空气排尽后再安装压力表。

18川 化 2010年第1期

以循环经济理念创建川化工业生态园区

环保安全部张 鞠 代 平

进入21世纪,全球社会生产和生活方式正在发生深刻变化,人与自然环境开始走向协调与和谐,可持续发展已成为世界各国的共识。随着经济全球化和生态化趋势的进一步发展,经济、社会、环境成为可持续发展的三大支柱,生态文明已初步成为国际性的时代潮流。党的十六大以来,中央提出了树立科学发展观和建设和谐社会的战略决策,把人口、资源、环境问题提高到基本国策的高度,并明确指出加强人口、资源、环境工作是全面落实科学发展观的必然要求,也是建设社会主义和谐社会的重要任务。十一五!时期是我国生态文化经济大发展的时期,加强生态工业园区的建设对川化来说具有重要的现实意义。川化应抓住这一难得的机遇,秉承解放思想,实践创新,科学发展,和谐崛起,建设生态工业园区,全面振兴川化!的宗旨,推动川化从工业崛起到全面振兴,从而迈入新的历史发展阶段。

发展是一场没有硝烟的战争,建设生态工业园区就是我们赢得发展争夺战的途径和最终成果。川化作为一家以天然气为原料生产化肥和化工原料为主的国有特大型化工企业,近年来一直受到天然气供应短缺的影响,装置不能满负荷运行,原料短缺和价格上涨威胁着企业的生存,发展之路步履维艰,产业与产品结构调整已迫在眉睫。因此,川化必须作出果断的抉择,勇敢地承担责任、面对困难,以循环经济理念创建川化工业生态园区,以解决现状问题,挺起川化发展的脊梁。

1 建立企业内部的微观循环体系

一直以来,川化人都在为川化的发展坚定地努力和奋斗着,川化已建立并完善了系统化、程序化、可操作的环境管理体系,依靠科技进步不断地对生产工艺进行改造和完善,从生产源头治理污染,对资源进行深度开发,走循环经济的发展道路,努力实现着生态化工。主要开展了以下技术改造工作。

(1)建成了以合成氨副产CO2气体为原料提纯生产合格食品二氧化碳装置,年产食品二氧化碳25kt。

(2)延长产业链,综合利用合成氨弛放气(2376万m3/a)中的氢气生产双氧水,建成30 kt/a双氧水生产装置,产品浓度从27.5%提高到了35%。

(3)以合成氨生产过程中产生的低浓度氨水

(2)换热器壳程试压时应确保管程内无任何介质且管程最低点保持开启畅通;管程试压排介质注意事项与壳程相同。

(3)新安装换热器的试验压力以设备技术文件为准,已使用过换热器的试验压力为设备最高操作压力的1.25倍。

(4)液压试验时,压力应缓慢上升,当达到试验压力时,保压时间不得少于30m in,然后将试验压力降到设计压力(或最高操作压力),保持足够长的时间,对所有焊缝和连接部位进行检查。整个过程中无渗漏、无可见变形及无异常响声为合格,否则泄压后对其进行修补,再重新进行试压。

(5)试压合格后,应排尽积液,排液时,为防止设备内形成负压,在排液前必须打开顶部的放空阀。

4 结束语

在中石油格尔木炼油厂2009年的大检修中,共有280台管壳式换热器均采用上述试压工艺进行试压,满足了设备的检修质量和工期要求,达到了预期效果。

(收稿日期2009-12-03)

19

2010年第1期 川 化

管壳式换热器的工艺设计

管壳式换热器的工艺设计 芮胜波李峥王克立李彩艳 兖矿鲁南化肥厂 芮胜波:(1974-),山东枣庄人,工程师,工程硕士,从事煤化工项目研发及建设工作。第一作者联系方式:山东滕州木石兖矿鲁南化肥厂项目办(277527),电话:0632-2363395 摘要:管壳式换热器在各种换热器中应用最为广泛,为了使换热器既能满足工艺过程的要求,又能从结构、维修、造价等方面比较合理,在设计中要从各个方面综合考虑。本文着重从换热器程数的选择以及如何降低换热器的压力降方面进行了比较详细的论述,对于换热器的工艺设计起到一定的指导作用。 关键词:管壳式换热器,程数,压降 在化工、石油、动力、制冷以及食品等行业中,换热器都属于非常重要的工艺设备,占有举足轻重的地位。随着我国工业的不断发展,对能源利用、开发和节约的要求不断提高,因而对换热器的要求也日益加强,特别是换热器的设计必须满足各种特殊工况和苛刻操作条件的要求。大致说来,随着换热器在生产中的地位和作用不同,对它的要求也不同,但都必须满足下列一些基本要求:首先是满足工艺过程的要求;其次,要求在工作压力下具有一定的强度,但结构又要求简单、紧凑,便于安装和维修;第三,造价要低,但运行却又要求安全可靠。 许多新型换热器的出现,大大提高了换热器的传热效率。比如板式换热器和螺旋板式换热器具有传热效果好、结构紧凑等优点,在温度不太高和压力不太大的情况下,应用比较有利;板翅式换热器是一种轻巧、紧凑、高效换热器,广泛应用于石油化工、天然气液化、气体分离等部门中;此外,空气冷却器以空气为冷却剂在翅片管外流过,用以冷却或冷凝管内通过的流体,尤其适用于缺水地区,由于管外装置了翅片,既增强了管外流体的湍流程度,又增大了传热面积,这样,可以减少两边对流传热系数过于悬殊的影响,从而提高换热器的传热效能。 尽管各种各样的新型换热器以其特有的优势在不同领域得以应用,但管壳式换热器仍然在各种换热器中占有很大的比重,虽然它在换热效率、设备的体积和金属材料的消耗量等方面不占优势,但它具有结构坚固、操作弹性大、可靠程度高、使用范围广等优点,所以在工程中仍得到普遍使用。 目前我们在各种工程中应用最多的换热器就是管壳式换热器,其中又以固定管板式为最常见,除了波纹管换热器等可选用标准系列产品外,其它光管换热器都由工艺专业自行设计,尽管专用计算软件HTFS的应用使设计人员从繁琐的手工设计计算中解脱出来,但是为了使设计出来的换热器能更好的满足各种要求,仍然有许多方面需要在设计时充分加以考虑。 首先,程数的选择。 管程程数的选择:关键要比较管程与壳程的给热系数,如果单管程时管程流体的给热系数小于壳程流体给热系数,则可选用双管程,管程给热系数会因此显著增大,并且总传热系数也会有大幅提高。例如,有一台单管程换热器,管程给热系数为990W/(m2.℃), 壳程给热系数为5010 W/(m2.℃),总传热系数为794 W/(m2.℃),在换热器的外形尺寸保持不变的情况下改为双管程后,管程给热系数变为1680 W/(m2.℃),增大了70%,,总传热系数变为1176 W/(m2.℃),增大了48%,显然此时选用双管程换热器有利。反之,如果单管程时管程的给热系数大于壳程给热系数,虽然改用双管程时,管程给热系数也会显著增大,但是总传热系数则增幅不明显,例如,一单管程换热器,管程给热系数为2276 W/(m2.℃), 壳程给热系数为2104 W/(m2.℃),总传热系数为1040 W/(m2.℃),在换热器的外形尺寸保持不变的情况下

