当前位置:文档之家› 二元二次方程组知识讲解

二元二次方程组知识讲解

二元二次方程组知识讲解
二元二次方程组知识讲解

二元二次方程組知識講解

【學習目標】

1、知道二元二次方程の概念和二元二次方程組の概念,能夠判定給定の方程和方程組是否是二元二次方

程或二元二次方程組;

2、瞭解二元二次方程(組)の解の概念,能判別給定の數值是否是方程(組)の解;

3、掌握由“代入法”解由一個二元一次方程和二元二次方程組成の方程組;

4、掌握用“因式分解法”解由兩個二元二次方程組成の方程組;

5、會熟練の列出方程組解應用題.並能根據具體問題の實際意義,檢查結果是否合理.

6、通過將實際生活中の問題抽象為方程模型の過程,讓學生形成良好思維習慣,學會從數學角度提出問

題、理解問題.運用所學知識解決問題,發展應用意識,體會數學の情感與價值.

【知識網路】

【要點梳理】

要點一、二元二次方程

1. 定義:僅含有兩個未知數,並且含有未知數の項の最高次數是2の整式方程,叫做二元二次方程. 要點詮釋:

22ax bxy cy dx ey f o +++++=(a 、b 、c 、d 、e 、f 都是常數,且a 、b 、c 中至少有一個不為零),其中22,,ax bxy cy 叫做這個方程の二次項,a 、b 、c 分別叫做二次項係數,,dx ey 叫做這個方程の一次項,d 、e 分別叫做一次項係數,f 叫做這個方程の常數項.

2.二元二次方程の解

能使二元二次方程左右兩邊の值相等の一對未知數の值,叫做二元二次方程の解.

要點詮釋:

二元二次方程有無數個解;二元二次方程の實數解の個數有多種情況.

要點二、二元二次方程組

1.概念:僅含有兩個未知數,各方程都是整式方程,並且含有未知數の項の最高次數為2,這樣の方程組叫做二元二次方程組.

要點詮釋:

不能認為由兩個二元二次方程組成の方程組才叫二元二次方程組,由一個二元一次方程和一個二元二次方程組成の方程組,也是二元二次方程組.

2. 二元二次方程組の解:

方程組中所含各方程の公共解叫做這個方程組の解.

要點三、二元二次方程組の解法

1. 代入消元法

代入消元法解“二·一”型二元二次方程組の一般步驟:

①把二元一次方程中の一個未知數用另一個未知數の代數式表示;

②把這個代數式代入二元二次方程,得到一個一元二次方程;

③解這個一元二次方程,求得未知數の值;

④把所求得の未知數の值分別代入二元一次方程,求得另一個未知數の值;

⑤所得の一個未知數の值和相應の另一個未知數の值分別組在一起,就是原方程組の解;

⑥寫出原方程組の解.

要點詮釋:

(1)解一元二次方程、分式方程和無理方程の知識都可以運用於解“二·一”型方程組;

(2)“二·一”型方程組最多有兩個解,要防止漏解和增解の錯誤.

2、因式分解法

(1) 當方程組中只有一個可分解為兩個二元一次方程の方程時,可將分解得到の兩個二元一次方程分別與原方程組中の另一個二元二次方程組成兩個“二·一”型方程組,解得這兩個“二·一”型方程組,所得の解都是原方程組の解.

(2) 當方程組中兩個二元二次方程都可以分解為兩個二元一次方程時,將第一個二元二次方程分解

所得到の每一個二元一次方程與第二個二元二次方程分解所得の每一個二元一次方程組成新の方程組,可得到四個二元一次方程組,解這四個二元一次方程組,所得の解都是原方程組の解.

要點四、方程(組)の應用

應用二元二次方程組解應用題の一般步驟:

(1)審題;(2)設未知數(2個);(3)列二元二次方程組;(4)解方程組;(5)檢驗是否是方程の解以

及是否符合實際;(6)寫出答案.

要點詮釋:

一定要檢驗一下結果是否符合實際問題の要求.

【典型例題】

類型一、二元二次方程(組)判斷

1.下列方程中,哪些是二元二次方程?是二元二次方程の請指出它の二次項、一次項和常數項.

2222(1) 1 ; (2)320;

1(3)20 ; (4)3 1.x y y y y x x y xy

+=-+=+-=++= 【思路點撥】該題主要依據二元二次方程の定義。

【答案與解析】

(1)是,二次項2

x 、一次項y ,常數項-1.

(2)不是,因為只含一個未知數。

(3)不是,因為不是整式方程.

(4)不是,因為不含二次項.

【總結昇華】對於二元二次方程の定義要加深全面の理解.

舉一反三:

【變式】下列方程組中,哪些是二元二次方程組?

223231205(1) (2) (3) (4)1831235

y y x xy x x y xy y x y x xy x y ?==-+=+=???????+=-=-+-==???

【答案】根據二元二次方程組の定義可得(2)是.

類型二、二元二次方程組の解法 2. 解方程組: 224915 (1)23 5 (2)

x y x y ?-=?-=?

【解析】

解: 方程(1)可變形為 ()()232315 (3)x y x y -+=

把(2)代入(3)中,得 ()52315x y += 即233x y +=

於是,原方程組化為 233235

x y x y +=??-=?

解這個二元一次方程組,得213x y =???=-??

所以原方程組の解是 213x y =???=-??

. 【總結昇華】這道例題採用“整體代入”の方法,將二元二次方程組化為二元一次方程組,這是一種“降次”の策略,要通過比較讓學生認識到“整體代入”の簡便性,從而加強審題の意識.加深對合理運算重要性の理解.

舉一反三:

【變式】解方程組:221 (1)

13 (2)

y x x y =+??+=? 【解析】將(1)代入(2),得 ()22113x x ++=.

整理,得260x x +-=,

解得123, 2x x =-=.

把13x =-代入(1),得 12;y =-

把22x =代入(1),得2 3.y =

所以原方程組の解是 121232 2; 3.

x x y y =-=????=-=?? 3. 解方程組:

【思路點撥】當方程組中只有一個可分解為兩個二元一次方程の方程時,可將分解得到の兩個二元一次方程分別與原方程組中の另一個二元二次方程組成兩個“二·一”型方程組,解得這兩個“二·一”型方程組,所得の解都是原方程組の解.

【解析】(用因式分解法)

方程(1)可化為(x-2y)2+(x-2y)-2=0

即(x-2y+2)(x-2y-1)=0

∴x-2y+2=0 或x-2y-1=0

原方程組可化為:

分別解得:1194178x y ?=????=??

和2231x y =??=? 【總結昇華】二元二次方程組,一般可用代入法求解,當求出一個未知數の值代入求另一個未知數の值時,一定要代入到二元一次方程中去求,若針對二元二次方程の特點,採用特殊解法,則較為簡便.

