当前位置:文档之家› 热传导与热辐射大作业报告..(新)

热传导与热辐射大作业报告..(新)

热传导与热辐射大作业报告..(新)
热传导与热辐射大作业报告..(新)

热传导与热辐射大作业报告

目录

一、作业题目.............................................................................................................................. - 1 -

二、作业解答.............................................................................................................................. - 2 - 个人感想.................................................................................................................................... - 17 - 附件.计算中所用程序.............................................................................................................. - 18 -

一矩形平板a x ≤≤0, b y ≤≤0,内有均匀恒定热源0g ,在0=x 及0=y 处绝热,在a x =及b y =处保持温度1T ,初始时刻温度为0T ,如右图1所示:

1、求0>t 时,矩形区域内的温度分布()t y x T ,,的解析表达式;

2、若m a 18=,m b 12=,301m W g =,6T 1=0K m W k ?=0.1,热扩散系数20.8m s α=。请根据1中所求温度分布用

MATLAB 软件绘出下列结果,加以详细物理比较和分析:

(a)

300s 内,在同一图中画出点)4,0(、)8,0(、()0,6、)0,12(、)6,9((单位:m )温度随时间的变化;

(b)

200s 内,画出点)4,18(、)8,18(、()12,6、)12,12(、)6,9((单位:

m )处,分别沿x 、y 方向热流密度值随时间的变化;

(c) 画出s s s s s t 1501251007550、、、、=时刻区域内的等温线; (d)

300s 内,在同一图中画出点()0,9(单位:m )在0g 分别等于

31m W ,32m W ,33m W 情况下的温度变化;

(e) 300s 内,比较点(9,6) (单位:m )在其它参数不变情况下热导

率分别为K m W ?5.0、K m W ?0.1和K m W ?5.1的温度、热流密度变化;

(f)

300s 内,比较点(9,6) (单位:m )在其它参数不变情况下热扩

散系数分别为m 24.0、s m 28.0和s m 22.1的温度、热流密度变化; 3、运用有限差分法计算2中(b)、(d)和(e),并与解析解结果进行比较,且需

将数值解与解析解的相对误差减小到1‰以下;

4、附上源程序和个人体会;

以报告形式整理上述结果,用A4纸打印上交。

1、求0>t 时,矩形区域内的温度分布()t y x T ,,的解析表达式;

解答:我们令1T T θ-=,则可以得到一个方程和边界条件:

t

1k g y x 02222??=

+??+??T

αθθ (1-1)

.0,0d ==x dx

θ

a 0==x ,θ

0,0y

d ==y d θ

b ==y 0,θ 0t 10=-=,T T θ

将上式分解为一个)y x s ,(θ的稳态问题:

0k

g y x 0

2s 22

s 2=+??+??θθ (1-2)

.0,0d s

==x dx

θ

a 0s ==x ,θ

0,0y

d ==y d s

θ b ==y 0s ,θ 和一个),,h t y x (θ的其次问题: t

1y x 222

2??=??+??T

h h αθθ (1-3)

.0,0d ==x dx

h

θ a 0==x h ,θ

0,0y

d ==y d h

θ

b h ==y 0,θ

其中),(),),(),h y x f y x y x F y x s *≡

-=((θθ

则原问题的解根据下式求得:

),,(),(),,t y x y x t y x h s θθθ+=( (1-4)

发热强度为常数的特解可从表2-4中查的,则新变量)

y x s ,(θ可定义为:

A x k

g +-=2

0s

2)y x )y x ,(,(θθ (1-5) 将(1-5)带入(1-2)整理得到:

,(0y

)

,(x ),2

222=??+??y x y x θθ b y a x <<<<0,0 (1-6)

.0,0d ==x dx

θ

a a 22

0=-=x A k

g ,θ

0,0y

d ==y d θ

b A x k g =-=

y 22

0,θ 若令常数202g

a k

A =,则上式可以变为:

,(0y )

,(x ),2

222=??+??y x y x θθ b y a x <<<<0,0 (1-7)

.0,0d ==x dx

θ a 0==x ,θ 0,0y

d ==y d θ

b x f ==

y )(,θ

其中)(2)(22

0a x k

g x f -=

假定),y x (θ可以分离出如下形式:

)()(),y Y x X y x =(θ (1-8) 对应于)()(y Y x X 和的分离方程为: 0)()(d 2

2

2=+x X dx

x X β (1-9)

0,0==x dx

dX

a x X ==,0

0)()

(d 22

2=-y Y dy

y Y β (1-10)

0,0==y dy

dY

b y x f Y ==,)(

在)(x X 中特征值问题的解可以直接从表2-2第6条中得到,只需要用a 代替L ,

x x X m m ββcos ),=(

(1-11)

a

2

)1=m N β( (1-12)

m β是下面方程的正根:

0a cos =m β (1-13)

方程(1-10)的解可以取为

y h Y m m ββcos y ,=)(

(1-14)

),y x (θ的完全解由下式组成:

∑∞

==1

cos cosh ),(m m m m x y C y x ββθ (1-15)

此式满足热传导问题(1-7)及三个齐次边界条件,其中,系数m C 可以根据方程的解还应满足非齐次的边界条件来决定。利用b y =的边界条件可得:

∑∞

==1cos cosh )(m m m m x b C x f ββ

a x <<0 (1-16)

利用函数x m βcos 的正交性可以求得系数m C ,

?=

a m

m dx x f x b N C 0

'

''m m )(cos cosh 1βββ)( (1-17)

式中:

3m

0'2a

18

2'0''

''sin )(2cos )(cos ββββk a

g dx a x k g x dx x f x m m m =-?

=??

?

将这个表达式带入式(1-15),其中范数)(m βN 在前面已经给出,解得结果为

301m sin cos cosh b

cosh 12),m m m m m k a

g x y a y x βββββθ???=∑∞

=(

(1-18)

则:

A x k

g +-

=2

0s 2)y x )y x ,(,(θθ )(2sin g cos cosh b

cosh 12220301m x a k g

k a x y a m m m m m -+???=∑

=βββββ

(1-19) 假定),,(h t y x θ分离成如下表达式

)()()(),,(h y Y x X t t y x Γ=θ (1-20) 对应于函数)(x X 和)(y Y 的分离方程为

)(x X :

0)()

(d 22

2=+x X dx

x X β a x <<0 (1-21)

0,0==x dx

dX

a x X ==,0

)(y Y :

0)()(d 2

2

2=-y Y dy

y Y γ b y <<0 (1-22)

0,0==y dy

dY

b y Y ==,0

)(t Γ的解为:

t

v t )(2

2n e

)(γβα+-=Γ (1-23)

上述问题的完全解为: ∑∑∞

=∞

=+-=11)(h ),(),(),,(22

n

m n v n t

mn y Y x X e C t y x v γβθγ

βα

(1-24)

其中0

∑∑∞

=∞

==11h ),(),(),(m n v n nv y Y x X C y x γβθ (1-25)

其中0

确定未知系数m n C 的方法是,在上式两边逐项用如下算子作运算:

?a 0n ),(dx x X β及?b

0v ),(dy y Y γ 并利用这些函数的正交性,得到:

??=a 0b 0

''''''v n nv ),(),(),(1

dy dx y x y Y x X N N C h v n θγβγβ)()( (1-26)

最终得到问题的解为:

∑∑∞

=∞

=+-=11v n )(h ),(),(1

),,(22m n v n t

y Y x X N N e t y x v n γβγβθγβ

α)

()(

?

?

?a

0b

''''''n ),(),(dy dx y x y Y x X h v θγβ),(

(1-27)

式中出现的特征函数,特征值及范数可以从表2-2中直接查得:

x x X n n cos )(ββ=, (1-28)

a

2

)(1n =βN (1-29)

且m β为如下方程的正根:

0cos n =a β

(1-30)

满足特征值问题的函数),(y Y n γ对应于表2-2中的第6条,得到:

y y Y v γγcos ),(v =

(1-31)

b

2

)(1v =γN (1-32)

且n γ是如下方程的正根:

0b cos v =γ

最后得到:

∑∑∞

=∞

=+-?=11)(h cos cos 1

4),,(22n

m n v n t

y x ab

e t y x v γβθγ

βα ???a 0b

0''''''n ),(cos cos dy dx y x y x h v θγβ (1-33) 令'''''v 'n a 00),(cos cos dy dx y x y x I h b

θγβ??=

?