管壳式换热器的机械设计

第七章管壳式换热器的机械设计 本章重点:固定管板式换热器的基本结构 本章难点:管、壳的分程及隔板 建议学时:4学时 第一节概述 一、定义:换热器是用来完成各种不同传热过程的设备。 二、衡量标准: 1.先进性—传热效率高,流体阻力小,材料省; 2.合理性—可制造加工,成本可接受; 3.可靠性—强度满足工艺条件。 三、举例 1.冷却器(cooler) 1)用空气作介质—空冷器aircooler 2)用氨、盐水、氟里昂等冷却到0℃~-20℃—保冷器deepcooler 2.冷凝器condenser 1)分离器 2)全凝器 3.加热器(一般不发生相变)heater 1)预热器(preheater)—粘度大的液体,喷雾状不好,预热使其粘度下降; 2)过热器(superheater)—加热至饱和温度以上。 4.蒸发器(etaporater),—发生相变 5.再沸器(reboiler) 6.废热锅炉(waste heat boiler) 看下图说明其结构及名称

四、管壳式换热器的分类 1、固定管板式换热器: 优点:结构简单、紧凑、布管多,管内便于清洗,更换、造价低,应用广泛。管坏时易堵漏。缺点:不易清洗壳程,一般管壳壁温差大于50℃,设置膨胀节。 适用于壳程介质清洁,不易结垢,管程需清洗以及温差不大或温差虽大但是壳程压力不大的场合。 2、浮头式换热器: 管束可以抽出,便于清洗;但这类换热器结构较复杂,金属耗量较大。 适用于介质易结垢的场合。 3、填料函式换热器: 造价比浮头式低检修、清洗容易,填料函处泄漏能及时发现,但壳程内介质由外漏的可能,壳程中不宜处理易挥发、易燃、易爆、有毒的介质。适用于低压小直径场合。 4、U型管式换热器:

管壳式换热器工艺设计说明书

管壳式换热器工艺设计说明书 1.设计方案简介 1.1工艺流程概述 由于循环冷却水较易结垢,为便于水垢清洗,应使循环水走管程,甲苯走壳程。如图1,苯经泵抽上来,经管道从接管A进入换热器壳程;冷却水则由泵抽上来经管道从接管C进入换热器管程。两物质在换热器中进行交换,苯从80℃被冷却至55℃之后,由接管B流出;循环冷却水则从30℃升至50℃,由接管D流出。 图1 工艺流程草图 1.2选择列管式换热器的类型 列管式换热器,又称管壳式换热器,是目前化工生产中应用最广泛

的传热设备。其主要优点是:单位体积所具有的传热面积大以及窜热效果较好;此外,结构简单,制造的材料围广,操作弹性也较大等。因此在高温、高压和大型装置上多采用列壳式换热器。如下图所示。 1.2.1列管式换热器的分类 根据列管式换热器结构特点的不同,主要分为以下几种: ⑴固定管板式换热器 固定管板式换热器,结构比较简单,造价较低。两管板由管子互相支承,因而在各种列管式换热器中,其管板最薄。其缺点是管外清洗困难,管壳间有温差应力存在,当两种介质温差较大时,必须设置膨胀节。 固定管板式换热器适用于壳程介质清洁,不易结垢,管程需清洗及温差不大或温差虽大但壳程压力不高的场合。 固定板式换热器 ⑵浮头式换热器 浮头式换热器,一端管板式固定的,另一端管板可在壳体移动,因

而管、壳间不产生温差应力。管束可以抽出,便于清洗。但这类换热器结构较复杂,金属耗量较大;浮头处发生漏时不便检查;管束与壳体间隙较大,影响传热。 浮头式换热器适用于管、壳温差较大及介质易结垢的场合。 ⑶填料函式换热器 填料函式换热器,管束一端可以自由膨胀,造价也比浮头式换热器低,检修、清洗容易,填函处泄漏能及时发现。但壳程介质有外漏的可能,壳程中不宜处理易挥发、易燃、易爆、有毒的介质。 ⑷U形管式换热器 U形管式换热器,只有一个管板,管程至少为两程,管束可以抽出清洗,管子可以自由膨胀。其缺点是管不便清洗,管板上布管少,结垢不紧凑,管外介质易短路,影响传热效果,层管子损坏后不易更换。 U形管式换热器适用于管、壳壁温差较大的场合,尤其是管介质清洁,不易结垢的高温、高压、腐蚀性较强的场合。

欧式管形端子压接接线工艺作业指导书

欧式管形端子压接连线作业指导书 适用范围: 本作业指导书适用于导线截面积0.5mm2~10mm2铜质导线、低烟无卤导线、耐高温导线的欧式管形端子的连接。 1.操作方法 1.1剥去导线的绝缘层 1.1.1使用工具:剥线钳,卷尺。(图1-图3) 图1 确定导线的剥线长度,按照钳口处的刻度,调节橘色滑块 注意:剥线长度的正确,直接影响到接线质量,后果相当严重! 图2