舉一反三: 【變式】解方程組。

【解析】 將式(1)分解因式,得 (x+y)(3x-4y)-(3x-4y)=0

即 (3x-4y)(x+y-1)=0 ∴ 3x-4y=0,或x+y-1=0.

故只需解下麵兩組方程組:

(1); (2)。

(1)由3x-4y=0,得y=

x ,代入x 2+y 2=25, 得x 2+x 2=25, x 2=16, x=±4, 即x 1=4, x 2=-4,

將x 1和x 2代入y=x ,得y 1=3, y 2=-3.

(2)由x+y-1=0,得y=1-x ,代入x 2+y 2=25, 得x 2+(1-x)2=25,整理,得x 2-x-12=0,

即 (x-4)(x+3)=0,

∴ x 3=4, x 4=-3. 當x 3=4時, y 3=-3;當x 4=-3時,y 4=4.

故原方程組の解為:;;;。

【總結昇華】此方程組是由兩個二元二次方程組成の方程組,在(1)式の等號左邊分解因式後將二元二次方程轉化為二元一次方程。

類型三、方程組の應用

4. 某塊長方形田の面積是864平方米,長與寬の和是60米,則長與寬各是多少米?

【答案與解析】

解:設該塊田の長是x 米,寬是y 米.由題意得,

86460xy x y =??+=?

, 解得,113624x y =??=?,222436

x y =??=?

考慮到實際情況,長應該大於寬,所以3624

x y =??

=?符合實際. 答:長是36米,寬是24米. 5、已知方程組???+==+--201242kx y y x y

有兩組不相等の實數解,求k の取值範圍. 【答案與解析】 解:

由②代入①並整理得:01)42(22=+-+x k x k ,

∵方程組有兩組不相等の實數解,

∴?????>+-=--=?≠0

16164)42(0222k k k k , 即???<≠10k k ∴當k <1且k ≠0時,原方程組有兩個不相等の實數解.

【總結昇華】通過消元,轉化為我們熟悉の一元二次方程來解是解決此類問題の一般方法.

舉一反三:

【變式】m 為何值時,方程組???=+=+m

y x y x 2022有兩組相同の實數解,並求出這時方程組の解. 【答案】102±=m ;當102=m 時,?????==1010y x ;當102-=m 時,?????-=-=1010y x .

6. 小傑與小麗分別從相距27千米のA 、B 兩地同時出發相向而行,3小時後相遇.相遇後兩人按原來の速度繼續前進, 小傑到達B 地比小麗到達A 地早 1小時21分.求兩人の行進速度分別是多少?

【解析】設兩人の行進速度分別是x 千米/小時,y 千米/小時

列出方程組.??

???=-=+6021127272733x y y x . 解這個方程組,得54x y =??=?

,3645x y =-??=?(不合題意舍去) 經檢驗54

x y =??=?是原方程組の解。

答:兩人の行進速度分別是5千米/小時,4千米/小時.

【總結昇華】根據題意,與路程及時間相關の一些數量,分別存在著等量關係 : 小傑3小時の行進路程 + 小麗3小時の行進路程 =總路程

小麗走完全程時間 -小傑走完全程時間 =小傑比小麗早到の時間

(注:可编辑下载,若有不当之处,请指正,谢谢!)

二元二次方程组-解法-例题

二元二次方程的解法 二次方程组的基本思想和方法 方程组的基本思想是“转化”,这种转化包含“消元”和“降次”将二元转化为一元是消元,将二次转化为一次是降次,这是转化的基本方法。因法和技巧是解二元二次方程组的关键。 型是由一个二元二次方程和一个二元一次方程组成的方程组;“二·二”型是由两个二元二次方程组成的方程组。 程组的解法 元法(即代入法) 二·一”型方程组的一般方法,具体步骤是: 次方程中的一个未知数用另一个未知数的代数式表示; 数式代入二元二次方程,得到一个一元二次方程; 元二次方程,求得一个未知数的值; 的这个未知数的值代入二元一次方程,求得另一个未知数的值;如果代入二元二次方程求另一个未知数,就会出现“增解”的问题; 个未知数的值和相应的另一个未知数的值分别组在一起,就是原方程组的解。 与系数的关系 二元二次方程组中形如的方程组,可以根据一元二次方程根与系数的关系,把x、y看做一根,解这个方程,求得的z1和z2的值,就是x、y的值。当x1=z1时,y1=z2;当x2=z2时,y2=z1,所以原方程组的解是两组“对称解”。注意 二·一”型方程组的一种特殊方法,它适用于解“和积形式”的方程组。 比较常用的解法。除此之外,还有加减消元法、分解降次法、换元法等,解题时要注意分析方程的结构特征,灵活选用恰当的方法。 解一元二次方程、分式方程和无理方程的知识都可以运用于解“二·一”型方程组。(2)要防止漏解和增解的错误。

程组的解法 中只有一个可分解为两个二元一次方程的方程时,可将分解得到的两个二元一次方程分别与原方程组中的另一个二元二次方程组成两个“二型方程组,所得的解都是原方程组的解。 中两个二元二次方程都可以分解为两个二元一次方程时,将第一个二元二次方程分解所得到的每一个二元一次方程与第二个二元二次方程组成新的方程组,可得到四个二元一次方程组,解这四个二元一次方程组,所得的解都是原方程的解。 方程组最多有两个解,“二·二”型方程组最多有四个解,解方程组时,即不要漏解,也不要增解。 析:例1.解方程组 观察这个方程组,不难发现,此方程组除可用代入法解外,还可用根与系数的关系,通过构造一个以x, y为根的一元二次方程来求解。 1)得y=8-x..............(3) 把(3)代入(2),整理得x2-8x+12=0. 解得x1=2, x2=6. (3),得y1=6. 把x2=6代入(3),得y2=2. 所以原方程组的解是。