?

=-+??--=a 00

1'

'22

03''010'

'

)](2sin cos cosh cosh k 2[cos cos b

m m m m m m v n dy dx x a k g a x y b

a g T T y x βββββγβ

?

?-=a 00

''10''

cos cos b

v

n

dy dx T T y x )(γ

β

??∑∞

=???+a 001''3

''0''sin cos cosh cosh 2cos cos b m m m m m m v n dy dx a x y b

ak g y x βββββγβ ??-?+a 00''220'')(2cos cos b v n dy dx x a k

g y x γβ

其中令v

n v n b

v n b

a T T dy dx T T y

x I γβγβγβsin sin cos cos 10a 00''10''1)()(-=-=??

令??∑

=???=a 001''3''0''2sin cos cosh cosh 2cos cos b m m

m m m m v n dy dx a x y b ak g y x I βββββγβ ∑??∞

==10b

0''''''30cos cosh cos cos cosh sin 2m a m m v n m

m

m

dy dx x y y x b ak a

g ββγββ

ββ

∑?

?∞

==10

b

'''''

'

30cosh cos cos cos cosh sin 2m a

m v m n m

m m dy y y dx x x b ak a

g βγβββββ

根据余弦函数的正交性,只有当m=n 时积分才不为0,故上式可以化为:

??a n v n n n m dy y y dx x x b ak a g 0

b 0''''

''3n 0cosh cos cos cos cosh sin 2βγβββββ 再令?==a

n n a dx x x I 0'''212

cos cos ββ

b b h dy y y I v n v v n v γβγβγβγsin cos cosh cos 2

2n b

'''22+=

=?

所以)

(sin sin cosh )1(2223n 22213

n 02v n v m V n n b

a I I

b ak g I γββγβγββ+=??-= 令3

0a 00''220''3sin sin )(2cos cos n

v n v b v n k a b g dy dx x a k

g y x I βγβγγβ-=-?=?? 所以)

()[(1

2

2

22

02010n 321v n n v n v k g k g T T I I I I γββγβγβ++--=++= 由(1-4)、(1-19)及(1-33)可知

)(2cos cosh 2),,(22

01

cosh sin 3

0x a k

g x y t y x T m m m b

ak a

g m

m

m -+-=∑∞

=βββββ

∑∑∞=∞=+

-?++--+11v 2

22202010n )(cos cos ])

()[(sin sin 422n m v n v n n v n v v m t y x k g k g T T b a e ab v γβγββγβγβγβγβα1

T +。

以上是解析解的全过程,具体值的计算采用MATLAB 编程计算求取。

2、若m a 18=,m b 12=,301m W g =,K 6T 001=,K T 2000=,热传导系数K m W

k ?=0.1,热扩散系数20.8m s α=。请根据

1中所求温

度分布用MATLAB 软件绘出下列结果,加以详细物理比较和分析:

300s 内,在同一图中画出点)4,0(、)8,0(、()0,6、)0,12(、)6,9((单位:m )温度随时间的变化;

图1.不同点温度随时间变化曲线图

分析:开始时刻通过右、上边界向内部导热,这时候尽管有内热源,但谁相对离右、上边界越近,温度曲线越陡。即开始时刻(0,8)点比(0,4)点温度曲线陡,(12,0)点比(6,0)点温度曲线陡,一定时间后由于有内热源,内部温度逐渐高于边界温度,这时内部开始向边界导热。这时谁离两个绝热边交点越近,谁的温度会越高,这就是为什么最后(0,4)点比(0,8)点温度高,(6,0)点温度比(12,0)点温度高。

(b ).200s 内,画出点)4,18(、)8,18(、()12,6、)12,12(、)6,9((单位:m )处,分别沿x 、y 方向热流密度值随时间的变化;

图2.200s 内x 方向不同点的热流密度曲线(解析解) 图3.200s 内y 方向不同点的热流密度曲线(解析解)

图4.200s 内x 方向不同点的热流密度曲线(数值解) 图5.200s 内y 方向不同点的热流密度曲线(数值解)

图6.不同点x 方向热流密度数值解与解析解相对误差

分析:右边界(18,4)和(18,8)这两点开始时X 方向两侧温差较大,故热流密度也会特别大,开始时内部温度较边界温度低,向内部导热,热流密度为负值。后来内部温度大于边界温度,向外散热,热流密度为正值。而上边界点温度相同,故在X 方向不存在热传导,故导热系数为零。而中间点开始时从右向左导热,热流密度为负,随着边界层温度影响的深入,热流密度绝对值越来越大,但由于有内热源,会使此影响逐渐减弱,故在一段时间后待热流密度达到一个顶峰以后会逐渐减小,后来由于内热源的作用,导热由内向外进行,

热流密度也由负

图7.不同点x 方向热

值变为正值。Y 方向分析类似。由于(9,6)离上边界更近,故沿Y 方向达到的下边界峰值更大。

(c ).画出s s s s s t 1501251007550、、、、

=时刻区域内的等温线;

图8.50s 时区域内的等温线 图9.75s 时区域内的等温线

图10.100s 时区域内的等温线 图11.125s 时区域内的等温线

图12.150s 时区域内的等温线

分析:开始时刻,尽管有内热源的存在,但边界温度比内部温度高,此时边

界向内部传热,故开始时靠近边界的温度比内部高,这就是为什么50、75、100s 时等温线呈现由坐下到右上温度逐渐升高。过一段时间后,中间部分由于内热源和边界热传导的共同作用,而坐下边界此时收到的内热源和边界热传导的作用小于中间部分,故造成了中间部分温度反而比其他部分高。一段时间后,内热源起主导作用,向外散热,这事等温线上的温度由左下到右上逐渐降低。

(d ).300s 内,在同一图中画出点()0,9(单位:m )在0g 分

别等于31m W ,32m W ,3

3m W 情况下的温度变化;

图13.不同内热源下温度变化曲线(解析解) 图14.不同内热源下温度变化曲线(数值解)

图15.不同内热源下数值解与解析解相对误差

分析:内热源越大,单位时间内内部产生的能量越多,节点温度升高的越快。在其它条件相同的情况下,内热源越大,最终内部温度也越高。开始时,由于温度变化剧烈,此时解析解和数值解的误差也相对较大,一段时间以后温度趋于稳定,这个时候相对误差也趋于一个较小的稳定值。

(e ).300s 内,比较点(9,6) (单位:m )在其它参数不变情况下热导率分别为K m W ?5.0、K m W ?0.1和K m W ?5.1的温度、热

流密度变化;

图16.不同导热数下温度变化曲线(解析解)图17.不同导热数下温度变化曲线(数值解)

图18.不同导热系数下数值解和解析解的相对误差

图19.不同导热系数下X方向热流密度曲线(解析解)图20.不同导热系数下X方向热流密度曲线(数值解)

图20.不同导热系数下X 方向热流密数值解与解析解相对误差

图23.(9,6)点不同导热系数下y 方向数值解和解析解的相对误差

分析:导热系数K 越大,内部温度越能快速的传递给外界,这就是问什么导热系数越大,节点最终温度低。根据热流密度方程x

t k q ??-=,可知。K 越大,热

流密度越大,这就是为什么K 越大,热流密度最低点峰值越大。而最后由于内热源相同,根据能量守恒,最后导热系数也必然趋近于一个定值。开始时由于温度变化剧烈,在不同的导热系数下同一点温度随之间变化值得数值解和解析解的相对误差较大,一段时间后温度趋于稳定,此时数值解和解析解的相对温差是一个较小值。

图21.不同导热系数下Y 方向热流密度曲线(解析解)

图22。不同导热系数下Y 方向热流密度曲线(数值解)

(f ).300s 内,比较点(9,6) (单位:m )在其它参数不变

情况下热扩散系数分别为s m 24.0、s m 28.0和

s m 2

2.1的温度、热流密度变化;