●通过调节上部的橘色滑块,对应不同导线的绝缘皮厚度 注意:如果位置不正确,将无法剥除绝缘皮,或损坏导线 图3 ●将导线一端顶至橘色滑块,按动手柄,剥线就能够顺利完成 1.1.2技术要求: 剥去导线(电缆)绝缘层时,不得损害线芯,并使导线线芯金属裸露。如(图4);剥线长度以端子型号为准。 图4 1.1.3检验方法: 采用笼式端子接线时,应保证导线绝缘层要进入端子的圆孔中:4mm2

及以下导线的绝缘外皮要求进去3-5mm,6-10mm2导线的绝缘外皮要求进去5-7mm。使用卷尺目测。非正面接线及其他笼式弹簧接线要求剥线长度正确。卷尺目测。(图5) 图5 1.2清洁接触面: 在接线端子与导线插装之前,将剥开的线芯和接线端子仔细清理干净,要求裸露导线光洁无非导电物和异物,接线端子内部清洁。检验方法为目测。 1.3线芯插入接线端子套: 剥开的线芯插入接线端子套时,将所有的线芯全部插入端子中。检验方法为目测。 1.4接线端子冷压接: 将管形端子压接到导线上,需要专用压线钳压接(OPT SN-06WF,SN-10WF 图6)。检验方法均为目测。

图6 1.4.1导线的截面要与接线端子的规格相符。 1.4.2使用压接工具的钳口要与导线截面相符,压线钳必须在有效期内。 1.4.3压接部位在接线端子套的中部,压接部位要求正确。(图7) 图7 1.4.4使用无限位装置的压接工具,必须把工具手柄压到底,以达到 机械性能。压好好管形端子如图8.

化工原理课程设计管壳式换热器汇总

化工原理课程设计管壳式换热器汇总 公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]

设计一台换热器 目录 化工原理课程设计任务书 设计概述 试算并初选换热器规格 1. 流体流动途径的确定 2. 物性参数及其选型 3. 计算热负荷及冷却水流量 4. 计算两流体的平均温度差 5. 初选换热器的规格 工艺计算 1. 核算总传热系数 2. 核算压强降 经验公式 设备及工艺流程图 设计结果一览表 设计评述 参考文献 化工原理课程设计任务书 一、设计题目: 设计一台换热器 二、操作条件: 1、苯:入口温度80℃,出口温度40℃。 2、冷却介质:循环水,入口温度35℃。

3、允许压强降:不大于50kPa。 4、每年按300天计,每天24小时连续运行。 三、设备型式: 管壳式换热器 四、处理能力: 99000吨/年苯 五、设计要求: 1、选定管壳式换热器的种类和工艺流程。 2、管壳式换热器的工艺计算和主要的工艺尺寸的设计。 3、设计结果概要或设计结果一览表。 4、设备简图。(要求按比例画出主要结构及尺寸) 5、对本设计的评述及有关问题的讨论。 1.设计概述 热量传递的概念与意义 1.热量传递的概念 热量传递是指由于温度差引起的能量转移,简称传热。由热力学第二定律可知,在自然界中凡是有温差存在时,热就必然从高温处传递到低温处,因此传热是自然界和工程技术领域中极普遍的一种传递现象。 2. 化学工业与热传递的关系 化学工业与传热的关系密切。这是因为化工生产中的很多过程和单元操作,多需要进行加热和冷却,例如:化学反应通常要在一定的温度进行,为

《管壳式换热器机械设计》参考资料

1前言 (1) 概述 (1) 换热器的类型 (1) 换热器 (1) 设计的目的与意义 (2) 管壳式换热器的发展史 (2) 管壳式换热器的国内外概况 (3) 壳层强化传热 (3) 管层强化传热 (3) 提高管壳式换热器传热能力的措施 (4) 设计思路、方法 (5) 换热器管形的设计 (5) 1.8.2换热器管径的设计 (5) 1.8.3换热管排列方式的设计 (5) 1.8.4 管、壳程分程设计 (5) 1.8.5折流板的结构设计 (5) 1.8.6管、壳程进、出口的设计 (6) 选材方法 (6) 1.9.1 管壳式换热器的选型 (6)

流径的选择 (8) 1.9.3流速的选择 (9) 1.9.4材质的选择 (9) 1.9.5 管程结构 (9) 2壳体直径的确定与壳体壁厚的计算 (11) 管径 (11) 管子数n (11) 管子排列方式,管间距的确定 (11) 换热器壳体直径的确定 (11) 换热器壳体壁厚计算及校核 (11) 3换热器封头的选择及校核 (14) 4容器法兰的选择 (15) 5管板 (16) 管板结构尺寸 (16) 管板与壳体的连接 (16) 管板厚度 (16) 6管子拉脱力的计算 (18) 7计算是否安装膨胀节 (20) 8折流板设计 (22)

9开孔补强 (25) 10支座 (27) 群座的设计 (27) 基础环设计 (29) 地角圈的设计 (30) 符号说明 (32) 参考文献 (34) 小结 (35)

2 壳体直径的确定与壳体壁厚的计算 管径 换热器中最常用的管径有φ19mm ×2mm 和φ25mm ×。小直径的管子可以承受更大 的压力,而且管壁较薄;同时,对于相同的壳径,可排列较多的管子,因此单位体积的传热面积更大,单位传热面积的金属耗量更少。所以,在管程结垢不很严重以及允许压力降较高的情况下,采用φ19mm ×2mm 直径的管子更为合理。如果管程走的是易结垢的流体,则应常用较大直径的管子。 标准管子的长度常用的有1500mm ,2000mm ,2500mm , 3000m,4500,5000,6000m,7500mm,9000m 等。换热器的换热管长度与公称直径之比一般为4 —25,常用的为6—10 选用Φ25×的无缝钢管,材质为20号钢,管长。 管子数n L F n d 均π= (2-1) ()根均5035 .40225.014.3160 F L =??= = ∴ n d n π 其中安排拉杆需减少6根,故实际管数n=503-6=497根 管子排列方式,管间距的确定 采用正三角形排列,由《化工设备机械基础》表7-4查得层数为12层,对角线上 的管数为25,查表7-5取管间距a=32mm. 换热器壳体直径的确定 l b a D i 2)1(+-= (2-2) 其中壁边缘的距离为最外层管子中心到壳 l 取d l 2=,()m m 8682522)125(32=??+-?=i D ,