一元二次方程的解法详细解析

一元二次方程的解法详细解析 【一元二次方程要点综述】:【要点综述】:一元二次方程和一元一次方程都是整式方程,它是初中数学的一个重点内容,也是学生今后学习数学的基础。在没讲一元二次方程的解法之前,先说明一下它与一元一次方程区别。根据定义可知,只含有一个未知数,且未知数的最高次数是2的整式方程叫做一元二次方程,一般式为:。一元二次方程有三个特点:(1)只含有一个未知数;(2)未知数的最高次数是2;(3)是整式方程。因此判断一个方程是否为一元二次方程,要先看它是否为整式方程,若是,再对它进行整理,如能整理为的形式,那么这个方程就是一元二次方程。下面再讲一元二次方程的解法。解一元二次方程的基本思想方法是通过“降次”,将它化为两个一元一次方程。一元二次方程的基本解法有四种:1、直接开平方法;2、配方法;3、公式法;4、因式分解法。如下表:方法适合方程类型注意事项直接开平方法≥0时有解,<0时无解。配方法二次项系数若不为1,必须先把系数化为1,再进行配方。公式法≥0时,方程有解;<0时,方程无解。先化为一般形式再用公式。因式分解法方程的一边为0,另一边分解成两个一次因式的积。方程的一边必须是0,另一边可用任何方法分解因式。【举例解析】例1:已知,解关于的方程。分析:注意满足的的值将使原方程成为哪一类方程。解:由得:或,当时,原方程为,即,解得.当时,原方程为,即,解得,.说明:由本题可见,只有项系数不为0,且为最高次项时,方程才

是一元二次方程,才能使用一元二次方程的解法,题中对一元二次方程的描述是不完整的,应该说明最高次项系数不为0。通常用一般形式描述的一元二次方程更为简明,即形如的方程叫作关于的一元二次方程。若本题不给出条件,就必须在整理后对项的字母系数分情况进行讨论。例2:用开平方法解下面的一元二次方程。(1);(2)(3);(4)分析:直接开平方法就是用直接开平方求解一元二次方程的方法。用直接开平方法解形如的方程,其解为。通过观察不难发现第(1)、(2)两小题中的方程显然用直接开平方法好做;第(3)题因方程左边可变为完全平方式,右边的121>0,所以此方程也可用直接开平方法解;第(4)小题,方程左边可利用平方差公式,然后把常数移到右边,即可利用直接开平方法进行解答了。解:(1)∴(注意不要丢解)由得,由得,∴原方程的解为:,(2)由得,由得∴原方程的解为:,(3)∴∴∴,∴原方程的解为:,(4)∴,即∴,∴,∴原方程的解为:,说明:解一元二次方程时,通常先把方程化为一般式,但如果不要求化为一般式,像本题要求用开平方法直接求解,就不必化成一般式。用开平方法直接求解,应注意方程两边同时开方时,只需在一边取正负号,还应注意不要丢解。例3:用配方法解下列一元二次方程。(1);(2)分析:用配方法解方程,应先将常数移到方程右边,再将二次项系数化为1,变为的形式。第(1)题可变为,然后在方程两边同时加上一次项系数的一半的平方,即:,方程左边构成一个完全平方式,右边是一个不小于0的常数,即:,接下去即可利用直接开平方法解答了。第(2)题在配方时应特别注意在方程两边同时加上一次项系数的一半的平方。解:(1)二

一元二次方程及解法经典习题及解析

┃知识归纳┃ 1.一元二次方程的概念 只含有个未知数(一元),并且未知数的最高次数是的方程,叫做一元二次方程.[注意] 一元二次方程判定的条件是:(1)必须是整式方程;(2)二次项系数不为零;(3)未知数的最高次数是2,且只含有一个未知数. 2.一元二次方程的解法 一元二次方程有四种解法:法、法、法和法. [注意] 公式法其实质是配方法,只不过省去了配方的过程,但用公式时应注意:(1)将一元二次方程化为一般形式,即先确定a、b、c的值;(2)牢记使用公式的前提是b2-4ac≥0. 3.一元二次方程根的判别式Δ=b2-4ac (1)Δ>0?ax2+bx+c=0(a≠0)有的实数根; (2)Δ=0?ax2+bx+c=0(a≠0)有的实数根; (3)Δ<0?ax2+bx+c=0(a≠0) 实数根. 4.一元二次方程根与系数的关系 一元二次方程ax2+bx+c=0(a≠0)的两根为x1、x2,则两根与方程系数之间有如下关系:x1+x2=,x1·x2=. [注意] 它成立的条件:①二次项系数不能为0;②方程根的判别式大于或等于0. 四大解法 一、开平方法 方程的左边是完全平方式,右边是非负数;即形如x2=a(a≥0)

二、配方法 “配方法”的基本步骤:一化、二移、三配、四化、五解 1.化1:把二次项系数化为1; 2.移项:把常数项移到方程的右边; 3.配方:方程两边同加一次项系数一半的平方; 4.变形:化成 5.开平方,求解 三、公式法 1.必需是一般形式的一元二次方程: ax2+bx+c=0(a≠0). 2.b2-4ac≥0. 四、因式分解法 1.用因式分解法的条件是:方程左边能够分解,而右边等于零; 2.理论依据是:如果两个因式的积等于零,至少有一个因式等于零. 因式分解法解一元二次方程的一般步骤: 一移-----方程的右边=0; 二分-----方程的左边因式分解; 三化-----方程化为两个一元一次方程; 四解-----写出方程两个解; 解题技巧: 先考虑开平方法,

一元二次方程典型例题解析

龙文教育学科辅导学案 教师: 学生: 年级: 日期:2013. 星期: 时段: 学情分析 课 题 一元二次方程章节复习及典型例题解析 学习目标与 考点分析 学习目标:1、通过对典型例题、自身错题的整理,抓住本章的重点、突破学习的难点; 2、通过灵活运用解方程的方法,体会四种解法之间的联系与区别,进一步熟练根据方程特征找出最优解法; 3、通过实际问题的解决,进一步熟练运用方程解决实际问题,体会方程思想在解决 问题中的作用 考点分析:1一元二次方程的定义 、解法、及根与系数的关系 学习重点 理解并掌握一元二次方程的概念及解法 学习方法 讲练说相结合 学习内容与过程 一 回顾梳理旧的知识点(这些知识点必须牢牢掌握) 一元二次方程 1、一元二次方程:含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程。 2、一元二次方程的一般形式:)0(02≠=++a c bx ax ,它的特征是:等式左边十一个关于未知数x 的二次多项式,等式右边是零,其中2ax 叫做二次项,a 叫做二次项系数;bx 叫做一次项,b 叫做一次项系数;c 叫做常数项。 一元二次方程的解法 1、直接开平方法: 利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法。直接开平方法适用于解形如b a x =+2)(的一元二次方程。根据平方根的定义可知,a x +是b 的平方根,当0≥b 时,b a x ±=+,b a x ±-=,当b<0时,方程没有实数根。 2、配方法: 配方法的理论根据是完全平方公式2 22)(2b a b ab a +=+±,把公式中的a 看做未知数x ,并用x 代替,则有222)(2b x b bx x ±=+±。 配方法的步骤:先把常数项移到方程的右边,再把二次项的系数化为1,再同时加上1次项的系数的一半的平方,最后配成完全平方公式 3、公式法 公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方法。

一元二次方程压轴题[含答案解析]

一元二次方程 1.(北京模拟)已知关于x的一元二次方程x2+px+q+1=0有一个实数根为2. (1)用含p的代数式表示q; (2)求证:抛物线y1=x2+px+q与x轴有两个交点; (3)设抛物线y1=x2+px+q的顶点为M,与y轴的交点为E,抛物线y2=x2+px+q+1的顶点为N,与y轴的交点为F,若四边形FEMN的面积等于2,求p的值. 2.设关于x的方程x2-5x-m2+1=0的两个实数根分别为α、β,试确定实数m的取值范围,使|α|+|β|≤6成立.