图24(9,6)点在不同热扩散系数下的温度曲线 图25.(9,6)点在不同热扩散系数下X 方向的热流密度

图26.(9,6)点在不同热扩散系数下Y 方向的热流密度

分析:热扩散系数越大,边界对温度越能快速的影响到内部,这就是为什么同一点热扩散系数越大,温度升高的越快。热扩散系数越大,边界对温度越能快速的影响到内部,这导致最低点峰值向左移动。热扩散系数表示“温度扯平能力”,热扩散系数越高表示其温度扯平能力越大。如果时间趋于无穷大,最终即使热扩散系数不同,最终温度也会趋于同一个值。300s 对于热扩散系数为0.8和1.2值来说已经时间足够趋于同一个稳定值,但对于0.4的值来说时间却不是够大,这就是为什么300s 时,热扩散系数为0.8和1.2的趋于同一值,而0.4的却比它们的小。

三、关于绘图命令的说明

绘图命令大致类似,故我们这里只以X 方向热流密度为例来说明,其它的绘图命令不再赘述。 plot(KX1)

hold on

plot(KX2,'r')

plot(KX3,'k')

plot(KX4,'y')

plot(KX5,'g')

xlabel('时间t')

ylabel('x方向热流密度')

title('不同点x方向热流密度曲线(数值解)')

legend('(18,4)','(18,8)','(6,12)','(12,12)','(9,6)')

个人感想

经过一个多星期的连续奋战,终于搞定了这“万恶”的热传导与热辐射的大作业。首先真诚的感谢在作业中帮助过我的老师和同学。

本来以为求温度场并不会是一件特别难的事情,可是等到实践时却发现里面有很多自己意想不到的困难。自己的MATLAB零基础确实也增添了不少困难。好不容易把程序编出来了,带入运行却是出问题了,总是比时间值少很多,花了一晚上一点一点的查却没有任何结果。知道第二天早上才发现是自己在循环中占用了原先定义的一个量。让人崩溃又让人欣喜:悲的是半天没有结果,喜的是终于找到了问题的根源。这样的事情还有很多很多。有时候为了查一个错误总需要花很长时间,但是经过奋战后终于把问题弄明白的那种欣喜确实很快乐的。

在数值解的过程中,出现了一些令人感觉崩溃的问题。比如,步长取大了难以保证精度,取小了计算特别慢,而且出现一个让人再也做不下去的感觉“out of memory”。曾经一次计算了十几个小时最后得出了一个这样的结果,最后只能两者中和取,得出最终结果。

从MATLAB的零基础、从对温度场求解的模糊认识。这种现象伴随着作业的深入,使自己对这些问题有了一个更加清晰地认识。同时也对MATLAB这个软件有了一定的了解。

最后再次感谢在这次作业中帮助过我的各位同学和老师!

附件.计算中所用程序

附件1.解析解完整程序

clear all; %清除系统中原有的变量

clc; %清除屏幕

a=18; %x方向长度

b=12; %y方向长度

g=1; %g为内热源

k=1; %k为导热系数

ar=0.8; %ar为热扩散系数

T0=200; % T0为初始温度

T1=600; %T1为边界温度

for p=1:19

x=p-1;

for q=1:13

y=q-1;

wtj=0;

for i=1:15

btm=(2*i-1)*pi/(2*a);

wtj=wtj+2*g*sin(btm*a)*cosh(btm*y)*cos(btm*x)/(a*k*btm^3*cosh(btm *b));

end

wt=(a^2-x^2)*g/(2*k)+T1-wtj

for i=1:300

fwt=0;

for j=1:15

for k0=1:15

btn=(2*j-1)*pi/(2*a);

gmv=(2*k0-1)*pi/(2*b);

fwt=fwt+4/(a*b)*sin(btn*a)*sin(gmv*b)/(btn*gmv)*((T0-T1-g/(k*btn^ 2))+g*gmv^2/(k*(gmv^2+btn^2)*btn^2))*cos(btn*x)*cos(gmv*y)*exp(-a r*(btn^2+gmv^2)*t);

end

end

A(p,q,1)=wt+fwt;

end

end

end

热传导与热辐射大作业报告..(精编文档).doc

【最新整理,下载后即可编辑】 热传导与热辐射大作业报告

目录 一、作业题目............................................................................................ - 1 - 二、作业解答............................................................................................ - 2 - 个人感想 ................................................................................................... - 17 - 附件.计算中所用程序........................................................................... - 18 -

一、作业题目 一矩形平板a x ≤≤0, b y ≤≤0,内有均匀恒定热源0g ,在0=x 及0=y 处绝热,在a x =及b y =处保持温度1T ,初始时刻温度为0T ,如右图1所示: 1、求0>t 时,矩形区域内的温度分布()t y x T ,,的解析表达式; 2、若m a 18=,m b 12=,3 01m W g =,K 600=,K T 200=,热传导系数 K m W k ?=0.1,热扩散系数20.8m α=。请根据1中所求温度分布用MATLAB 软件绘出下列结果,加以详细物理比较和分析: (a) 300s 内,在同一图中画出点)4,0(、)8,0(、()0,6、)0,12(、)6,9((单位:m )温度随时间的变化; (b) 200s 内,画出点)4,18(、)8,18(、()12,6、)12,12(、)6,9((单位:m )处,分别沿x 、y 方向热流密度值随时间的变化; (c) 画出s s s s s t 1501251007550、、、、=时刻区域内的等温线; (d) 300s 内,在同一图中画出点()0,9(单位:m )在0g 分别等于31m W ,32m W ,33m W 情况下的温度变化; (e) 300s 内,比较点(9,6) (单位:m )在其它参数不变情况下热导率分别为K m W ?5.0、K m W ?0.1和K m W ?5.1的温度、热流密度变化; (f) 300s 内,比较点(9,6) (单位:m )在其它参数不变情况下热扩散系数分别为s m 24.0、s m 28.0和m 22.1的温度、热流密度变化; 3、运用有限差分法计算2中(b)、(d)和(e),并与解析解结果进行比较,且需将数值解与解析解的相对误差减小到1‰以下; 4、附上源程序和个人体会; 以报告形式整理上述结果,用A4纸打印上交。

热辐射计算公式

传热学课程自学辅导资料 (热动专业) 二○○八年十月

传热学课程自学进度表 教材:《传热学》教材编者:杨世铭陶文铨出版社:高教出版时间:2006 1

注:期中(第10周左右)将前半部分测验作业寄给班主任,期末面授时将后半部分测验作业直接交给任课教师。总成绩中,作业占15分。 2

传热学课程自学指导书 第一章绪论 一、本章的核心、重点及前后联系 (一)本章的核心 1、导热、对流、辐射的基本概念。 2、传热过程传热量的计算。 (二)本章重点 1、导热、对流、辐射的基本概念。 2、传热过程传热量的计算。 (三)本章前后联系 简要介绍了热量传递的三种基本方式和传热过程 二、本章的基本概念、难点及学习方法指导 (一)本章的基本概念 1、热传导 导热(Heat Conduction):物体各部分之间不发生相对位移时,依靠分子、原子及自由电子等微观粒子的热运动而产生的热量传递称为导热。 特点:从宏观的现象看,是因物体直接接触,能量从高温部分传递到低温部分,中间没有明显的物质迁移。 从微观角度分析物体的导热机理: 气体:气体分子不规则运动时相互碰撞的结果。 导电固体:自由电子不规则运动相互碰撞的结果,自由电子的运动对其导热起主导作用。 非导电固体:通过晶格结构振动所产生的弹性波来实现热量传递,即院子、分子在其平衡位置振动。 液体:第一种观点类似于气体,只是复杂些,因液体分子的间距较近,分子间的作用力对碰撞的影响比气体大;第二种观点类似于非导电固体,主要依靠弹性波(晶格的振动,原子、分子在其平衡位置附近的振动产生的)的作用。 热流量:单位时间传递的热量称为热流量,用Ф表示,单位为W。 3