管壳式换热器设计 课程设计

河南理工大学课程设计管壳式换热器设计 学院:机械与动力工程学院 专业:热能与动力工程专业 班级:11-02班 学号: 姓名: 指导老师: 小组成员:

目录 第一章设计任务书 (2) 第二章管壳式换热器简介 (3) 第三章设计方法及设计步骤 (5) 第四章工艺计算 (6) 4.1 物性参数的确定 (6) 4.2核算换热器传热面积 (7) 4.2.1传热量及平均温差 (7) 4.2.2估算传热面积 (9) 第五章管壳式换热器结构计算 (11) 5.1换热管计算及排布方式 (11) 5.2壳体内径的估算 (13) 5.3进出口连接管直径的计算 (14) 5.4折流板 (14) 第六章换热系数的计算 (20) 6.1管程换热系数 (20) 6.2 壳程换热系数 (20) 第七章需用传热面积 (23) 第八章流动阻力计算 (25) 8.1 管程阻力计算 (25) 8.2 壳程阻力计算 (26) 总结 (28)

第一章设计任务书 煤油冷却的管壳式换热器设计:设计用冷却水将煤油由140℃冷却冷却到40℃的管壳式换热器,其处理能力为10t/h,且允许压强降不大于100kPa。 设计任务及操作条件 1、设备形式:管壳式换热器 2、操作条件 (1)煤油:入口温度140℃,出口温度40℃ (2)冷却水介质:入口温度26℃,出口温度40℃

第二章管壳式换热器简介 管壳式换热器是在石油化工行业中应用最广泛的换热器。纵然各种板式换热器的竞争力不断上升,管壳式换热器依然在换热器市场中占主导地位。目前各国为提高这类换热器性能进行的研究主要是强化传热,提高对苛刻的工艺条件和各类腐蚀介质适应性材料的开发以及向着高温、高压、大型化方向发展所作的结构改进。 强化传热的主要途径有提高传热系数、扩大传热面积和增大传热温差等方式,其中提高传热系数是强化传热的重点,主要是通过强化管程传热和壳程传热两个方面得以实现。目前,管壳式换热器强化传热方法主要有:采用改变传热元件本身的表面形状及表面处理方法,以获得粗糙的表面和扩展表面;用添加内物的方法以增加流体本身的绕流;将传热管表面制成多孔状,使气泡核心的数量大幅度增加,从而提高总传热系数并增加其抗污垢能力;改变管束支撑形式以获得良好的流动分布,充分利用传热面积。 管壳式热交换器(又称列管式热交换器)是在一个圆筒形壳体内设置许多平行管子(称这些平行的管子为管束),让两种流体分别从管内空间(或称管程)和管外空间(或称壳程)流过进行热量交换。 在传热面比较大的管壳式热交换器中,管子根数很多,从而壳体直径比较大,以致它的壳程流通截面大。这是如果流体的容积流量比较小,使得流速很低,因而换热系数不高。为了提高流体的流速,可在管外空间装设与管束平行的纵向隔板或与管束垂直的折流板,使管外流体在壳体内曲折流动多次。因装置纵向隔板而使流体来回流动的次数,称为程数,所以装了纵向隔板,就使热交换器的管外空间成为多程。而当装设折流板时,则不论流体往复交错流动多少次,其管外空间仍以单程对待。 管壳式热交换器的主要优点是结构简单,造价较低,选材范围广,处理能力大,还能适应高温高压的要求。虽然它面临着各种新型热交换器的挑战,但由于它的高度可靠性和广泛的适应性,至今仍然居于优势地位。 由于管内外流体的温度不同,因之换热器的壳体与管束的温度也不同。如果两流体温度相差较大,换热器内将产生很大的热应力,导致管子弯曲、断裂或从管板上拉脱。因此,当管束与壳体温度差超过50℃时,需采取适当补偿措施,

molex端子压接,压着技术规范

介绍 首先,了解端子具有三个主要部分:插接区、过渡区和压接区(图A),这有助于我们理解。顾名思义,插接区是端子与另一半连接端子插接的部分。该部分由连接器设计师设计为与对接端子接合,并以一定的方式工作。如果压接过程中接合部变形,将会降低连接器的性能。 过渡区同样设计为在压接过程中不受影响。如果您改变了弹性片或端子止口的位置,同样将影响连接器的性能。 压接区是唯一设计受到压接工艺影响的部分。使用连接器制造商推荐的端接设备,夹紧压接区,从而牢固地与线缆连接。理想情况下,您将端子压接在线缆上的所有工作仅发生在压接区。 正确执行的压接示例参见图B。绝缘压接区压缩绝缘层,但不会刺穿。线芯(或线刷)伸出于导体压接区前部的距离至少等于线缆导体的直径。例如,18 AWG线缆应伸出至少.040"。在绝缘和导体压接区之间的部分可以看见绝缘层和导体。导体压接区在引入端和尾端呈喇叭形,而过渡区和接合区在压接工艺前后始终保持不变。 如果您的压接端子看起来和图B中的端子不同,可能是因为在压接工艺中出现了错误。这里是压接工艺中可能出现的13个最常见的问题,以及如何避免它们。

1. 压接高度过小 0.002"。在如此严格的规范下,检验压接机是否设置正确对于获得良好压接是非常重要的。 过小(图I)或过大(图II)的压接高度无法提供规定的压接强度(对线缆端子的保持力),会减 小线缆拉拔力和额定电流,一般情况下还会引起压接头在非正常的工作条件下性能降低。过小的 压接高度还会压断线芯或者折断导体压接区的金属。 2. 压接高度过大 有足够的金属间接触。 问题#1 & #2的解决方法很简单:调节压接机上的导体压接高度。在首次使用压接机进行工作时,使用图B, 中所示的游标卡尺或千分尺检验压接高度在规定范围内,并且在工作过程中应按照要 的频度重新检查,以保持正确的压接高度。