3.(湖南怀化)已知x 1,x 2是一元二次方程( a -6)x 2 +2ax +a =0的两个实数根. (1)是否存在实数a ,使-x 1+x 1x 2=4+x 2成立?若存在,求出a 的值;若不存在,请你说明理由; (2)求使( x 1+1)( x 2+1)为负整数的实数a 的整数值. 4.(江苏模拟)已知关于x 的方程x 2 -(a +b +1)x +a =0(b ≥0)有两个实数根x 1、x 2,且 x 1≤x 2. (1)求证:x 1≤1≤x 2 (2)若点A (1,2),B ( 1 2 ,1),C (1,1),点P (x 1,x 2)在△ABC 的三条边上运动,问 是否存在这样的点P ,使a +b = 5 4 ?若存在,求出点P 的坐标;若不存在,请说明理由. 5.(福建模拟)已知方程组 ???y 2 =4x y =2x +b 有两个实数解 ? ????x =x 1y =y 1 和 ?????x =x 2 y =y 2 ,且x 1x 2≠0,x 1≠x 2. (1)求b 的取值范围; (2)否存在实数b ,使得 1 x 1 + 1 x 2 =1?若存在,求出b 的值;若不存在,请说明理由.

一元二次方程的解法—知识讲解

一元二次方程及其解法(一)直接开平方法—知识讲解(提高) 【学习目标】 1.理解一元二次方程的概念和一元二次方程根的意义,会把一元二次方程化为一般形式; 2.掌握直接开平方法解方程,会应用此判定方法解决有关问题; 3.理解解法中的降次思想,直接开平方法中的分类讨论与换元思想. 【要点梳理】 要点一、一元二次方程的有关概念 1.一元二次方程的概念: 通过化简后,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的整式方程,叫做一元二次方程. 要点诠释: 识别一元二次方程必须抓住三个条件:(1)整式方程;(2)含有一个未知数;(3)未知数的最高次数是2.不满足其中任何一个条件的方程都不是一元二次方程,缺一不可. 2.一元二次方程的一般形式: 一般地,任何一个关于x的一元二次方程,都能化成形如,这种形式叫做一元二次方程的一般形式.其中是二次项,是二次项系数;bx是一次项,b是一次项系数;c是常 数项. 要点诠释: (1)只有当时,方程才是一元二次方程; (2)在求各项系数时,应把一元二次方程化成一般形式,指明一元二次方程各项系数时注意不要漏掉前面的性质符号. 3.一元二次方程的解: 使一元二次方程左右两边相等的未知数的值叫做一元二次方程的解,也叫做一元二次方程的根. 4.一元二次方程根的重要结论 (1)若a+b+c=0,则一元二次方程必有一根x=1;反之也成立,即若x=1是一元二次方程的一个根,则a+b+c=0. (2)若a-b+c=0,则一元二次方程必有一根x=-1;反之也成立,即若x=-1是一元二次方程的一个根,则a-b+c=0. (3)若一元二次方程有一个根x=0,则c=0;反之也成立,若c=0,则一元二次方程必有一根为0. 要点二、一元二次方程的解法 1.直接开方法解一元二次方程: (1)直接开方法解一元二次方程:

初中数学二元二次方程组解法

2.3 方程与不等式 2.3.1 二元二次方程组解法 方程 22260x xy y x y +++++= 是一个含有两个未知数,并且含有未知数的项的最高次数是2的整式方程,这样的方程叫做二元二次方程.其中2x ,2xy ,2 y 叫做这个方程的二次项,x ,y 叫做一次项,6叫做常数项. 我们看下面的两个方程组: 224310,210; x y x y x y ?-++-=?--=? 222220,560. x y x xy y ?+=??-+=?? 第一个方程组是由一个二元二次方程和一个二元一次方程组成的,第二个方程组是由两个二元二次方程组成的,像这样的方程组叫做二元二次方程组. 下面我们主要来研究由一个二元二次方程和一个二元一次方程组成的方程组的解法. 一个二元二次方程和一个二元一次方程组成的方程组一般可以用代入消元法来解. 例1 解方程组 22440,220.x y x y ?+-=?--=? 分析:二元二次方程组对我们来说较为生疏,在解此方程组时,可以将其转化为我们熟悉的形式.注意到方程②是一个一元一次方程,于是,可以利用该方程消去一个元,再代入到方程①,得到一个一元二次方程,从而将所求的较为生疏的问题转化为我们所熟悉的问题. 解:由②,得 x =2y +2, ③ 把③代入①,整理,得 8y 2+8y =0, 即 y (y +1)=0. 解得 y 1=0,y 2=-1. 把y 1=0代入③, 得 x 1=2; 把y 2=-1代入③, 得x 2=0. 所以原方程组的解是 ①②

112,0x y =??=?, 220,1. x y =??=-? 说明:在解类似于本例的二元二次方程组时,通常采用本例所介绍的代入消元法来求解. 例2 解方程组 7,12.x y xy +=??=? ① ②

《一元二次方程》知识讲解

《一元二次方程》全章复习与巩固—知识讲解(提高) 【学习目标】 1.了解一元二次方程及有关概念; 2.掌握通过配方法、公式法、因式分解法降次──解一元二次方程; 3.掌握依据实际问题建立一元二次方程的数学模型的方法. 【知识网络】 【要点梳理】 要点一、一元二次方程的有关概念 1.一元二次方程的概念: 通过化简后,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的整式方程,叫做一元二次方程. 2.一元二次方程的一般式:   3.一元二次方程的解: 使一元二次方程左右两边相等的未知数的值叫做一元二次方程的解,也叫做一元二次方程的根. 要点诠释: 判断一个方程是否为一元二次方程时,首先观察其是否是整式方程,否则一定不是一元二次方程;其次再将整式方程整理化简使方程的右边为0,看是否具备另两个条件:①一个未知数;②未知数的最高次数为2. 对有关一元二次方程定义的题目,要充分考虑定义的三个特点,不要忽视二次项系数不为0. 要点二、一元二次方程的解法 1.基本思想