传热学试题库含参考答案

《传热学》试题库 第一章概论 一、名词解释 1.热流量:单位时间所传递的热量 2.热流密度:单位传热面上的热流量 3.导热:当物体有温度差或两个不同温度的物体接触时,在物体各部分之间不发生相对位移的情况下,物质微粒(分子、原子或自由电子)的热运动传递了热量,这种现象被称为热传导,简称导热。 4.对流传热:流体流过固体壁时的热传递过程,就是热对流和导热联合用的热量传递过程,称为表面对流传热,简称对流传热。 5.辐射传热:物体不断向周围空间发出热辐射能,并被周围物体吸收。同时,物体也不断接收周围物体辐射给它的热能。这样,物体发出和接收过程的综合结果产生了物体间通过热辐射而进行的热量传递,称为表面辐射传热,简称辐射传热。6.总传热过程:热量从温度较高的流体经过固体壁传递给另一侧温度较低流体的过程,称为总传热过程,简称传热过程。7.对流传热系数:单位时间单位传热面当流体温度与壁面温度差为1K是的对流传热量,单位为W/(m2·K)。对流传热系数表示对流传热能力的大小。 8.辐射传热系数:单位时间单位传热面当流体温度与壁面温度差为1K是的辐射传热量,单位为W/(m2·K)。辐射传热系数表示辐射传热能力的大小。 9.复合传热系数:单位时间单位传热面当流体温度与壁面温度差为1K是的复合传热量,单位为W/(m2·K)。复合传热系数表示复合传热能力的大小。 10.总传热系数:总传热过程中热量传递能力的大小。数值上表示传热温差为1K时,单位传热面积在单位时间的传热量。 二、填空题 1.热量传递的三种基本方式为、、。 (热传导、热对流、热辐射) 2.热流量是指,单位是。热流密度是指,单位是。 (单位时间所传递的热量,W,单位传热面上的热流量,W/m2) 3.总传热过程是指,它的强烈程度用来衡量。 (热量从温度较高的流体经过固体壁传递给另一侧温度较低流体的过程,总传热系数) 4.总传热系数是指,单位是。 (传热温差为1K时,单位传热面积在单位时间的传热量,W/(m2·K)) 5.导热系数的单位是;对流传热系数的单位是;传热系数的单位是。 (W/(m·K),W/(m2·K),W/(m2·K)) 6.复合传热是指,复合传热系数等于之和,单位是。 (对流传热与辐射传热之和,对流传热系数与辐射传热系数之和,W/(m2·K)) 7.单位面积热阻r t的单位是;总面积热阻R t的单位是。 (m2·K/W,K/W) 8.单位面积导热热阻的表达式为。 (δ/λ) 9.单位面积对流传热热阻的表达式为。 (1/h) 10.总传热系数K与单位面积传热热阻r t的关系为。 (r t=1/K) 11.总传热系数K与总面积A的传热热阻R t的关系为。 (R t=1/KA) 12.稳态传热过程是指。 (物体中各点温度不随时间而改变的热量传递过程。) 13.非稳态传热过程是指。

物化实验电渗实验报告

篇一:物理化学实验思考题及参考答案 实验七十恒温水浴组装及性能测试 1. 简要回答恒温水浴恒温原理是什么?主要由哪些部件组成?它们的作用各是什么? 答:恒温水浴的恒温原理是通过电子继电器对加热器自动调节来实现恒温的目的。当恒温水浴因热量向外扩散等原因使体系温度低于设定值时,继电器迫使加热器工作,到体系再次达到设定温度时,又自动停止加热。这样周而复始,就可以使体系的温度在一定范围内保持恒定。 2. 恒温水浴控制的温度是否是某一固定不变的温度? 答:不是,恒温水浴的温度是在一定范围内保持恒定。因为水浴的恒温状态是通过一系列部件的作用,相互配合而获得的,因此不可避免的存在着不少滞后现象,如温度传递、感温元件、温度控制器、加热器等的滞后。所以恒温水浴控制的温度有一个波动范围,并不是控制在某一固定不变的温度,并且恒温水浴内各处的温度也会因搅拌效果的优劣而不同。 4. 什么是恒温槽的灵敏度?如何测定? 答:ts为设定温度,t1为波动最低温度,t2为波动最高温度,则该恒温水浴灵敏度为: s?? 测定恒温水浴灵敏度的方法是在设定温度 温度-时间曲线(即灵敏度曲线)分析其性能。 5. 恒温槽内各处温度是否相等?为什么? t2?t12下,用精密温差测量仪测定温度随时间的变化,绘制 答:不相等,因为恒温水浴各处散热速率和加热速率不可能完全一致。 6. 如何考核恒温槽的工作质量? 答:恒温水浴的工作质量由两方面考核:(1)平均温度和指定温度的差值越小越好。(2)控制温度的波动范围越小,各处的温度越均匀,恒温水浴的灵敏度越高。 7. 欲提高恒温浴的灵敏度,可从哪些方面进行改进? 答:欲提高恒温水浴的灵敏度,可从以下几个方面进行改进:①恒温水浴的热容量要大,恒温介质流动性要好,传热性能要好。②尽可能加快加热器与感温元件间传热的速度,使被加热的液体能立即搅拌均匀并流经感温元件及时进行温度控制。为此要使:感温元件的热容尽可能小;感温元件、搅拌器与电加热器间距离要近些;搅拌器效率要高。③作调节温度用的加热器要导热良好,热容量要小,功率要适宜。 8. 恒温槽的主要部件有哪些,它们的作用各是什么? 答:恒温水浴主要组成部件有:浴槽、加热器、搅拌器、温度计、感温元件和温度控制器。浴槽用来盛装恒温介质;在要求恒定的温度高于室温时,加热器可不断向水浴供给热量以补偿其向环境散失的热量;搅拌器一般安装在加热器附近,使热量迅速传递,槽内各部位温度均匀;温度计是用来测量恒温水浴的温度;感温元件的作用是感知恒温水浴温度,并把温度信号变为电信号发给温度控制器;温度控制器包括温度调节装置、继电器和控制电路,当恒温水浴的温度被加热或冷却到指定值时,感温元件发出信号,经控制电路放大后,推动继电器去开关加热器。 9. 影响恒温槽灵敏度的因素很多,大体有那些? 答:影响恒温槽灵敏度的因素有:(1)恒温水浴的热容,恒温介质的流动性,传热性能。(2)加热器与感温元件间传热的速度,感温元件的热容;感温元件、搅拌器与电加热器间的距离;搅拌器的效率。(3)作调节温度用的加热器导热性能和功率大小。 10. 简要回答恒温槽主要由哪些部件组成?你在哪些物理化学实验中用了恒温技术,试举出一个实验实例。 答:(1)主要部件:浴槽(恒温介质),加热器,搅拌器,温度计,感温元件(导电表、电接

传热学试题(答案)

①Nu准则数的表达式为(A ) ② ③根据流体流动的起因不同,把对流换热分为( A) ④A.强制对流换热和自然对流换热B.沸腾换热和凝结换热 ⑤C.紊流换热和层流换热D.核态沸腾换热和膜态沸腾换热 ⑥雷诺准则反映了( A) ⑦A.流体运动时所受惯性力和粘性力的相对大小 ⑧B.流体的速度分布与温度分布这两者之间的内在联系 ⑨C.对流换热强度的准则 ⑩D.浮升力与粘滞力的相对大小 ?彼此相似的物理现象,它们的( D)必定相等。 ?A.温度B.速度 ?C.惯性力D.同名准则数 ?高温换热器采用下述哪种布置方式更安全( D) ?A.逆流B.顺流和逆流均可 ?C.无法确定D.顺流

?顺流式换热器的热流体进出口温度分别为100℃和70℃,冷流体进出口温度分别为20℃和40℃,则其对数平均温差等于() A.60.98℃B.50.98℃ C.44.98℃D.40.98℃ ?7.为了达到降低壁温的目的,肋片应装在( D) ?A.热流体一侧B.换热系数较大一侧 ?C.冷流体一侧D.换热系数较小一侧 21黑体表面的有效辐射( D)对应温度下黑体的辐射力。 22A.大于B.小于 C.无法比较D.等于 23通过单位长度圆筒壁的热流密度的单位为( D) 24A.W B.W/m2 C.W/m D.W/m3 25格拉晓夫准则数的表达式为(D ) 26 27.由炉膛火焰向水冷壁传热的主要方式是( A ) 28 A.热辐射 B.热对流 C.导 热 D.都不是 29准则方程式Nu=f(Gr,Pr)反映了( C )的变化规律。 30A.强制对流换热 B.凝结对流换热

31 C.自然对流换热 D.核态沸腾换热 32下列各种方法中,属于削弱传热的方法是( D ) 33A.增加流体流度 B.设置肋片 34 C.管内加插入物增加流体扰动 D.采用导热系数较小的材 料使导热热阻增加 35冷热流体的温度给定,换热器热流体侧结垢会使传热壁面的温度( A ) 36 A.增加 B.减小 C.不变 D.有时增 加,有时减小 37将保温瓶的双层玻璃中间抽成真空,其目的是( D ) 38A.减少导热 B.减小对流换热 39 C.减少对流与辐射换热 D.减少导热与对流换热 40下列参数中属于物性参数的是( B ) 41A.传热系数 B.导热系数 42 C.换热系数 D.角系数 43已知一顺流布置换热器的热流体进出口温度分别为300°C和150°C,冷流体进出口温度分别为50°C和100°C,则其对数平均温差约为( )

热传导与热辐射大作业报告..