(完整版)管壳式换热器简介及其分类

管壳式换热器简介及分类 概述 换热器是在具有不同温度的两种或两种以上流体之间传递热量的设备。在工业生产中,换热器的主要作用是使热量从温度较高的流体传递给温度较低的流体,使流体温度达到工艺流程规定的指标,以满足过程工艺条件的需要。换热器是化工、炼油、动力、食品、轻工、原子能、制药、航空以及其他许多工艺部门广泛使用的一种通用设备。在华工厂中,换热器的投资约占总投资的10%-20%;在炼油厂中该项投资约占总投资的35%-40%。 目前,在换热器中,应用最多的是管壳式换热器,他是工业过程热量传递中应用最为广泛的一种换热器。虽然管壳式换热器在结构紧凑型、传热强度和单位传热面的金属消耗量无法与板式或者是板翅式等紧凑换热器相比,但管壳式换热器适用的操作温度与压力范围较大,制造成本低,清洗方便,处理量大,工作可靠,长期以来人们已在其设计和加工方面积累了许多经验,建立了一整套程序,人么可以容易的查找到其他可靠设计及制造标准,而且方便的使用众多材料制造,设计成各种尺寸及形式,管壳式换热器往往成为人们的首选。 近年来,由于工艺要求、能源危机和环境保护等诸多因素,传热强化技术和换热器的现代研究、设计方法获得了飞速发展,设计人员已经开发出了多种新型换热器,以满足各行各业的需求。如为了适应加氢装置的高温高压工艺条件,螺纹锁紧环换热器、Ω密封环换热器、金属垫圈式换热器技术获得了快速发展,并在乙烯裂解、合成氨、聚合和天然气工业中大量应用,可达到承压35Mpa、承温700℃的工艺要求;为了回收石化、原子能、航天、化肥等领域使用燃气、合成气、烟气等所产生的大量余热,产生了各种结构和用途的废热锅炉,为了解决换热器日益大型化所带来的换热器尺度增大,震动破坏等问题,纵流壳程换热器得到飞速的发展和应用;纵流壳程换热器不仅提高了传热效果,也有效的克服了由于管束震动引起的换热器破坏现象。另外,各种新结构的换热器、高效重沸器、高效冷凝器、双壳程换热器等也大量涌现。 管壳式换热器按照不同形式的分类 工业换热器通常按以下诸方面来分类:结构、传热过程、传热面的紧凑程度、所用材料、

端子铆压标准规范

端子铆压内部控制标准规范 【目的】: 为确保本公司于生产过程中,端子压着能符合品质需求而制订此规范. 【范围】: 此规范适用于本公司各类端子压着检验. 【职责】: 1.1 制造部:依此规范进行生产. 1.2 质量部:负责依此规范进行检验. 1.3 工艺课:依此标准要求,适时的调节 【标准】:参阅国标QCT:29106; 大众标准VW207;IPC167等标准 【日期】:本标准从2016.9.1起执行 本标准分为6个部分,适合公司内部使用 第一部分:端子的定义 第二部分:端子的种类 第三部分:端子的铆压标准 第四部分:端子的测量和判定标准 第五部分:铆接设备的要求和确认 第一部分:端子的定义

1.如下图,端子各部位的名称进行统一定义,以便于制程管理 第二部分:端子的种类 社内主要护套、端子组件采购品牌类型厂商执行标准 YAZAKI-7282**** YAZAKI-7283**** YAZAKI-7158**** 矢崎JIS YAZAKI-7116**** YAZAKI-7114**** YAZAKI-7157**** 8240**** 住友JIS 6098**** 98014-0200(MOLEX) 雷莫UL

Tyco 9643**** Tyco 1123**** 泰科UL Tyco 1379**** Tyco 60851*** AMP 1355328 AMP 9675*** 安普UL AMP 8289*** 620262(组件) KET TUV 12066681(组件) 德尔福TUV DJ615*** 鹤壁陈氏QC-T 417.5 DJ703*** DJ611*** 正耀QC-T 417.5 DJ702*** 第三部分:端子的铆压标准 【内容】: 1.端子正确铆压标准:端子的外模压着绝缘外被铆压部分须在端子内模与外模间距的1/2或 2/3的位置即可。 1.1.1.端子的内模压着导体后外露部分须超过0.2~2mm。 正确铆压如附图一: 0.2~2mm 1.2.端子不良铆压标准: 1.2.1.绝缘外被压着过长(即绝缘外被过于靠近导体压着部分或将绝缘外被直接压着于导 体压着部份),此种现象将造成铜丝易断落,如附图二:

管壳式换热器设计说明书

1.设计题目及设计参数 (1) 1.1设计题目:满液式蒸发器 (1) 1.2设计参数: (1) 2设计计算 (1) 2.1热力计算 (1) 2.1.1制冷剂的流量 (1) 2.1.2冷媒水流量 (1) 2.2传热计算 (2) 2.2.1选管 (2) 2.2.2污垢热阻确定 (2) 2.2.3管内换热系数的计算 (2) 2.2.4管外换热系数的计算 (3) 2.2.5传热系数 K计算 (3) 2.2.6传热面积和管长确定 (4) 2.3流动阻力计算 (4) 3.结构计算 (5) 3.1换热管布置设计 (5) 3.2壳体设计计算 (5) 3.3校验换热管管与管板结构合理性 (5) 3.4零部件结构尺寸设计 (6) 3.4.1管板尺寸设计 (6) 3.4.2端盖 (6) 3.4.3分程隔板 (7) 3.4.4支座 (7) 3.4.5支撑板与拉杆 (7) 3.4.6垫片的选取 (7) 3.4.7螺栓 (8) 3.4.8连接管 (9) 4.换热器总体结构讨论分析 (10) 5.设计心得体会 (10) 6.参考文献 (10)

1.设计题目及设计参数 1.1设计题目:105KW 满液式蒸发器 1.2设计参数: 蒸发器的换热量Q 0=105KW ; 给定制冷剂:R22; 蒸发温度:t 0=2℃,t k =40℃, 冷却水的进出口温度: 进口1t '=12℃; 出口1 t " =7℃。 2设计计算 2.1热力计算 2.1.1制冷剂的流量 根据资料【1】,制冷剂的lgp-h 图:P 0=0.4MPa ,h 1=405KJ/Kg ,h 2=433KJ/Kg , P K =1.5MPa ,h 3=h 4=250KJ/Kg ,kg m 04427.0v 3 1=,kg m v 3 400078.0= 图2-1 R22的lgP-h 图 制冷剂流量s kg s kg h h Q q m 667 .0250 4051054 10=-= -= 2.1.2冷媒水流量 水的定性温度t s =(12+7)/2℃=9.5℃,根据资料【2】附录9,ρ=999.71kg/m 3 ,c p =4.192KJ/(Kg ·K)