一元二次方程??? →降次一元一次方程 2.基本解法 直接开平方法、配方法、公式法、因式分解法. 要点诠释: 解一元二次方程时,根据方程特点,灵活选择解题方法,先考虑能否用直接开平方法和因式分解 法,再考虑用公式法. 要点三、一元二次方程根的判别式及根与系数的关系 1.一元二次方程根的判别式 一元二次方程)0(02≠=++a c bx ax 中,ac b 42-叫做一元二次方程)0(02≠=++a c bx ax 的根的判别式,通常用“?”来表示,即ac b 42-=?. (1)当△>0时,一元二次方程有2个不相等的实数根; (2)当△=0时,一元二次方程有2个相等的实数根; (3)当△<0时,一元二次方程没有实数根. 2.一元二次方程的根与系数的关系 如果一元二次方程)0(02≠=++a c bx ax 的两个实数根是21x x ,, 那么a b x x -=+21,a c x x =21. 注意它的使用条件为a ≠0, Δ≥0. 要点诠释: 1.一元二次方程 的根的判别式正反都成立.利用其可以解决以下问题: (1)不解方程判定方程根的情况; (2)根据参系数的性质确定根的范围; (3)解与根有关的证明题. 2. 一元二次方程根与系数的应用很多: (1)已知方程的一根,不解方程求另一根及参数系数; (2)已知方程,求含有两根对称式的代数式的值及有关未知数系数; (3)已知方程两根,求作以方程两根或其代数式为根的一元二次方程. 要点四、列一元二次方程解应用题 1.列方程解实际问题的三个重要环节: 一是整体地、系统地审题; 二是把握问题中的等量关系; 三是正确求解方程并检验解的合理性. 2.利用方程解决实际问题的关键是寻找等量关系. 3.解决应用题的一般步骤: 审 (审题目,分清已知量、未知量、等量关系等);

最新二元二次方程组的解法

二元二次方程的解法 一、内容综述: 1.解二元二次方程组的基本思想和方法 解二元二次方程组的基本思想是“转化”,这种转化包含“消元”和“降次”将二元转化为一元是消元,将二次转化为一次是降次,这是转化的基本方法。因此,掌握好消元和降次的一些方法和技巧是解二元二次方程组的关键。 2.二元二次方程组通常按照两个方程的组成分为“二·一”型和“二·二”型,又分别成为Ⅰ型和Ⅱ型。 “二·一”型是由一个二元二次方程和一个二元一次方程组成的方程组;“二·二”型是由两个二元二次方程组成的方程组。 “二·一”型方程组的解法 (1)代入消元法(即代入法) 代入法是解“二·一”型方程组的一般方法,具体步骤是: ①把二元一次方程中的一个未知数用另一个未知数的代数式表示; ②把这个代数式代入二元二次方程,得到一个一元二次方程; ③解这个一元二次方程,求得一个未知数的值; ④把所求得的这个未知数的值代入二元一次方程,求得另一个未知数的值;如果代入二元二次方程求另一个未知数,就会出现“增解”的问题; ⑤所得的一个未知数的值和相应的另一个未知数的值分别组在一起,就是原方程组的解。 (2)逆用根与系数的关系 对“二·一”型二元二次方程组中形如的方程组,可以根据一元二次方程根与系数的关系,把x、y看做一元二次方程z2-az+b=0的两个根,解这个方程,求得的z1和z2的值,就是x、y的值。当x1=z1时,y1=z2;当x2=z2时,y2=z1,所以原方程组的解是两组“对称解”。 注意:不要丢掉一个解。 此方法是解“二·一”型方程组的一种特殊方法,它适用于解“和积形式”的方程组。

以上两种是比较常用的解法。除此之外,还有加减消元法、分解降次法、换元法等,解题时要注意分析方程的结构特征,灵活选用恰当的方法。 注意:(1)解一元二次方程、分式方程和无理方程的知识都可以运用于解“二·一”型方程组。(2)要防止漏解和增解的错误。 “二·二”型方程组的解法 (i) 当方程组中只有一个可分解为两个二元一次方程的方程时,可将分解得到的两个二元一次方程分别与原方程组中的另一个二元二次方程组成两个“二·一”型方程组,解得这两个“二·一”型方程组,所得的解都是原方程组的解。 (ii) 当方程组中两个二元二次方程都可以分解为两个二元一次方程时,将第一个二元二次方程分解所得到的每一个二元一次方程与第二个二元二次方程分解所得的每一个二元一次方程组成新的方程组,可得到四个二元一次方程组,解这四个二元一次方程组,所得的解都是原方程的解。 注意:“二·一”型方程组最多有两个解,“二·二”型方程组最多有四个解,解方程组时,即不要漏解,也不要增解。 二、例题分析: 例1.解方程组 分析:仔细观察这个方程组,不难发现,此方程组除可用代入法解外,还可用根与系数的关系,通过构造一个以x, y为根的一元二次方程来求解。 解法一:由(1)得y=8-x (3) 把(3)代入(2),整理得x2-8x+12=0. 解得x1=2, x2=6. 把x1=2代入(3),得y1=6. 把x2=6代入(3),得y2=2. 所以原方程组的解是。 解法二:根据根与系数的关系可知:x, y是一元二次方程,

一般的一元二次方程的解法—知识讲解

一元二次方程的解法(二) 一般的一元二次方程的解法—知识讲解(提高) 【学习目标】 1.了解配方法和公式法的概念、一元二次方程求根公式的推导过程,会用配方法和公式法解一元二次方程; 2.掌握运用配方法和公式法解一元二次方程的基本步骤; 3.通过用配方法将一元二次方程变形的过程,通过求根公式的推导,进一步体会转化的思想方法,并增强数学应用意识和能力. 培养学生数学推理的严密性及严谨性,渗透分类的思想. 【要点梳理】 要点一、一元二次方程的解法---配方法 1.配方法解一元二次方程: (1)配方法解一元二次方程: 将一元二次方程配成的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法. (2)配方法解一元二次方程的理论依据是公式:. (3)用配方法解一元二次方程的一般步骤: ①把原方程化为的形式; ②将常数项移到方程的右边;方程两边同时除以二次项的系数,将二次项系数化为1; ③方程两边同时加上一次项系数一半的平方; ④再把方程左边配成一个完全平方式,右边化为一个常数; ⑤若方程右边是非负数,则两边直接开平方,求出方程的解;若右边是一个负数,则判定此方程无实数解. 要点诠释: (1)配方法解一元二次方程的口诀:一除二移三配四开方; (2)配方法关键的一步是“配方”,即在方程两边都加上一次项系数一半的平方. (3)配方法的理论依据是完全平方公式222 ±+=±. a a b b a b 2() 要点二、配方法的应用 1.用于比较大小: 在比较大小中的应用,通过作差法最后拆项或添项、配成完全平方,使此差大于零(或小于零)而比较出大小. 2.用于求待定字母的值: 配方法在求值中的应用,将原等式右边变为0,左边配成完全平方式后,再运用非负数的性质求出待定字母的取值. 3.用于求最值: “配方法”在求最大(小)值时的应用,将原式化成一个完全平方式后可求出最值. 4.用于证明: “配方法”在代数证明中有着广泛的应用,我们学习二次函数后还会知道“配方法”在二次函数中也有着广泛的应用