热传导与热辐射大作业报告

目录 一、作业题目.............................................................................................................................. - 1 - 二、作业解答.............................................................................................................................. - 2 - 个人感想.................................................................................................................................... - 17 - 附件.计算中所用程序.............................................................................................................. - 18 -

一矩形平板a x ≤≤0, b y ≤≤0,内有均匀恒定热源0g ,在0=x 及0=y 处绝热,在a x =及b y =处保持温度1T ,初始时刻温度为0T ,如右图1所示: 1、求0>t 时,矩形区域内的温度分布()t y x T ,,的解析表达式; 2、若m a 18=,m b 12=,301m W g =,6T 1=0K m W k ?=0.1,热扩散系数20.8m s α=。请根据1中所求温度分布用 MATLAB 软件绘出下列结果,加以详细物理比较和分析: (a) 300s 内,在同一图中画出点)4,0(、)8,0(、()0,6、)0,12(、)6,9((单位:m )温度随时间的变化; (b) 200s 内,画出点)4,18(、)8,18(、()12,6、)12,12(、)6,9((单位: m )处,分别沿x 、y 方向热流密度值随时间的变化; (c) 画出s s s s s t 1501251007550、、、、=时刻区域内的等温线; (d) 300s 内,在同一图中画出点()0,9(单位:m )在0g 分别等于 31m W ,32m W ,33m W 情况下的温度变化; (e) 300s 内,比较点(9,6) (单位:m )在其它参数不变情况下热导 率分别为K m W ?5.0、K m W ?0.1和K m W ?5.1的温度、热流密度变化; (f) 300s 内,比较点(9,6) (单位:m )在其它参数不变情况下热扩 散系数分别为m 24.0、s m 28.0和s m 22.1的温度、热流密度变化; 3、运用有限差分法计算2中(b)、(d)和(e),并与解析解结果进行比较,且需 将数值解与解析解的相对误差减小到1‰以下; 4、附上源程序和个人体会; 以报告形式整理上述结果,用A4纸打印上交。

关于热传导问题

本科毕业论文 论文题目:关于热传导问题 学生姓名:姜丽丽 学号:200600910058 专业:物理学 指导教师:李健 学院:物理与电子科学学院 2010年5月20日

毕业论文(设计)内容介绍 论文(设计) 题目 关于热传导问题 选题时间2010.1.10 完成时间2010.05.20 论文(设计) 字数 8000 关键词热传导,热量,温度 论文(设计)题目的来源、理论和实践意义: 题目来源:基础研究。 理论和实践意义:在了解热传导的概念基础之上,通过系统地分析热传导的过程,得出热传导的微分方程,从量上对热传导过程有了一个深刻的认识;并且将热传导微分方程应用于解决各种几何形状的固体材料,得出温度分布的情况,以及简单的应用于气体、液体。热传导是深入学习和研究各种传热现象乃至工程热物理各学科的重要基础之一。 论文(设计)的主要内容及创新点: 主要内容:本文主要通过对热传导过程的理论分析,总结出热量与温度的关系,然后分析各种热传导现象温度的变化规律。 创新点:1、总结了不同传热条件下热传导过程中热量与温度的关系; 2、分析了不同条件下热传导温度的变化规律。 附:论文(设计)本人签名:2010年5月20日

目录 摘要 (1) ABSTRACT (1) 一、引言 (2) 二、热传导理论基础 (2) (一)热传导的概念 (2) (二)温度场与温度梯度 (3) (三)热传导方程 (4) 三、固体、液体、气体热传导及热源的影响 (7) (一)无源热传导温度的变化规律 (8) (二)有源热传导温度的变化规律 (10) 四、影响热传导的因素 (11) 五、热传导的应用 (12) 六、总结 (12) 参考文献 (12)

光电效应实验报告

用光电效应测普朗克常数 【实验简介】 光电效应是物理学中一个重要而神奇的现象。在高于某特定频率的电磁波照射下,某些物质内部的电子会被光子激发出来而形成电流,即光生电。光电现象由德国物理学家赫兹于1887年发现,而正确的解释为爱因斯坦所提出。科学家们在研究光电效应的过程中,物理学者对光子的量子性质有了更加深入的了解,这对波粒二象性概念的提出有重大影响。 普朗克常数记为h,是一个物理常数,用以描述量子大小,约为62619 .6。在量子力学中占有重要的角色,马克斯?普朗克在1900年研10 ?-34 s J? 究物体热辐射的规律时发现,只有假定电磁波的发射和吸收不是连续的,而是一份一份地进行的,计算的结果才能和试验结果是相符。这样的一份能量叫做能量子,每一份能量子等于,为辐射电磁波的频率。普朗克常数是自然科学中一个很重要的常量,它可以用光电效应简单而又准确地测量。 【实验目的】 1、通过实验深刻理解爱因斯坦的光电效应理论,了解光电效应的基本规律; 2、掌握用光电管进行光电效应研究的方法; 3、学习对光电管伏安特性曲线的处理方法,并用以测定普朗克常数。 【实验仪器】 GD-4型智能光电效应(普朗克常数)实验仪(由光电检测装置和实验仪主机两部分组成)光电检测装置包括:光电管暗箱GDX-1,高压汞灯箱GDX-2;高压汞灯电源GDX-3和实验基准平台GDX-4。实验主机为:GD-4型光电效应(普朗克常数)实验仪,该仪器包含有微电流放大器和扫描电压源发生器两部分组成的整体仪器。

【实验原理】 1、普朗克常数的测定 根据爱因斯坦的光电效应方程: P s E hv W =- (1) (其中:P E 是电子的动能,hv 是光子的能量,v 是光的频率,s W 是逸出功, h 是普朗克常量。)s W 是材料本身的属性,所以对于同一种材料s W 是一样的。当光子的能量s hv W <时不能产生光电子,即存在一个产生光电效应的截止频率0v (0/s v W h =)。实验中:将A 和K 间加上反向电压KA U (A 接负极),它对光电子运动起减速作用.随着反向电压KA U 的增加,到达阳极的光电子的数目相应减少,光电流减小。当KA s U U =时,光电流降为零,此时光电子的初动能全部用于克服反向电场的作用。即: s P eU E = (2) 这时的反向电压叫截止电压。入射光频率不同时,截止电压也不同。将(2)式代入(1)式,得: 0s h U v v e =-() (3) (其中0/s v W h =)式中h e 、都是常量,对同一光电管0v 也是常量,实验中测量不同频率下的s U ,做出s U v -曲线。在(3)式得到满足的条件下,这是一条直线。若电子电荷e 已知,由斜率h k e = 可以求出普朗克常数h 。由直线上的截距可以求出溢出功s W ,由直线在v 轴上的截距可以求出截止频率0v 。如图(2)所示。 2、测量光电管的伏安特性曲线 在照射光的强度一定的情况下,光电管中的电流I 与光电管两端的电压AK U 之间存在着一定的关系。 理想曲线与实验曲线有所不同,原因有: ①光电管的阴极采用逸出电势低的材料制 成,这种材料即使在高真空中也有易氧化的趋向,使阴极表面各处的逸出电势不尽相等,同时,逸出具有最大动能的光电子数目大为减少。随着反向电压的增高, 光电流不是陡然截止,而是较快降低后平缓的趋近零点。