化工原理课程设计换热器设计

化工原理 课 程 设 计 设计任务:换热器 班级:13级化学工程与工艺(3)班 姓名:魏苗苗 学号:1320103090 目录 化工原理课程设计任务书 (2) 设计概述 (3) 试算并初选换热器规格 (6) 1. 流体流动途径的确定 (6)

2. 物性参数及其选型 (6) 3. 计算热负荷及冷却水流量 (7) 4. 计算两流体的平均温度差 (7) 5. 初选换热器的规格 (7) 工艺计算 (10) 1. 核算总传热系数 (10) 2. 核算压强降 (13) 设计结果一览表 (16) 经验公式 (16) 设备及工艺流程图 (17) 设计评述 (17)

参考文献 (18) 化工原理课程设计任务书 一、设计题目: 设计一台换热器 二、操作条件:1、苯:入口温度80℃,出口温度40℃。 2、冷却介质:循环水,入口温度32.5℃。 3、允许压强降:不大于50kPa。 4、每年按300天计,每天24小时连续运行。 三、设备型式:管壳式换热器 四、处理能力:109000吨/年苯 五、设计要求: 1、选定管壳式换热器的种类和工艺流程。 2、管壳式换热器的工艺计算和主要的工艺尺寸的设计。 3、设计结果概要或设计结果一览表。

4、设备简图。(要求按比例画出主要结构及尺寸) 5、对本设计的评述及有关问题的讨论。 六、附表: 1.设计概述 1.1热量传递的概念与意义 1.1.1热量传递的概念 热量传Array递是指由于 温度差引起 的能量转移, 简称传热。由 热力学第二 定律可知,在 自然界中凡 是有温差存 在时,热就必 然从高温处 传递到低温 处,因此传热

管壳式换热器机械设计参考资料

1前言 (1) 1.1概述 (1) 1.1.1换热器的类型 (1) 1.1.2换热器 (1) 1.2设计的目的与意义 (2) 1.3管壳式换热器的发展史 (2) 1.4管壳式换热器的国内外概况 (3) 1.5壳层强化传热 (3) 1.6管层强化传热 (3) 1.7提高管壳式换热器传热能力的措施 (4) 1.8设计思路、方法 (5) 1.8.1换热器管形的设计 (5) 1.8.2换热器管径的设计 (5) 1.8.3换热管排列方式的设计 (5) 1.8.4 管、壳程分程设计 (5) 1.8.5折流板的结构设计 (5) 1.8.6管、壳程进、出口的设计 (6) 1.9 选材方法 (6) 1.9.1 管壳式换热器的选型 (6)

1.9.2 流径的选择 (8) 1.9.3流速的选择 (9) 1.9.4材质的选择 (9) 1.9.5 管程结构 (9) 2壳体直径的确定与壳体壁厚的计算 (11) 2.1 管径 (11) 2.2管子数n (11) 2.3 管子排列方式,管间距的确定 (11) 2.4换热器壳体直径的确定 (11) 2.5换热器壳体壁厚计算及校核 (11) 3换热器封头的选择及校核 (14) 4容器法兰的选择 (15) 5管板 (16) 5.1管板结构尺寸 (16) 5.2管板与壳体的连接 (16) 5.3管板厚度 (16) 6管子拉脱力的计算 (18) 7计算是否安装膨胀节 (20) 8折流板设计 (22)

9开孔补强 (25) 10支座 (27) 10.1群座的设计 (27) 10.2基础环设计 (29) 10.3地角圈的设计 (30) 符号说明 (32) 参考文献 (34) 小结 (35)

管壳式换热器设计讲解

目录 任务书 (2) 摘要 (4) 说明书正文 (5) 一、设计题目及原始数据 (5) 1.原始数据 (5) 2.设计题目 (5) 二、结构计算 (5) 三、传热计算 (7) 四、阻力计算 (8) 五、强度计算 (9) 1.冷却水水管 (9) 2.制冷剂进出口管径 (9) 3.管板 (10) 4支座 (10) 5.密封垫片 (10) 6.螺钉 (10) 6.1螺钉载荷 (10) 6.2螺钉面积 (10) 6.3螺钉的设计载荷 (10) 7.端盖 (11) 六、实习心得 (11) 七、参考文献 (12) 八、附图

广东工业大学课程设计任务书 题目名称 35KW 壳管冷凝器 学生学院 材料与能源学院 专业班级 热能与动力工程制冷xx 班 姓 名 xx 学 号 xxxx 一、课程设计的内容 设计一台如题目名称所示的换热器。给定原始参数: 1. 换热器的换热量Q= 35 kw; 2. 给定制冷剂 R22 ; 3. 制冷剂温度 t k =40℃ 4. 冷却水的进出口温度 '0132t C =" 0136t C = 二、课程设计的要求与数据 1)学生独立完成设计。 2)换热器设计要结构合理,设计计算正确。(换热器的传热计算, 换热面积计 算, 换热器的结构布置, 流体流动阻力的计算)。 3)图纸要求:图面整洁、布局合理,线条粗细分明,符号国家标准,尺寸标注规范,使用计算机绘图。 4)说明书要求: 文字要求:文字通顺,语言流畅,书写工整,层次分明,用计算机打印。 格式要求: (1)课程设计封面;(2)任务书;(3)摘要;(4)目录;(5)正文,包括设计的主要参数、热力计算、传热计算、换热器结构尺寸计算布置及阻力计算等设计过程;对所设计的换热器总体结构的讨论分析;正文数据和公式要有文献来源编号、心得体会等;(6)参考文献。 三、课程设计应完成的工作 1)按照设计计算结果,编写详细设计说明书1份; 2)绘制换热器的装配图1张,拆画关键部件零件图1~2张。

《管壳式换热器机械设计》参考

1.1概述 (1) (1) (1) 1.2设计的目的与意义 (2) 1.3管壳式换热器的发展史 (2) 1.4管壳式换热器的国内外概况 (3) 1.5壳层强化传热 (3) 1.6管层强化传热 (3) 1.7提高管壳式换热器传热能力的措施 (4) 1.8设计思路、方法 (5) (5) 1.8.2换热器管径的设计 (5) 1.8.3换热管排列方式的设计 (5) 1.8.4 管、壳程分程设计 (5) 1.8.5折流板的结构设计 (5) 1.8.6管、壳程进、出口的设计 (6) 1.9 选材方法 (6) 1.9.1 管壳式换热器的选型 (6)