高一数学二元二次方程组解法

方程 22260x xy y x y +++++= 是一个含有两个未知数,并且含有未知数的项的最高次数是2的整式方程,这样的方程叫做二元二次方程.其中2x ,2xy ,2y 叫做这个方程的二次项,x ,y 叫做一次项,6叫做常数项. 我们看下面的两个方程组: 224310,210; x y x y x y ?-++-=?--=? 222220,560. x y x xy y ?+=??-+=?? 第一个方程组是由一个二元二次方程和一个二元一次方程组成的,第二个方程组是由两个二元二次方程组成的,像这样的方程组叫做二元二次方程组. 下面我们主要来研究由一个二元二次方程和一个二元一次方程组成的方程组的解法. 一个二元二次方程和一个二元一次方程组成的方程组一般可以用代入消元法来解. 例1 解方程组 22440,220.x y x y ?+-=?--=? 分析:二元二次方程组对我们来说较为生疏,在解此方程组时,可以将其转化为我们熟悉的形式.注意到方程②是一个一元一次方程,于是,可以利用该方程消去一个元,再代入到方程①,得到一个一元二次方程,从而将所求的较为生疏的问题转化为我们所熟悉的问题. 解:由②,得 x =2y +2, ③ 把③代入①,整理,得 8y 2+8y =0, 即 y (y +1)=0. ①

解得 y 1=0,y 2=-1. 把y 1=0代入③, 得 x 1=2; 把y 2=-1代入③, 得x 2=0. 所以原方程组的解是 112,0x y =??=?, 22 0,1.x y =??=-? 说明:在解类似于本例的二元二次方程组时,通常采用本例所介绍的代入消元法来求解. 例2 解方程组 7,12.x y xy +=??=? 解法一:由①,得 7.x y =- ③ 把③代入②,整理,得 27120y y -+= 解这个方程,得 123,4y y ==. 把13y =代入③,得14x =; 把24y =代入③,得23x =. 所以原方程的解是 114,3x y =??=?, 223,4. x y =??=? 解法二:对这个方程组,也可以根据一元二次方程的根与系数的关系,把,x y 看作一个一元二次方程的两个根,通过解这个一元二次方程来求,x y . 这个方程组的,x y 是一元二次方程 27120z z --= 的两个根,解这个方程,得 3z =,或4z =. 所以原方程组的解是 114,3;x y =?? =? 223,4. x y =??=? 练 习: ①

一元二次方程知识点复习及典型题讲解

一元二次方程复习课1)一元二次方程的概念: 中考常见题型: 例1、下列方程中哪些是一元二次方程?试说明理由。 x?22x??122x?4?(x?2)2x?43x?2?5x?3x?1(1)(2)(3)(4) 2bx+a=0, x —2、方程(2a 2在什么条件下此方程为一元二次方程?在什么条件下此方程为一元一 —4)例次方程?2。,求m的一元二次方程(m-1)x+3x-5m+4=0有一根为2例3 、已知关于x 将下列方程化为一般形式,并分别指出它们的二次项系数、一次项系数和常数项练习一、????????222y?3y2y?1??y1??2x?2?3x2 2x(x-1)=3(x-5)-4 2(m?3)x?nx?m?0x练习二、关于,在什么条件下是一元二次方程?在什么条件下是一元一的方程次方程? 2)一元二次方程的解法: 1)直接开平方法(换元思想): 2)配方法: 3)求根公式(符号问题): 4)因式分解法(十字交叉法): 中考常见题型: 例1:考查直接开平方法和换元思想。 1)(x+2)=3(x+2) (2)2y(y-3)=9-3y (3)( x-2) — x+2 =0 22( 249??1x?2x2 4)(2x+1)=(x-1) (5) 2( 2:用配方法解方程x+px+q=0(p2-4q≥0). 2例

例3:用配方法解方程: 22xx(1)-6x-7=0;(2)+3x+1=0. 2205x??2x?2x?7x?20?42(3)(50. 2x4 ())3x+-3= 2?4bacb2(x?)?2ax?bx?c?0(a?0)2aa4呢?例4:能否用配方法把一般形式的一元二次方程转化为 22-1=0 -(4k+1)x+2k取什么值时,关于x的方程2x例5、当k 方程没有实数根.有两个不相等的实数根; (2)有两个相等实数根; (3) (1) -c)x+b=0ABC的三边的长,求证方程ax-(a+ba例6、已知,b,c是△222222没有实数根. 练习:222 +n=0无实数根.,求证关于x的方程2x+2(m+n)x+m.若 1m≠n +m=0.求证:关于x的方程x+(2m+1)x-m2 22有两个不相等的实数根. 7例: 2220??x3)?65?(2x3)?(20?x?7x10?0??3992x?x)(2 1()()3 3)一元二次方程的应用(常见四类题型):

一元二次方程、分式方程的解法及应用—知识讲解1

中考总复习:一元二次方程、分式方程的解法及应用—知识讲解(提高) 【考纲要求】 1.理解配方法,会用因式分解法、公式法、配方法解简单的数字系数的一元二次方程; 2.会解分式方程,解分式方程的基本思想是把分式方程转化成整式方程,把未知问题转化成已知问题,从而渗透数学的转化思想. 【知识网络】 【考点梳理】 考点一、一元二次方程 1.一元二次方程的定义 只含有一个未知数,并且未知数的最高次数是2的整式方程,叫做一元二次方程. 它的一般形式为2 0ax bx c ++=(a ≠0). 2.一元二次方程的解法 (1)直接开平方法:把方程变成2 x m =的形式,当m >0时,方程的解为x m =±;当m =0时,方程的解1,20x =;当m <0时,方程没有实数解.