热传递方式

热传递有三种方式:传导、对流和辐射 传导热从物体温度较高的部分沿着物体传到温度较低的部分,叫做传导。 热传导是固体中热传递的主要方式。在气体或液体中,热传导过程往往和对流同时发生。各种物质都能够传导热,但是不同物质的传热本领不同。善于传热的物质叫做热的良导体,不善于传热的物质叫做热的不良导体。各种金属都是热的良导体,其中最善于传热的是银,其次是铜和铝。瓷、纸、木头、玻璃、皮革都是热的不良导体。最不善于传热的是羊毛、羽毛、毛皮、棉花、石棉、软木和其他松软的物质。液体中,除了水银以外,都不善于传热,气体比液体更不善于传热。 对流靠液体或气体的流动来传热的方式叫做对流。 对流是液体和气体中热传递的主要方式,气体的对流现象比液体更明显。 利用对流加热或降温时,必须同时满足两个条件:一是物质可以流动,二是加热方式必须能促使物质流动。 辐射热由物体沿直线向外射出,叫做辐射。 用辐射方式传递热,不需要任何介质,因此,辐射可以在真空中进行。 地球上得到太阳的热,就是太阳通过辐射的方式传来的。 一般情况下,热传递的三种方式往往是同时进行的。 补充内容: 一、热传递与动量传递、质量传递并列为三种传递过程。 二、热传递与热传导的关系 有许多人在学习物理、解答物理习题时,常把热传递与热传导混为一谈,认为热传递与热传导描述的是同一物理过程,殊不知它们是两个不同的概念。 由内能与热能一节以及热、热运动与热现象的阐述可知,物体的内能就是组成物体全部分子、原子的动能、势能和内部电子能等总和,物体内能的改变可以通过分子、原子有规则运动的能量交换来达成,也可以通过分子、原子的无规则运动的能量交换来达成(或者是两者兼有)。前者能量交换的方式就是作宏观机械功的方式,后者能量交换的方式就是所谓的热传递。更确切地讲,所谓热传递就是没有作宏观机械功而使内能从一个物体转移到另一个物体,或者从物体的一部分转移到另一部分的过程。它通过热传导、对流和热辐射三种方式来实现。实际热传递过程中,这三种方式常常是相伴进行的,重要的是看哪一种方式占主要地位。在热力学中,把除了热传递以外的其他一切能量转移方式都归于作功。所以,热传递和作功是能量转移的两种方式,除此之外没有其他方式。 由以上论述可知,热传递是能量传递的一种方式,它具体又包括热传导、对流和热辐射三种形式。为了帮助大家能把热传递与热传导更好地加以区别,下面我们有必要对热传导、对流和总辐射分别作论述。 热传导指的是物质系统(气体、液体或固体),由于内部各处温度不均匀而引起的热能(内能)从温度较高处向温度较低处输运的现象。 热传导的实质是由大量分子、原子或电子的相互碰撞,而使热能(内能)从物体温度较高部分传到温度较低部分的过程。热传导是固体中热传递的主要方式,在气体、液体中它往往与对流同时发生。各种物质的热传导性能不同,热传导过程的基本定律是博里叶定律。

物化实验报告燃烧热的测定

华南师范大学实验报告 一、实验目的 1、明确燃烧热的定义,了解定压燃烧热与定容燃烧热的差别。 2、掌握量热技术的基本原理;学会测定萘的燃烧热 3、了解氧弹量热计的主要组成及作用,掌握氧弹量热计的操作技术。 4、学会雷诺图解法校正温度改变值。 二、 实验原理 通常测定物质的燃烧热,是用氧弹量热计,测量的基本原理是能量守恒定律。一定量被测物质样品在氧弹中完全燃烧时,所释放的热量使氧弹本身及其周围的介质和量热计有关附件的温度升高,测量介质在燃烧前后温度的变化值T ?,就能计算出该样品的燃烧热。 ()p V Q Q RT n g =+? (1) ()V W W Q Q C W C M +=+样品21总铁丝铁丝水水(T -T ) (2) 用已知燃烧热的物质(本实验用苯甲酸)放在量热计中燃烧,测其始末温度,求出T ?。 便可据上式求出K ,再用求得的K 值作为已知数求出待测物(萘)的燃烧热。 三、仪器和试剂 1.仪器 SHR-15氧弹量热计1台;贝克曼温度计;压片机 2台;充氧器1台;氧气钢瓶1个;1/10℃温度计;万能电表一个;天平 2.试剂 铁丝;苯甲酸(AR);萘(AR );氧气 四、实验步骤 1、测定氧氮卡计和水的总热容量 (1)样品压片:压片前先检查压片用钢模,若发现钢模有铁锈油污或尘土等,必须擦净后,才能进行压片,用天平称取约0.8g 苯甲酸,再用分析天平准确称取一根铁丝质量,从模具的上面倒入己称好的苯甲酸样品,徐徐旋紧 压片机的螺杆,直到将样品压成片状为止。抽出模底的托板,再继续向下压,使模底和样品一起脱落,然后在分析天平上准确称重。 分别准确称量记录好数据,即可供燃烧热测定用。 (2)装置氧弹、充氧气:拧开氧弹盖,将氧弹内壁擦净,特别是电极下端的不锈钢接线柱更应擦十净,将点火丝的两端分别绑紧在氧弹中的两根电极上,选紧氧弹盖,用万用表欧姆档检查两电极是否通路,使用高压钢瓶时必须严格遵守操作规则。将氧弹放在充氧仪台架上,拉动板乎充入氧气。 (3)燃烧温度的测定:将充好氧气后,再用万用表检查两电极间是否通路,若通路将氧弹放入量热计内简。用量筒称3L 自来水,倒入水桶内,装好搅拌轴,盖好盖子,将贝克曼温度计探头插入水中,此时用普通温度计读出水外筒水温和水桶内的水温。接好电极,盖上盖了,打开搅拌开关。待温度温度稳定上升后,每个半分钟读取贝克曼温度计一次,连续记

《热传导和热辐射》习题

《热传导和热辐射》习题 一.如右图1所示,长度为L 的杆,暴露在温度为T ∞的环境中,杆内安装有电热元件,使沿杆长方向产生均匀的内热源速率q ? 。试用长度为dx 的微元体的概念推导控制方程(注:所用到的量自己设定)。 二.边界条件和初始条件如下图2所示,求(),,T x y τ的表达式。 三. 如上图3所示,一矩形板,初始条件:0τ=时,(),T f x y =。 边界条件:0x = 处,0T =;x a =处, 10T H T x ?+=?;y=0处,20T H T y ?-+=?;y b =处,30T H T y ?+=?。求0τ>时,矩形板的温度分布(),,T x y τ。 四. 某一半无限大角区,初始条件和边界条 件如右图4所示。求该区域的(),,T x y τ的表达式。 五. 一块平板0x L ≤≤,初始温度是零度,当时间0τ>时,平板内以恒定的速

率20g w m ????产生热量,而0x =处的边界面保持绝热,x L =处的边界保持温 度为零度。试求:时间0τ>时平板内温度分布(),T x τ的表达式。 六.某实心无限长圆柱,0r b ≤≤,初始温度分布为()F r ,时间0τ>时,r b =处的边界以对流方式向温度为零的环境散热。试求该圆柱的温度分布(),T r τ。 七. 半径r b =的无限长圆柱,初始温度分布为()F r ,突然圆柱体置于温度为T ∞ 环境中,在r b =处的边界以对流形式向温度为T ∞的环境散热。试求0τ>时圆柱内的温度分布(),T r τ。 八.某实心半球,01μ≤≤,0r b ≤≤,初始温度为(),0T r μ=,时间 0τ>时,r b =处的球表面保持温 度为零,0μ=处的底面绝热,如右图5所示。试求该半球的温度分布(),,T f r μτ=。 九.一半无限大物体,0x ≤≤∞,初始温度为i T ,当时间0τ>时,0x =处的边界 条件为00 x q T k x A =?-=?;x →∞时,(),i T T τ∞=。试用Laplace 变换法求解时间0τ>时该区域的温度分布。 十.已知某个函数的Laplace 变换为()22 1 F s s β = +,其中β是正实数。试求函数()F t 。 十一.处于熔解温度m T 的液体占据 0x >的半空间,见右图6,在时间0τ=时,0x =的边界温度降低到温度为0T (0m T T <),并在时间0τ>时,始终维持这个温度。试用精确法或近似法求解固相中的温度分布以及固—液界面的位置随时间的变化。