1.9.2 流径的选择 (8) 1.9.3流速的选择 (9) 1.9.4材质的选择 (9) 1.9.5 管程结构 (9) 2壳体直径的确定与壳体壁厚的计算 (11) 2.1 管径 (11) 2.2管子数n (11) 2.3 管子排列方式,管间距的确定 (11) 2.4换热器壳体直径的确定 (11) 2.5换热器壳体壁厚计算及校核 (11) 3换热器封头的选择及校核 (14) 4容器法兰的选择 (15) 5管板 (16) 5.1管板结构尺寸 (16) 5.2管板与壳体的连接 (16) 5.3管板厚度 (16) 6管子拉脱力的计算 (18) 7计算是否安装膨胀节 (20) 8折流板设计 (22)

9开孔补强 (25) 10支座 (27) 10.1群座的设计 (27) 10.2基础环设计 (29) 10.3地角圈的设计 (30) 符号说明 (32) 参考文献 (34) 小结 (35)

2 壳体直径的确定与壳体壁厚的计算 2.1 管径 换热器中最常用的管径有φ19mm ×2mm 和φ25mm ×2.5mm 。小直径的管子可以承受更大 的压力,而且管壁较薄;同时,对于相同的壳径,可排列较多的管子,因此单位体积的传热面积更大,单位传热面积的金属耗量更少。所以,在管程结垢不很严重以及允许压力降较高的情况下,采用φ19mm ×2mm 直径的管子更为合理。如果管程走的是易结垢的流体,则应常用较大直径的管子。 标准管子的长度常用的有1500mm ,2000mm ,2500mm , 3000m,4500,5000,6000m,7500mm,9000m 等。换热器的换热管长度与公称直径之比一般为4 —25,常用的为6—10 选用Φ25×2.5的无缝钢管,材质为20号钢,管长4.5m 。 2.2 管子数n L F n d 均π=Θ (2-1) 其中安排拉杆需减少6根,故实际管数n=503-6=497根 2.3 管子排列方式,管间距的确定 采用正三角形排列,由《化工设备机械基础》表7-4查得层数为12层,对角线上的管 数为25,查表7-5取管间距a=32mm. 2.4换热器壳体直径的确定 l b a D i 2)1(+-= (2-2) 其中壁边缘的距离为最外层管子中心到壳l 取d l 2=,()m m 8682522)125(32=??+-?=i D , 查表2-5,圆整后取壳体内径9=i D 00mm 2.5 换热器壳体壁厚计算及校核

管壳式换热器的设计(化工机械课程设计)

北京理工大学珠海学院 课程设计任务书 2011~2012学年第2 学期 学生姓名:专业班级: 指导教师:工作部门: 一、课程设计题目 管壳式换热器的设计 二、课程设计内容 1.管壳式换热器的结构设计 包括:管子数n,管子排列方式,管间距的确定,壳体尺寸计算,换热器封头选择,容器 法兰的选择,管板尺寸确定塔盘结构,人孔数量及位置,仪表接管选择、工艺接管管径计算等等。 2. 壳体及封头壁厚计算及其强度、稳定性校核 (1)根据设计压力初定壁厚; (2)确定管板结构、尺寸及拉脱力、温差应力; (3)计算是否安装膨胀节; (4)确定壳体的壁厚、封头的选择及壁厚,并进行强度和稳定性校核。 3. 筒体和支座水压试验应力校核 4. 支座结构设计及强度校核 包括:裙座体(采用裙座)、基础环、地脚螺栓 5. 换热器各主要组成部分选材,参数确定。 6. 编写设计说明书一份 7. 绘制2号装配图一张,Auto CAD绘3号图一张(塔设备的)。 三、设计条件 (1)气体工作压力 管程:半水煤气(1、0.80MPa;2、0.82 MPa;3、0.85Mpa;4、0.88 MPa ;5、0.90 MPa)壳程:变换气(1、0.75MPa;2、0.78 MPa;3、0.80Mpa;4、0.84 MPa ;5、0.85 MPa)(2)壳、管壁温差50℃,t t>t s 壳程介质温度为320-450℃,管程介质温度为280-420℃。 (3)由工艺计算求得换热面积为120m2,每组增加10 m2。

(4)壳体与封头材料在低合金高强度刚中间选用,并查出其参数,接管及其他数据根据表7-15、7-16选用。 (5)壳体与支座对接焊接,塔体焊接接头系数Φ=0.9 (6)图纸:参考图7-52,注意:尺寸需根据自己的设计的尺寸标注。 四、进度安排 制图地点:暂定CC405 五、基本要求 1.学生要按照任务书要求,独立完成塔设备的机械设计; 2.设计说明书一律采用电子版,2号图纸一律采用徒手绘制; 3.各班长负责组织借用绘图仪器、图板、丁字尺;学生自备图纸、橡皮与铅笔; 4.画图结束后,将图纸按照统一要求折叠,同设计说明书统一在答辩那一天早上8:30前,由班长负责统一交到HF508。 5.根据设计说明书、图纸、平时表现及答辩综合评分。

管壳式换热器的设计(课程设计)

xxxxxxxxx 大学 课程设计说明书 设计题目:管壳式换热器的设计 学院、系:化学工程与工艺学院(精细化工专业)专业班级:精细2012班 学生:xxxxxxxxxxxx 指导教师:xxxxxxxxxxxxx 成绩:________________________ 2015年07 月08