(2)配方法:通过配方把一元二次方程2 0ax bx c ++=变形为2 22 424b b ac x a a -??+= ?? ?的形式,再利用直接开平方法求得方程的解. (3)公式法:对于一元二次方程2 0ax bx c ++=,当2 40b ac -≥时,它的解为 242b b ac x a -±-= . (4)因式分解法:把方程变形为一边是零,而另一边是两个一次因式积的形式,使每一个因式等于零,就得到两个一元一次方程,分别解这两个方程,就得到原方程的解. 要点诠释: 直接开平方法和因式分解法是解一元二次方程的特殊方法,配方法和公式法是解一元二次方程的一般方法. 易错知识辨析: (1)判断一个方程是不是一元二次方程,应把它进行整理,化成一般形式后再进行判断,注意一元 二次方程一般形式中0≠a . (2)用公式法和因式分解的方法解方程时要先化成一般形式. (3)用配方法时二次项系数要化1. (4)用直接开平方的方法时要记得取正、负. 3.一元二次方程根的判别式 一元二次方程根的判别式为ac 4b 2 -=?. △>0?方程有两个不相等的实数根; △=0?方程有两个相等的实数根; △<0?方程没有实数根. 上述由左边可推出右边,反过来也可由右边推出左边. 要点诠释: △≥0?方程有实数根. 4.一元二次方程根与系数的关系 如果一元二次方程0c bx ax 2=++(a ≠0)的两个根是21x x 、,那么a c x x a b x x 2 121=?-=+,. 要点诠释: (1)对有关一元二次方程定义的题目,要充分考虑定义的三个特点,不要忽视二次项系数不为0. (2)解一元二次方程时,根据方程特点,灵活选择解题方法,先考虑能否用直接开平方法和因式分 解法,再考虑用公式法. (3)一元二次方程0c bx ax 2 =++(a ≠0)的根的判别式正反都成立.利用其可以①不解方程判定方程根的情况;②根据参系数的性质确定根的范围;③解与根有关的证明题. (4)一元二次方程根与系数的应用很多:①已知方程的一根,不解方程求另一根及参数系数;②已知方程,求含有两根对称式的代数式的值及有关未知数系数;③已知方程两根,求作以方程两根或其代数式为根的一元二次方程.

解二元二次方程组

课题解二元二次方程组 一、知识回顾 二元一次方程的三个必需条件:①含有两个未知数;②含有未知数的项的次数是1;③等式两边都是整式. 二元一次方程组的三个必需条件:①含有两个未知数,②每个含未知数的项次数为1;③每个方程都是整式方程. 解二元一次方程组的一般方法是代入消元法和加减消元法 1、例题 例1、解方程组 31 220 x y x y =+ ? ? -= ? 练习1 解方程组 21 324 x y y x -=- ? ? -= ? 例2、解方程组 326 249 x y x y += ? ? += ? 练习2 解方程组 35 242 x y x y -+= ? ? -= ? 例3、解方程组 31 430 4239 x y z x y z x y z -+-= ? ? -+= ? ?++= ? 练习3 解方程组 24 230 35 x y z x y z x y z -+-=- ? ? ++= ? ?-+=- ? 2、巩固练习

1.下列方程中,是二元一次方程的是( ) A .3x -2y=4z B .6xy+9=0 C . 1x +4y=6 D .4x=24 y - 2.下列方程组中,是二元一次方程组的是( ) A .2284 23119 (23754624) x y x y a b x B C D x y b c y x x y +=+=-=??=??? ? ? ?+=-==-=???? 3.二元一次方程5a -11b=21 ( ) A .有且只有一解 B .有无数解 C .无解 D .有且只有两解 4.方程y=1-x 与3x+2y=5的公共解是( ) A .3333 (2422) x x x x B C D y y y y ==-==-????? ? ? ? ===-=-???? 5.若│x -2│+(3y+2)2=0,则的值是( ) A .-1 B .-2 C .-3 D .32 6.下列各式,属于二元一次方程的个数有( ) ①xy+2x -y=7; ②4x+1=x -y ; ③ 1 x +y=5; ④x=y ; ⑤x 2-y 2=2 ⑥6x -2y ⑦x+y+z=1 ⑧y (y -1)=2y 2-y 2+x A .1 B .2 C .3 D .4 二、解方程组 (1)???=-=+6)3(242y x (2)? ??=-=+1123332y x y x (3)? ??=+=-172305y x y x (4)???? ?=-=+34 31332n m n m (5)10232523x y x y z x y z +=??-+=??+-=? (6)04239328a b c a b c a b c ++=?? ++=??-+=? 二、新知展望

中考数学综合题专题复习【一元二次方程】专题解析及答案

一、一元二次方程 真题与模拟题分类汇编(难题易错题) 1.已知关于x 的方程x 2﹣(2k +1)x +k 2+1=0. (1)若方程有两个不相等的实数根,求k 的取值范围; (2)若方程的两根恰好是一个矩形两邻边的长,且k =2,求该矩形的对角线L 的长. 【答案】(1)k > 34;(2 【解析】 【分析】 (1)根据关于x 的方程x 2-(2k +1)x +k 2+1=0有两个不相等的实数根,得出△>0,再解不等式即可; (2)当k=2时,原方程x 2-5x+5=0,设方程的两根是m 、n ,则矩形两邻边的长是m 、n , 利用根与系数的关系得出m+n=5,mn=5,利用完全平方公式进行变形即可求得答案. 【详解】 (1)∵方程x 2-(2k +1)x +k 2+1=0有两个不相等的实数根, ∴Δ=[-(2k +1)]2-4×1×(k 2+1)=4k -3>0, ∴k >34 ; (2)当k =2时,原方程为x 2-5x +5=0, 设方程的两个根为m ,n , ∴m +n =5,mn =5, ∴ = =. 【点睛】 本题考查了根的判别式、根与系数的关系、矩形的性质等,一元二次方程根的情况与判别式△的关系:(1)△>0时,方程有两个不相等的实数根;(2)△=0时,方程有两个相等的实数根;(3)△<0时,方程没有实数根. 2.已知关于x 的一元二次方程x 2﹣x+a ﹣1=0. (1)当a=﹣11时,解这个方程; (2)若这个方程有两个实数根x 1,x 2,求a 的取值范围; (3)若方程两个实数根x 1,x 2满足[2+x 1(1﹣x 1)][2+x 2(1﹣x 2)]=9,求a 的值. 【答案】(1)123,4x x =-=(2)54 a ≤(3)-4 【解析】 分析:(1)根据一元二次方程的解法即可求出答案; (2)根据判别式即可求出a 的范围; (3)根据根与系数的关系即可求出答案.