北京科技大学参数检测实验报告全

北京科技大学参数检测实验报告全

实验六工业热电偶的校验 摘要:本实验重在了解热电偶的工作原理并通过对热电偶进行校正验证镍铬热电偶的准确性并了解补偿导线的使用方法。 关键词:热电偶校正标准被校补偿导线 1 引言 (1)实验目的 1.了解热电偶的工作原理、构造及使用方法。了解热电势与热端温度的关系。了解对热电偶进行校正的原因及校正方法,能独立地进行校正实验和绘制校正曲线。 2.了解冷端温度对测量的影响及补偿导线的使用方法。 3.通过测量热电势掌握携带式直流电位差计的使用方法。 (2)实验设备 1.铂铑-铂热电偶(标准热电偶)1支 2.镍铬-镍硅热电偶(被校正热电偶)1支 3.热电偶卧式检定炉(附温度控制器)1台 4.携带式直流电位差计 1台 5.酒精温度计 1支 6.广口保温瓶 1个 7.热浴杯及酒精灯各1个 2 内容 1.了解直流电位差计各旋钮、开关及检流计的作用,掌握直流电位差计的使用方法。 2.热电偶校正 (1)实验开始,给检定炉供电,炉温给定值为400oC。当炉温稳定后,用电位差计分别测量标准热电偶和被校正热电偶的热电势,每个校正点的测量不得少于四次。数据记录于表6-1。 (2)依次校正600oC、 800oC、 1000oC各点。 (3)将测量电势求取平均值并转换成温度,计算误差,根据表6-3判断被热电偶是否合格。绘制校验曲线。 3.热电偶冷端温度对测温的影响及补偿导线的使用方法。 (1)1000oC校正点作完后,保持炉温不变。测量热浴杯中的水温,然后用电位差计分别测量镍铬-镍硅热电偶未加补偿导线和加补偿导线的热电势。数据记录于表6-2中。 (2)用酒精灯加热热浴杯,当水温依次为30oC、 40oC、 50oC时,用电位差计分别测量镍铬-镍硅热电偶未加补偿导线和加补偿导线的热电势。数据记录于表6-2中。 (3)用铂铑-铂热电偶测量炉温,检查实验过程中炉温是否稳定,分析若炉

ht黑体辐射出射度曲线绘制实验报告..

黑体辐射出射度曲线绘制 实验报告 姓名: 学号: 班级:

黑体辐射出射度曲线绘制 一、 实验目的: 学习和巩固黑体辐射定律,验证普朗克辐射定律、斯蒂芬—玻尔兹曼定律、维恩位移定律;了解单色仪的工作原理及基本结构。 二、 实验内容: 按照实验指导书的要求和步骤操作仿真黑体实验的装置,验证黑体相关定律。 三、 实验设备: WHS-型黑体实验装置,计算机,打印机等。 四、 实验原理: 黑体是一个能完全吸收并向外完全辐射入射在它上面的辐射能的理想物体。黑体的光谱辐射量和温度之间存在精确的定量关系,确定了黑体的温度,就可以确定其他的辐射量,因此黑体辐射定律在辐射度学中起了基准作用,占据十分重要的地位。 自然界中不存在绝对黑体,用人工的的方法可以制成尽可能接近绝对黑体的辐射源。钨的熔点约为3695K ,充气钨灯丝的光谱辐射分布和黑体十分相近,因此可以用来仿真黑体。CIE 规定分布温度2856K 的充气钨丝灯作为标准A 光源,以此实现绝对温度为2856K 的完全辐射题的辐射,即标准照明体A 。本次试验所用的WHS-1黑体实验装置就是以溴钨灯模拟黑体的辐射源,通过改变灯丝的电流来模拟改变黑体的色温。 描述黑体辐射定律的普朗克公式以波长表示的形式为: 1)exp(1),(2510-=T c c T M λλλ (1) 其中第一辐射常数21621m W 107418.32??==-hc c π;第二辐射常数K m 104388.122??==-k hc c ,k 为玻尔兹曼常数,c 为光速。 由于黑体是朗伯辐射体,因此可以得到黑体的光谱辐亮度表示式如下: 1)e x p (1 ),(2510-=T c c T L λπλλ (2)

热辐射成像实验

实验3 热辐射成像实验 热辐射是19世纪发展起来的新学科,至19世纪末该领域的研究达到顶峰,以致于量子论这个婴儿注定要从这里诞生。黑体辐射实验是量子论得以建立的关键性实验之一,也是高校实验教学中一重要实验。物体由于具有温度而向外辐射电磁波的现象成为热辐射,热辐射的光谱是连续谱,波长覆盖范围理论上可从0到∞,而一般的热辐射主要靠波长较长的可见光和红外线。物体在向外辐射的同时,还将吸收从其他物体辐射的能量,且物体辐射或吸收的能量与它的温度、表面积、黑度等因素有关。 【实验目的】 1、研究物体的辐射面、辐射体温度对物体辐射能力大小的影响,并分析原因。 2、测量改变测试点与辐射体距离时,物体辐射强度P 和距离S 以及距离的平方S 2的关系,并描绘P-S 2曲线。 3、依据维恩位移定律,测绘物体辐射能量与波长的关系图。 4、测量不同物体的防辐射能力,你能够从中得到哪些启发?(选做) 5、了解红外成像原理,根据热辐射原理测量发热物体的形貌(红外成像)。 【实验原理】 热辐射的真正研究是从基尔霍夫(G.R.Kirchhoff )开始的。1859年他从理论上导入了辐射本领、吸收本领和黑体概念,他利用热力学第二定律证明了一切物体的热辐射本领r (ν,T )与吸收本领α(ν,T )成正比,比值仅与频率ν和温度T 有关,其数学表达式为: ),() ,(),(T F T T r νναν= (3-1) 式中F (ν,T )是一个与物质无关的普适函数。在1861年他进一步指出,在一定温度下用不透光的壁包围起来的空腔中的热辐射等同于黑体的热辐射。1879年,斯特藩(J.Stefan )从实验中总结出了黑体辐射的辐射本领R 与物体绝对温度T 四次方成正比的结论;1884年,玻耳兹曼对上述结论给出了严格的理论证明,其数学表达式为: 4T R T σ= (3-2) 即斯特藩-玻耳兹曼定律,其中4212/10673.5K cm w -?=σ为玻耳兹曼常数。 1888年,韦伯(H.F.Weber )提出了波长与绝对温度之积是一定的。1893年维恩(wilhelmwien )从理论上进行了证明,其数学表达式为:

04111202 黑体辐射出射度曲线绘制实验报告

黑体辐射出射度曲线绘制 一、目的:学习和巩固黑体辐射定律,验证普朗克辐射定律、斯蒂芬-玻尔兹曼等定律;了解单色仪的工作原理及基本结构。 二、内容:按照实验指导书的要求和步骤操作仿真黑体实验装置,验证黑体相关定律。 三、设备:WHS-型黑体实验装置,计算机,打印机等。四、 原理: 黑体是一个能完全吸收并向外完全辐射入射在它上面的辐射能的理想物体。 黑体的光谱辐射量和温度之间存在精确的定量关系,确定了黑体的温度,就可以确定其他的辐射量,因此黑体辐射定律在辐射度学中起了基准的作用,占据十分重要的地位。 自然界不存在绝对黑体,用人工的方法可以制成尽可能接近绝对黑体的辐射源。钨的熔点约为3695K ,充气钨丝灯的光谱辐射分布和黑体十分接近,因此可以用来仿真黑体。CIE 规定分布温度2856K 的充气钨丝灯作为标准A 光源,以此实现绝对温度为2856K 的完全辐射体的辐射,即标准照明体A 。本次实验所用的WHS-1黑体实验装置就是以溴钨灯模拟黑体的辐射源,通过改变灯丝的电流来模拟改变黑体的色温。 描述黑体辐射定律的普朗克公式以波长表示的形式为: (1) M 0(λ,T)= c 1 λ51 exp (c 2λT )?1式(1)中,第一辐射常数;第二辐射常数c 1=2π?c 2=3.7418?10?16W ?m 2 ;;为光速。 c 2=?c k =1.4388?10?2 m ?K k 为玻尔兹曼常数c 由于黑体是朗伯辐射体,因此可以得到黑体的光谱辐亮度表示式如下: (2) L 0(λ,T)= c 1 πλ51 exp (c 2λT )?1斯蒂芬-玻尔兹曼定律描述的是黑体的辐射出射度与温度之间的关系: (3) M 0(T )=σT 4 (W m 2)式(3)中, 称为斯蒂芬-玻尔兹曼常σ=c 1π415c 42=5.6696?10?8(W ?m 2?K ?4 )数。 黑体光谱辐射是单峰函数,其峰值波长满足维恩位移定律: (4) λm T =b (μm ?K)式(4)中,常数。 b = c 24.9651=2898 μm ?K 保护层查所有复杂设况进行自