目录 2015年07 月08 (1) 目录 (2) 一、课程设计题目 (5) 二、课程设计容 (5) 1.管壳式换热器的结构设计 (5) 2. 壳体及封头壁厚计算及其强度、稳定性校核 (5) 3. 筒体水压试验应力校核 (5) 4. 鞍座的选择 (6) 5. 换热器各主要组成部分选材,参数确定。 (6) 6. 编写设计说明书一份 (6) 7. 绘制1号装配图一。 (6) 三、设计条件 (6) (1)气体工作压力 (6) (2)壳、管壁温差50℃,t t >t s (6) (3)由工艺计算求得换热面积为105m2。 (6) (4)壳体与封头材料在低合金高强度钢中间选用,并查出其参数,接管及其他数据根据表7-15、7-16选用。 (6) (5)壳体与支座双面对接焊接,壳体焊接接头系数Φ=0.85 (6) (6)图纸:参考图7-52,注意:尺寸需根据自己的设计的尺寸标注。 (6) 四、基本要求 (7) 五、说明书的容 (7) 1.符号说明 (7) 2.前言 (7) 3.材料选择 (7) 4.绘制结构草图 (7) 5.壳体、封头壁厚设计 (8) 6.标准化零、部件选择及补强计算: (8) 7.结束语:对自己所做的设计进行小结与评价,经验与收获。 (8) 8.主要参考资料。 (8)

YH端子压接规范-Rev03

YH Crimping Specification 页数:第1页共18页 编写:王静 校对: 审核: 批准: 版本修定记录 日期 版本号 章节号 更改内容 修订者 10.4.13 02 2.4 端子弯曲变形判断图示更新 王静 2.1 增加旗型端子的判定总则 刘少华 3.2.1 3.2.2 增加旗型端子压接截面分析判定依据 刘少华 5.1 增加旗型端子压接高度的测量方法 刘少华 11. 6.14 03 6 增加刺破式护套压接的标准及测量方法 刘少华 11.11.25 03 6.1.1 6.1.2 修改刺破式护套压接的标准 刘少华

YH Crimping Specification 页数:第2页共18页 前言: 本规范是对上海逸航汽车零部件有限公司线束加工生产中压接工艺的要求和规范。 随着本公司汽车线束产品、规模的不断扩大,客户对线束产品性能要求的不断提高,压接作为线束产品生产加工中的主要及重要工位——压接质量的要求也不断提高。本标准参考、引用TYCO、YAZAKI、MOLEX,JST等压接标准以及各大线束公司压接要求,结合公司实际情况而制定。 总则: 此规范适用于YH的线束压接工艺。 图纸上有特殊压接要求的按图纸执行,没有定义的则按此规范执行。

YH Crimping Specification 页数:第3页共18页目录 1. 定义 1.1 端子压接定义 1.2 相关术语和名词 2. 压接要求 2.1 芯线(导体)和塑线(绝缘体)压接接合处外观要求 2.2 喇叭口压接要求 2.3 余料切断要求 2.4 端子压接容易发生的变形及判断标准 2.5 有密封塞的端子压接要求 3. 压接截面要求 3.1 目的 3.2 压接截面分析判定 4. 压接参数要求 4.1 压接高度和宽度 4.2 压接后机械强度(拉拔力)参数 5. 相关测量及测试方法的说明 5.1 压接高度的测量方法 5.2 拉拔力的测试方法 5.3 摇摆测试 6. 关于刺破式连接器压接参数的要求及测量方法 6.1 压接参数的要求 6.2 测量方法

化工原理课程设计换热器的设计

中南大学《化工原理》课程设计说明书 题目:煤油冷却器的设计 学院:化学化工学院 班级:化工0802 学号: 1505080802 姓名: ****** 指导教师:邱运仁 时间:2010年9月

目录 §一.任务书 (2) 1.1.题目 1.2.任务及操作条件 1.3.列管式换热器的选择与核算 §二.概述 (3) 2.1.换热器概述 2.2.固定管板式换热器 2.3.设计背景及设计要求 §三.热量设计 (5) 3.1.初选换热器的类型 3.2.管程安排(流动空间的选择)及流速确定 3.3.确定物性数据 3.4.计算总传热系数 3.5.计算传热面积 §四. 机械结构设计 (9) 4.1.管径和管内流速 4.2.管程数和传热管数 4.3.平均传热温差校正及壳程数 4.4.壳程内径及换热管选型汇总 4.4.折流板 4.6.接管 4.7.壁厚的确定、封头 4.8.管板 4.9.换热管 4.10.分程隔板 4.11拉杆 4.12.换热管与管板的连接 4.13.防冲板或导流筒的选择、鞍式支座的示意图(BI型) 4.14.膨胀节的设定讨论 §五.换热器核算 (21) 5.1.热量核算 5.2.压力降核算 §六.管束振动 (25) 6.1.换热器的振动 6.2.流体诱发换热器管束振动机理 6.3.换热器管束振动的计算 6.4.振动的防止与有效利用 §七. 设计结果表汇 (28) §八.参考文献 (29) §附:化工原理课程设计之心得体会 (30)

§一.化工原理课程设计任务书 1.1.题目 煤油冷却器的设计 1.2.任务及操作条件 1.2.1处理能力:40t/h 煤油 1.2.2.设备形式:列管式换热器 1.2.3.操作条件 (1).煤油:入口温度160℃,出口温度60℃ (2).冷却介质:循环水,入口温度17℃,出口温度30℃ (3).允许压强降:管程不大于0.1MPa,壳程不大于40KPa (4).煤油定性温度下的物性数据ρ=825kg/m3,黏度7.15×10-4Pa.s,比热容2.2kJ/(kg.℃),导热系数0.14W/(m.℃) 1.3.列管式换热器的选择与核算 1.3.1.传热计算 1.3. 2.管、壳程流体阻力计算 1.3.3.管板厚度计算 1.3.4.膨胀节计算 1.3.5.管束振动 1.3.6.管壳式换热器零部件结构 §二.概述 2.1.换热器概述 换热器是化工、炼油工业中普遍应用的典型的工艺设备。在化工厂,换热器的费用约占总费用的10%~20%,在炼油厂约占总费用35%~40%。换热器在其他部门如动力、原子能、冶金、食品、交通、环保、家电等也有着广泛的应用。因此,设计和选择得到使用、高效的换热器对降低设备的造价和操作费用具有十分重要的作用。 在不同温度的流体间传递热能的装置称为热交换器,即简称换热器,是将热流体的部分热量传递给冷流体的设备。 换热器的类型按传热方式的不同可分为:混合式、蓄热式和间壁式。其中间壁式换热器应用最广泛,如表2-1所示。 表2-1 传热器的结构分类

相关主题
文本预览
相关文档 最新文档