一元二次方程经典练习题及答案知识讲解

练习一 一、选择题:(每小题3分,共24分) 1.下列方程中,常数项为零的是( ) A.x 2 +x=1 B.2x 2 -x-12=12; C.2(x 2 -1)=3(x-1) D.2(x 2 +1)=x+2 2.下列方程:①x 2 =0,② 21x -2=0,③22x +3x=(1+2x)(2+x),④32 x =0,⑤32x x -8x+ 1=0中, 一元二次方程的个数是( ) A.1个 B2个 C.3个 D.4个 3.把方程(+(2x-1)2 =0化为一元二次方程的一般形式是( ) A.5x 2 -4x-4=0 B.x 2 -5=0 C.5x 2 -2x+1=0 D.5x 2 -4x+6=0 4.方程x 2 =6x 的根是( ) A.x 1=0,x 2=-6 B.x 1=0,x 2=6 C.x=6 D.x=0 5.方2x 2 -3x+1=0经为(x+a)2 =b 的形式,正确的是( ) A. 23162x ? ?-= ?? ?; B.2 312416x ??-= ???; C. 2 31416x ? ?-= ? ? ?; D.以上都不对 6.若两个连续整数的积是56,则它们的和是( ) A.11 B.15 C.-15 D.±15 7.不解方程判断下列方程中无实数根的是( ) A.-x 2 =2x-1 B.4x 2 +4x+ 5 4 =0; C. 20x --= D.(x+2)(x-3)==-5 8.某超市一月份的营业额为200万元,已知第一季度的总营业额共1000万元, 如果平均每月增长率为x,则由题意列方程应为( ) A.200(1+x)2 =1000 B.200+200×2x=1000 C.200+200×3x=1000 D.200[1+(1+x)+(1+x)2 ]=1000 二、填空题:(每小题3分,共24分) 9.方程 2(1)5 322 x x -+=化为一元二次方程的一般形式是________,它的一次项系数是______. 10.关于x 的一元二次方程x 2 +bx+c=0有实数解的条件是__________. 11.用______法解方程3(x-2)2=2x-4比较简便. 12.如果2x 2 +1与4x 2 -2x-5互为相反数,则x 的值为________. 13.如果关于x 的一元二次方程2x(kx-4)-x 2 +6=0没有实数根,那么k 的最小整数值是__________. 14.如果关于x 的方程4mx 2 -mx+1=0有两个相等实数根,那么它的根是_______. 15.若一元二次方程(k-1)x 2-4x-5=0 有两个不相等实数根, 则k 的取值范围是_______. 16.某种型号的微机,原售价7200元/台,经连续两次降价后,现售价为3528元/台,则平均每次降价的百分率为______________. 三、解答题(2分) 17.用适当的方法解下列一元二次方程.(每小题5分,共15分) (1)5x(x-3)=6-2x; (2)3y 2 +1=; (3)(x-a)2 =1-2a+a 2 (a 是常数)

二元二次方程组的解法

二元二次方程的解法 : 次方程组的基本思想和方法 程组的基本思想是“转化”,这种转化包含“消元”和“降次”将二元转化为一元是消元,将二次转化为一次是降次,这是转化的基本方方法和技巧是解二元二次方程组的关键。 方程组通常按照两个方程的组成分为“二·一”型和“二·二”型,又分别成为Ⅰ型和Ⅱ型。 是由一个二元二次方程和一个二元一次方程组成的方程组;“二·二”型是由两个二元二次方程组成的方程组。 方程组的解法 元法(即代入法) 二·一”型方程组的一般方法,具体步骤是: 方程中的一个未知数用另一个未知数的代数式表示; 式代入二元二次方程,得到一个一元二次方程; 二次方程,求得一个未知数的值; 这个未知数的值代入二元一次方程,求得另一个未知数的值;如果代入二元二次方程求另一个未知数,就会出现“增解”的问题; 未知数的值和相应的另一个未知数的值分别组在一起,就是原方程组的解。 与系数的关系

二元二次方程组中形如的方程组,可以根据一元二次方程根与系数的关系,把x、y看做一元二方程,求得的z1和z2的值,就是x、y的值。当x1=z1时,y1=z2;当x2=z2时,y2=z1,所以原方程组的解是两组“对称解”。 掉一个解。 二·一”型方程组的一种特殊方法,它适用于解“和积形式”的方程组。 较常用的解法。除此之外,还有加减消元法、分解降次法、换元法等,解题时要注意分析方程的结构特征,灵活选用恰当的方法。 解一元二次方程、分式方程和无理方程的知识都可以运用于解“二·一”型方程组。(2)要防止漏解和增解的错误。 方程组的解法 中只有一个可分解为两个二元一次方程的方程时,可将分解得到的两个二元一次方程分别与原方程组中的另一个二元二次方程组成两个“二一”型方程组,所得的解都是原方程组的解。 组中两个二元二次方程都可以分解为两个二元一次方程时,将第一个二元二次方程分解所得到的每一个二元一次方程与第二个二元二次方程新的方程组,可得到四个二元一次方程组,解这四个二元一次方程组,所得的解都是原方程的解。 一”型方程组最多有两个解,“二·二”型方程组最多有四个解,解方程组时,即不要漏解,也不要增解。 :

特殊的一元二次方程的解法—知识讲解

一元二次方程及其解法(一) 特殊的一元二次方程的解法—知识讲解(提高) 【学习目标】 1.理解一元二次方程的概念和一元二次方程根的意义,会把一元二次方程化为一般形式; 2.掌握直接开平方法和因式分解法解方程,会应用此判定方法解决有关问题; 3.理解解法中的降次思想,直接开平方法和因式分解法中的分类讨论与换元思想. 【要点梳理】 要点一、一元二次方程的有关概念 1.一元二次方程的概念: 通过化简后,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的整式方程,叫做一元二次方程. 要点诠释: 识别一元二次方程必须抓住三个条件:(1)整式方程;(2)含有一个未知数;(3)未知数的最高次数是2.不满足其中任何一个条件的方程都不是一元二次方程,缺一不可. 2.一元二次方程的一般形式: 一般地,任何一个关于x的一元二次方程,都能化成形如,这种形式叫做一元二次方程的一般形式.其中是二次项,是二次项系数;bx是一次项,b是一次项系数;c是常 数项. 要点诠释: (1)只有当时,方程才是一元二次方程; (2)在求各项系数时,应把一元二次方程化成一般形式,指明一元二次方程各项系数时注意不要漏掉前面的性质符号. 3.一元二次方程的解: 使一元二次方程左右两边相等的未知数的值叫做一元二次方程的解,也叫做一元二次方程的根. 4.一元二次方程根的重要结论 (1)若a+b+c=0,则一元二次方程必有一根x=1;反之也成立,即若x=1是一元二次方程的一个根,则a+b+c=0. (2)若a-b+c=0,则一元二次方程必有一根x=-1;反之也成立,即若x=-1是一元二次方程的一个根,则a-b+c=0. (3)若一元二次方程有一个根x=0,则c=0;反之也成立,若c=0,则一元二次方程必有一根为0.

相关主题
文本预览
相关文档 最新文档