太阳能辐射计算公式

一、中国太阳能直接辐射的计算方法 ()1bS a Q S +='(1) () 211111S c S b a Q S ++='(2)⊙ ()n c S b a Q S 2122++='(3) S ′为直接辐射平均月(年)总量;Q 为计算直接辐射的起始数据,可采用天文总辐射S 0,理想大气总辐射,Q i ,晴天总辐射Q 0来表示。a ,b ,a 1,b 1,c 1,a 2,b 2,c 2为系数。n 为云量。S 1为日照百分率。 相关系数的计算公式: ()() ()() ()()∑∑∑∑∑∑∑∑∑=========?? ? ??-?? ? ??--= ----= n i n i i i n i n i i i n i n i n i i i i i n i i i n i i i y y n x x n y x y x n y y x x y y x x r 12 12 12 121 1 1 1 2 21 考虑到大气透明度,则有 ()()n c S b a P P P Q n c S b a P P P Q S i m i 2122cos cos sin sin 1 2122++=++='+海 年海 年δ ?δ?(4) 其中m 为大气质量: δ ?δ?cos cos sin sin 1 sinh 1+== Θm 其中,φ为测站的纬度;δ为赤纬角,取每月15日的赤纬值作为月平均值;时角ω统一取中午12时,则ω=0,cosω=1;年P 为测站的年平均气压,P 海为海平面气压,P 海=1013.25mp ,海年P P 为对大气质量进行的高度订正。 对于a 2的计算: 当测站的海拔H≥3000m 时,a 2=0.456; 当H≤3000m 是,若年平均绝对湿度E ≤10.0mb ,则 F a ?-=00284.0688.02 否则F a ?-=01826.07023.02,其中F 为测站沙尘暴日数与浮尘日数之和。 对于(4)式中,系数之间的关系式为 { 011.1039.02222=+-=+b a c a

实验报告科学实验教案

实验报告科学实验教案

1、小苗的诞生(实验研究种子萌发的条件) 一、教学目标 (一)知识与技能 能对种子萌发的外界条件进行完整的实验研究。 (二)过程与方法 1、能从研究结果中发现新的研究问题。 2、能通过研究找出对种子进行分类的合理方法。 (三)情感态度与价值观 能制作出规范、美观的种子标本盒。 二、重点难点 (一)重点: 指导学生如何制订较规范的实验方案。 (二)难点: 指导学生如何制订较规范的实验方案。 三、课前准备 豆种、布、等配套实验材料。

四、教学过程 (一)导入:种子在什么条件下才能萌发? (二)指导学生探究种子萌发的外界条件。 1、让学生展开讨论。 2、学生汇报讨论的结果。 3、学生分小组观察教师事先准备好的种子。 4、学生进行猜想。 5、学生设计实验验证自己的猜想。 (1)学生制订实验方案。 (2)学生交流各自的实验方案。 (3)学生对实验现象进行解释。 (4)归纳小结。 6、让学生提出还想研究的问题。 7、让学生阅读“科学在线”的内容。 (三)指导学生制作种子标本。 2、土壤与植物的生长(实验渗水比赛) 一、教学目标 (一)知识与技能

1、能与其他同学共同研究三种土壤的主要差别。 2、能对实验结果产生原因进行解释。 (二)过程与方法 1、能正确使用实验法研究三种土壤的渗水能力,从而推测出三种土壤的保水能力。 2、能通过对比实验总结出某种物体适合生长在哪种类型的土壤中。 (三)情感态度与价值观 认识土壤对植物的重要意义。 二、重点难点 (一)重点:指导学生探究土壤的渗水能力。 (二)难点:观察同一种植物在不同土土壤里的生长情况。 三、课前准备 配套实验材料、烧杯等。 四、教学过程 (一)导入 不同的土壤对植物的生长有什么影响?植

传热中温辐射时物体的黑度测试实验报告

用n 个物体组成的辐射换热系统中,利用净辐射法,可以求物体i 的纯换热量Q net.i 。 式中: Q net.i — i 面的净辐射换热量。 Q abs,i — i 面从其他表面的吸热量。 Q e,i — i 面本身的辐射热量。 αi — i 面的吸收率。 E eff,k — k 面的有效辐射力。 X k,i — k 面对i 面的角系数。 F k — k 面的面积。 εi — i 面的黑度(发射率)。 E b,i — i 面的辐射力。 根据本实验的设备情况,可以认为: 1、热源1,传导圆筒2 为黑体。 2、热源1,传导筒2,待测物体(受体)3,它们表面上的温度均匀(见图1 ) 实验三 中温辐射时物体的黑度测试实验报告 1. 实验原理

四、实验方法和步骤 本仪器用比较法定性的测定物体的黑度,具体方法是通过对三组加热器电压的调整(热 源一组,传导体二组),使热源和传导体的测温点恒定在同一温度上,然后分别将“待测”(受体为待测物体,具有原来的表面态度)和“黑体”(受体仍为待测物体,但表面薰黑)两种状态的受体在相同的时间接受热辐射,测出受到辐射后的温度,就可按公式计算出待测物体的黑度。 为了测试成功,最好在实测前对热源和传导体的恒温控制方法进行1-2 次探索,掌握规 律后再进行正式测试。 具体实验步骤如下: 1.将热源腔体1 和受体腔体3(先用“待测”状态的受体)对正靠近传导体2 并在受体 腔体与传导体之间插入石棉板隔热。 2.接通电源,调整热源、传导左和传导右的调温旋钮,使其相应的加热电压调到合适

的数值。加热30 分钟左右,对热源和传导体两侧的测温点进行监测,根据温度值,微调相 应的加热电压,直至所有测点的温度基本稳定在要求的温度上。 3.系统进入恒温后(各测温点的温度基本接近,且各点的温度波动小于3℃),去掉隔 热板,使受体腔体靠近传导体,然后每隔10 分钟对受体的温度进行监测、记录、测得一组 数据。在此同时,要监测热源和传导体温度,并随时进行调整。 4.取下受体体腔,待受体冷却后,用松脂(带有松脂的松木)或蜡烛将受体表面薰黑。 然后重复上述方法,对“黑体”进行测试,测得第二组数据。 5.将两组数据进行整理后代入公式,即可得出待测物体的黑度ε 受。 3.实验数据记录和处理 3.1 实验记录 序号 热源 传导 受体 紫铜 室温22 1.00 2.00 3.00 1.00 120.00 120.00 120.00 55.00 2.00 120.00 119.00 120.00 55.00 3.00 120.00 119.00 120.00 55.00 平均 120.00 119.33 120.00 55.00 1.00 120.00 120.00 120.00 56.00 紫铜熏黑 2.00 119.00 120.00 120.00 56.00 3.00 119.00 120.00 120.00 57.00 平均 119.33 120.00 120.00 56.33 3.2处理 =?受T 33.5K =?0T 34.33K T 源=392.63K T0=329.63K T 受=328.3K =' 源T 393.3K =受ε 0.948

相关主题
文本预览
相关文档 最新文档